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Abstract  15 

During non-REM sleep, memory consolidation is driven by a dialogue between cortex and 16 

hippocampus. The reactivation of specific neural activity sequences – replay – is believed to 17 

represent a neuronal substrate of consolidation. In the hippocampus, replay occurs during sharp-18 

wave ripples (SWRs), short bouts of excitatory activity in area CA3 which induce high frequency 19 

oscillations in the inhibitory population of area CA1. Despite growing evidence for the functional 20 

importance of replay, its neural mechanisms remain poorly understood. Here, we develop a novel 21 

theoretical model of hippocampal spike sequence replay during SWRs. In our model, noise-induced 22 

activation of CA3 pyramidal cells triggered an excitatory cascade, which induced local ripple events 23 

in CA1. Ripples occurred stochastically in the model, with Schaffer Collaterals driving coordination, 24 

so that localized sharp waves in CA3 produced consistently localized CA1 ripples. In agreement with 25 

experimental data, the majority of pyramidal cells in the model showed low reactivation probability 26 

across SWRs, defined by the overall network connectivity. We found, however, that a small portion 27 

of pyramidal cells which had high reactivation probability across multiple SWRs owed their 28 

reactivation properties to the fine variations within network connectivity, and hence the detailed 29 

spiking dynamic within SWRs. In particular, the excitatory inputs along synaptic pathway(s) to cells 30 

and cell pairs controlled emergent single cell and cell pair reactivation. Furthermore, we found that 31 

inhibitory synaptic inputs and intrinsic cell excitability only had an influential role on the activation of 32 

CA3 pyramidal cells, but not CA1 pyramidal cells, during SWRs. Our study predicts that hippocampal 33 

replay results from a network-wide coordination of activation probability across SWRs for cells and 34 

cell pairs, which is further refined by specific synaptic strengths. This suggests a possible competition 35 

among cell assemblies for activation during SWRs, where synaptic strengths mediate the chance of 36 

dominance of a given memory over others during spontaneous SWRs. 37 
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Author Summary  38 

During sleep, rhythmic activities in different brain regions are coordinated across multiple timescales 39 

and brain regions. The coordination of these events is important for consolidation of recently 40 

acquired memories. Sharp-wave ripples (SWRs) are one of such major sleep rhythms, seen in the 41 

hippocampal region, during which cells previously active during an awake task reactivate, in 42 

preserved order, during sleep (‘replay’). Replay is thought to contribute to consolidation by enabling 43 

re-elaboration of events of the day during sleep. However, the manner in which specific spiking 44 

patterns are selected for replay remains unknown. In this study, we apply computational models to 45 

reveal mechanisms behind the generation of SWRs and to explain the factors controlling which cell 46 

sequences reactivate during SWRs. We find that different hippocampal regions have different factors 47 

that promote replay. Our study predicts that when learning changes the strength of synaptic 48 

connections during wake, it would enhance the probability of reactivation of experience-specific 49 

groups of neurons during sleep.  50 

Introduction 51 

Memories acquired during wakefulness continue to evolve during subsequent sleep. Sleep seems an 52 

optimal brain state for this memory consolidation: the brain is dissociated from external inputs and 53 

internal processing can be supported by sleep stage-dependent patterns of network activity, driven 54 

largely by periodic shifts in neuromodulatory tone (1, 2). During non-REM sleep, hippocampal 55 

networks show sharp-wave ripples (SWRs): short bouts of synchronized population activity (50-56 

100ms) initiated in the CA3 area of the hippocampus with strong excitatory firing that reaches area 57 

CA1, driving fast spiking interneurons to rhythmically organize a small fraction of local pyramidal 58 

cells spiking (3-5). In CA1, local field potential (LFP) high frequency oscillations (above 150Hz in the 59 

rat, about 100Hz in humans) occur in the pyramidal layer (the ripple), while in stratum radiatum a 60 

strong deflection marks the effects of Schafferal Collateral input to the pyramidal cells (the sharp 61 

wave). Hippocampal SWRs can be locked to cortical slow oscillations (SO) and troughs of 62 
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thalamocortical spindles, in a coordination of activity across brain regions and time scales (6, 7), 63 

which is thought to orchestrate a hippocampal-neocortical dialogue mediating memory 64 

consolidation. 65 

The number of SWR correlates with memory performance after sleep (8, 9), suppressing SWR 66 

compromises memory consolidation (10, 11) and increased SO power and coordination of SO and 67 

other sleep rhythms augments memory (12). Reactivation of specific neural activity patterns – replay 68 

– during slow wave sleep has been observed in both hippocampus and neocortex (13-18), and 69 

coincides with SWR (19, 20). This led to the hypothesis that coordinated sequence reactivation 70 

during precisely timed oscillations can recruit synaptic plasticity, leading to memory consolidation 71 

across brain structures (21). Within this hypothesis, understanding how replay happens in 72 

hippocampal SWR is crucial to explain sleep dependent memory consolidation. 73 

CA1 pyramidal cells are not homogeneous with respect to activity during ripples, and can be sub-74 

classified into those that spike during ripples and those that do not; these properties seem to remain 75 

stable across sleep epochs (3, 22, 23). Furthermore, recent experimental data show that comparing 76 

sleep reactivation before and after a learning experience allows identification of cells for which 77 

reactivation during SWR remains unchanged by learning and (separate) cells which show increased 78 

ripple spiking during learning and subsequent sleep (24). Together, these data support a framework 79 

in which hippocampal reactivation incorporates a relatively large set of cells which activate during 80 

ripples regardless of recent learning, and a smaller group of cells which are involved in reactivation 81 

because of experience-dependent changes in their connectivity. In the simplest scenario, the precise 82 

content of hippocampal sequence reactivation is shaped by the hippocampal synaptic circuitry, with 83 

afferents (e.g. entorhinal or thalamic) potentially eliciting a generic reactivation prompt.  84 

In this work, we address a question on the mechanism of hippocampal reactivation using a 85 

biophysical network model of CA3-CA1 SWR activity, where spontaneous, localized and stochastic 86 

excitatory events in the highly recurrent CA3 network drive transient oscillations in CA1 inhibitory 87 
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interneurons, which in turn only leave small windows of opportunity for CA1 pyramidal cells to spike. 88 

Our model reveals a mechanism of emergent, spontaneous activation of pyramidal cells across 89 

SWRs, and predicts how learning can affect the specific reactivation of the hippocampal neurons 90 

which is seen during sleep, while global network behavior is supported by the network architecture.  91 

Results 92 

Computational model of spontaneous, localized SPW-R activity  93 

In our previous work (25), we introduced a model of CA1 ripples in which oscillations in the LFP were 94 

due to a transient in the system dynamics (as opposed to a stable oscillatory state), imposed by fast 95 

firing of the basket cells initially synchronized by common current input (representing CA3 96 

excitation), which lost coordination in time due to the cell population heterogeneity. Here we build 97 

on that work to introduce a model of CA3-CA1 SWRs in which CA3 activity emerges spontaneously 98 

and triggers stochastic activation of the SWR events in CA3 and CA1, with the termination of ripples 99 

driven by the same de-coordination mechanism that we previously described in CA1 (25). In the new 100 

model, different subsets of cells were involved across different SWR events as observed 101 

experimentally (26).  102 

This model of CA3-CA1 SWR activity is based on synaptically coupled populations of pyramidal cells 103 

and basket cells (Figure 1A). The model included highly recurrent strong excitatory AMPA receptor-104 

mediated connections between CA3 pyramidal cells, and weak and sparse recurrent excitatory 105 

connections within CA1 pyramidal cells (27). CA3 pyramidal cells projected excitatory connections to 106 

CA1 cells, representing the Schaffer Collaterals. The CA3 network and its projections to CA1 had 107 

stochastic densities and strengths within a radius of about a third of the target network (28) (Figure 108 

1B shows a matrix the presence of synaptic connections), which is consistent with analysis of CA3 109 

pyramidal cells arborization (28). Importantly, each neuron received an independent noise current 110 

which drove occasional irregular spiking, and a baseline constant drive which was selected from a 111 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2017. ; https://doi.org/10.1101/164699doi: bioRxiv preprint 

https://doi.org/10.1101/164699
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

distribution. Details of the computational model rationale and equations are reported in Materials 112 

and Methods. 113 

Figure 1. Computational Model of emergent, localized SPW-R activity  114 
A. Schematic representation of the model, showing the two main regions (CA3 and CA1) and the cell 115 
types considered (pyramidal cells and basket cells). Note that CA3 projects to CA1, but not vice-116 
versa. B. Matrix representation of presence of synaptic connections in the model. Synaptic weights 117 
are not shown, hence darker tone is only indicative of local higher density of connections. Note that 118 
CA3 pyramidal cells connect to all cell types in the network. C. Example of SPW-R activity in the 119 
network. Top 2 plots: raster plots of cell spikes (CA3 above, CA1 below). Dots mark spikes in time of 120 
pyramidal cells (black) and interneurons (red). In CA3 sharp waves happen at different locations and 121 
show different propagation patterns in time. CA1 spiking is organized by the sharp waves in CA3, and 122 
ripples are visible as small sharp stripes of dense spiking in CA1 pyramidal cells. Bottom two plots: 123 
Local Field Potential (LFP) of the model, computed as the average of the total incoming synaptic 124 
currents across a group of pyramidal cells. Note that in CA3 we show the wide-band signal, to 125 
highlight the sharp transition occurring in the synaptic currents when a sharp wave is present in the 126 
CA3 network. At corresponding times (and locations) in the LFP of CA1 (filtered in ripple range) one 127 
can see the high frequency activity captured by the LFP signal. D. Zoomed-in raster plot of spiking 128 
activity in CA3 and CA1, the time window is indicated by the arrow in C. SWR activity is localized 129 
within the two regions. For each sharp wave (SPW) and each ripple (RPL) a center (or location) can 130 
be defined as the medium index among the pyramidal cells which spike during the event. The LFPs 131 
shown on the right refer to groups of cells slightly apart in the network, shown as colored rectangles in 132 
the rastergram. Note that some SWR can be seen in the LFP traces at both locations (near 11s) while 133 
others are only visible in one of the traces (about 400ms later). 134 

