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Abstract	
	
Scanning	 Fluorescence	Correlation	 Spectroscopy	 (scanning	 FCS)	 is	 a	 variant	 of	
conventional	point	FCS	that	allows	molecular	diffusion	at	multiple	locations	to	be	
measured	simultaneously.	It	enables	disclosure	of	potential	spatial	heterogeneity	
in	molecular	diffusion	dynamics	and	also	the	acquisition	of	a	large	amount	of	FCS	
data	at	the	same	time,	providing	large	statistical	accuracy.	Here,	we	optimize	the	
processing	 and	 analysis	 of	 these	 large-scale	 acquired	 sets	 of	 FCS	 data.	 On	 one	
hand	we	present	FoCuS-scan,	scanning	FCS	software	that	provides	an	end-to-end	
solution	 for	 processing	 and	 analysing	 scanning	 data	 acquired	 on	 commercial	
turnkey	 confocal	 systems.	 On	 the	 other	 hand,	 we	 provide	 a	 thorough	
characterisation	 of	 large-scale	 scanning	 FCS	 data	 over	 its	 intended	 time-scales	
and	 applications	 and	 propose	 a	 unique	 solution	 for	 the	 bias	 and	 variance	
observed	 when	 studying	 slowly	 diffusing	 species.	 Our	 manuscript	 enables	
researchers	to	straightforwardly	utilise	scanning	FCS	as	a	powerful	technique	for	
measuring	 diffusion	 across	 a	 broad	 range	 of	 physiologically	 relevant	 length	
scales	without	specialised	hardware	or	expensive	software.	
	
	
	
Introduction	
		
FCS	 (Fluorescence	 Correlation	 Spectroscopy)	 is	 a	 long	 established	 technique	
which	allows	the	diffusion	characteristics	of	 fluorescently	 labelled	molecules	to	
be	measured	(Magde,	Elson	et	al.	1972,	Ehrenberg	and	Rigler	1974).	In	FCS	the	
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molecular	mobility	 is	 accessed	 by	 determining	 the	 time	 it	 takes	 the	molecules	
under	study	to	traverse	through	the	observation	spot	of	an	optical	microscope.	
Knowledge	of	both	the	average	transit	time	and	the	size	of	the	observation	spot	
allows	 a	 straightforward	 determination	 of	 respective	 molecular	 diffusion	
coefficients	 as	 well	 as	 anomalies	 in	 diffusion.	 Through	 the	 advent	 of	 confocal	
microscopy,	 FCS	 has	 become	 a	 powerful	 tool	 in	 various	 fields	 of	 application	
(Rigler	 and	 Widengren	 1990).	 An	 important	 topic	 is	 the	 use	 of	 FCS	 for	
determining	the	diffusion	dynamics	of	molecules	and	proteins	in	the	membrane	
of	cells	and	lipid	bilayers	(Fahey,	Koppel	et	al.	1977,	Widengren	and	Rigler	1998,	
Schwille,	Korlach	et	al.	1999).	For	FCS	to	fundamentally	establish	the	dynamics	
of	 proteins	 in	 living	 membranes	 however,	 spatial	 information	 as	 well	 as	 high	
statistical	accuracy	through	large	data	sets	are	required,	due	to	the	heterogeneity	
and	dynamic	nature	of	the	membrane	under	study	(Lingwood	and	Simons	2010,	
de	la	Serna,	Schütz	et	al.	2016,	Sezgin,	Levental	et	al.	2017).	Conventional	(point)	
FCS	employs	a	single	measurement	spot	at	a	time	only.	In	this	paradigm	a	laser	is	
focused	on	a	single	spot	in	the	sample	and	the	emission	light	is	recorded	at	this	
location	 throughout	 the	 duration	 of	 the	 experiment.	 As	 a	 consequence	 spatial	
information	 and	 sufficient	 statistical	 power,	 perquisites	 of	 studying	 complex	
heterogeneous	 organisms,	 can	 only	 be	 achieved	 through	 subsequent	
measurements.	 With	 measurement	 times	 of	 seconds	 to	 tens	 of	 seconds	 a	
sequential	 approach	 like	 point	 FCS	 often	 results	 in	 averaging	 of	 possible	
diffusion	dynamics	and	so	obscuring	the	vital	diffusion	heterogeneities	that	are	
of	interest.		
	
