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India represents an intricate tapestry of population sub-structure shaped by geography, lan-
guage, culture and social stratification operating in concert [1–3]. To date, no study has at-
tempted to model and evaluate how these evolutionary forces have interacted to shape the pat-
terns of genetic diversity within India. Geography has been shown to closely correlate with
genetic structure in other parts of the world [4,5]. However, the strict endogamy imposed by the
Indian caste system, and the large number of spoken languages add further levels of complexity.
We merged all publicly available data from the Indian subcontinent into a dataset of 835 indi-
viduals across 48,373 SNPs from 84 well-defined groups [2, 6–9]. Bringing together geography,
sociolinguistics and genetics, we developed COGG (Correlation Optimization of Genetics and
Geodemographics) in order to build a model that optimally explains the observed population ge-
netic sub-structure. We find that shared language rather than geography or social structure has
been the most powerful force in creating paths of gene flow within India. Further investigating
the origins of Indian substructure, we create population genetic networks across Eurasia. We
observe two major corridors towards mainland India; one through the Northwestern and another
through the Northeastern frontier with the Uygur population acting as a bridge across the two
routes. Importantly, network, ADMIXTURE analysis and f3 statistics support a far northern
path connecting Europe to Siberia and gene flow from Siberia and Mongolia towards Central Asia
and India.

The genetic structure of human populations reflects gene flow around and through geographic,
linguistic, cultural, and social barriers. We set out to explore how the complex interplay of these
factors may shape the patterns of genetic variation focusing on India, a country of intriguing
levels of population structure complexity. The caste system in India has been documented since
1500-1000 BC and imposes strict rules of endogamy over the past several thousands of years.
Social stratification within India may be summarised into the so-called Forward Castes and the
Backward Castes [10], while 8.2% of the total population belongs to Scheduled Tribes and rep-
resents minorities that lie outside the caste system, still largely based on hunting, gathering
and unorganized agriculture, with no written form of language [11]. Furthermore, there are 22
official languages within India, also following a distinctive geographic spread. The Dravidian
(DR) speaking groups inhabit southern India, Indo-European (IE) speakers inhabit primarily
northern India (but also parts of west and east India as well) and Tibeto-Burman (TB) speakers
are mostly confined to northeastern India. The numerically small group of Austro-Asiatic (AA)
speakers, who are exclusively tribal and are thought to be the original inhabitants of mainland
India, inhabit fragmented geographical areas of eastern and central India. Previous studies have
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uncovered four ancestral components within India [2,8,9], representing Northern India, Southern
India, Austroasiatic speakers and Tibeto-Burman speakers. Furthermore, it has been shown that
prior to the establishment of the caste system, there was wide admixture across tribes and castes
in India which came to an abrupt end 1,900 to 4,200 years before present [8].

