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Abstract 
 
Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane 
of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late 
endosomes/lysosomes though how it traffics there and its function in these organelles is 
unknown. Here we report that Stx3 undergoes mono-ubiquitination in a conserved polybasic 
domain. Stx3 present at the basolateral – but not the apical - plasma membrane is rapidly 
endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs) and 
excreted in exosomes. A non-ubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this 
pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the 
ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the 
basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of 
cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. 
Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and 
we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. 
Altogether these results suggest that Stx3 functions in the transport of specific proteins to 
apical exosomes and that HCMV exploit this pathway for virion excretion. 
 
Introduction 
 

SNARE proteins are well recognized as mediators of membrane fusion within the 
endomembrane system of eukaryotic cells (Rothman, 2014; Sudhof, 2014; Wickner and 
Schekman, 2008). Syntaxins, a conserved family of SNARE proteins (Weimbs et al., 1997b; 
Weimbs et al., 1998), are central to all SNARE complexes. At least 16 syntaxins are encoded 
in the human genome (Hong, 2005), and each localizes to specific membrane domains or 
organelles in which they carry out specific membrane fusion reactions. The diversity of 
syntaxins and their cognate SNARE binding partners are thought to contribute to the overall 
fidelity and specificity of membrane trafficking (Jahn and Scheller, 2006; Rodriguez-Boulan et 
al., 2005). Others and we have previously reported that Syntaxin 3 (Stx3) localizes to the 
apical plasma membrane in a wide variety of polarized epithelial cells (Delgrossi et al., 1997; 
Li et al., 2002; Low et al., 1996; Low et al., 1998; Low et al., 2006; Weimbs et al., 1997a). 
Apical targeting of Stx3 is governed by an apical targeting signal in its N-terminal domain, 
and its mutation causes mislocalization of Stx3, improper trafficking of apical membrane 
proteins, and cell polarity defects (Sharma et al., 2006; ter Beest et al., 2005).  

In addition to the apical plasma membrane, a fraction of Stx3 also localizes to late 
endosomal/lysosomal compartments (Delgrossi et al., 1997; Low et al., 1996). It is unknown 
how Stx3 traffics to these organelles or what its function there may be. We have previously 
shown that newly synthesized Stx3 is initially delivered to both the apical and basolateral 
plasma membrane (Sharma et al., 2006). Because Stx3 is undetectable at the basolateral 
membrane at steady-state, this suggested that any basolaterally “mis-delivered” Stx3 must be 
rapidly removed, possibly by endocytosis. Whether and how any syntaxins undergo 
endocytosis is poorly understood. However, Stx8 interacts with the potassium channel TASK-
1 which facilitates the clathrin-mediated endocytosis of both proteins leading to regulation of 
TASK-1 abundance at the plasma membrane (Renigunta et al., 2014). Other syntaxins also 
interact with ion channels and regulate their activity and/or localization (Bezprozvanny et al., 
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1995; Geng et al., 2008; Leung et al., 2007; Singer-Lahat et al., 2008) which has led to the 
idea that syntaxins have additional functions unrelated to membrane fusion.  

Curiously, Stx3 has been identified among proteins found in apically secreted exosomes 
but not basolateral exosomes (van Niel et al., 2001). In vivo, Stx3 is also found in urinary 
exosomes, presumably due to apical secretion from tubule epithelial cells (Gonzales et al., 
2009). Exosomes are small vesicles that are secreted by the fusion of intracellular 
multivesicular bodies (MVBs) with the plasma membrane (Lakkaraju and Rodriguez-Boulan, 
2008; Meckes and Raab-Traub, 2011). MVBs, in turn, are a class of late endosomes 
containing intraluminal vesicles (ILVs) which are formed by the invagination of the limiting 
membrane of the endosome. MVBs either fuse with lysosomes for the degradation of their 
membranous contents or with the plasma membrane for the secretion of exosomes. 
Conjugation of membrane proteins with ubiquitin can serve as a signal that directs these 
membrane proteins into the MVB pathway (Huang et al., 2006; Kamsteeg et al., 2006; 
Marchese et al., 2008; Stringer and Piper, 2011). In particular, monoubiquitination has been 
identified as an endocytosis signal that directs plasma membrane proteins to the endocytic 
pathway (Hicke, 2001).   

Human cytomegalovirus (HCMV) is a member of the enveloped herpesvirus family, and a 
widespread human pathogen that causes asymptomatic infections that often become latent. 
However, in immunocompromised persons, HCMV infections can be life-threatening, and 
congenital infection can lead to significant developmental defects (Britt and Mach, 1996; 
Fowler et al., 1992). HCMV acquires its final envelope in intracellular membranes prior to its 
secretion though the mechanisms underlying these processes are poorly understood. We 
have previously shown that HCMV strongly induces the expression of Stx3 and that Stx3 is 
required for the production of infectious viral particles through a mechanism that likely 
involves late endosomes/lysosomes (Cepeda and Fraile-Ramos, 2011). How Stx3 may be 
involved in HCMV virion production and secretion is unknown. However, according to some 
models, HCMV virions bud into intracellular membrane organelles which may subsequently 
fuse with the plasma membrane in a mechanism that at least superficially resembles the 
mechanism of secretion of exosomes from MVBs (Alenquer and Amorim, 2015; Cepeda et 
al., 2010; Fraile-Ramos et al., 2010). 

We report here that Stx3 can undergo mono-ubiquitination on lysines in its 
juxtamembrane region. Stx3 is rapidly endocytosed from the basolateral domain of polarized 
epithelial cells but not from the apical domain. A ubiquitination-deficient mutant of Stx3 (Stx3-
5R) exhibits delayed basolateral endocytosis, exclusion from the endosomal pathway and 
diminished secretion in apical exosomes. Expression of Stx3-5R acts in a dominant-negative 
fashion and decreases the exosomal secretion of GPRC5B, a known apical exosome cargo. 
Finally, expression of Stx3-5R strongly inhibits the number of infectious HCMV secreted 
virions. Altogether, these results suggest that Stx3 has a second function in addition to its 
established role in apical membrane fusion. Stx3 is ubiquitinated and actively transported 
from the basolateral membrane to the endosomal/MVB pathway and excreted apically in 
exosomes. Our results suggest that Stx3 is not only a passive cargo in this pathway but 
facilitates the efficient trafficking of other cargoes into apical exosomes. In addition, our 
results also suggest that HCMV exploits this cellular apical exosomal pathway to accomplish 
the efficient release of viral particles. 
 