As shown in Figure 1C, the network spontaneously organized into strong bouts of CA3 pyramidal cell 135 

spiking, which drove spiking in CA1. In CA1, interneurons organized their firing in high frequency 136 

oscillations, and a few pyramidal cells spiked within windows of opportunity left at the troughs of 137 

the lateral synaptic inhibition oscillations, thus forming a SWR event. SWRs occurred in temporal 138 

clusters punctuated by long pauses. A representation of the local field potentials (LFPs) obtained by 139 

averaging the synaptic currents impinging on subsets of pyramidal cells showed that SWR events in 140 

CA3 and CA1 were localized, and the location of the SWRs within the network changed in time. This 141 

is consistent with experimental findings that show that ripple events can be localized in space (26, 142 

29) and that CA3 pyramidal cells are known to be very active during SWR, but do not spike phase-143 

locked to CA1 ripples (30, 31). 144 

Figure 1D shows a zoomed-in version of the SWR spiking activity and LFPs in sub-regions of CA3 and 145 

CA1 which were connected by Schaffer Collaterals. Although sharp waves are typically 146 

experimentally measured in CA1 stratum radiatum, in the following we refer to sharp waves as the 147 
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bouts of excitatory activity in CA3 which lead to ripples in CA1. The general activity of the model was 148 

consistent with known properties of SWRs: ripple frequency was 174±21.3 Hz, ripple durations were 149 

54±27 ms, sharp wave durations were 126±23ms and the inter-event pauses (time durations 150 

between two successive sharp waves in CA3 or ripples in CA1) showed distributions approximately 151 

exponential, which fitted to exponential functions with rates 1.08 Hz for sharp waves in CA3 and 152 

1.2Hz for ripples in CA1 (3). Within this model, we studied the spontaneous activation of CA3 and 153 

CA1 pyramidal cells across multiple ripples, in relation to their synaptic properties.  154 

Non-uniform cell activation probability shapes distribution of ripple activation scores in 155 

CA3 and CA1 156 

Sequential cell reactivation has primarily been demonstrated in CA1 pyramidal cells during SWRs, 157 

but fewer data are available on CA3 pyramidal cell replay (32). In our model, we first characterized 158 

sequence replay by studying the activation of each single cell across many SWRs. For this, we derive 159 

a ‘ripple activation score’ (R-activation score), given by the percent of SWRs in which a given cell 160 

spiked at least once, in the course of a 100 s simulation (schematized in Figure 2A; e.g., a R-161 

activation score of 100% would mean that the cell spiked in every SWR event). Generating R-162 

activation scores across many simulations (Figure 2B) revealed that, on average, cells in CA3 163 

activated across more ripples than cells in CA1. This was likely driven by the lower percentage of CA1 164 

pyramidal cells involved in any given ripple compared to the population of CA3 pyramidal cells 165 

inducing a sharp wave (which is consistent with experimental data (22, 30, 33)). The distribution of 166 

R-activation scores in both regions showed a large positive tale, and in CA1 a fast decay. This is also 167 

consistent with data suggesting that firing rates during ripples are log-normally distributed (3, 5, 34, 168 

35). One model of CA3 emergent sharp wave activity suggests that this could be related to the 169 

distribution of synaptic weights used to populate the network connectivity matrices (36).  170 
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Figure 2. R-activation in CA3 and CA1 is stationary for low score cells and dynamic for high 171 
score cells 172 
A. Drawing shows the definition of R-activation score for a pyramidal cell. The total number of SWR in 173 
which a cell spikes during a 100 second simulation is found, and compared to the total number of 174 
SWR in the simulation. This fraction is expressed as a percent as the R-activation score of the cell.  175 

B. Distribution of R-activation scores of CA3 and CA1 pyramidal cells computed across many 176 
simulations and reported as average count in any given single trial. CA1 pyramidal cells show a peak 177 
for 0% R-activation, and the mean R-activation scores for CA3 pyramidal cells is higher than CA1 178 
pyramidal cells. C. Curves (one per simulation) mark the probability distribution of pyramidal cells in 179 
CA3 to be spiking in any given SWR. Cells were sorted by increasing probabilities. The average 180 
probability curve (across all curves for each sorted cell index) is marked by a black solid line, while 181 
dotted black lines represent the standard deviation around the mean. D. Same as panel C for CA1 182 
pyramidal cells. E. Distributions of R-activation scores in CA3 pyramidal cells in a stationary sorting 183 
algorithm (thick line) and in the model (dotted line). Note that the stationary process and the model 184 
share the low-reactivation peak probability, but have different trends for high-reactivations: the 185 
stationary choice peaks at 60% and quickly decays to zero for higher scores, while the model does 186 
not show peaks at high R-activation values (only the low R-activation peak is present) and has a 187 
larger amount of very high R-activations. F. Same as panel E for CA1 pyramidal cells: again 188 
stationary choice and computational model share the low R-activation peak and the model does not 189 
show a peak for intermediate levels of R-activation.  190 

The distribution of R-activation scores (Figure 2B) tells how many cells are likely to activate in a given 191 

fraction of all SWR, while the probability of spiking (Figure 2C,D) tells if a given cell is likely to 192 

activate in many or few SWRs (e.g., p=1 would mean that a cell spike in every SWR event). For each 193 

model simulation, we reported the probability of spiking in a SWR for all cells in CA3 and CA1 (in 194 

Figure 2 C-D). Since in every simulation new connectivity and heterogeneity profiles were generated 195 

(see Materials and Methods), we sorted the cells according to their spiking probability within SWRs, 196 

from lowest to highest. Then, it was possible to find an average distribution of such probabilities, 197 

and compare between CA3 and CA1 networks. In both cases, the variance around the mean 198 

increased for cells with higher SWR activation probabilities. The larger variations for high-probability 199 

cells (right side of the plots in Figure 2 C,D) suggested that all the cells fell in one of two categories: 200 

those which fired in very few ripples (the majority) and those which fired in a large fraction of ripples 201 

(above 0.6 probability).  202 

Across many simulations, the rules which shaped network connectivity were fixed, but the actual 203 

specific network connections changed as they were generated probabilistically. This led to 204 

measurable variations in the properties of SWR activity, such as the total count of SWRs within 205 
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simulation time, and the size of ripples and sharp waves (as fraction of CA3 and CA1 pyramidal cells 206 

spiking during the event). In the following, we analyze the role of the stationary model properties: 207 

the ones that depend on the average model characteristics and do not change much across 208 

simulations (such properties included the distribution of ripple frequencies, of inter-event times, and 209 

the range of reactivation scores found across the population of pyramidal cells). We analyze 210 

separately the dynamic (or network-activity dependent) properties: those which are dependent on 211 

the specific model instantiation in a given simulation (such properties included a specific cell’s 212 

spiking probability). To distinguish between the contributions of the stationary and network-activity 213 

dependent properties in shaping R-activation scores across simulations, we compared the 214 

distribution of R-activations that was found across simulations with a theoretical sampling model. 215 

This model was based on the average probability of spiking in CA3 and CA1 pyramidal cells (black 216 

lines in Figure 2 C-D). Thus, we sampled cells according to those probabilities, and we repeated the 217 

sampling 10,000 times and considered each sampling event a ripple in which the sampled cells had 218 

spiked. This sampling approach assumed that spiking in each SWR was memoryless and that the 219 

probability for a given cell to be spiking in any ripple was stationary (i.e. not changing in time within 220 

a simulation), so it was an extreme simplification of a complete computational model simulation. If 221 

the spiking of each cell across many SWRs in the complete model was independent of spiking history 222 

and activation of other cells, and only dependent on the average probability found in simulations, 223 

we should obtain in the simple theoretical model a sampling distribution of R-activation scores very 224 

similar (if not identical) to the ones in Figure 2B. 225 

In Figure 2E-F we compared the stationary (sampling) distributions from the theoretical sampling 226 

model to those resulting from simulations: in both CA3 and CA1 we found that stationary R-227 

activation (from the theoretical sampling model) showed a larger fraction of cells in the network 228 

having median R-activation scores (about 60% in CA3 and 40% in CA1) compared to the 229 

computational model, and very few cells showing very high R-activation scores (above 70% in CA3 230 

and 60% in CA1). In other words, R-activation scores in the stationary case showed two peaks, one of 231 
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which at median activations, while in the simulations the second peak was removed, and a larger 232 

positive tale was found instead. We concluded that specific spiking dynamics of simulations 233 

(influenced by history dependence, slow variables and specific instances of network connectivity and 234 

excitability) promoted the long tales composed by cells with very high R-activation scores.  235 

This analysis suggests that ripple activation in CA3 and CA1 was built on average on the stationary 236 

properties of the network architecture and overall network state, except for few highly-activating 237 

cells, whose properties were dependent on specific instantiation of the network architecture (such 238 

as, e.g., convergence of few strong excitatory connections to a given cell). Thus, the model predicts 239 

the co-existence of a relatively rigid structure in the CA3-CA1 network which enables the emergence 240 

and general properties of SWRs, with a specific network spiking activity in a subset of highly active 241 

neurons inducing replay during SWRs. 242 

The influence of input on pyramidal cell R-activation 243 

The network connectivity was set randomly for each simulation, and therefore specific synaptic 244 

paths connecting cells changed from one simulation to another, influencing how the ongoing spiking 245 

activity in the whole network could contribute to the R-activation score of a given cell. Since the 246 

SWRs in the model were induced by the spontaneously emergent excitatory activity in CA3, which 247 

controlled the spike timing of CA3 pyramidal cells and competed with CA1 local inhibitory ripple 248 

activity to drive the spikes of few CA1 pyramidal cells, we next studied the R-activation of pyramidal 249 

cells in relation to their incoming inputs. We considered synaptic excitatory and synaptic inhibitory 250 

inputs, together with intrinsic cell excitability.  251 

We defined the excitatory and inhibitory synaptic input (SAMPA and SGABA, respectively, represented in 252 