Starting from all publicly available data from the Indian subcontinent (835 individuals, see
Figure 1A and Supplementary Table 1) and unlike prior studies [9,12], we created a normal-
ized data set over castes, tribes, geographical locations, and language families that guarantees
an approximately equal representation of endogamous populations, geographical locations, and
language groups (a total of 368 individuals from 33 populations genotyped across 48, 373 SNPs).
In other regions of the world, it has often been observed that individuals from the same geograph-
ical region cluster together and it is often the case that the top two principal components are
well-correlated with geography, namely longitude and latitude [13, 14]. For instance, within Eu-
rope, the squared Pearson-correlation coefficient r2 between the top singular vector of the genetic
co-variance matrix vs. latitude (north-south) was equal to 0.77 and 0.78 for the second singular
vector of the same matrix vs. longitude (east-west). In order to explore whether Indian genetic
information mirrors geography, we computed the top two principal components using EIGEN-
STRAT [15] and plotted the top two left singular vectors of the resulting genetic covariance matrix
(Figure 1B). It is straight-forward to observe that the IE and DR speaking populations form
a long cline, while the AA and TB speakers form separate clusters. We computed the Pearson
correlation coefficient (r2) between the top two left singular vectors (we will denote them by PC1
and PC2) of the covariance matrix and the geographic coordinates (longitude and latitude) of
the samples under study and we observed r2 = 0.604 for PC1 vs. longitude and r2 = 0.065
for PC2 vs. latitude. Thus, PC1 recovers a relatively significant fraction of the longitude, but
PC2 essentially entirely fails to recover the latitude. These findings are in sharp contrast with
findings within the European continent [4, 9, 16]. ADMIXTURE analysis is consistent with pre-
vious studies, showing high degrees of shared ancestry across castes, but also across castes and
tribes, thus supporting the notion that a demographic shift from wide admixture to endogamy
occurred recently in Indian history (Figure 2, Supplementary Figure 1). Our meta-analysis
of the ADMIXTURE output [17] shows that the IE and DR populations across castes shared
very high ancestry, indicating the autochthonous origin of the caste system in India (Figure 2).
f3 statistics show that most of the castes and tribes in India are admixed, with contributions
from other castes and/or tribes, across languages affiliations (Supplementary Table 4 and
Supplementary Note). The geographically isolated Tibeto-Burman tribes and the Dravidian
speaking tribes appear to be the most isolated in India. Linear Discriminant Analysis on the
normalized data set clearly supports genetic stratification by castes and languages in the Indian
sub-continent (Supplementary Figures 3A and 3B).

In order to understand the genetic substructure of India, considering the strongly endoga-
mous social structure as well as the presence of multiple language families, we developed COGG
(Correlation Optimization of Genetics and Geodemographics). COGG is a novel method that
correlates genomewide genotypes, as represented by the top two principal components, with ge-
ography (longitude and latitude) and sociolinguistic factors (caste and language information in
this case). The need for such methods has been pointed out by many studies [3,9,18–26]. Given
information on m samples, the objective of COGG is to maximize the correlation between the
genetic component as represented by the top singular vectors of the genetic covariance matrix
formed by the genotypic data and a matrix containing information on geography, castes, tribes,
and languages for each sample. More precisely, let u be the m-dimensional vector that represents
either PC1 or PC2. Let G be the Geodemographic Matrix (an m × k matrix, where k is the
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number of geodemographic attributes that will be studied). Then, COGG seeks to maximize

max
a∈Rk

Corr

(
u,

k∑
i=1

aiGi

)
. (1)

In the above, a is an (unknown) k-dimensional vector whose elements are the ai’s; we use Gi to
denote the i-th column of the matrix G as a column vector. In our experiment, G has nine columns
(i.e., k = 9): longitude and latitude are represented as numeric values, but caste/tribe/language
information are encoded as zero-one indicator variables. We analytically solved the optimization
problem of eqn. (1) to obtain a closed form solution for amax (see Supplementary Note).
Plugging in the solution for amax in our data, we obtain a Pearson correlation coefficient r2 = 0.93
for PC1 vs. G and r2 = 0.85 for PC2 vs. G. Thus, we are recovering almost all of the genetic
structure of the Indian subcontinent using the Geodemographic matrix G instead of just longitude
and latitude: the values of r2 increase from 0.6 to 0.93 for PC1 and from 0.06 to 0.85 for PC2. This
massive improvement came from considering endogamy and language families, two attributes that
are pivotal in study the genetic stratification of Indian populations and is statistically significant
(Figure 3).

In order to formally investigate which of the nine features (columns) in the geodemographic
matrix G contribute more in the optimization problem of eqn. (1) we used the sparse approxi-
mation framework and the Orthogonal Matching Pursuit (OMP) algorithm from applied math-
ematics [27] (see Supplementary Note). Running OMP on our dataset we obtain two sets of
three features each, S1 and S2, for PC1 and PC2 respectively:

S1 = AA, TB, Forward Castes,and

S2 = AA, Latitude, Forward Castes.