Results 
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Stx3 undergoes mono-ubiquitination 
While the bulk of Stx3 resides on the apical plasma membrane in polarized epithelial cells, a 
portion of Stx3 also localizes to a late endosomal population (Delgrossi et al., 1997; Low et 
al., 1996). We hypothesized that ubiquitination may be involved in the targeting of endosomal 
Stx3. To test whether Stx3 can undergo ubiquitination, endogenous Stx3 was 
immunoprecipitated from polarized Caco2 intestinal epithelial cells and probed for ubiquitin by 
immunoblotting. A specific, ubiquitin-positive band was detected migrating at a position ~9 
kDa larger than Stx3 (Fig. 1A) suggesting that a fraction of Stx3 undergoes mono-
ubiquitination. To confirm this finding, myc-tagged ubiquitin and untagged Stx3 were co-
expressed in HEK293T cells followed by immunoprecipitation. Mono-ubiquitinated Stx3 can 
be detected as a band with an increased molecular weight of ~9 kDa (Fig. 1B). Using MDCK 
cells stably expressing either C-terminally myc-tagged Stx3 or Stx4 in a doxycycline-inducible 
manner (Low et al., 2006), a similar ~9 kDa shifted, ubiquitin-positive band appears for Stx3 
but not Stx4 suggesting that ubiquitination is not a universal modification of all syntaxins (Fig. 
1C). Treatment with the protease inhibitor ALLN leads to a strong increase in the level of 
mono-ubiquitinated Stx3 (Fig. 1D). The effect of ALLN suggests that the ubiquitinated species 
is either quickly degraded or de-ubiquitinated in the cell. ALLN has previously been 
suggested to inhibit deubiquitinating enzymes (Wojcikiewicz et al., 2003). Altogether, these 
data indicate that a short-lived population of Stx3 can undergo mono-ubiquitination in multiple 
cell lines and under various experimental conditions. 
 
Ubiquitination occurs in the juxtamembrane region of Stx3 
Deletion mutants were used to identify the ubiquitination site(s) in Stx3 (Fig. 2A). Deletion of 
the transmembrane domain prevents ubiquitination suggesting that membrane anchorage is 
required (Fig. 2B). Constructs containing either the N- or C-terminal halves, respectively, of 
the cytoplasmic domain of Stx3 in addition to the transmembrane domain could both be 
ubiquitinated (Fig. 2). The only lysine residues in common between these two constructs are 
the two lysines immediately preceding the transmembrane domain which are part of a basic 
motif containing six lysine residues (Fig. 2A). Similar basic motifs are present in most other 
SNARE proteins that contain C-terminal transmembrane anchors (Weimbs et al., 1998) but 
the primary amino acid sequences of these motifs are not well conserved between different 
syntaxins (Fig. 2C). To investigate possible ubiquitination in this basic motif of Stx3, lysines 
were progressively replaced with arginines in order to prevent ubiquitination without 
disrupting the positive charges (Fig. 2D). Mutation of all six lysines (6R mutant) or of the most 
C-terminal five lysines (5R mutant) completely prevented ubiquitination (Fig. 2E). 
Interestingly, the 2R, 3R, and 4R mutants did not prevent ubiquitination. Given the positions 
of these mutations we conclude that any of the C-terminal five lysine residues can be subject 
to ubiquitination. This suggests that ubiquitination of this motif is region-specific but not 
strictly sequence specific.  
 We chose the “5R” mutant as a non-ubiquitinatable Stx3 for further study and stably 
expressed this mutant in MDCK cells in a doxycycline-inducible manner. Stx3-5R still binds 
efficiently to the endogenous SNARE binding partner SNAP-23 and the SNARE regulator 
munc18b similar to wild-type Stx3 (Fig. 2F) suggesting that the mutations in Stx3-5R do not 
cause detrimental structural defects that disrupt normal binding interactions. The steady-state 
localization of Stx3-5R and Stx3-6R at the apical plasma membrane mirrors wild-type 
localization (Fig. 2G). 
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Ubiquitination directs basolateral Stx3 to the endocytic pathway and influences cargo 
sorting 
Previously, we have reported that, in addition to the apical plasma membrane, a fraction of 
Stx3 localizes to late endosomes/lysosomes (Low et al., 1996). To test if this localization is 
ubiquitination-dependent, we investigated the intracellular localization of wild-type Stx3 or 
Stx3-5R by immunofluorescence microscopy in MDCK cells. As expected, wild-type Stx3 
extensively colocalizes with the late endosomal/lysosomal marker LAMP-2. In contrast, Stx3-
5R exhibits very little colocalization with LAMP-2 (Fig. 3A) suggesting that ubiquitination may 
be required for Stx3 targeting into the late endosomal/lysosomal pathway. 