Figure 3A) for each CA3 pyramidal cell by summing the synaptic weights of all incoming connections. 253 

The intrinsic excitability for each CA3 pyramidal cell corresponded to the value of model parameter 254 

IDC, which was assigned (and different) to every cell to introduce heterogeneity among their resting 255 

potentials (see Materials and Methods, Network model: rationale). For each input, we next analyzed 256 
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the distribution of the input strength across R-activation scores (Figure 3B). All inputs considered 257 

(synaptic excitatory, inhibitory and intrinsic excitability) were on average higher for cells with higher 258 

R-activation scores, implying that all the inputs could contribute to enhancing the R-activation 259 

probability of a CA3 pyramidal cell.  260 

Figure 3. In CA3 and CA1, pyramidal cell R-activation scores increase with excitatory input 261 
A. Drawing of the synaptic inputs analyzed for CA3 pyramidal cells. S

AMPA
 is the sum of all incoming 262 

AMPA connections (in black) to a CA3 pyramidal cell (labeled A) from other CA3 pyramidal cells (in 263 
gray). S

GABA
 is the sum of all incoming GABA connections (in red) to a CA3 pyramidal cell (A) from 264 

CA3 interneurons (in red). B. R-activation of CA3 pyramidal cells is related to strength of synaptic 265 
inputs and intrinsic excitability. The bar plot shows on the x –coordinate the average R-activation 266 
score of CA3 pyramidal cells belonging to the same score group (±5%) and on the y-coordinate the 267 
level of each different input (S

AMPA
, S

GABA
 or Intrinsic Excitability) for cells within that score group. 268 

Error bars mark the standard error of the mean. Before grouping cells by their R-activation scores, 269 
each input was z-scored to enable comparisons of their respective trends. Therefore, a negative y-270 
coordinate does not reflect a negative input, but an input below the average across the whole 271 
network. C. Drawing of the synaptic inputs analyzed for CA1 pyramidal cells. S

Sch
 (from CA3 to CA1, 272 

in green) is the sum of incoming AMPA synaptic weights from CA3 cells onto CA1 pyramidal cells. 273 
S

Pre
 (in black) for a given CA1 pyramidal cell (labeled x) finds all cells in CA3 that projects to x and 274 

their AMPA input (S
AMPA

, described in A). The average value of all these S
AMPA

 inputs is S
Sch

, 275 
representing the how much excitatory drive the cells in CA3 which project to x in CA1 are receiving. 276 
S

GABA
 is the sum of all incoming GABA connections (in red) to a CA1 pyramidal cell (x) from CA1 277 

interneurons (in red). D. R-activation of CA1 pyramidal cells is related to synaptic excitatory input. The 278 
bar plot shows on the x –coordinate the average R-activation score of CA1 pyramidal cells belonging 279 
to the same score group (±5%) and on the y-coordinate the level of each different input (S

Pre
, S

Sch
 or 280 

Intrinsic Excitability) for cells within that score group. Inputs were z-scored before grouping the cells 281 
by score. Error bars mark the standard error of the mean. 282 

To study role of the potential interactions among inputs in influencing cell R-activation, statistical 283 

inference analysis was performed using multivariate linear regression (see Table 1). For CA3, it 284 

showed significant modulation of R-activation by the three inputs (synaptic excitatory, synaptic 285 

inhibitory and intrinsic excitability). It also emphasized that the influence of synaptic excitatory input 286 

was captured in the interaction with the synaptic inhibitory input and with intrinsic excitability. 287 

When considered separately, the different inputs had a similar impact on R-activation, and 288 

combining the three inputs increased their ability to represent the R-activation data.  289 

Table 1. Extract of linear regression models for R-activation of CA3 pyramidal cells vs 290 

inputs (from Table S1) 291 

# Inputs Inputs in Best Model  Model Equation Type Adj. R-sq 

3 AMPA,GABA,DC quadratic, with AMPA-GABA interaction 0.249 

2 AMPA,DC quadratic, with AMPA-DC interaction 0.238 
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1 AMPA Linear 0.146 

1 GABA Quadratic 0.11 

1 DC quadratic 0.0907 

For each possible combination of the inputs that were considered (parameters of the model for the 292 
statistical linear fit), we found multiple fits to R-activation of CA3 pyramidal cells. When only one input 293 
at a time was considered, we found linear models of linear terms and linear models of quadratic 294 
terms. When multiple inputs were considered, we found linear models for linear terms, interactions 295 
and quadratic terms. We here report the models accounting for the larger portion of the data for each 296 
number of inputs considered, and all the single inputs best performing models. The complete list of 297 
models found is reported in Table S1. The adjusted R

2
 terms can be interpreted as a measure of how 298 

much of the variance in the data is captured by a given model. As can be seen from the adjusted R
2
 299 

values, there was a high noise component in the relationship between inputs and CA3 cells R-300 
activation. However, all models listed showed significant contributions of the inputs considered (by p-301 
value<0.05 criterion). 302 

For CA1 pyramidal cells, we isolated the role of the Schaffer Collateral projections by considering 303 

only the total strength of direct synaptic connections coming to a CA1 pyramidal cell from CA3 304 

pyramidal cells (SSch). Separately we analyzed the role of activation of the pre-synaptic CA3 305 

pyramidal cells in driving post-synaptic CA1 pyramidal cells by assigning to each CA1 pyramidal cell a 306 

value SPre, which characterized the average strength of the convergent CA3 inputs to all the CA3 cells 307 

that were projecting to a given CA1 cell. Synaptic inhibitory inputs to CA1 pyramidal cells were 308 

represented by SGABA, computed by summing the synaptic weights of all GABA connections from CA1 309 

inhibitory neurons to each CA1 pyramidal cell.  310 

Again, we analyzed distribution of the input strength across R-activation scores (Figure 3D). There 311 

was a clear trend towards increasing SPre and SSch for increasing R-activation of CA1 pyramidal cells, 312 

while SGABA and intrinsic excitability did not show any preferential trend for increasing R-activation 313 

groups. Only for scores above 75% (very rare in the network, as can be seen in Figure 2F) it appeared 314 

that inhibitory synaptic input below the mean could favor high reactivation.  315 

We then used fitting of a multivariate linear model. However, we first separated CA1 pyramidal cells 316 

in those with R-activation above and below a threshold of 55% (to satisfy the statistical requirements 317 

to perform linear model fitting). As can be seen in Figure 2F, a small portion of all available CA1 318 

pyramidal cells did show R-activation scores above 55%, so it is possible that this sub-group is less 319 

representative of the general influence of inputs on R-activation scores, compared to the set of cells 320 
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with R-activation scores up to 55%. In studying the large cell pool (below 55%, Table 2) we found a 321 

contribution of all inputs (pre-synaptic excitatory input, Schaffer input, inhibitory input and intrinsic 322 

excitability), with a tendency for Schaffer input to contribute in relationship to the pre-synaptic 323 

excitatory input, rather than independently. When allowing for quadratic terms, the role of direct 324 

Schaffer input was rendered null, in favor of heightened influence of pre-synaptic excitatory input 325 

and synaptic inhibitory input. When the inputs were considered separately, both excitatory synaptic 326 

inputs showed the highest impact on R-activation.  327 

In summary, the interaction of excitatory and inhibitory inputs was significant in modulating CA1 328 

pyramidal cells R-activation, and intrinsic excitability only increased the overall impact of the 329 

multivariate model of a minor amount. Mechanistically, this implies that if synaptic activity could 330 

change only one of these inputs at a given time, it would have the largest effects on R-activation by 331 

modulating either pre-synaptic AMPA connections in CA3, or Schaffer collaterals. We point out that 332 

the limited role of intrinsic excitability on R-activation of CA1 pyramidal cells is consistent with our 333 

earlier findings on a model of CA1 ripple activity driven by current steps (25). 334 

Table 2. Extract of linear regression models for R-activation of CA1 pyramidal cells (below 335 

55% R-activation) vs inputs (from Table S2) 336 

# Inputs Inputs in Best Model  Model Equation Type Adj. R-sq 

4 AMPA-Pre,AMPA-Sch,GABA,DC quadratic, with AMPA-Pre GABA interactions 0.161 

3 AMPA-Pre,GABA,DC quadratic, with AMPA-Pre GABA interactions 0.161 

3 AMPA-Pre,AMPA-Sch,DC Linear + AMPA-Pre AMPA-Sch interaction 0.159 

3 AMPA-Pre,AMPA-Sch,GABA Linear 0.156 

2 AMPA-Pre,DC Linear 0.158 

2 AMPA-Pre,GABA Linear 0.156 

1 AMPA-Pre Quadratic 0.154 

1 AMPA-Sch Linear 0.144 

1 GABA Linear 0.00206 

1 DC Linear 0.00491 

For each possible combination of the inputs that were considered (parameters of the model for the 337 
statistical linear fit), we found multiple fits to R-activation of CA1 pyramidal cells. When only one input 338 
at a time was considered, we found linear models of linear terms and linear models of quadratic 339 
terms. When multiple inputs were considered, we found linear models for linear terms, interactions 340 
and quadratic terms. The adjusted R

2
 terms can be interpreted as a measure of how much of the 341 

variance in the data is captured by a given model. As can be seen from the adjusted R
2
 values, there 342 

was a high noise component in the relationship between inputs and CA1 cells R-activation. However, 343 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2017. ; https://doi.org/10.1101/164699doi: bioRxiv preprint 

https://doi.org/10.1101/164699
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

the models listed showed significant contributions of the inputs considered (by p-value<0.05 criterion). 344 
The complete list of models found is reported in Table S2. 345 

Overall, our analyses revealed: (a) how activation in CA3 and CA1 pyramidal cells during SWRs was 346 

controlled by synaptic excitatory inputs in both regions, and (b) the fact that inhibitory synaptic 347 

inputs and intrinsic cell excitability only had a significant influence on the R-activation of CA3 348 

pyramidal cells, but not CA1 cells. Differential impact of inhibitory and intrinsic factors in CA1 vs CA3 349 

was likely driven by the fundamentally different activity present in the two separate regions during 350 