Plugging in S1 as the reduced feature space in COGG resulted in r2 = 0.92 for PC1 vs. S1

and r2 = 0.85 for PC2 vs. S2; these values are capturing approximately over 99% of the values
returned by COGG when all the features in G are included. Our feature selection approach for
COGG explains the influence of sociolinguistics in shaping the genetic structure of the region,
identifying membership to the AA or TB language group (which mostly consists of Backward
Caste and Tribal groups), Forward Caste (who are usually found in IE and DR language groups),
and latitude as the most significant geodemographic features that correlate to genetic structure
within India, highlighting the language-caste interplay.

We proceeded to explore the structure of the Indian sub-continent in relation to the rest of
Eurasia analysing a dataset of 1,332 individuals over 42,975 SNPs (Supplementary Table 1),
sampled from 73 populations. Meta-analysis of the ADMIXTURE output reveals that, overall,
Indian populations share a great proportion of ancestry with the so-called Indian NorthWestern
Frontier populations, namely the tribal populations spanning Afghanistan and Pakistan (Figure
4). In concordance with previous studies we find higher degrees of shared ancestry of Central
Asian populations with IE and DR Forward Castes [12, 20, 28]. IE Forward Castes also share
large amounts of ancestry with other IE speaking populations (ie Europeans). However, IE and
TB speakers as well as DR speaking Castes also share considerable amounts of ancestry with
the Uygurs. On the other hand, AA speakers, who have been suggested as the earliest settlers
of India [20, 29], appear more isolated. TB speakers share very high amounts of ancestry with
populations from China but also Mongolia and Siberia.

PCA uncovers a structure that resembles a triangle, with Europeans residing in one corner,
the Chinese on another corner and the Dravidian and Austro-asiatic speaking tribal populations
of India occupying the third corner (Figure 5A). Siberians, Mongols and Uygurs stretch towards
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India’s Northwestern Frontier, while Tibeto-Burman speaking Indians connect India to China.
We employed a population network analysis approach [30] in order to trace the gene-flow paths
towards the Indian subcontinent (Figure 5B). Within India, IE, TB and AA Tribes are major
nodes connecting to multiple populations. Tibeto-Burman Tribes stand at the Northeastern
gateway from China to India, while IE Forward Castes are at the entry-point from the North-
western frontier. Considering the whole of Eurasia, we observe three major paths leading to the
two entry points of India: from Europe to Central Asia and the Indian Northwerstern Frontier,
from Northern Europe to Siberia, and then Mongolia, then splitting towards China and Northeast
India on one hand or the Uygurs, Central Asia and Northwestern India on the other hand. f3
tests [31] (Figure 6) and TreeMix [32] analyses also support the notion that IE and TB Forward
Castes have arisen through admixture of populations originating from the Caucasus and Mongolia
(Supplementary Table 3, Supplementary Figure 4, and Supplementary Note). Previous
studies have also supported a north-western and north-eastern corridor of migration towards India.
However, this is the first study to connect the two paths through the populations of Siberia and
Mongolia.

In summary, we present a novel method building a model that correlates geography, social,
cultural and linguistic factors to genetic structure. The method is of independent interest and
can be used to analyze any dataset of genotypic data where side information (e.g., geographic
locations and/or other demographic information) for the samples is known. We are thus able
to uncover the major forces that have shaped population genetic structure within India. Fur-
thermore, through population genetic networks, ADMIXTURE analysis and f3 tests, we have
drawn paths of migration and gene flow throughout Eurasia, bringing out the importance of an
ancient northern route moving from Europe through Siberia, Mongolia and merging back towards
Central Asia and India. The possibility to correlate genomic background to geographic, social
and cultural differences opens new avenues for understanding how human history and mating
patterns translate into the genomic structure of extant human populations.

Code Availability. All code (including source files) is available at https://github.com/

aritra90/COGG.

Data Availability. We have used publicly available data sets along with data reported by other
studies. Our data sets will be made available upon request to the corresponding authors.
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Online Methods

Samples

We used PLINK [33, 34] to assemble genome-wide data for 839 samples from 87 well-defined
sociolinguistic groups (see Supplementary Table 1) genotyped on a 48,225 SNPs. These sam-
ples were collected from various sources [2, 6–9] with the consent of the corresponding authors.
We created and tested subsets of this dataset in order to construct an equal representation of
castes, tribes, language families and geographical locations for this study. The normalized sub-
set for which we have reported results for the Indian populations contains 368 samples from 33
populations genotyped for 48,326 SNPs.