To investigate this novel role for ubiquitination of Stx3, we took advantage of the 
extracellular myc-epitope tag (Fig. 2A) to follow the endocytosis of Stx3 from either the 
basolateral or apical plasma membrane. Polarized MDCK cells cultured on Transwell filters 
were incubated with anti-myc antibody either in the media compartment in contact with the 
apical or the basolateral domain. After antibody addition, cells were washed, and incubated at 
the indicated time points. Any Stx3 that had been tagged with the antibody on either cell 
surface was visualized by immunofluorescence microscopy (Fig. 3B). Surprisingly, despite 
the fact that wild-type Stx3 is undetectable at the basolateral membrane at steady-state (Fig. 
2G), after antibody addition into the basolateral chamber a strong signal of antibody-tagged 
Stx3 is observed on the basolateral membrane at 5 minutes (Fig. 3B). Within 20 minutes, 
antibody-tagged Stx3 moves to intracellular vesicles that co-stain with the M6PR (mannose 
6-phosphate receptor), a marker of the late endosomal/lysosomal pathway. Most of the 
basolaterally internalized Stx3 signal remains in M6PR-positive organelles after 60 minutes 
but a fraction appears to be able to reach the apical plasma membrane by that time. In 
contrast, when the myc-antibody is added to the apical chamber antibody-tagged wild-type 
Stx3 remains at the apical membrane with no evidence of internalization after 60 minutes 
(Fig. 3B). We conclude that a significant fraction of wild-type Stx3 is targeted to the 
basolateral domain from which it is rapidly removed by endocytosis followed by targeting to 
the late endosomal/lysosomal pathway. In contrast, the fraction of Stx3 that has reached the 
apical membrane is stable at this location and does not undergo endocytosis. Therefore, 
apical polarity of Stx3 is achieved, at least in part, by selective removal from the “incorrect” 
plasma membrane domain. 
 The ubiquitination-deficient Stx3-5R mutant is still efficiently tagged by the myc-
antibody at both the basolateral and apical membranes. In contrast to wild-type Stx3, 
however, Stx3-5R does not undergo rapid endocytosis from the basolateral membrane, and 
does not exhibit targeting to M6PR-positive organelles. Eventually, by 60 minutes, a fraction 
of Stx3-5R reaches the apical membrane. We conclude that the inability to ubiquitinate Stx3 
leads to a defect in efficient basolateral endocytosis and targeting to the late 
endosomal/lysosomal pathway. 

To further explore the internalization and endosomal trafficking of Stx3 we utilized the 
GTPase-deficient Q79L mutant of Rab5 (Barbieri et al., 1996). Proteins internalized via 
clathrin-mediated endocytosis accumulate in early endosomes in the presence of this mutant 
and these endosomes dramatically enlarge in size (Gong et al., 2007; Olkkonen and 
Stenmark, 1997; Somsel Rodman and Wandinger-Ness, 2000; Zerial and McBride, 2001). 
Stx3 is efficiently targeted to Rab5-Q79L-positive enlarged endosomes and localizes both at 
the limiting membrane and prominently on intraluminal vesicles (ILVs) of these endosomes 
(Fig. 3C). This result suggests that Stx3 is internalized to ILVs. In contrast, Stx3-5R is absent 
from both the limiting membrane and ILVs of Rab5-Q79L-positive enlarged endosomes 
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suggesting again that ubiquitination is required for endocytosis of Stx3 and trafficking to 
endosomes (Fig. 3C). 

The orphan G-protein coupled receptor GPRC5B is excreted with apical exosomes in 
MDCK cells and has been shown to localize to ILVs in enlarged Rab5-Q79L-positive early 
endosomes (Kwon et al., 2014). Therefore, we investigated GPRC5B as an established 
cargo protein that traffics via endosomal ILVs en route the apical exosomal pathway in MDCK 
cells. mCherry-tagged Rab5-Q79L, GFP-tagged GPRC5B and Stx3 or Stx3-5R were co-
expressed in MDCK cells. As anticipated, GPRC5B and Stx3 localize to the lumens of 
enlarged early endosomes (Fig. 3D). However, when Stx3-5R is expressed, neither Stx3-5R 
itself nor GPRC5B are found in the endosomal lumen. This result suggests the possibility that 
Stx3 not only traffics to ILVs in the endosomal pathway but may also play a role in facilitating 
the trafficking of other proteins in this pathway. Overexpression of the ubiquitination-defective 
Stx3-5R mutant may therefore act as a dominant-negative inhibitor of this pathway.  
 
Ubiquitination directs Stx3 and cargo to exosomes 
Stx3 and its binding partner munc18b have been identified in apically released exosomes 
from intestinal epithelial cells (van Niel et al., 2001) and in a proteomics screen of urinary 
exosomes (Gonzales et al., 2009). We confirmed the presence of Stx3 and munc18b in 
human urinary exosomes (Fig. 4A). Besides the relatively abundant signal for Stx3 in urinary 
exosomes, Stx2 could also be detected (Fig. 4B), but not the basolateral membrane-specific 
Stx4 (Low et al., 1996) or the neuronal Stx1A (Fig. 4B). Next, we isolated exosomes secreted 
from Caco-2 cells and found endogenously expressed Stx3 to be present (Fig. 4C). These 
results confirm that endogenous Stx3 is secreted in exosomes both in vivo and in vitro.  

To determine if ubiquitination is necessary for exosomal secretion of Stx3, we 
expressed myc-tagged Stx3 or Stx3-5R in HEK293T cells and isolated exosomes from the 
cell culture medium. While wild-type Stx3 is readily detectable in exosomes, only trace 
amounts of Stx3-5R were found (Fig. 4D) suggesting that ubiquitination is required to direct 
Stx3 to the endosomal pathway leading to secretion in exosomes.  

Since our above data suggested that Stx3 may play a role in facilitating the trafficking 
of GPRC5B into the endosomal pathway, we next investigated whether the exosomal 
secretion of GPRC5B is affected by Stx3-5R. GPRC5B was expressed in MDCK cells stably 
expressing either Stx3 or Stx3-5R and the secreted exosomes were isolated. Secretion of the 
general exosomal marker flotillin was unaffected by expression of Stx3 or Stx3-5R (Fig. 4E). 
In contrast, the exosomal secretion of GPRC5B was reduced by approximately 50% in cells 
expressing Stx3-5R (Fig. 4F). This result suggests that Stx3 may facilitate the exosomal 
trafficking of specific cargo proteins as opposed to the secretion of exosomes per se. To 
further test whether Stx3 is required for the overall ability of cells to secrete exosomes we 
knocked down the expression of endogenous Stx3 by stable shRNA expression in MeWo 
cells (Fig. 4G) and quantified the number of secreted exosomal particles by Nanoparticle 
Tracking Analysis (Carr, 2007). No substantial difference was observed (Fig. 4H). 