SWR events. Spiking of CA3 pyramidal cells emerges from reverberating excitatory activity, and could 351 

be mediated by post-inhibitory rebound. Spiking in CA1 pyramidal cells is driven by Schaffer 352 

Collateral inputs, and local inhibitory signaling competes with such excitatory synaptic input to 353 

enforce spike timing of CA1 pyramidal cells during ripple oscillations.  354 

R-activation of cell pairs increases with shared excitatory input 355 

Having established that specific implementation of the network architecture contributed to shaping 356 

the R-activation of CA3 and CA1 pyramidal cells, we reasoned that connectivity, and in particular 357 

excitatory input, should also contribute to the R-activation of cell pairs. To extend the concept of R-358 

activation score to cell pairs, we considered two cells and their relative order, and found in which 359 

percent of the total ripples a given cell pair spiked. Since in our definition of cell pair the order of cell 360 

spiking was considered, the R-activation scores of cell pair AB and cell pair BA were in general 361 

different. We used our R-activation score measure to group cell pairs with similar reactivation scores 362 

in the network, and studied their common synaptic inputs, as described above for single cells (in 363 

Figure 3). Below, we analyzed how activation of the cell pairs depended on the network inputs, and 364 

we separately tested CA3-CA3, CA1-CA1 and CA3-CA1 pairs. 365 

CA3-CA3 pairs: For pairs of two CA3 pyramidal cells (Figure 4A), we defined an excitatory synaptic 366 

input quantifier SAMPA, by finding all pyramidal cells in CA3 which sent synapses to both CA3 cells in 367 

the pair and considering the product of the synaptic weights from each of such cells to the cells in 368 

the pair (Figure 4A, left panel, shows a drawing of SAMPA). Analogously, the inhibitory input reaching a 369 
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pair of CA3 pyramidal cells was quantified by SGABA, summing across all interneurons projecting to 370 

both pyramidal cells in the pair the product of the identified synaptic weights (again represented in 371 

Figure 4A, left panel). The intrinsic excitabilities of the two cells in the network were considered 372 

separately.  373 

Figure 4. Cells that co-reactivate share their input.  374 
A. Relationship between R-activation scores and input for pairs of CA3 pyramidal cells. Left plot: 375 
drawing and formulae introduce the synaptic AMPA and GABA inputs considered (S

AMPA
 and S

GABA
) 376 

for any cell pair labeled (A, B). These estimates quantify the amount of excitatory and inhibitory input 377 
that cells A and B have in common. Right plot: R-activation of CA3-CA3 cell pairs is related to 378 
strength of synaptic inputs and intrinsic excitability. The bar plot shows on the x –coordinate the 379 
average R-activation score of CA3-CA3 cell pairs belonging to the same score group (±5%) and on 380 
the y-coordinate the level of each different input (S

AMPA
, S

GABA
 or Intrinsic Excitability for cell A and for 381 

cell B) for cell pairs within that score group. Error bars mark the standard error of the mean. Before 382 
grouping cell pairs by their R-activation scores, each input was z-scored to enable comparisons of 383 
their respective trends. Therefore, a negative y-coordinate does not reflect a negative input, but an 384 
input below the average across the whole network. B. Relationship between cell pair R-activation 385 
scores and inputs for pairs of CA1 pyramidal cells. Left plot: drawing and formulae introduce the 386 
synaptic inputs considered. For cell pair (A, B) in CA1, excitatory AMPA input from Schaffer collateral 387 
alone is labeled S

Sch
, while the role of the excitability of pre-synaptic cells in CA3 is considered in 388 

defining the complementary excitatory synaptic input S
Pre

. Inhibitory synaptic input S
GABA

 is found 389 
analogously to the one for CA3-CA3 cell pairs (in panel A). These measures are introduced to 390 
quantify the shared synaptic inputs between cells A and B in each pair. Right plot: cell pair R-391 
activation scores R-activation of CA1-CA1 cell pairs is related to strength of excitatory synaptic inputs, 392 
but not inhibitory synaptic inputs or intrinsic excitability. The bar plot shows on the x –coordinate the 393 
average R-activation score of CA1-CA1 cell pairs belonging to the same score group (±5%) and on 394 
the y-coordinate the level of each different input (S

Sch
, S

Pre
, S

GABA
 or Intrinsic Excitability for cell A and 395 

for cell B) for cell pairs within that score group. Error bars mark the standard error of the mean. Before 396 
grouping cell pairs by their R-activation scores, each input was z-scored to enable comparisons of 397 
their respective trends. Therefore, a negative y-coordinate does not reflect a negative input, but an 398 
input below the average across the whole network. C. Relationship between cell pair R-activation 399 
scores and inputs for pairs of CA3-CA1 pyramidal cells. Left plot: drawing and formulae introduce the 400 
synaptic inputs considered. Excitatory (AMPA-mediated) synaptic inputs are measured as S

Sch
 (which 401 

emphasize the role of synaptic paths from cell A in CA3 to cell B in CA1) and S
Pre

 (which emphasizes 402 
the role of cells in CA3 connecting to both cell A in CA3 and cell B in CA1). Inhibitory synaptic input is 403 
found in CA3 for cell A and in CA1 for cell B, the sum of the two constitutes S

GABA
 for the (A, B) cell 404 

pair. These measures are introduced to quantify the shared synaptic inputs between cells A and B in 405 
each pair. Right plot: cell pair R-activation scores R-activation of CA3-CA1 cell pairs is related to 406 
strength of excitatory synaptic inputs, partly to inhibitory synaptic inputs, but not intrinsic excitability. 407 
The bar plot shows on the x –coordinate the average R-activation score of CA3-CA1 cell pairs 408 
belonging to the same score group (±5%) and on the y-coordinate the level of each different input 409 
(S

Sch
, S

Pre
, S

GABA
 or Intrinsic Excitability for cell A and for cell B) for cell pairs within that score group. 410 

Error bars mark the standard error of the mean. Before grouping cell pairs by their R-activation 411 
scores, each input was z-scored to enable comparisons of their respective trends. Therefore, a 412 
negative y-coordinate does not reflect a negative input, but an input below the average across the 413 
whole network. 414 
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In Figure 4A, right plot, we show that both excitatory and inhibitory inputs were larger for cell pairs 415 

with higher R-activation scores. The intrinsic excitability of the first cell in the network (labeled A in 416 

the figure) also increased with R-activation of the pair, while the intrinsic excitability of the second 417 

cell in the pair (labeled B in the figure) decreased for higher R-activations. Intuitively, these opposite 418 

trends can be understood if one considers that our pair R-activation score is a measure which takes 419 

into account the order in which the two cells spiked: intrinsic excitability promotes activation of a 420 

cell but in no connection with activity of other cells. Since for a cell pair to repeat in order across 421 

ripples it is important that the second cell does not spike de-coupled from the synaptic paths which 422 

connect its activity to the first cell, having high intrinsic excitability in the second cell would hinder 423 

the R-activation of the pair.  424 

Next, statistical inference analysis of the role played by the different inputs in establishing the R-425 

activation of cell pairs within CA3 was performed with linear regressions (Table 3). It revealed a 426 

significant contribution of all inputs and their interactions to the R-activation of cell pairs within CA3. 427 

When considering subgroups of inputs, excitatory synaptic input and the intrinsic excitability of the 428 

first cell in the pair (and their interaction) could account for a large portion of the modulation of R-429 

activation by all inputs (and interactions). When taken separately, synaptic inputs (both excitatory 430 

and inhibitory) still retained an impact on shaping the R-activation of cell pairs, however intrinsic 431 

excitability of individual cells had a very small impact on R-activation of CA3-CA3 cell pairs.  432 

Table 3. Extract of linear regression models for R-activation of CA3-CA3 pyramidal cell 433 

pairs vs inputs (from Table S3) 434 

# Inputs Inputs in Best Model  Model Equation Type Adj. R-sq 

4 AMPA-Pre,GABA,DCa,DCb Quadratic with all interactions 0.258 

3 AMPA-Pre,GABA,DCa Quadratic with all interactions 0.2479 

3 AMPA-Pre,DCa,DCb Quadratic with all interactions 0.244 

2 AMPA-Pre,DCa Quadratic with all interactions 0.234 

1 AMPA-Pre Quadratic 0.165 

1 GABA Quadratic 0.125 

1 DCa Quadratic 0.0658 

1 DCb Linear 0.00392 
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For each possible combination of the inputs that were considered (parameters of the model for the 435 
statistical linear fit), we found multiple fits to R-activation of CA3-CA3 pyramidal cell pairs. When only 436 
one input at a time was considered, we found linear models of linear terms and linear models of 437 
quadratic terms. When multiple inputs were considered, we found linear models for linear terms, 438 
interactions and quadratic terms. The adjusted R

2
 terms can be interpreted as a measure of how 439 

much of the variance in the data is captured by a given model. As can be seen from the adjusted R
2
 440 

values, there was a high noise component in the relationship between inputs and cell pair R-441 
activation. However, the models listed showed significant contributions of the inputs considered (by p-442 
value<0.05 criterion). The complete list of models found is reported in Table S3. 443 

CA1-CA1 pairs: We extended the analysis to pairs of CA1 pyramidal cells, by introducing quantifiers 444 

of excitatory and inhibitory inputs (Figure 3). Inhibitory input SGABA was calculated in the same 445 

manner as for pairs of CA3 pyramidal cells, meaning we found CA1 inhibitory interneurons projecting 446 

to both CA1 pyramidal cells in the pair, multiplied the synaptic strength and summed across all 447 

interneurons impinging on both cells in the pair (a representation is shown in Figure 4B, left panel). 448 

To quantify the excitatory synaptic inputs reaching a pair of CA1 pyramidal cells, we defined two 449 

separate inputs: one considering only the Schaffer Collateral contribution (SSch) and one emphasizing 450 

the role of synaptic paths within CA3 ultimately reaching the cell pair in CA1 (SPre). The inputs driven 451 

by the sole Schaffer Collaterals (SSch) were quantified by finding cells in CA3 which projected to both 452 

cells in the pair (in CA1). The synaptic weights reaching the two cells in the pair were then summed, 453 

and these quantities were further summed across all the CA3 pre-synaptic cells found (formula and a 454 

drawing are introduced in Figure 4B left panel). The role of CA3 connectivity on the activity of a CA1-455 