The	most	obvious	way	of	attaining	spatial	information,	as	well	as	large	data	sets,	
is	 through	 the	 recording	 of	 FCS	 data	 in	 multiple	 observation	 spots	
simultaneously.	 Through	 simultaneous	 measurement,	 heterogeneities	 present	
between	 locations	 become	 much	 more	 obvious	 due	 to	 the	 high-degree	 of	
temporal	 synchronisation	 allowing	 accurate	 comparison.	 Simultaneous	
measurements	 can	 be	 achieved	 through	 camera-based	 (image	 correlation	
spectroscopy,	 ICS)	 (Petersen,	 Höddelius	 et	 al.	 1993)	 or	multi-spot	 approaches	
(Brinkmeier,	Dörre	et	al.	1999,	Colyer,	Scalia	et	al.	2010,	Papadopoulos,	Krmpot	
et	al.	2015).	While	 the	spatial	awareness	of	 these	approaches	have	allowed	the	
study	 of	 a	 wide	 range	 of	 cellular	 processes,	 especially	 through	 there	 further	
development	(e.g.	(Digman,	Sengupta	et	al.	2005,	Hebert,	Costantino	et	al.	2005,	
Sankaran,	 Manna	 et	 al.	 2009),	 the	 general	 applicability	 of	 each	 is	 hampered	
either	by	the	low	frame	rate	of	the	detectors,	limiting	e.g.	the	use	of	ICS	for	slow	
diffusion	processes	only,	or	by	a	complex	setup.	Scanning	FCS	is	a	variant	of	the	
conventional	point	FCS	technique	and	allows	diffusion	at	multiple	locations	to	be	
measured	 simultaneously	 on	 conventional	 light	 microscopy	 equipment	 (Ruan,	
Cheng	et	al.	2004,	Ries,	Chiantia	et	al.	2009,	Honigmann,	Mueller	et	al.	2014).	In	
scanning	FCS,	the	laser	illumination	spot	is	scanned	across	a	sample	in	a	line	(or	
circle)	continuously	and	the	light	emitted	from	each	spatial	location	recorded	in	
sequence.	 The	 intensity	 time-series	 at	 each	 point	 is	 then	 correlated	 and	
parameterised	 through	 fitting	 of	 derived	 equations	 which	 link	 diffusion	
dynamics	with	 the	 relaxation	 of	 the	 correlation	 function.	 The	 yielded	diffusion	
data	can	 then	be	used	 to	establish	spatial	 relationships	within	 the	sample.	The	
compromise	 of	 this	 technique	 is	 still	 a	 reduced	 temporal	 resolution,	 as	 the	
illumination	 and	 detection	 spot	 can	 only	 be	 in	 one	 location	 at	 one	 time	when	
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compared	 to	 point	 FCS,	 i.e.	 the	 temporal	 resolution	 is	 ultimately	 given	 by	 the	
scanning	frequency	and	the	signal-to-noise	ratio.	Still,	compared	with	other	ICS-
based	 approaches,	 scanning	FCS	offers	 a	 good	 compromise	 for	 producing	both	
spatial	and	high	 frequency	 temporal	 information	with	 the	added	benefit	 that	 it	
can	be	performed	on	conventional	laser	scanning	microscope	equipment.	
	