We merged reference populations from Eurasia and Southeast Asia, collected from various
publicly available sources such as HGDP [35], the Estonian Biocenter [36–42] and the Allele
Frequency Database (ALFRED) [43] with our normalized Indian dataset to create a merged data
set of 1,332 samples from 73 population groups genotyped on 42,975 SNPs (Supplementary
Table 1).

PCA and LDA

We used the smartPCA program of the EIGENSOFT package 6.1.4 [15] as well as our own MatLab
implementation of PCA [44, 45]. We also implemented our own version of Linear Discriminant
Analysis.

COGG and feature selection using Orthogonal Matching Pursuit

COGG stands for Correlation Optimization of Genetics and Geodemographics and maximizes the
correlation between one of the top two principal components and the Geodemographic matrix,
containing geographical coordinates, caste, tribe and language information encoded as indicator
variables. We restrict our encoding into three castes: Forward castes, Backward castes and
Tribal or nomadic hunter gatherers. u is the vector containing either one of the top two principal
components, computed by EIGENSTRAT [15]; the Geodemographic matrix is denoted by G. The
caste (Forward, Backward and Tribals) and language (AA, DR, IE, TB) encoding was performed
as follows:

Castes (or Languages)=

{
1, if the sample belongs to that caste (or language)

0, otherwise

Let a be the k-dimensional vector whose elements are a1 . . . ak (in our case, k = 9). COGG solves
the following optimization problem (see Supplementary Note for details):

max
a

Corr

(
u,

k∑
i=1

aiGi

)
.

Recall that Gi denotes the i-th column of G as a column vector. Let di = uTGi/
√

Var [u] for
i = 1 . . . k and let d be the vector of the di’s. Also, let Mij = GT

i Gj for all i, j = 1 . . . k and let
M be the matrix of the Mij ’s. Then the optimizer for COGG is given by

amax = M−1d.

We also check for statistical significance of the maximum squared Pearson correlation coefficient
r2, returned by COGG, by randomly permuting the columns corresponding to castes and lan-
guages in G in 1,000 iterations and calculating amax for each iteration; we report the histogram
of the resulting r2 values.
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We used a greedy feature selection algorithm described in [27] to select features of the Geode-
mographic matrix G. We obtain two sets of the three most significant features from the nine
features in G, one for PC1 and the other for PC2. The algorithm is described in detail in the
Supplementary Note. In words, it selects the column which results in the maximum r2 value
from G and then projects G (and u) on the subspace perpendicular to the selected column in
order to form G′ (and u′) . We iterate the process until we remove the required number of
features from G.

All the values returned by this method are statistically significant, as random permutations of
the elements of the features in S1 and S2 recover almost nothing. We also checked all

(
9
3

)
possible

sets of three features exhaustively and concluded that (for both PC1 and PC2) S1 and S2 return
the maximum correlation.

Estimating population admixture

We used the ADMIXTURE v1.22 software [46] for all admixture analyses and used our in house
script to plot the admixture estimates. Before running ADMIXTURE, we pruned for LD using
PLINK [33, 34] by setting --indep-pairwise 50 10 0.8. To determine the optimal number
of ancestral populations (K), we varied K between two and eight performing iterations until
convergence for each value of K. We also performed a quantitative analysis of ADMIXTURE’s
output using a method described and implemented in [17]. To visualize the results of this quan-
titative analysis, we designed a color-coding scheme, where the highest shared ancestry between
two populations is black and the lowest shared ancestry is white. All intermediate values of shared
ancestry follow a gradient from white to black.