Altogether, these results suggest that Stx3 is not required for the biogenesis and 
secretion of exosomes but likely plays a role in the targeting of specific proteins into the 
exosomal pathway. 
 
Ubiquitination of Stx3 is required for HCMV secretion 
We have previously shown that HCMV infection induces a strong increase in the expression 
of endogenous Stx3, and that Stx3 can be detected in secreted virions (Cepeda and Fraile-
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Ramos, 2011). Knockdown of Stx3 expression inhibits the production and secretion of HCMV 
virions (Cepeda and Fraile-Ramos, 2011), a processes that also involves Rab27a (Fraile-
Ramos et al., 2010), a small GTPase required for exosome excretion (Ostrowski et al., 2010). 
These findings suggest that Stx3 is required for a key step in the HCMV life cycle and we 
hypothesized that its role may depend on its ability to be ubiquitinated and target to the 
endosomal/exosomal pathway. To test this, the expression of endogenous Stx3 in human 
foreskin fibroblast (BJ1) cells was knocked-down by shRNA (Fig. 5A) and then “rescued” by 
lentiviral expression of Stx3 or Stx3-5R cDNA constructs resistant to the shRNA (Fig. 5A). 
When these cells were infected with a recombinant strain of HCMV containing a GFP reporter 
under an HCMV early promoter (McSharry et al., 2001) and the number of infected cells was 
determined by GFP expression, we did not observe differences between the cell lines (Fig. 
5B). Knock-down of endogenous Stx3 expression caused a strong reduction of the amount of 
infectious particles released into the supernatant (Fig. 5C) consistent with previous results 
(Cepeda and Fraile-Ramos, 2011). This effect was completely rescued by re-expression of 
wild-type Stx3 but not by re-expression of Stx3-5R (Fig. 5C). Moreover, exogenous 
expression of Stx3-5R alone – without knocking-down endogenous Stx3 expression - strongly 
reduced the number of infectious particles released (Fig. 5C) indicating again that this mutant 
acts as a dominant-negative inhibitor. Altogether, these results indicate that ubiquitination of 
Stx3 plays a key role in the life cycle of HCMV and suggest that HCMV uses a pathway 
similar to the exosomal pathway for its secretion. 
 
Discussion 
This study illustrates a novel trafficking pathway for Stx3 and suggest a function of Stx3 that 
may be independent of its function in membrane fusion. Previous studies have shown that 
Stx3 localizes to the apical plasma membranes of various types of polarized epithelial cells 
and that it plays a role in apical membrane trafficking, presumably by mediating fusion of 
transport vesicles that reach the apical plasma membrane (Breuza et al., 2000; Delgrossi et 
al., 1997; Fujita et al., 1998; Li et al., 2002; Naren et al., 2000; Riento et al., 1998). However, 
Stx3 has also been detected on intracellular membrane compartments including late 
endosomes/lysosomes (Delgrossi et al., 1997; Low et al., 1996), secretory granules in 
pancreatic acinar cells (Gaisano et al., 1996), mast cells (Guo et al., 1998; Hibi et al., 2000) 
and parotid acinar cells (Castle et al., 2002), tubulovesicles containing the H,K-ATPase in 
gastric parietal cells (Peng et al., 1997), the phagosomal membrane of macrophages 
(Hackam et al., 1996), and on melanosomes in melanocytes (Yatsu et al., 2013). It is unclear 
whether Stx3 functions in these intracellular organelles as a membrane fusion protein or 
whether it may have a separate function.  
 In MDCK cells, newly synthesized Stx3 reaches both the apical and basolateral 
plasma membranes on direct routes after passage through the Golgi in a relatively non-
polarized fashion (Sharma et al., 2006) and it remained unclear how apical polarity is 
eventually achieved. In addition, it has remained unknown how Stx3 may be targeted to any 
of the intracellular organelles mentioned above. Our results now suggest that Stx3 is targeted 
to the endosomal/lysosomal pathway via endocytosis from the basolateral plasma 
membrane. Our finding that myc-tagged Stx3 can be efficiently detected by binding to the 
myc antibody at the basolateral membrane (Fig. 3B) is consistent with our previous finding 
that ~25% of newly synthesized Stx3 is initially targeted to the basolateral membrane in 
polarized MDCK cells (Sharma et al., 2006). Intriguingly, at steady-state, Stx3 is undetectable 
at the basolateral membrane which is consistent with our finding that Stx3 is rapidly 
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endocytosed from this membrane. In contrast, we saw no evidence of endocytosis of Stx3 
from the apical membrane. Altogether, these findings suggest that selective removal from the 
basolateral membrane, and stabilization at the apical membrane greatly contribute to the 
overall polarized distribution of Stx3 in epithelial cells. 
 Our results suggest that mono-ubiquitination of Stx3 acts as an internalization signal at 
the basolateral membrane. Similarly, mono-ubiquitination has been found to induce 
endocytosis of several other integral membrane proteins (Clague and Urbe, 2010; Hislop and 
von Zastrow, 2011; Raiborg and Stenmark, 2009; Shields and Piper, 2011). We speculate 
that Stx3 is recognized and ubiquitinated by an E3 ubiquitin-protein ligase that is specific to 
the basolateral membrane, but such an enzyme remains to be identified. A few previous 
studies have indicated that other syntaxins can be ubiquitinated. Stx1B was found to be poly-
ubiquitinated by the novel E3 ubiquitin-protein ligase Staring which leads to its proteasomal 
degradation (Chin et al., 2002). Proteomic screens found evidence for ubiquitination of 
several syntaxins among many other proteins (Danielsen et al., 2011; Kim et al., 2011; Na et 
al., 2012). 