CA1 cell pair (SPre) was quantified by assigning to each cell pair a value, found as follows. We first 456 

found paths of two subsequent synapses (di-synaptic paths, from a cell to the next, to the next) 457 

starting from one cell in CA3 and terminating on both cells of the CA1 pair (cells in the middle of the 458 

di-synaptic paths had to be CA3 pyramidal cells). These initial CA3 cells could drive spiking which 459 

impinged (in two synapses) on both cells of the CA1-CA1 cell pair. The synaptic weights along the 460 

paths found this way were combined, and further summed across all the possible di-synaptic paths 461 

from CA3 to CA1 found in the network (the formula is shown on Figure 4B, left panel). The 462 

magnitudes of intrinsic excitability for the two cells in the pair were considered separately.  463 
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Figure 4B in the right panel shows how the different input strength changed across R-activation 464 

scores. Excitatory synaptic inputs, both in Schaffer Collaterals and within CA3, were higher for cell 465 

pairs with higher R-activation scores. In contrast, inhibitory synaptic inputs and intrinsic excitability 466 

of either cell in the pair did not show a trend with respect to cell pair R-activation. Hence, we 467 

concluded that – consistently with what we found for the R-activation of single CA1 pyramidal cells – 468 

only synaptic excitatory inputs could exert an effect on the R-activation of CA1 pyramidal cell pairs.  469 

Statistical inference analysis (Table 4) showed that the synaptic excitatory inputs and their 470 

interactions strongly affected R-activation scores of CA1-CA1 pyramidal cell pairs. Inhibitory synaptic 471 

input and intrinsic excitability of the cells in the pair did score significantly in the model, but 472 

increased minimally the overall ability of the model to represent R-activations. In other words, 473 

including inhibitory inputs and intrinsic excitability added great complexity to the model without 474 

making significant progress on the representation of R-activations as function of the inputs. Hence, 475 

excitatory synaptic inputs greatly dominated all other deterministic inputs in shaping CA1-CA1 cell 476 

pair R-activations.  477 

Table 4. Extract of linear regression models for R-activation of CA1-CA1 pyramidal cell 478 

pairs vs inputs (from Table S4) 479 

# Inputs Inputs in Best Model  Model Equation Type Adj. R-sq 

5 AMPA-Pre,AMPA-Sch,GABA,DCa,DCb Quadratic with all interactions 0.164 

4 AMPA-Pre,AMPA-Sch,GABA,DCa Quadratic with all interactions 0.164 

4 AMPA-Pre,AMPA-Sch,GABA,DCb Quadratic with all interactions 0.163 

4 AMPA-Pre,AMPA-Sch,DCa,DCb Quadratic with all interactions 0.161 

3 AMPA-Pre,AMPA-Sch,GABA Quadratic with all interactions 0.163 

3 AMPA-Pre,AMPA-Sch,DCa Quadratic with all interactions 0.161 

3 AMPA-Pre,AMPA-Sch,DCb Quadratic with all interactions 0.16 

2 AMPA-Pre,AMPA-Sch Quadratic with all interactions 0.16 

1 AMPA-Pre Quadratic 0.106 

1 AMPA-Sch Quadratic 0.149 

1 GABA Quadratic 0.000605 

1 DCa Quadratic 0.00051 

1 DCb Quadratic 7.81*10
-5

 

For each possible combination of the inputs that were considered (parameters of the model for the 480 
statistical linear fit), we found multiple fits to R-activation of CA1-CA1 pyramidal cell pairs. When only 481 
one input at a time was considered, we found linear models of linear terms and linear models of 482 
quadratic terms. When multiple inputs were considered, we found linear models for linear terms, 483 
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interactions and quadratic terms. The adjusted R
2
 terms can be interpreted as a measure of how 484 

much of the variance in the data is captured by a given model. As can be seen from the adjusted R
2 485 

values, there was a high noise component in the relationship between inputs and cell pair R-486 
activation. However, the models listed showed significant contributions of the inputs considered (by p-487 
value<0.05 criterion). The complete list of all models found is reported in Table S4. 488 

CA3-CA1 pairs: We finally studied whether the relationship between synaptic input and R-activation 489 

would also extend to the cell pairs that spanned the two hippocampal regions composing our 490 

network. Since SWR dynamics were organized in a CA3 excitatory event inducing inhibitory 491 

oscillations in CA1, we considered only ordered cell pairs in which the first cell was from CA3 and the 492 

second from CA1. To define quantifiers for synaptic inputs to pairs of CA3-CA1 pyramidal cells, we 493 

again looked for synaptic paths connecting both cells in the pair (showed in Figure 4C, left panel). 494 

One direct synaptic input (SPre), considered CA3 pyramidal cells that projected synapses onto both 495 

cells in the pair, and multiplied the two synaptic weights, and summed across all found pre-synaptic 496 

cells. Another excitatory synaptic input quantifier (SSch) was shaped to identify synaptic paths from 497 

the first cell in the pair (in CA3) to the second cell in the pair (in CA1), by finding all di-synaptic paths 498 

from the first cell in the pair to the second cell in the pair, multiplying the synaptic weights found 499 

along the paths and scaling the resulting quantity by the total excitatory synaptic input reaching the 500 

first cell in the pair (formula and drawing in Figure 4C). Since each pyramidal cell in the pair could 501 

receive inhibition only from interneurons within its same region, the inhibitory synaptic inputs to the 502 

two cells in the pair were quantified first separately following the definitions used for single cells in 503 

CA3 and in CA1, and the pair inhibitory synaptic input SGABA was computed by the sum of their 504 

respective inputs. Intrinsic excitability for each cell in the pair was considered separately.  505 

Once the synaptic and intrinsic deterministic inputs were found, we again plot how the input 506 

strength changed across R-activation scores (Figure 4C right panel). We found that excitatory and 507 

inhibitory inputs were higher for cell pairs with higher R-activations, while intrinsic excitability of 508 

either the first or second cell in the pair had no special trend across R-activation.  509 
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To describe the differential role of inputs in shaping the R-activation of CA3-CA1 cell pairs, we 510 

derived a statistical inference analysis using multiple variable linear regressions (Table 5). We found 511 

a strong dominance of excitatory synaptic inputs over the R-activation scores of CA3-CA1 pairs. 512 

When considered separately, pre-synaptic and Schaffer AMPA inputs both accounted for most of the 513 

impact of inputs on R-activation, in comparison to the effect found when considering all inputs and 514 

all their interactions. In particular, the Schaffer input had the strongest independent impact on R-515 

activations. Furthermore, intrinsic excitability of either cell in the pair, while qualifying for 516 

significance in affecting the R-activation score, again did not introduce any strong improvement on 517 

the ability of excitatory synaptic inputs (and their interactions) to shape R-activations of CA3-CA1 cell 518 

pairs. In summary, what was true for single CA1 pyramidal cells and CA1 cell pairs carries over to 519 

CA3-CA1 cells pairs, emphasizing the dominant role of paths of excitatory synaptic connections over 520 

inhibitory ones and intrinsic excitability in promoting activation of ordered cell pairs across many 521 

SWRs. 522 

Table 5. Extract of linear regression models for R-activation of CA3-CA1 pyramidal cell 523 

pairs vs inputs (from Table S5) 524 

# Inputs Inputs in Best Model  Model Equation Type Adj. R-sq 

5 AMPA-Pre,AMPA-
Sch,GABA,DCa,DCb 

Quadratic with all interactions (but DCa-DCb) 0.194 

4 AMPA-Pre,AMPA-
Sch,GABA,DCa 

Quadratic with all interactions (but GABA-DCa) 0.193 

4 AMPA-Pre,AMPA-
Sch,GABA,DCb 

Quadratic with all interactions 0.194 

4 AMPA-Pre,GABA,DCa,DCb Quadratic with interactions: AMPA-Pre & GABA, 

AMPA-Pre & DCa, GABA&DCa, GABA&DCb 
0.192 

3 AMPA-Pre,AMPA-Sch,GABA Quadratic with all interactions 0.193 

3 AMPA-Pre,GABA,DCa Quadratic with all interactions 0.191 

3 AMPA-Sch,GABA,DCb Quadratic with all interactions (but AMPA-Sch 
DCb) 

0.192 

3 AMPA-Pre,GABA,DCb Quadratic with all interactions 0.192 

2 AMPA-Pre,GABA Quadratic with all interactions 0.191 

1  AMPA-Pre Linear 0.174 

1 DCb Quadratic 0.00028 

1 DCa Quadratic 8.37*10^-7 
1 GABA Quadratic 0.0106 

1 AMPA-Sch Quadratic 0.168 

For each possible combination of the inputs considered (parameters of the model for the statistical 525 
linear fit), we found multiple fits to R-activation of CA3-CA1 pyramidal cell pairs. When only one input 526 
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at a time was considered, we found linear models of linear terms and linear models of quadratic 527 
terms. When multiple inputs were considered, we found linear models for linear terms, interactions 528 
and quadratic terms. The adjusted R

2
 terms can be interpreted as a measure of how much of the 529 

variance in the data is captured by a given model. As can be seen from the adjusted R
2
 values, there 530 

was a high noise component in the relationship between inputs and cell pair R-activation. However, 531 
the models listed showed significant contributions of the inputs considered (by p-value<0.05 criterion). 532 
The complete list of all models found is reported in Table S5. 533 