Three population statistics, network analysis, and TreeMix

We used ADMIXTOOLS [31] to compute f3 statistics for our data sets to find signs of admixture
using the qp3Pop program. To better visualize and understand the connection between the pop-
ulations included in our study, we performed a network analysis on the results of ADMIXTURE,
using a method presented by a previous study [30]. Finally, TreeMix [32] was used to analyze the
population divergence, mainly for the IE language dispersal into the Indian subcontinent. We
used migration values from zero to eight to infer language dispersal routes.
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[5] Wang, C. and Zöllner, S. & Rosenberg, N. A. A Quantitative Comparison of the Similarity
between Genes and Geography in Worldwide Human Populations. PLoS Genet. 8(8) (2012).

[6] Metspalu, M. et al. Shared and unique components of human population structure and
genome-wide signals of positive selection in South Asia. Am. J. Hum. Genet. 89(6), 731–744
(2011).

[7] Chaubey, G. et al. Population genetic structure in indian austroasiatic speakers: The role
of landscape barriers and sex-specific admixture. Mol. Biol. Evol. 28(2), 1013–1024 (2011).

[8] Moorjani, P. et al. Genetic evidence for recent population mixture in India. Am. J. Hum.
Genet. 93(3), 422–438 (2013).

[9] Basu, A., Sarkar-Roy, N., and Majumder, P. P. Genomic reconstruction of the history
of extant populations of India reveals five distinct ancestral components and a complex
structure. Proc. Natl. Acad. Sci. 113, 1594–1599 (2016).

[10] Dubey, A. Caste in 21st Century India: Competing Narratives. Economic and Political
Weekly Vol. 46(Issue No. 11) 12 (2011).

[11] Pati, R.N. & Dash, J. Tribal and Indigenous People of India: Problems and Prospects. A.P.H.
Publishing Corporation, New Delhi, (2002).

[12] Sengupta, S. et al. Polarity and Temporality of High-Resolution Y-Chromosome Distribu-
tions in India Identify Both Indigenous and Exogenous Expansions and Reveal Minor Genetic
Influence of Central Asian Pastoralists. Am. J. Hum. Genet. 78(2), 202–221 (2006).

[13] Novembre, J. & Stephens, M. Interpreting principal component analyses of spatial population
genetic variation. Nat. Genet. 40(5), 646–649 (2008).

[14] Chisholm, B., Cavalli-Sforza, L., Menozzi, P., and Piazza, A. The History and Geography
of Human Genes. J Asian Stud. 54(2), 490 (1995).

[15] Price, A. et al. Principal components analysis corrects for stratification in genome-wide
association studies. Nat. Genet. 38(8), 904–909 (2006).

[16] Drineas, P., Lewis, J., and Paschou, P. Inferring geographic coordinates of origin for Euro-
peans using small panels of ancestry informative markers. PLoS One 5(8) (2010).

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2017. ; https://doi.org/10.1101/164640doi: bioRxiv preprint 

https://doi.org/10.1101/164640
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17] Stamatoyannopoulos, G. et al. Genetics of the peloponnesean populations and the theory
of extinction of the medieval peloponnesean Greeks. Eur. J. Hum. Genet. 25(5), 637–645
(2017).

[18] Bamshad, M. et al. Genetic evidence on the origins of Indian caste populations. Genome
Research 11(6), 994–1004 (2001).

[19] Majumder, P. P. Indian caste origins: Genomic insights and future outlook. Genome Res.
11(6), 931–932 (2001).

[20] Majumder, P. P. The Human Genetic History of South Asia. Curr. Biol. 20(4), R184–R187
(2010).

[21] Basu, A. et al. Ethnic India: A genomic view, with special reference to peopling and
structure. Genome Res. 13(10), 2277–2290 (2003).

[22] Brahmachari, S. K. et al. The Indian Genome Variation database (IGVdb): A project
overview. Hum. Genet. 118(1), 1–11 (2005).

[23] Roychoudhury, S. et al. Genomic structures and population histories of linguistically distinct
tribal groups of India. Hum. Genet. 109(3), 339–350 (2001).

[24] Rosenberg, N. A. et al. Low levels of genetic divergence across geographically and linguisti-
cally diverse populations from India. PLoS Genet. 2(12), 2052–2061 (2006).