We show that Stx3 is primarily mono-ubiquitinated and that this modification occurs in 
its polybasic juxtamembrane region. This region contains six lysine residues, all or most of 
which appear to be able to serve as ligation sites for ubiquitin. All other syntaxins have similar 
charged polybasic regions near the transmembrane domain raising the possibility that other 
syntaxins may be modified there, too.  For example, syntaxin 5 is mono-ubiquitinated at a 
residue in the polybasic region as well (Huang et al., 2016).  Both mono-ubiquitination events, 
either Stx3 or Stx5, induce dominant-negative behavior preventing cargo sorting or proper 
Golgi assembly, respectively. We hypothesize that ubiquitinated Stx3 may be unable to form 
the SNARE complex, ensuring that mistargeted Stx3 on the basolateral membrane cannot 
function in inappropriate membrane fusion of apically destined vesicles. This intriguing 
possibility remains to be investigated but would provide an elegant mechanism to enhance 
overall specificity in membrane trafficking. 

Basolaterally endocytosed Stx3 rapidly reaches M6PR-positive endosomes (Fig. 3B). 
Furthermore, Stx3 is targeted to intraluminal vesicles in Rab5-Q79L-positive endosomes (Fig. 
3C). Finally, Stx3 can be recovered from apically secreted exosomes (Fig. 4). Together these 
results indicate that a fraction of endocytosed Stx3 is transported along the 
endosomal/MVB/exosomal pathway. Human urine is a relatively rich source of exosomal Stx3 
(Gonzales et al., 2009) (Fig. 4) suggesting that a significant quantity of Stx3 is targeted along 
this route in renal tubule epithelial cells and finally excreted apically into the urinary space. 
The purpose of the presence of Stx3 in exosomes is unclear. One possibility is that exosomal 
secretion is a mechanism of eliminating excess cellular Stx3, although this would seem to be 
a relatively wasteful mechanism compared to lysosomal degradation. Another possibility is 
that Stx3 has a distinct function in exosomes although it would probably be unrelated to any 
membrane fusion function because topologically Stx3 protrudes into the lumen of exosomes 
and would be inaccessible from the outside. A third possibility – which we consider most 
likely - is that Stx3 functions as a trafficking adaptor directing cargo proteins into the apical 
exosomal secretion pathway and as a consequence it is eventually incorporated in 
exosomes. A finding in support of this possibility is that the ubiquitination-deficient mutant, 
Stx3-5R, appears to act as a dominant-negative inhibitor of GPRC5B into intraluminal 
vesicles (Fig. 3D) and its apical exosomal secretion (Fig. 4E,F). The finding that Stx3-5R 
does not affect exosomal secretion of the “generic” exosomal marker flotillin 1 (Fig. 4 D,E), 
and that inhibition of Stx3 expression does not affect the number of secreted exosomes (Fig. 
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4G,H), suggests that Stx3 functions specifically in the targeting of certain cargoes into the 
endosomal/MVB/exosomal pathway as opposed to be required for the generation/secretion of 
exosomes per se. Besides the abundant presence of Stx3 in urinary exosomes, GPRC5B is 
also secreted in urinary exosomes and its level is dramatically increased in patients with 
acute kidney injury (Kwon et al., 2014).  

Based on the unaltered molecular weight of Stx3 recovered from exosomes (Fig. 4) we 
conclude that exosomal Stx3 is not ubiquitinated. However, since the non-ubiquitinatable 
mutant, Stx3-5R, fails to traffic to exosomes we conclude that ubiquitination of Stx3 is 
required for its entry into the endosomal/MVB/exosomal pathway, most likely at the level of 
endocytosis at the plasma membrane. Many membrane proteins that traffic to ILVs are 
ubiquitinated (Bilodeau et al., 2002; Henne et al., 2011; Raiborg et al., 2002; Shih et al., 
2002), however, de-ubiquitinating enzymes typically remove ubiquitin from such proteins prior 
to the final incorporation into ILVs (Henne et al., 2011; Kyuuma et al., 2007; McCullough et 
al., 2006; Ren et al., 2008). Therefore, we propose that Stx3 is similarly de-ubiquitinated 
during this step but the responsible de-ubiquitinating enzyme remains to be identified.  

Remarkably, the Stx3-5R mutant strongly inhibits the number of infectious HCMV 
virions secreted into the supernatant of infected cells (Fig. 5C). It is not well understood how 
HCMV virions are assembled and acquire their membrane envelope. However, this process 
occurs in an intracellular assembly site and it has been suggested that virions of HCMV and 
related viruses bud into a membrane organelle which subsequently fuses with the plasma 
membrane of the host cell to release complete, enveloped virions. Previous work has 
suggested that this process shares similarities with the invagination of ILVs during the 
formation of MVBs, and that HCMV and related viruses may exploit an exosome-like, 
Rab27a-dependent pathway (Calistri et al., 2007; Cepeda et al., 2010; Fraile-Ramos et al., 
2010; Hurley et al., 2010; Mori et al., 2008; Pawliczek and Crump, 2009; Tandon et al., 
2009).  