Our analysis across all the possible cell pairs in this network revealed that the spontaneously 534 

emergent SWRs in our model encompassed a structured representation of single cells and ordered 535 

cell pairs across SWRs, and that such representation was synaptically driven. While the network 536 

topology was responsible for the general SWR spiking activity, the specifics of which cells received 537 

stronger excitatory synaptic inputs, especially if inputs were considered along synaptic paths which 538 

can deliver convergent excitation to a cell pair, exerted selectivity on cells and cell pairs, determining 539 

their chances for activation across multiple SWRs in time.  540 

This analysis gives rise to a scenario in which the same network properties which enable the 541 

spontaneous emergence of SWRs in the CA3-CA1 architecture (high recurrence in CA3 pyramidal 542 

cells, noise-driven spiking in CA3, strong drive to inhibitory neurons in CA1 from CA3 activity) also 543 

select a small subset of cells which are most likely to reactivate in a high fraction of SWRs. In other 544 

words, our model predicts that replay arises by virtue of the same AMPA/GABA synaptic architecture 545 

which generates SWRs themselves. During sleep, the content of hippocampal replay can 546 

theoretically be selected within the hippocampal circuitry, and interact with cortical activity by 547 

carefully organized timing of SWRs compared to other ongoing oscillations. Within this architecture, 548 

memory formation mechanisms during wake (such as STDP, reward signals and awake replay) can 549 

modify the chances of specific cells to be replayed during sleep SWRs by altering the relative 550 

strengths of synaptic pathways impinging on a group of cells.  551 

Synaptic Plasticity can influence R-activation 552 

Our analysis so far showed a tight relationship between deterministic inputs to cell pairs in the 553 

network and their R-activation scores, which suggests that mechanisms capable of modifying such 554 
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deterministic inputs (such as learning) could in principle modify the R-activation of cell pairs (and 555 

hence sequences) in spontaneous SWRs. In the following, we tested whether changing inputs (as 556 

defined in the previous section) to a randomly chosen cell pair did in fact result in an increase in its 557 

R-activation score.  558 

We started by randomly choosing the cell pair, labeled A and B. In a first set of simulations 559 

(representing, for example, the sleep on the night before a learning experience, marked with PRE in 560 

Figure 5) we found the R-activation score for cell pair AB, together with the deterministic synaptic 561 

inputs to AB and intrinsic excitability of A and B. Depending on the type of cell pair considered (CA3-562 

CA3, CA3-CA1 or CA1-CA1) we chose which deterministic inputs were likely to be most impactful on 563 

the R-activation score of the cell pair, based on our finding in the previous section. We then re-564 

scaled the strengths of all synaptic connections which contributed to the chosen inputs (and the 565 

parameter controlling intrinsic excitability where appropriate), so that in the new connectivity 566 

profile the cell pair AB would have larger inputs. We next ran a new simulation, to test how the 567 

spontaneous R-activation of the cell pair AB would change for increasing inputs. It is to note that we 568 

require that our manipulation preserved the main properties of the spontaneous SWR activity in the 569 

network within physiological bounds (i.e. the network did not show constantly firing cells, or highly 570 

rhythmically occurring SWRs). 571 

Figure 5. Increased synaptic strengths promote R-activation of randomly selected cell pairs.  572 
A. One example of CA3 cell pair AB randomly chosen in a simulation. Reported on the bar plots are 573 
its R-activation score, S

AMPA
, S

GABA
 and the intrinsic excitability of both cell A and B separately. For 574 

each measured output, the value for the AB pair is shown next to a bar reporting the mean ±standard 575 
deviation across all pairs of CA3 pyramidal cells (or single cells) in the same simulation. The scaling 576 
introduced in the network connectivity and intrinsic excitability increased all considered inputs from 577 
before (PRE, green) to after (POST, red). Note that the mean and standard deviations of the inputs 578 
across the network do not change from PRE to POST. The R-activation score of AB is near the mean 579 
in PRE, and larger than one standard deviation above the mean in POST. B. One example of CA3-580 
CA1 cell pair AB randomly chosen in a simulation. Reported on the bar plots are its R-activation 581 
score, S

Pre
, S

Sch
 and S

GABA
. For each measured output, the value for the AB pair is shown next to a 582 

bar reporting the mean ±standard deviation of that value across all pairs of CA3-CA1 pyramidal cells 583 
in the same simulation. The scaling introduced in the network connectivity increased all considered 584 
inputs from before (PRE, green) to after (POST, red). Note that the mean and standard deviations of 585 
the inputs across the network do not change from PRE to POST. The R-activation score of AB is near 586 
the mean in PRE, and larger than one standard deviation above the mean in POST. C. One example 587 
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of CA1-CA1 cell pair AB randomly chosen in a simulation. Reported on the bar plots are its R-588 
activation score, S

Pre
 and S

Sch
. For each measured output, the value for the AB pair is shown next to a 589 

bar reporting the mean ±standard deviation of that value across all pairs of CA1-CA1 pyramidal cells 590 
in the same simulation. The scaling introduced in the network connectivity increased all considered 591 
inputs from before (PRE, green) to after (POST, red). Note that the mean and standard deviations of 592 
the inputs across the network do not change from PRE to POST. The R-activation score of AB is near 593 
the mean in PRE, and larger than one standard deviation above the mean in POST.  594 

Specifically, for pairs of CA3 pyramidal cells, we had previously found (Figure 4A) that excitatory and 595 

inhibitory synaptic inputs and intrinsic excitability of the first cell of the pair were larger for higher R-596 

activating cell pairs. Hence, for a randomly chosen pair AB, we scaled synaptic connections 597 

contributing to SAMPA(A,B) and SGABA(A,B), and increased the intrinsic excitability of A. The scaling was 598 

uniform across all synapses contributing to the inputs, and it was cell pair specific, because its 599 

specific value was derived by requiring that the inputs considered will increase at least one standard 600 

deviation above the network mean after scaling. As a result, a small percentage of AMPA and GABA 601 

synapses within the CA3 network was scaled (less than 0.6% of AMPA and less than 2% of GABA 602 

synapses). This led to an increase of the cell pair R-activation score from mean value of 603 

approximately 5% to about 20% (more than one standard deviation above the mean, shown in the 604 

leftmost bar plot of Figure 5A). In a total of 6 tests of randomly selected cell pairs and simulations, 605 

the change of selected inputs and excitability led to increased cell pair R-activation score, while 606 

maintaining a network activity profile well within physiological bounds. Hence, for CA3-CA3 pairs, we 607 

concluded that uniform scaling of all synapses co-impinging on a pair could promote R-activation of 608 

that pair.  609 

For CA3-CA1 cell pairs, we chose to modify both excitatory (SPre and SSch) and inhibitory (SGABA) 610 

synaptic inputs, since they all showed and increasing trend for increasing R-activation of CA3-CA1 611 

cell pairs (Figure 4C). Hence, our scaling involved AMPA synapses within CA3 and from CA3 to CA1 612 

pyramidal cells, and GABA synapses within CA3 and within CA1. In one example of a randomly 613 

selected CA3-CA1 cell pair AB, shown in Figure 5B, the synaptic manipulation resulted in increased 614 

excitatory and inhibitory synaptic inputs on cell pair AB, while the mean and standard deviation of 615 

each input was not altered (the change affected less than 2% of AMPA synapses within CA3, less 616 
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than 0.5% of Schaffer collaterals, less than 3% of GABA synapses in CA3 and about 12% of GABA 617 

synapses in CA1). The change in synapses produced a significant increase of AB R-activation score, 618 

from ~7% to more than 30%. Among a total of 6 randomly selected CA3-CA1 cell pairs and 619 

simulations, analogous manipulations resulted in increased R-activation score for the cell pair in 4 620 

cases, while all tests showed SWR activity within physiological bounds. 621 

Finally, to study the effect of synaptic scaling on the R-activation of a CA1-CA1 cell pair, we elected 622 

to modify only the excitatory synaptic inputs reaching the cell pair (SPre and SSch, defined in Figure 623 

4B), since inhibitory synaptic inputs and intrinsic excitability of either cell in the pair did not show a 624 

clear increasing trend for increasing R-activation score across CA1-CA1 cell pairs (Figure 4B). In one 625 

example of randomly selected AB CA1-CA1 cell pair (Figure 5C), both excitatory synaptic inputs 626 

increased due to our synaptic scaling procedure, and AB R-activation score grew from about 2% to 627 

above 15%. In contrast to other types of cell pairs, we found that for CA1-CA1 cell pairs the scaling of 628 

excitatory synaptic inputs very often affected the network dynamics. In a total of 11 randomly 629 

selected cell pairs and simulations which resulted in increased AB R-activation, most of them (9 630 

samples) showed an exaggerated amount of SWRs in network activity following synaptic scaling. This 631 

was likely due to the much larger fraction of excitatory synapses being modified by the scaling 632 

procedure (about 5% of all AMPA synapses between CA3 pyramidal cells, and 0.05% of Schaffer 633 

collaterals) compared to other types of cell pairs. To avoid this pitfall, we studied the 634 

complementary problem: whether reducing the input to a randomly selected CA1-CA1 cell pair 635 

would cause a reduction in the cell pair R-activation score. In a total of 7 randomly selected cell pairs 636 

and simulations, we scaled synapses within CA3 pyramidal cells and from CA3 pyramidal cells to CA1 637 

pyramidal cells to reduce the SPre and SSch on pair AB. As expected, in all tests the network activity 638 

remained physiological, and we found in 5 tests that the synaptic manipulation resulted in lower R-639 

activation score for the selected cell pair.  640 
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We conclude that this artificial manipulation was effective at increasing R-activation in cell pairs as 641 

long as it did not affect a large fraction of excitatory cells (hence sending the network activity out of 642 

balance). We predict that physiological synaptic plasticity aimed to increase excitatory synaptic 643 

inputs to a CA1-CA1 cell pair which is part of a memory trace will not influence all synaptic paths 644 

leading to the pair but rather modify synapses within a specific subset of CA3 and CA1 cells (a cell 645 

assembly). The choice of which cells and synapses will be affected by learning-driven plasticity would 646 

likely depend on the specific spiking of cells during behavior. In other words, our study suggests that 647 

the reactivation of a cell assembly during ripples in CA1 really derives from the generalized 648 

reactivation of a CA3-CA1 cell assembly, which – according to our results – is established by plastic 649 

modulation of excitatory synaptic paths within CA3 and Schaffer collaterals, inhibitory synaptic paths 650 

within both CA3 and CA1, and the intrinsic excitability of CA3 pyramidal cells.  651 