Noise	 and	 its	 likely	 impact	 on	 a	 measurement	 is	 an	 important	 consideration	
when	performing	correlation,	and	several	attempts	to	characterize	noise	in	FCS	
data	 analytically	 have	 been	 made	 in	 the	 past.		 Koppel	 first	 showed	 that	 for	
experiments	of	a	long	duration	that	the	main	basis	for	achieving	a	good	signal-to-
noise	 ratio	 was	 to	 have	 a	 strong	 signal	 per	 molecule	 when	 compared	 to	
background	 noise	 like	 shot	 noise	 (Koppel	 1974).	 Subsequent	 attempts	 to	
understand	 the	 statistical	 accuracy	 of	 correlation	 have	 highlighted	 the	
importance	 of	 the	 duration	 of	 an	 experiment	 and	 also	 the	 artifacts	 of	 having	
finite	measurement	duration	 (Schätzel,	Drewel	 et	 al.	 1988,	 Saffarian	 and	Elson	
2003).	 Knowledge	 of	 the	 relative	 levels	 of	 error	 across	 a	 correlation	 function	
have	 been	 shown	 to	 assist	 in	 the	 accuracy	 of	 curve	 fitting	 and	 increasing	 the	
accuracy	 of	 diffusion	 coefficient	 calculation	 (Wohland,	 Rigler	 et	 al.	 2001).	
Scanning	FCS	may	give	further	insights	into	such	issues	as	it	allows	acquisition	of	
large-scale	FCS	data	sets	simultaneously.		
	
Here,	we	aim	to	optimize	both	processing	and	analysis	 for	 large-scale	scanning	
FCS	 data	 by	 on	 the	 one	 hand	 presenting	 the	 novel	 FoCuS-scan	 software	 and	
secondly	by	providing	a	 thorough	characterization	of	 scanning	FCS	 in	a	 typical	
biological	 user-case.	 FoCuS-scan	 software	 provides	 an	 end-to-end	 solution	 for	
processing	 and	 analysing	 scanning	 data	 produced	 using	 commercial	 turnkey	
systems	 and	 expands	 existing	 software	 for	 processing	 scanning	 FCS	 samples	
(Rossow,	Sasaki	et	al.	2010,	Müller,	Schwille	et	al.	2014)	with	respect	to	ease-of-
use,	 flexibility	and	analysis	of	 large	data	batches.	FoCuS-scan	software	contains	
tools	that	allow	common	photobleaching	artefacts	to	be	compensated	for,	as	well	
as	tools	that	allow	cropping	to	be	applied	to	samples	and	innovative	visualization	
techniques.	Furthermore,	the	FoCuS-scan	software	also	utilises	advanced	fitting	
algorithms,	which	accompany	the	data	processing	and	allow	large	and	complex	
datasets	to	be	efficiently	analysed.	Using	this	software,	we	in	this	study	further	
characterize	scanning	FCS	for	use	in	investigating	slow	moving	molecular	species	
on	 individual	 cells	 (1.0	 μm2/s	 to	 0.05	 μm2/s,	 much	 slower	 than	 has	 been	
previously	characterized	in	FCS	statistical	analysis).		Due	to	the	power	of	FoCuS-
scan	and	the	applicability	to	turn-key	confocal	systems	it	is	an	essential	tool	for	
any	bioscience	researcher	interested	in	studying	cellular	dynamics.	
	
Toward	our	goal	of	optimizing	processing	and	analysis	of	scanning	FCS	data	we	
characterize	 simulations	 generated	 to	 model	 typical	 biological	 acquisition	
experiments.	These	 simulations	highlight	 the	 limitations	of	 experiments	where	
there	is	a	limited	number	of	molecules	and	also	a	need	to	maximize	the	number	
of	 acquisitions	 possible	within	 a	 period.	 As	 a	 consequence	we	 have	 simulated	
acquisition	 times	 of	 varying	 length	 and	 also	 traces	 that	model	 photobleaching	
artifacts.	 We	 observe	 that	 in	 a	 typical	 biological	 user-case	 the	 population	 of	
transit	 times	 significantly	 broaden	 with	 decreasing	 theoretical	 diffusion	 rate	
especially	at	slow	diffusion	rates	in	combination	with	a	limited	acquisition	time.	
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This	 phenomenon	 is	 systematic	 of	 a	 limited	 convergence	 of	 the	 underlying	
molecular	motion	being	analyzed.	Within	the	results	section	we	characterize	the	
statistical	accuracy	of	using	scanning	FCS	in	this	situation	and	propose	solutions	
that	 can	 improve	 the	 resolution	 of	 the	 technique	 for	 resolving	 slower	moving	
species	as	well	as	powerful	means	to	visualize	and	understand	the	data.	
	