We have previously shown that HCMV infection leads to a dramatic upregulation of 
Stx3 expression in the host cell and that Stx3 is required for efficient virus production 
(Cepeda and Fraile-Ramos, 2011). Furthermore, Stx3 is present in purified HCMV virions 
(Cepeda and Fraile-Ramos, 2011) suggesting that it is incorporated into the viral envelope 
during viral assembly. Interestingly, a virally encoded miRNA (hcmv-miR-US33-5p) inhibits 
the expression of cellular Stx3 leading to inhibition of viral replication, and it has been 
proposed that this mechanism facilitates establishment or maintenance of HCMV latency 
(Guo et al., 2015). SNAP-23, the SNARE binding partner of Stx3 (Sharma et al., 2006), has 
also been shown to be required for efficient production of HCMV virions (Liu et al., 2011) 
suggesting that Stx3 and SNAP-23 may function as a complex in this process. Our results 
confirm that knocking down the expression of endogenous Stx3 with shRNA does not 
interfere with the ability of HCMV to infect cells but strongly inhibits viral particle secretion 
(Fig. 5). Expression of shRNA-resistant Stx3 rescues this effect but expression of the shRNA-
resistant Stx3-5R mutant does not (Fig. 5C). Furthermore, expression of Stx3-5R alone, over 
the background of endogenous wild-type Stx3, inhibits the number of secreted HCMV virions, 
suggesting again that this mutant acts as a dominant-negative inhibitor. Altogether, these 
results suggest that the ability of Stx3 to be ubiquitinated is essential for the life cycle of 
HCMV. We propose that ubiquitinated Stx3 functions in the assembly of enveloped HCMV 
virions in a trafficking pathway that is analogous to the exosomal pathway. It is possible that 
Stx3 may physically interact with one or more viral proteins and facilitates their trafficking to 
ILV-like vesicles although this remains to be investigated.  
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Materials and Methods 
 
Reagents and antibodies 
A mouse monoclonal antibody against the N-terminal residues 1-146 of rat Stx3 was 
generated. This antibody (clone 1-146) is reactive against the rat, mouse and human proteins 
and is available from MilliporeSigma (MAB2258). Anti-myc epitope tag antibody was 
generated from the original hybridoma cells (9E10, ATCC) and used for immunoblots and 
immunoprecipitation. Anti-ZO1 rat antibody (R40.76), anti-calnexin rabbit polyclonal antibody, 
and anti-TSG101 mouse monoclonal antibody were purchased from Santa Cruz 
Biotechnology. Anti-b-actin clone AC-15 was obtained from Sigma Aldrich. Anti-myc tag, 
clone 4A6 from Millipore was used for immunofluorescence. Affinity-purified polyclonal 
antibodies against a C-terminal peptide of human SNAP-23 have been described previously 
(Sharma et al., 2006). Polyclonal antibody against Munc18-2 (munc18b) was a kind gift from 
Dr. Ulrich Blank (INSERM U699, Faculté de Médecine Paris 7). Anti-Na/K ATPase mouse 
mAb was purchased from Affinity Bioreagents. Anti-flotillin1 mouse mAb was purchased from 
BD Biosciences. Secondary antibodies conjugated to DyLight 488 or 594 or and peroxidase 
were from Thermo Scientific and Jackson ImmunoResearch Laboratories, respectively. 
Secondary antibodies conjugated to IR Dye 680 or 800 were from LICOR Biosciences. 
Protease inhibitors, doxycycline, and nitrocellulose membranes were obtained from Sigma-
Aldrich.  
 
Cell culture, transfection, and viruses 
MDCK cells were cultured in minimal essential medium (MEM) (Corning Cellgro) containing 
5% fetal bovine serum (FBS) (Omega Scientific), penicillin and streptomycin (Corning 
Cellgro) at 37C and 5% CO2. Doxycycline-inducible stable cell lines expressing Stx3 and 
Stx3-5R were made as described previously (Sharma et al., 2006). HEK293T cells were 
cultured in Dulbecco’s minimal essential medium (DMEM) (Corning Cellgro) containing 10% 
FBS, penicillin and streptomycin at 37C and 5% CO2. Transient transfections were carried out 
using Lipofectamine 2000 (Life Technologies) or TurboFect (ThermoFisher) per 
manufacturer’s instruction. 

Immortalized human foreskin fibroblast (BJ1) cells were from Clontech and human 
melanoma MeWo cells were a gift from Dr Luís Montoliu (CNB, Madrid, Spain). Cells were 
maintained as recommended by suppliers. MeWo and BJ1 transduced cells were selected in 
media containing 10 and 2 µg/mL puromycin respectively. BJ1 cells were transduced with 
lentiviruses expressing a c-myc-Stx3-wt or a c-myc-Stx3-5R mutant construct resistant to 
shRNA inhibition. BJ1 shRNA-resistant c-myc-Stx3-wt and -5R expressing cells were sorted 
with an ALTRA HyPerSort flow cytometer (Beckman Coulter, Inc., Palo Alto, USA). 

A recombinant strain of HCMV AD169 expressing GFP under the control of the HCMV 
early promoter beta 2.7 gene that is expressed from 8 hpi, RecCMV (McSharry et al., 2001), 
was propagated on BJ1 cells and titrated as previously described (Cepeda et al., 2010). 

Lentiviral vectors for shRNA-mediated gene silencing were prepared with pMDG, 
p8.91 and retroviral expression plasmids encoding scrambled control (SHC002) and Stx3 
shRNA TRCN0000065016 (#304) (Mission® TRC-Hs shRNA libraries, Sigma Aldrich) (Moffat 
et al., 2006) as described (Naldini et al., 1996). 
 
Plasmids and shRNA 
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pcDNA4-Stx3 expression constructs were described previously (Sharma et al., 2006). 
QuickChange Site-directed mutagenesis kit (Agilent Technologies) was used to generate 
mutations in the pcDNA4-Stx3 expression construct per manufacturers instructions. pGFP-
C2-hRab5A and pGFP-C2-hRab5A-Q79L were gifts from Dzwokai Ma (University of 
California, Santa Barbara). pEGFP-GPRC5B plasmid was a gift from Keith Mostov and Sang-
Ho Kwon (University of California, San Francisco). mCherry-Rab5CA(Q79L) was a gift from 
Sergio Grinstein (Addgene plasmid # 35138) (Bohdanowicz et al., 2012).  

shRNA-resistant c-myc-Stx3 (GenScript, New Jersey, USA) and c-myc-Stx3-5R 
constructs were extended with Gateway® recombination sequences and transferred via 
pDONR201 (Invitrogen) to the lentiviral plasmid pLenti-PGK-Neo-DEST(w531-1) (Campeau 
et al., 2009) (obtained through Addgene, Massachusetts, USA). Recombinant lentiviruses 
were prepared as described above. 
 