Discussion 652 

In this paper, we introduced a spiking network of CA3-CA1 activity showing spontaneously 653 

emergent, localized, stochastic SWRs. Within these events, we studied the spike reactivation in CA3 654 

and CA1 during SWRs, and measured the fraction of ripples in which a cell spiked with a “ripple-655 

activation” (R-activation) score between 0 and 100%. When compared to a stationary sampling 656 

process, we found that a relatively rigid network architecture (defined by stationary probability 657 

distributions of intrinsic and synaptic cell properties) shaped the spiking of low R-activating cells (the 658 

majority), while network dynamics (dependent on the specific implementation of the network 659 

configuration) shaped the activity of highly R-activating cells. We further found that the degree to 660 

which a cell activated across ripples was modulated by the amount of synaptic excitatory and 661 

inhibitory input received by the cell. In particular, for CA3 cells but not for CA1 cells, we found a role 662 

for intrinsic cell excitability in shaping cell activation across ripples. This observation generalized to 663 

cell pairs and synaptic paths which impinge on both cells composing the pair, meaning that a shared 664 

pathway of synaptic input could promote co-activation of cell pairs. Furthermore, we showed that 665 
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increasing the shared synaptic input of a cell pair could lead to increased R-activation. Together, 666 

these observations are indicative of a network-wide coordination of activation probability across 667 

SWRs for cells and cell pairs, which is further refined by specific synaptic strengths. This suggests a 668 

possible competition for R-activation among cell assemblies, where synaptic strengths mediate the 669 

chance of dominance of a given memory over others during spontaneous SWRs.  670 

Model captures both generic ripple activity and potential mechanisms of learning-dependent 671 

replay 672 

CA1 place cells recruited during encoding of recent experience are known to reactivate together 673 

during subsequent sleep (14). Importantly, rather than displaying a uniform probability of spiking 674 

during ripples, cells can be divided in those which are active during SWRs and those which are not, a 675 

feature that persists across recordings (3, 24). The precise manner in which in vivo SWRs involve or 676 

exclude a specific pyramidal cell from their activity remains unknown. Our model predicts that 677 

synaptic plasticity during learning (such as, e.g., mediated by awake SWR activity (31, 37, 38)) could 678 

effectively cause the inclusion of cells coding for a novel learned task in the set of CA1 pyramidal 679 

cells which are spiking during sleep SWRs (24). Hence, we propose that SWRs frame activation of a 680 

generic representation within which spikes from the specific place cells involved in recently encoded 681 

experience are preferentially engaged, gated by recent synaptic plasticity.  682 

Other models of SWR and hippocampal replay 683 

The biophysical model of CA3-CA1 SWR activity which we propose in this study builds on a vast 684 

literature on the mechanisms of ripples and sharp waves. In vitro and in vivo studies have shown 685 

that in CA1 ripples are dominated by inhibitory phasic activity (39, 40), and basket cells spike at high 686 

frequency (39, 41) in localized groups (26). Meanwhile, pyramidal cells spike relatively rarely, phase-687 

locked to windows of opportunity left by the ongoing oscillatory inhibitory signal (22, 33). In CA3, 688 

excitatory and inhibitory spiking is not locked to CA1 ripple waves (30), and can emerge 689 

spontaneously (39, 42) in vitro, while in vivo its initiation is still under investigation (23, 43). In the 690 
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search for explanatory mechanisms underlying SWRs, numerous possible strategies have been 691 

introduced. Gap junctions between CA3 pyramidal cells have been proposed to be necessary (44, 45) 692 

but experimental evidence is still not definitive for such mechanism (3, 46, 47). Models which take 693 

advantage of supra-linear summation of post-synaptic potentials among CA3 and CA1 pyramidal 694 

cells have proposed that SWRs are synaptically propagating waves, where each excitatory spike 695 

induces its own local feedback inhibitory activity (48, 49). These assume a very similar activity in CA3 696 

and CA1 during SWRs, and depend strictly on the presence of strong excitatory synapses between 697 

CA1 cells (which have been found to be very few (50)). In work by Taxidis et al. (51), AMPA and GABA 698 

receptor-mediated synaptic activity, combined with intrinsic bursting of CA3 pyramidal cells, are the 699 

basic mechanisms underlying the emergence of SWRs in a computational model which can be seen 700 

as a precursor to our model. In the model by Taxidis, SWRs have to happen rhythmically, because 701 

their initiation is crucially tied to the bursting activity in the CA3 recurrent network: that model 702 

requires that CA3 pyramidal cells spike in bursts, and do so in strong synchrony in every theta cycle. 703 

In our model, SWRs occur stochastically, with long stochastic pauses in between packets of events, 704 

consistent with in vivo findings (52). This physiologically realistic result arises from taking into 705 

consideration the crucial role played by background noisy activity in setting the SWR mechanism. 706 

In previous work (25), we introduced a model of CA1 receiving direct current (a simplified sharp 707 

wave). In that model, ripples in CA1 were represented by transient orbits of a dynamical system in 708 

which ripple activity is initiated by a synchronizing input to interneurons, then activity winds around 709 

a fixed point inducing fast decaying oscillations, and termination is due to heterogeneity among the 710 

interneurons driving the transient orbit back to the stationary (de-synchronized) state. Here, we 711 

introduce sharp wave activity in CA3 which is an escape process. The CA3 network has strong 712 

recurrence of excitatory synapses, and CA3 pyramidal cells are in a noise-driven spiking regime, 713 

which means that spikes are driven by fluctuations in the incoming currents (including synaptic 714 

ones). This imposes a disorganized state in the network (LIA, found during slow wave sleep in the 715 

hippocampus (3)), and SWRs emerging when enough CA3 pyramidal cells spike in a small window of 716 
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time. This leads part of the network to organize, accumulating recruitment of other pyramidal cells 717 

and interneuron spikes until the network cannot sustain its propagation any further. This implies 718 

that sparseness in the CA3 recursive synapse architecture is also a necessary property of our model 719 

design.  720 

Our model design for sharp wave activity is similar to the one introduced by Omura et al. (36), which 721 

particularly addressed the lognormal distribution of firing rates found across CA3 activity and its 722 

relationship to a specific distribution in the synaptic weights of excitatory connections in the 723 

network. In their model, hippocampal activity is isolated from external input, apart from a short-724 

lived initial Poisson drive. Our new model is a complete CA3-CA1 spontaneous activity design, where 725 

sharp waves and ripples are built to be different phenomena, one mainly excitatory, marked by 726 

wave propagation and extending to a large portion of the excitatory population, one mainly 727 

inhibitory, rhythmic and involving a small fraction of local pyramidal cells. In our model, cells receive 728 

colored noise to represent the ongoing activity of all other inputs (for example from entorhinal 729 

cortex) present in vivo (53). Furthermore, we focus on how this structure is capable of supporting 730 

replay mediated by AMPA and GABA synapses, which is not addressed in Omura et al. The ability of 731 

selective connections to promote cell assembly reactivation (spontaneous and evoked) has been 732 

analyzed recently by (54) who show that synaptic strengths among cells in one assembly can 733 

promote burst-reactivation, considering both excitatory and inhibitory cells as part of the assembly. 734 

In our study, we consider spikes of pyramidal cells to represent information content and spikes of 735 

inhibitory cells to contribute to the shape of overall network dynamics (ending a sharp wave in CA3, 736 

and pacing the frequency of ripples in CA1). This idea is consistent with experimental data which has 737 

found a heightened specificity in the activation of hippocampal pyramidal cells compared to 738 

hippocampal interneurons across the various rhythmic activities which mark different phases in 739 

information processing in an in vivo task (55).  740 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2017. ; https://doi.org/10.1101/164699doi: bioRxiv preprint 

https://doi.org/10.1101/164699
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 
 

Summary and predictions for reactivation 741 

We believe our model is the first which addresses the mechanisms of localized activity not only in 742 

CA1 (ripples), but also in CA3 (sharp waves). Our study further expands the possibilities on how 743 

hippocampal reactivation during sleep can interact with ongoing activity in cortex and other brain 744 

structures. It predicts that topologically organized input (from CA2 or directly from mossy fibers) 745 

could selectively activate a given portion of CA3 and foster reactivation which is specific to that area 746 

(a local SWR event). The spiking content which is then reactivated (the precise spike sequence) in 747 

CA3-CA1 will depend on the specific to synaptic connections within CA3 and between CA3 and CA1. 748 

Such replay could then be passed downstream (through subiculum and its targets) back to cortex 749 

and other structures, in an ongoing loop aimed at changing synapses outside the hippocampus 750 

based on the content of hippocampal replay activated through selective projections from upper 751 

layers of entorhinal cortex to dentate gyrus (and hence CA3). For this overall consolidation to take 752 

place, and hence perform a share-and-transfer of information from hippocampus to cortex during 753 

slow wave sleep, ripples need to be flexible in their timing, while their content needs to be stable, 754 

but able to be evoked differentially depending on the overall input activity (replay is known to 755 

change due to auditory stimulation during sleep (32), for example). Furthermore, for consolidation 756 

to take place, SWRs need to be able to reactivate recent and past events to foster the integration of 757 

new factual events in generalized conceptual schemas which enable the animal (and humans) to use 758 

its experiences to comprehend the world surrounding it (hence, generalize). A CA3-CA1 network 759 

which is too rigid, too rhythmic, or too dependent on few supra-linear connections in its specific 760 

SWR activity, will find it harder to support flexible spiking to mediate consolidation across a night of 761 

sleep.  762 
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Materials and Methods 763 

Network Model: rationale 764 

We started with our previously developed (25) network of CA1 pyramidal and basket cells and 765 

constructed a network of pyramidal and basket cells to represent CA3 activity, then built Schaffer 766 