	
Methods 
	
Acquisition and Simulation 
	
	
Cell	culturing	and	preparation	for	microscope	
	
Jurkat	 T-cells	 were	 cultured	 in	 RPMI-1640	 (Sigma	 Aldrich,	 UK)	 media	
supplemented	 with	 10%	 FBS	 (Sigma	 Aldrich),	 2	 mM	 L-Glutamine	 (Sigma	
Aldrich),	100	U/mL	Penicillin	(Sigma	Aldrich),	0.1	mg/mL	Streptomycin	(Sigma	
Aldrich)	 and	 10	mM	HEPES	 pH	 7.4	 (Sigma	Aldrich).	 1	million	 cells	were	 spun	
down	 for	 5	minutes	 at	 2000	 rpm	and	washed	with	1	mL	of	 L15	medium	 (Life	
Technologies).	 After	 spinning	 down	 again	 the	 cells	 were	 labelled	 by	
resuspending	 in	 L15	medium	 containing	0.4	 ug/mL	Atto647N-DPPE	 (AttoTec).	
The	cells	were	labelled	at	37	C	shaking	at	300	rpm	for	15	minutes.	After	washing	
with	L15,	the	cells	were	resuspended	and	kept	in	L15	for	not	longer	than	1	hour	
on	 room	 temperature.	 Measurements	 were	 performed	 in	 8-well	 glass-bottom	
chambers	(Ibidi).	Prior	to	the	measurements	the	glass	was	coated	with	PLL	using	
a	 0.01	 %	 PLL-solution	 (Poly-L-Lysine)	 (Sigma	 Aldrich)	 for	 1	 hour	 at	 room	
temperature	and	washed	three	times	with	L15.	
	
Scanning	FCS	experimental	acquisition	
	
The	scanning	FCS	measurements	were	performed	using	a	customized	Abberior	
Instruments	 microscope	 (Galiani,	 Waithe	 et	 al.	 2016).	 The	 microscope	 was	
controlled	by	Abberior's	Imspector	software.	Scanning	FCS	measurements	were	
acquired	in	xt	mode	using	an	orbital	scan	with	a	pixel	dwell	time	of	10	µs	and	a	
scanning	 frequency	of	2630	Hz.	The	pixel	size	was	typically	 in	the	range	of	80-
150	 nm	 and	 the	 diameter	 (full-width-at-half-maximum,	 FWHM)	 of	 the	
observation	 spot	 (point-spread-function,	 PSF)	 was	 taken	 to	 be	 that	 of	 a	
conventional	confocal	microscope	(250	nm).	The	fluorescence	was	excited	using	
a	640	nm	pulsed	diode	 laser	(PicoQuant)	with	10	µW	total	excitation	power	at	
the	 objective's	 back	 aperture.	The	 detector	 used	was	 an	 Excelitas	 APD	 (SPCM-
AQRH-13).	
	