Co-immunoprecipitation 
Polarized MDCK cells were lysed in a buffer containing 50mM Hepes-KOH pH 7.4, 50mM 
potassium acetate, 1% Triton X-100, and 100µM PMSF for 30 minutes rotating at 4ºC. 
Samples were centrifuged at 10,000g for 10 minutes at 4ºC. Resulting supernatant was pre-
cleared with CL2B sepharose beads for 20 minutes at 4ºC. Pre-cleared supernatants were 
incubated with protein-A beads cross-linked to anti-myc mouse IgG antibody (GE Healthcare 
Life Sciences) overnight rotating at 4ºC. Beads were washed three times with lysis buffer 
followed by one wash with lysis buffer minus Triton X-100. Beads were resuspended in 
sample buffer and subjected to SDS-PAGE and Western blotting. 
 
Immunofluorescence microscopy 
Cells were fixed with 4% paraformaldehyde, and treated with permeabilization/blocking buffer 
(PBS containing 5% donkey serum and 0.2% Triton X-100). Primary and secondary 
antibodies were diluted in permeabilization/blocking buffer. Cells were stained with DAPI 
(Sigma-Aldrich) and mounted with ProLong Gold mounting medium (Life Technologies).  

For endocytosis assays, MDCK cells were cultured on Transwell membrane filters 
(Corning Cellgro) with complete media in the basolateral chamber and serum-free media in 
the apical chamber for 4 days to ensure polarization. Anti-myc in supplemented MEM (with 
20mM Hepes, pH 7.4 and 0.6% BSA) was added either to the basolateral or to the apical 
chamber for 20min at 4ºC. Cells were washed three times with ice-cold supplemented MEM 
before being incubated at 37ºC for the indicated times and processed as above. Images were 
acquired using an Oympus Fluoview FV1000S Spectral Laser Scanning Confocal microscope 
using an Olympus UPLFLN 60× oil-immersion objective. FIJI software was used to generate 
plot-profile graphs for colocalization analysis. Composite images were assembled in Adobe 
Photoshop. 
 
Exosome purification and quantification 
Human urine or media from cell cultures were subjected to three centrifugation steps; 1,000g 
for 10 minutes, 10,000g for 10 minutes, and 100,000g for 60 minutes. At each step, the 
supernatant was transferred to a new tube. The resulting 100,000g pellet was resuspended in 
Laemmli buffer and subjected to SDS-PAGE and Western blotting. Bands were quantified 
with Odyssey Software (LiCOR), bar graphs and statistics were performed in Prism 7 
(GraphPad). 
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For exosome quantification, 1 x 106 MeWo cells transduced with scrambled control 
and Stx3 shRNAs growing in 60-mm tissue culture plates were incubated in 2 mL of tissue 
culture medium containing 1% FCS. After 48 hours, the cells were lysed to analyse the levels 
of Stx3 and tubulin by immunoblot, and the supernatants were harvested to determine the 
number of exosomes and their size distribution by Nanoparticle Tracking Analysis (Carr, 
2007). Briefly, cell culture supernatants were centrifuged at low-speed in sequential steps, 
and then clarified to eliminate cell debris. Clarified supernatants were diluted (1/5) in HBSS 
and analysed with the use of NanoSight LM10 instrument (NanoSight Ltd., UK) as described 
(Dragovic et al., 2011). NanoSight was calibrated with 100 nm and 400 nm fluorescent 
calibration beads (Malvern, UK).  
 
HCMV infection in BJ1 cells 
BJ1 parental cells and cells expressing an shRNA-resistant c-myc-Stx3-wt or -5R construct 
plated at 0.8 x 105 cells in 16 mm wells in 24-well plates were transduced with scrambled 
control or Stx3 shRNAs. At 2 days post transduction, cells were infected with RecCMV at an 
MOI of 0.3 and 4 hours later puromycin was added to the culture to select transduced cells. 
At 4 days post infection (dpi), a fraction of the cells were fixed, analyzed by FACS and the 
number of infected cells was quantified by GFP expression, another fraction of the cells were 
lysed to quantify the expression of STX3 by Western blot, whereas the remainder of the cells 
were washed and fresh medium was added to collect viruses secreted into the supernatants. 
At 5 dpi supernatants were harvested and extracellular infectious particles were titrated on 
fresh BJ1 cells as previously described (Fraile-Ramos et al., 2007). Cells were fixed at 56 
hours post infection, analysed by flow cytometry and the number of infectious cells, i.e. 
number of infectious virus particles, was assayed by GFP expression. 
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Figure Legends 
 
Figure 1. Stx3 is ubiquitinated. (A) Endogenous Stx3 was immunoprecipitated (IP) from 
Caco2 cells and immunoblotted (IB) with an antibody to ubiquitin (Ub) and Stx3. Nonspecific 
rabbit IgG antibody was used for control (lane C). (B) HEK293T cells were transfected with 
untagged Stx3 and myc-ubiquitin constructs. Lysates were subjected to IP with an anti-Stx3 
antibody and analyzed by IB with anti-myc antibody. Cell lysates used as input for the IP 
were blotted with anti-Stx3 antibody. The ubiquitinated Stx3 band identified by both anti-myc 
and anti-Stx3 antibodies is indicated by arrow. (C) Doxycycline inducible MDCK cells 
expressing Stx3 or Stx4, both myc-tagged, were lysed, immunoprecipitated with anti-myc 
antibodies, and analyzed by immunoblot with antibodies to myc or Ubi. Bottom panel: total 
lysates used for the IP were blotted with anti-myc antibody. (D) Untransfected MDCK cells or 
MDCK cells stably expressing double myc-tagged Stx3 were treated with 10μM ALLN 
(+ALLN) or without (-ALLN) for 16h. Lysates were subjected to IP with anti-myc antibody and 
analyzed by IB with anti-myc antibody.  
 