Collaterals projecting CA3 pyramidal cells to CA1 pyramidal cells and interneurons. We used 767 

equations of the adaptive exponential integrate and fire formalism (56, 57), which can show bursting 768 

activity (like CA3 and CA1 pyramidal cells (58)) or fast-spiking activity (like basket cells (58)) 769 

depending on their parameters (57). CA3 pyramidal cells were allowed a stronger tendency to burst 770 

in response to a current step input by having a less strong spike frequency adaptation than CA1 771 

neurons (58). For simplicity, all cells belonging to the same population had the same parameters 772 

(specified in the following section). To introduce heterogeneity among cells in the network, every 773 

cell received a different direct current term (selected from a normal distribution)), and every cell 774 

received an independent Ornstein–Uhlenbeck process (OU process) (59), which can be thought of as 775 

a single-pole filtered white noise, with cutoff at 100Hz. This noisy input was added to take into 776 

account the background activity of the cells which we did not explicitly model in the network. The 777 

standard deviation of the OU process controlled the size of the standard deviation in sub-threshold 778 

fluctuations of cell voltages, and was a parameter kept fixed within any cell type. Once the 779 

parameter tuning was in effect, the cells (even when disconnected from the network) were showing 780 

fast and noisy sub-threshold voltage activity, and their spikes were non-rhythmic, driven by 781 

fluctuations in the noise input they received, which is called a noise-driven spiking regime, rather 782 

than a deterministic spiking regime, and is representative of in vivo conditions (60-62).  783 

Cells were arranged within a one-dimensional network in CA3 (see Figure 1A), and connectivity 784 

within CA3 was characterized by each cell reaching other cells within a third of the network around 785 

them (Figure 1B), which is consistent with anatomical estimates (28). For pyramidal to pyramidal 786 

cells connections, the probability of synaptic contact within this radius of one third was higher for 787 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2017. ; https://doi.org/10.1101/164699doi: bioRxiv preprint 

https://doi.org/10.1101/164699
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 
 

neurons closer to the pre-synaptic cell and decayed for neurons further away. Details of all network 788 

connections are introduced in the Network Model: connectivity section. Intuitively, the highly 789 

recurrent connections between pyramidal cells in CA3 had a gradient in density that resulted in a 790 

convergence/divergence connectivity fairly uniform across all CA3 pyramidal cells, which represents 791 

the overall homogeneity of CA3 pyramidal cells arborization within the region Overall, this 792 

connectivity represents the highly recurrent pyramidal connections in CA3 without introducing 793 

special hubs of increased excitatory recurrence in any specific location in the network. 794 

Network Model: equations and parameters 795 

We model SWR activity in the hippocampus using a network of 240 basket cells and 1200 pyramidal 796 

cells in CA3, 160 basket cells and 800 pyramidal cells in CA1. The ratio of excitatory to inhibitory 797 

neurons is known to be approximately 4 (58) and since in our model we did not introduce any of the 798 

numerous hippocampal interneuron types but for basket cells, we apply that ratio to the pyramidal 799 

to basket cell network. This ratio also favored the ability of the network to support a background 800 

disorganized spiking regime, where excitatory and inhibitory currents were able to balance each 801 

other (53). For each neuron, the equations are  802 

 𝐶 𝑣̇  = −𝑔𝐿(𝑣 − 𝐸𝐿) + 𝑔𝐿∆ 𝑒𝑥𝑝 (
(𝑣 − 𝑉𝑡)

∆
) − 𝑤 + 𝐼(𝑡) 

𝜏𝑤𝑤̇ = 𝑎(𝑣 − 𝐸𝐿) − 𝑤 

𝑣(𝑡) =  𝑉𝑡ℎ𝑟 ⇒  𝑣(𝑡 + 𝑑𝑡) =  𝑉𝑟, 𝑤(𝑡 + 𝑑𝑡)  =  𝑤(𝑡) + 𝑏 

𝐼(𝑡) =  𝐼𝐷𝐶 + 𝛽𝜂𝑡 + 𝐼𝑠𝑦𝑛(𝑡) 

𝜏 𝑑𝜂𝑡 =  −𝜂𝑡 𝑑𝑡 + 𝑑𝑊𝑡 

𝐼𝑖𝑛𝑝(𝑡) = 𝐼𝑚𝑎𝑥 (1 + exp (− 
𝑡 − 𝑡𝑜𝑛

𝑘
))

−1

(1 + exp ( 
𝑡 − 𝑡𝑜𝑓𝑓

𝑘
))

−1

 

CA1 cells parameters are reported in (25), and CA3 cells parameters were as follows. Pyramidal cells 803 

parameters: C (pF) = 200; gL (nS) = 10; EL (mV)= -58; A = 2; b (pA) = 40; Δ (mV) = 2; τw (ms) = 120; Vt 804 
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(mV) = -50; Vr (mV) = -46; Vthr (mV) = 0. Interneurons parameters: C (pF) = 200; gL (nS) = 10; EL (mV)= -805 

70; A = 2; b (pA) = 10; Δ (mV) = 2; τw (ms) = 30; Vt (mV) = -50; Vr (mV) = -58; Vthr (mV) = 0. 806 

The coefficients establishing noise size were β = 80 for pyramidal cells, β = 90 for interneurons. DC 807 

inputs were selected from Gaussian distributions with mean 24 (pA) and standard deviation 30% of 808 

the mean for pyramidal cells in CA3, mean 130 (pA) and standard deviation 30% of the mean for CA3 809 

interneurons, mean 40 (pA) and standard deviation 10% of the mean for CA1 pyramidal cells and 810 

mean 180 (pA) and standard deviation 10% of the mean for CA1 interneurons.  811 

Synaptic currents were modeled with double exponential functions, for every cell 𝑛 we had 812 

𝐼𝑠𝑦𝑛 (𝑡) =  ∑ 𝑔𝑗→𝑛 𝑠𝑗→𝑛(𝑡)(𝑣𝑛 − 𝐸𝑖)160
𝑗=1 + ∑ 𝑔𝑗→𝑛800

𝑗=1 𝑠𝑗→𝑛(𝑡)(𝑣𝑛 − 𝐸𝑒), 813 

where 𝐸𝑖 =  −80 mV and 𝐸𝑒 =  0 mV, and 𝑠𝑗→𝑛(𝑡) =  ∑ 𝐹𝑡𝑘
(𝑒

𝐻(
𝑡−𝑡𝑘

𝜏𝐷
)

− 𝑒
𝐻(

𝑡−𝑡𝑘
𝜏𝑅

)
), where tk are all 814 

the spikes of pre-synaptic cell j. 815 

In this equation, 𝐹 is a normalization coefficient, set so that every spike in the double exponential 816 

within parentheses peaks at one, and 𝐻(∙) is the Heaviside function, ensuring that the effect of each 817 

pre-synaptic spike affects the post-synaptic current only after the spike has happened. The time 818 

scales of rise and decay (in ms) used in the model were as follows (25, 51, 63, 64). For AMPA 819 

connections from pyramidal cells to pyramidal cells: τR = 0.5, τD = 3.5. For AMPA connections from 820 

pyramidal cells to interneurons: τR = 0.5, τD = 3. For GABAA connections from interneurons to 821 

interneurons: τR = 0.3, τD = 2. For GABAA connections from interneurons to pyramidal cells: τR = 0.3, τD = 822 

3.5. 823 

Network Model: connectivity  824 

The CA3 network was organized as a one-dimensional network. For connections from a CA3 825 

pyramidal cell to the other CA3 pyramidal cells, we first considered a radius (of about one third of 826 

the network) around the presynaptic cell, and the probability of connection from the presynaptic cell 827 
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to any cell within such radius was higher for cells with indeces nearby the presynaptic cell and 828 

reduced progressively with cell index distance (28). Specifically, we used a cosine function to shape 829 

the probability within the radius, and parameterized how fast with index distance the probability 830 

had to decay by using a monotonic scaling of the cosine phase: if x was the index distance within the 831 

network, y = arctan(kx)/arctan(k) imposed the decay probability p(y) = Pcos(4y), where P was the 832 

peak probability and k= 2 was a parameter controlling the decay of connection probability with 833 

distance within the radius. An analogous structure underlid the probability of CA3 pyramidal cells to 834 

connect to inhibitory interneuron in CA3 and for Schaffer Collaterals to connect a CA3 pyramidal cell 835 

to CA1 pyramidal cells (28). To balance the relationship between feed-forward excitation from 836 

pyramidal cells to interneurons and feedback inhibition from interneurons to pyramidal cells, 837 

probability of connection from a presynaptic basket cell to a cell within a radius (about 1/3 of the 838 

network size) was constant at 0.7, for GABAA connections to both CA3 pyramidal cells and 839 

interneurons. Within CA1 connectivity was all-to-all, with the caveat that synaptic weights which 840 

were sampled at or below zero caused a removal of a given synapse. As a result, most synapses 841 

between CA1 pyramidal cells were absent, consistently with experimental findings (50). To introduce 842 

heterogeneity among synaptic connections, synaptic weights for all synapse types were sampled 843 

from Gaussian distributions with variance (σ) given by a percent of the mean (µ). Parameters used in 844 

the simulations were (we use the notation Py3 and Py1 to denote pyramidal cells in CA3 and CA1, 845 

respectively and analogously Int3/Int1 for interneurons). Py3->Py3: µ = 34, σ = 40%µ; Int3->Int3: µ = 846 

54, σ = 40%µ; Py3->Int3: µ = 77, σ = 40%µ; Int3->Py3: µ = 55, σ = 40%µ; Py3->Py1: µ = 34, σ = 10%µ; 847 

Py3->Int1: µ = 320, σ = 10%µ; Int1->Int1: µ = 3.75, σ = 1%µ; Py1->Int1: µ = 6.7, σ = 1%µ; Int1->Py1: µ 848 

= 8.3, σ = 1%µ; Py1->Py1: µ = 0.67, σ = 1%µ. It is to note that the mean (μ) declared was normalized 849 

by the total number of cells before the variance to the mean was introduced in the distribution. 850 

Since the CA3 and CA1 networks are of different sizes, a direct comparison of the parameter values 851 

or their magnitude across regions would not account for the effective values used in the simulations.  852 

  853 
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