Scanning	FCS	experimental	processing	
	
For	a	scanning	FCS	measurement	the	fluorescence	intensity	of	the	sample	across	
a	laser	line	was	systematically	collected	for	the	duration	an	experiment	(Fig.	1A).	
The	laser	focus	was	moved	over	the	specimen,	recording	at	each	of	M	positions,	
before	 repeating	 the	 cycle	N	 times.	The	duration	 spent	 scanning	across	a	pixel	
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location	(e.g.	M=0)	is	known	as	the	dwell	time,	whereas	the	time	taken	to	repeat	
one	 of	N	 cycles	 is	 denoted	 the	 line	 time.	On	most	 current	 commercial	 turnkey	
systems	the	laser	can	only	be	configured	to	scan	along	a	line	on	the	sample	and	
so	 there	 is	 delay	 whilst	 the	 laser	 focus	 is	 moved	 back	 to	 the	 origin.	With	 the	
correct	 equipment	however	 (e.g.	 in	Fig.	1A-B),	 it	 is	possible	 to	 scan	a	 circle,	 in	
which	case	the	summed	dwell	time	for	all	M	locations	(ΣM)	and	the	line	time	will	
be	the	same.	The	length	of	the	line	scanned	was	typically	around	5	μm	with	often	
M=64	locations	specified.		Experiments	were	varied	in	duration,	but	between	10-
60	 s	 was	 a	 practical	 range	 depending	 on	 the	 mobility	 of	 the	 species	 being	
studied.	An	intensity	carpet,	which	contains	the	intensity	measurements	made	at	
each	 spatial	 location	 and	 time	 point	 is	 the	 direct	 product	 of	 a	 scanning	 FCS	
measurement.	 Intensity	 carpets	 were	 exported	 from	 the	microscope	 and	 then	
imported	into	the	FoCuS-scan	software	for	correlation	and	analysis.	The	FoCuS-
scan	software	accepts	file	types	from	the	major	turn-key	system	providers	such	
as	 Leica	 (.lif),	 Zeiss	 (.lsm)	 or	 Abberior	 Instruments	 (.msr).	 Nevertheless,	 using	
FIJI	 any	other	data	 type	 can	be	 easily	 converted	 to	 .OME-TIFF	which	allows	 to	
read	files	from	practically	every	microscopy	set-up.	
	
Scanning	FCS	simulated	modelling	and	acquisition	
	
To	 explore	 the	 parameter	 space	 of	 the	 scanning	 FCS	 technique,	 we	 developed	
simulations	 that	 would	 allow	 us	 to	 model	 a	 variety	 of	 diffusion	 modes	 and	
acquisition	settings.	Each	simulation	modelled	a	rectangular	region	(2	by	8	μm	in	
size)	on	which	molecules	diffused	by	2-dimensional	stochastic	Brownian	motion	
(Fig.	 1C).	 Diffusion	 rates	 between	 1.00	 and	 0.05	 μm2/s	 were	 simulated	 for	
durations	of	between	3000	and	30000	ms.	Between	120	and	240	molecules	were	
simulated	with	a	time-step	of	between	0.002	and	0.0010	ms	for	each	movement.	
For	 the	 simulated	 acquisition,	 a	 Gaussian	 PSF	 with	 a	 250	 nm	 FWHM	 was	
generated	 and	 positioned	 at	 different	 locations	 along	 the	 theoretical	 scan	 line	
with	 the	 location	 and	 integration	 time	being	 synchronised	with	 the	 time-point	
and	 scan	 frequency.	Thus	 it	was	possible	 to	measure	 the	particles	 in	 the	 same	
way	 as	 in	 an	 actual	 scanning	 FCS	 experiment	with	 dwell	 times	 and	 line	 times	
which	matched	the	real	experiments.	For	the	simulations	the	scan-line	was	set	to	
either	5550	or	5812.6	nm	 in	 length,	with	either	37	or	64	points	along	 the	 line	
placed	 at	 150	 or	 90.82	 nm	 intervals	 respectively.	 During	 simulation,	 when	
molecules	 reach	 the	 boundary	 they	were	wrapped	 round	 to	 the	 opposite	 side.	
The	output	time-series	of	one	of	the	simulations	is	shown	in	Fig.	1D.	We	noticed	
no	artefacts	with	 this	method	and	 found	 the	 support	 to	be	of	 sufficient	 size	 to	
avoid	 strange	 effects	 that	 might	 originate	 from	 a	 small	 simulation	 area.	 Shot-
noise	was	simulated	by	the	addition	of	Gaussian	noise	(with	standard	deviation	=	
1.0)	 to	 the	 data	 generated	 at	 each	 spatial	 location	 of	 the	 simulation.	 The	
simulations	 used	 for	 this	 study	were	written	 in	 python	 and	 are	 available	 as	 a	
series	 of	 ipython	 notebooks	 stored	 in	 the	 Github	 repository:	
https://github.com/dwaithe/nanosimpy/simulations	
	