[25] Tamang, R. & Thangaraj, K. Genomic view on the peopling of India. Investig Genet 3(1),
20 (2012).

[26] Sirajuddin, S. M., Duggirala, R., and Crawford, M. H. Population structure of the Chenchu
and other south Indian tribal groups: relationships between genetic, anthropometric, der-
matoglyphic, geographic, and linguistic distances. Hum Biol 66(5), 865–884 (1994).

[27] Natarajan, B. K. Sparse Approximate Solutions to Linear Systems. SIAM Journal on
Computing 24(2), 227–234 (1995).

[28] Silva, M. et al. A genetic chronology for the Indian Subcontinent points to heavily sex-biased
dispersals. BMC Evol. Biol. 17(1), 88 (2017).

[29] Kumar, V. & Reddy, B. Status of Austro-Asiatic groups in the peopling of India: An
exploratory study based on the available prehistoric, linguistic and biological evidences. J
Biosci. 28(4), 507–522 (2003).

[30] Paschou, P. et al. Maritime route of colonization of Europe. Proc. Natl. Acad. Sci. 111(25),
9211–9216 (2014).

[31] Patterson, N. et al. Ancient admixture in human history. Genetics 192(3), 1065–1093 (2012).

[32] Pickrell, J. K. & Pritchard, J. K. Inference of Population Splits and Mixtures from Genome-
Wide Allele Frequency Data. PLoS Genet. 8(11), 1–17 11 (2012).

[33] Purcell, S. et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based
Linkage Analyses. Am. J. Hum. Genet. 81(3), 559–575 (2007).

[34] Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer
datasets. GigaScience 4(1), 7 (2015).

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2017. ; https://doi.org/10.1101/164640doi: bioRxiv preprint 

https://doi.org/10.1101/164640
http://creativecommons.org/licenses/by-nc-nd/4.0/


[35] Cann, H. et al. A Human Genome Diversity Cell Line Panel. Science 296(5566), 261–262
(2002).

[36] Di Cristofaro, J. et al. Afghan Hindu Kush: Where Eurasian Sub-Continent Gene Flows
Converge. PLoS One 8(10) (2013).

[37] Yunusbayev, B. et al. The caucasus as an asymmetric semipermeable barrier to ancient
human migrations. Mol. Biol. Evol. 29(1), 359–365 (2012).

[38] Kovacevic, L. et al. Standing at the Gateway to Europe - The Genetic Structure of Western
Balkan Populations Based on Autosomal and Haploid Markers. PLoS One 9(8), e105090
(2014).

[39] Yunusbayev, B. et al. The Genetic Legacy of the Expansion of Turkic-Speaking Nomads
across Eurasia. PLoS Genet. 11(4), 1–24 (2015).

[40] Behar, D. et al. The genome-wide structure of the Jewish people. Nature 466(7303), 238–242
Jul (2010).

[41] Fedorova, S. et al. Autosomal and uniparental portraits of the native populations of Sakha
(Yakutia): implications for the peopling of Northeast Eurasia. BMC Evol. Biol. 13(1), 127
(2013).

[42] Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native
Americans. Nature 505(7481), 87–91 Jan (2014). Letter.

[43] Rajeevan, H. et al. ALFRED: The ALelle FREquency Database. Update. Nucleic Acids
Res. 31(1), 270–271 (2003).

[44] Paschou, P. et al. PCA-correlated SNPs for structure identification in worldwide human
populations. PLoS Genet. 3(9), 1672–1686 (2007).

[45] Paschou, P. et al. Intra- and interpopulation genotype reconstruction from tagging SNPs.
Genome Res. 17(1), 96–107 (2007).

[46] Alexander, D. H. and Novembre, J. & Lange, K. Fast model-based estimation of ancestry in
unrelated individuals. Genome Res. (2009).

[47] Hinrichs, A. S. The UCSC Genome Browser Database: update 2006. Nucleic Acids Research
34(90001), D590–D598 (2006).