Figure 2. Ubiquitination occurs in the juxtamembrane region of Stx3. (A) Schematic 
representation of Stx3 wild-type and mutant constructs used for expression. Residues in the 
polybasic juxtamembrane region (PB) of wild-type Stx3 are shown. Two myc epitope tags 
(white circles) and one His6 tag (black circle) were added to the COOH termini; PB, 
polybasic; TM, transmembrane domain. (B) HEK293T cells were transiently transfected with 
the indicated constructs, plated for 24h and incubated with or without ALLN. Lysates were 
subjected to IP with anti-myc antibody and analyzed by IB with anti-Ubi. Bottom: Total lysates 
used for IP blotted with anti-myc antibody. Cells without construct transfection (lane C) serve 
as a negative control for the IP. (C) Sequence alignment of the juxtamembrane region of 
human plasma membrane syntaxins 1A, 2, 3 and 4, SwissProt accession numbers Q16623, 
P32856, Q13277, Q12846 respectively. (D) Stx3 lysine mutant constructs used in this study 
(region 241-268 is shown). Lysine residues mutated to arginine are in bold letters. (E) Anti-
myc Western Blot of HEK293T treated with and without ALLN transiently expressing lysine 
mutants subjected to anti-myc IP. (F) Two different stable clones of DOX inducible MDCK 
cells stably transfected for Stx3-5R, c14 and c21, were subjected to IP with anti-myc antibody 
and IB with antibodies against Ubi, SNAP-23, and munc18b. (G) Immunocytochemistry of 
DOX-induced Stx3, Stx3-5R, or Stx3-6R (green) expresses in polarized MDCK cells cultured 
on Transwell filters. Scale bar: 10µm. 
 
Figure 3. Ubiquitination directs basolateral Stx3 to the endocytic pathway and 
influences cargo sorting to endosomes. (A) Immunofluorescence microscopy showing 
reduced colocalization of Stx3-5R with LAMP-2 compared to wild-type Stx3. Cells were 
cultured on coverslips, treated with DOX for 16h and stained with Stx3 (green) and LAMP-2 
(red) antibodies. Intensity of pixels along white lines in micrographs for each channel plotted 
in graphs under micrographs. Scale bar: 10µm. (B) Wild-type Stx3 or Stx3-5R (c14) 
expression was induced with DOX for 16h in stably transfected MDCK cells grown at 
confluence for 4 days on Transwell filters. For endocytosis assay anti-myc 9E10 ascites was 
added to apical or basolateral media and incubated at 4ºC before being washed off and 
incubated at 37ºC for indicated times. Cells were fixed and stained for Stx3 (myc), green; 
M6PR, red; and nuclei (DAPI), blue. Scale bar: 10 μm. (C) MDCK cells stably expressing 
Stx3 or Stx3-5R were grown on coverslips and transiently transfected with GFP-Rab5 or 
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GFP-Rab5Q79L. Twenty-four hours after transfection, Stx3 or Stx3-5R expression was 
induced with DOX for 16h. Cells were fixed and processed for immunocytochemistry. Stx3 
(myc), red; Rab5, green; and nuclei (DAPI), blue. Scale bar: 10μm. (D) MDCK cells were 
grown on coverslips and transiently transfected with mCherry-Rab5-Q79L, GFP-GPRC5B, 
and either Stx3 or Stx3-5R. Thirty-six hours after transfection cells were fixed and processed 
for immunocytochemistry. Stx3 (myc), blue; Rab5, red; and GPRC5B, green. Scale bar: 
10μm. 
 
Figure 4. Ubiquitination directs Stx3 and cargo to exosomes. (A) Exosomes from 60mL 
of human urine (from two volunteers 1 and 2) were isolated by differential ultracentrifugation. 
Indicated volume amount from a total volume of 50μL were analyzed by immunoblotting for 
TSG101 (exosome positive marker), Na/K ATPase (exosome negative marker) (Simons and 
Raposo, 2009; Thery et al., 2009), Stx3, and munc18b. Total lysates from Caco-2 cells were 
used as antibody control (L) (B) Human urine exosomes were analyzed for the indicated 
plasma membrane syntaxins. Lysates from MDCK cells with stable expression for the 
respective syntaxins were used as positive controls. (C) Exosomes from Caco-2 conditioned 
media were isolated and analyzed as above. (D) HEK293T cells were transiently transfected 
with Stx3, Stx3-5R, and Stx4 (all myc tagged) plasmids. Lane C represents cells without 
transfection. Forty-eight hours after transfection exosomes from the media and cell lysates 
were analyzed by immunoblotting with anti-myc, anti-calnexin (exosome negative marker) 
and anti-flotillin-1 (exosome positive marker). As a specificity control, Stx4 was included 
which was not appreciably secreted in exosomes. (E) DOX induced MDCK expressing Stx3 
or Stx3-5R were transiently transfected with GFP-GPRC5B. Exosomes were purified from 
media after 48h and subjected to immunoblotting. Performed in triplicate. (F) Quantification of 
relative intensity of GPRC5B bands in Stx3 or Stx3-5R exosome samples from (E). Error bars 
represent SEM of experiment performed in triplicate. *P< 0.05, Student’s unpaired t-test. (G) 
Immunoblot of MeWo cells transduced with lentivirus delivering shRNA #304, targeting Stx3, 
or shRNA scrambled control. (H) Table showing concentration of exovesicles in media 
collected from cells in panel (G). 
 
Figure 5. Ubiquitination of Stx3 is required for HCMV secretion. BJ1 cells expressing 
shRNA-resistant-STX3 or shRNA-resistant-Stx3-5R constructs were transduced with 
scrambled control and STX3 #304 shRNAs and infected with RecCMV at 0.3 moi. (A) 
Immunoblot analysis of these cells at 4 days post infection with antibodies against STX3 and 
actin. (B) Flow cytometry analysis for GFP expression. (C) At 5 dpi, supernatants were 
harvested and the number of extracellular infectious viruses was determined on fresh BJ1 
cells. Data are means plus standard deviations of experiment performed in quadruplicate. 
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