Software Implementation and algorithms 
	
Software	Engineering		
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The	FoCuS-scan	software	 is	written	using	 the	python	scripting	 language	and	 is	
compiled	 into	an	application	 that	can	run	 independently	 in	 the	Windows,	OS	X	
and	Linux	operating	systems.	The	 interface	 is	designed	using	PyQT	 library	and	
the	 bulk	 of	 the	 visualization	 is	 performed	 using	 the	 matplotlib	 visualization	
library.	 The	 fitting	 of	 diffusion	 functions	 is	 performed	 using	 the	 lmfit	 library	
(Newville,	Nelson	et	al.	2016).	Binary	file	readers	for	Leica	file	 format	(.lif)	and	
the	Abberior	 Imspector	 software	 (.msr)	have	been	created	and	 the	 file	 readers	
for	 the	 Zeiss	 (.lsm)	 and	 OME-Tiff	 (.tiff,	 .tif)	 files	 were	 produced	 using	 tifffile	
python	library.	The	raw	python	code	used	for	FoCuS-scan	and	also	the	compiled	
binary	files	are	available	through:	
https://github.com/dwaithe/FCS_scanning_correlator	
	
Data	Pre-processing.	
	
Intensity	carpets	yielded	from	an	experiment	or	a	simulation	that	are	imported	
into	 FoCuS-scan	 are	 processed	 in	 a	 number	 of	 different	 independent	ways.	 To	
generate	 an	 intensity	 time-series	 visualization,	 the	 intensity	 carpets	 are	
integrated	across	all	spatial	locations	to	yield	an	intensity	plot	over	time	(Figure	
1B):	

	
	
,	 where	 M	 is	 the	 number	 of	 spatial	 pixels	 locations	 in	 the	 scan	 and	 N	 is	 the	
number	 of	 scan	 line	 passes.	 Furthermore,	 several	 optional	 techniques	 are	 also	
possible	which	can	be	used	to	pre-process	the	data	before	commitment	through	
correlation.	 	 It	 is	 possible	 to	 crop	 the	 data,	 either	 in	 terms	 of	 sub-duration	 or	
spatially	 in	terms	of	pixels	measured.	This	cropping	facility	 is	 included	because	
sometimes	 only	 a	 subset	 of	 the	 data	 are	 required	 for	 an	 experiment	 or	 it	 is	
desirable	 to	 exclude	 artefacts	 present	 during	 certain	 time	 spans	 of	 the	
acquisition	or	certain	pixels:		
	

	
where	ci1	is	the	lower	crop	pixel	location	and	ci2	is	the	greater	crop	pixel	location	
of	 the	 scan	 line	 (ci1	 <ci2).	 Temporally	 ct1	 represents	 the	 start	 time-point	 from	
which	 to	 start	 correlation	and	 ct2	 represents	 the	 last	 time-point	 from	which	 to	
correlate	(ct1	<	ct2).	Within	the	software	interface	of	FoCuS-scan	it	is	also	possible	
to	split	the	intensity	time-series	up	into	multiple	sections	temporally	by	setting	a	
desired	 interval.	 Processing	 this	 step	 will	 result	 in	 multiple	 I’	 representing	
differently	cropped	sections	of	the	input	I.	
	 Another	optional	pre-processing	step	is	to	perform	spatial	binning	on	the	
input	 intensity	 carpet.	 This	 pre-processing	 step	 can	 be	 applied	 to	 reduce	 the	
impact	of	noise	from	the	specimen	through	the	application	of	a	sliding	window	to	
the	input	pixels.		
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where	I’’	is	the	spatially	binned	carpet	and	b	is	the	size	of	the	margin	used	for	the	
binning.	
	