[48] Auton, A. et al. A global reference for human genetic variation. Nature 526(7571), 68–74
(2015).

[49] Excoffier, L. and Smouse, P E & Quattro, J. M. Analysis of molecular variance inferred
from metric distances among DNA haplotypes: application to human mitochondrial DNA
restriction data. Genetics 131(2), 479–491 (1992).

[50] Rao, C. R. The Utilization of Multiple Measurements in Problems of Biological Classification.
Journal of the Royal Statistical Society. Series B (Methodological) 10(2), 159–203 (1948).

[51] Fisher, R. A. The use of multiple measurements in taxonomic problems. Annals of Eugenics
7(2), 179–188 (1936).

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2017. ; https://doi.org/10.1101/164640doi: bioRxiv preprint 

https://doi.org/10.1101/164640
http://creativecommons.org/licenses/by-nc-nd/4.0/


Austro-Asiatics

Dravidians

Indo-Europeans

Tibeto-Burman

Tamil Nadu
Adi-Dravider; Irula; Gounder; Kurumba; 
Malayan; Kuravar; Kallars; Sakilli; Vysya; 

Scheduled Caste; Brahmins;  Hallaki; Iyer;  
Narikkuravar; Pallan; Palliyar; 

Nagaland
Aonaga

Naga

Jharkhand
Asur; Birhor; Korwa  
Santhal; Munda; Ho

Odisha
Bhunjia; Bonda; 
Savara; Juang

Andhra Pradesh
Chenchus; Gadaba; 

Kamsali; Kattunayakan; 
Kamsali; Madiga; Naidu; 

Velama

Assam
Garo

Bihar
Chamar; KhariaGujarat

Bhil; Meghawal, 
Gujarati Brahmins

Karnataka
Hallaki; 

Hakkipikki

Kerala
Kadar; Kuruchiyan; 

Paniya 

Madhya Pradesh
Gond; Lambadi; Mawasi;

Sahariya; Korku; Chhatisgarh
Dhurwa

Sherpa; Tharus

Meghalaya
Khasi

Rajasthan
Kanjars; Meena

Sikkim
Subba

Vedda

Tibet
Tibet-refugees

Tripura
Jamatia
Tripuri

Uttar Pradesh
Brahmins; Dharkars; 

Dusadh; Kol; Kshatriya; Lodi; 
Srivastava; Vaish; Scheduled 

Caste

Uttarakhand
Brahmins

Bengal
Bhumij; Kurmi; 

Brahmins

Kashmir
Kashmiri Pandits; 

Changapa

Lakshwadeep
Minicoy

Maharashtra
Maratha

Manipur
Brahmins

Arunachal 
Nysha

Fig 1 (a) Map showing the locations of the 835 Indian samples (from 84 well-defined

population groups) that were used as the starting point in our study. (b) PCA plot of a

normalized dataset consisting of 368 individuals (genotyped on 48,373 SNPs) that

guarantees an approximately equal representation of endogamous populations,

geographical locations, and language groups shown in 1A. Language groups are

clearly quite important in the PCA plot and correlate well with the principal

components.
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Fig 2 (a) An ADMIXTURE plot (for values of K between two and eight) of the normalized data set (368 individuals 48,373 SNPs) clearly shows the four

main components related to language groups (Dravidian, Indo-European, Tibeto-Burman, and Austro-Asiatic); see, for example, the plot for K equal to

five or six. The plot also shows the divergence of the Dravidian Tribal samples (DR_Tribal). (b) We perfomed a meta-analysis of the results of the

ADMIXTURE plot (see Methods for details) to visually and numerically quantify the amount of shared ancestry (as revealed by ADMIXTURE) between

any pair of populations. Darker colors indicate larger amounts of shared ancestry; we observe a higher amount of shared ancestry between the Indo-

European and Dravidian populations, across all castes, indicating the existence of significant admixture between the two linguistic groups. The

isolation of the Dravidian Tribal samples is primarily due to the isolation of hill tribes (such as Irula, Kadar, Paniyas, etc.)
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Fig 3 (a) Our approach for Correlation Optimization of Genetics and Geodemographics (COGG). The inputs to COGG are an eigenSNP

(e.g., a singular vector from the covariance matrix based on the sample genotypes) and the geodemographic information (longitude,

latitude, membership to a language group, caste membership, etc.). The output is the correlation between the eigenSNP and the

geodemographics. Interestinly, a closed form solution exists for the COGG optimization problem. (b) Statistical significance of the COGG

output (using random permutations). Clearly, COGG is statistically significant for both the first and the second principal components.

Before
COGG: 0.6

Random
Permutations

COGG: 0.93 Before
COGG: 0.06

Random
Permutations

COGG: 0.86
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Fig 4 (a) An ADMIXTURE plot (for values of K between

two and eight) of the Indian dataset merged with

Eurasian populations (1,332 individuals, 42,973 SNPs).

(b) Our meta-analysis of the ADMIXTURE plot in Figure

4A quantifies the ADMIXTURE results (darker colors

indicate higher pairwise shared ancestry). Indian

populations show a greater proportion of shared

ancestry with the so-called Indian Northwestern Frontier

populations, namely the tribal populations spanning

Afghanistan and Pakistan. Central Asian populations

share higher degrees of ancestry with IE and DR

Froward castes. Uygurs share high degrees of ancestry

with Indian populations.
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Fig 5 (a) PCA plot of Indian and Eurasian populations uncovers a structure that resembles a triangle, with Europeans residing in one corner, the Chinese

on another corner and the Dravidian and Austro-asiatic speaking tribal populations of India occupying the third corner. The PCA plot does mirror the

geography of Eurasia. (b) Population genetic networks formed using the top five principal components (see Methods for the network formation algorithm).

We observe three major paths leading to the two entry points of India: from Europe to Central Asia and the Indian Northwestern Frontier, from Northern

Europe to Siberia, and then Mongolia, then splitting towards China and Northeast India on one hand or the Uygurs, Central Asia and Northwestern India

on the other hand.
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Yakuts SouthernEU IE_ForwardCaste -0.00146 0.000382 -3.82

Mongols Caucasus TB_ForwardCaste -0.00264 0.000384 -6.868

Mongols CentralEU IE_ForwardCaste -0.00101 0.000358 -2.816

Mongols CentralEU TB_ForwardCaste -0.00228 0.000398 -5.713

Mongols SouthernEU IE_ForwardCaste -0.0017 0.000361 -4.705

Mongols SouthernEU TB_ForwardCaste -0.00266 0.000403 -6.592

Mongols SE_Europe IE_ForwardCaste -0.00102 0.000359 -2.839

Mongols SE_Europe TB_ForwardCaste -0.00234 0.000405 -5.772

Mongols NorthernEU TB_ForwardCaste -0.00173 0.000407 -4.244

Buryats SouthernEU IE_ForwardCaste -0.00157 0.000353 -4.437

Caucasus Mongols CentralAsian -0.01138 0.000228 -49.922

Caucasus Uygurs CentralAsian -0.0057 0.000175 -32.559

Caucasus Yakuts CentralAsian -0.0114 0.000231 -49.284

Caucasus Buryats CentralAsian -0.01133 0.000225 -50.34

Caucasus Selkups CentralAsian -0.00793 0.000187 -42.449

Caucasus North_China CentralAsian -0.01328 0.000257 -51.724
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Fig 6 (a) Routes of human migrations through Eurasia and towards India (based on

PCA, network and ADMIXTURE analysis). The directions of the arrows are inferred

from the f3 statistics shown in Fig 6B. (b) f3 statistics (all negative Z-scores are

shown) indicate Chinese and Siberian ancestry contributing to the Tibeto-Burman tribal

speakers. On the other hand, the Mongols and the Europeans have contributed

significant amounts of ancestry to the Indo-European and Tibeto-Burman forward

castes. F3 statistics also show that the Central Asians are an admixed population with

signs of admixture from Caucasus and other parts of Europe.
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