Correlation	
	
Correlation	 analysis	 is	 as	 signal-processing	 technique	 used	 to	 determine	
statistically	 the	 time	 scale	 that	 two	 signals	 resemble	 one	 another.	 In	 terms	 of	
Fluorescence	 Correlation	 Spectroscopy,	 auto-correlation	 (GAC)	 represents	 a	
signal	 correlated	 with	 itself,	 the	 self-similarity	 over	 different	 time-scales,	
whereas	 in	 cross-correlation	 (Gcc)	 two	 signals	 are	 compared	 from	 different	
image	 channels.	 Because	 the	 signal	 fluctuations	 are	 related	 to	 the	 fluctuations	
caused	by	the	fluorophores	moving	in	and	out	of	the	confocal	detection	volume,	
the	self-similarity	detected	within	these	methods	is	directly	related	to	the	rate	of	
the	 diffusion	 of	 the	 detected	 species.	 Primarily	 for	 the	 software,	 correlation	 is	
performed	in	time	only,	but	on	each	pixel	j	(of	the	M	spatial	locations)	of	the	raw	
intensity	data	I	or	on	the	pre-processed	data	I’	or	I’’	from	a	specific	channel.	The	
auto-correlation	carpet	is	defined	as	follows:	
	

	
	
,	 where	 GAC	 is	 the	 normalised	 auto-correlation	 function	 and	 I0	 represents	 the	
intensity	 time-series	 I	 for	a	 specific	 channel	 (0,	or	1),	 t	 is	 the	 time-point	of	 the	
time-series,	 τ	 is	 the	 lag	 time	 and	 j	 is	 the	 scan-line	 pixel	 of	 acquisition.	 The	
normalised	cross-correlation	 function	GCC	represents	 the	correlation	calculation	
for	two	independent	channels	I0	and	I1:	
	

	
	
	
,	 I0	 and	 I1	 would	 typically	 represent	 imaging	 data	 acquired	 at	 different	
acquisition	 wavelengths.	 The	 core	 of	 the	 correlation	 algorithm	 utilises	 a	 fast	
implementation	 of	 a	 multiple-tau	 algorithm	 (Müller	 2012).	 The	 multiple-tau	
algorithm	 was	 developed	 more	 than	 30	 years	 ago	 to	 produce	 a	 method	 that	
could	efficiently	correlate	a	wide	range	of	delay	times	using	a	semi-logarithmic	
scheme	(Schätzel	1985).	In	FoCuS-scan	this	multiple-tau	algorithm	is	seamlessly	
integrated	with	 a	 single	 parameter	 ‘m’	 (or	 quality)	 that	 defines	 the	 number	 of	
points	 calculated	 at	 each	 level	 of	 the	 logarithmic	 scheme.	 Please	 refer	 to	 the	
supplementary	methods	for	more	details	regarding	parameter	selection.	
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The	output	of	the	correlation	is	displayed	as	both	a	correlation	trace	(Fig.	1C)	or	
as	 a	 part	 of	 a	 correlation	 carpet	 (Fig.	 1D),	 with	 the	 colour	 of	 the	 carpet	
representing	the	correlation	function	output	at	each	correlation	 lag	time.	Using	
the	 correlation	 carpet	 it	 is	 more	 straight-forward	 to	 visualize	 differences	
between	 neighbouring	 pixel	 locations.	 These	 and	 additional	 features	 for	
processing	 and	 visualization	 can	 be	 used	 according	 to	 the	 user-manual	 in	 the	
Supplementary	materials	section.	
	
	
Photobleaching	correction	
	
FoCuS-scan	 has	 two	methods	 for	 photobleaching	 correction	 included.	 The	 first	
method,	 a	 common	method	 for	 correcting	 for	photobleaching,	 is	 to	 correct	 the	
decay	 in	 the	 fluorescence	 time-series	 Ts	 directly,	 by	 fitting	 with	 a	 mono-
exponential	function	(Ries,	Chiantia	et	al.	2009)	
	

	 ,	
	

where	f(0)		is	initialised	as	Ts(0)	and	tb	denotes	the	average	bleaching	time	taken	
for	the	initially	observed	fluorescence	intensity	value	to	decrease	by	a	factor	of	
1/e	and	is	extracted	by	fitting	Ts.	Upon	determination	of	f(t)	the	intensity	trace	is	
corrected	according	to	
	

.	
	
	
where	 I(j,t)	 is	 the	 original	 intensity	 trace	 	 (can	 be	 substituted	 for	 I’	 or	 I’’)	 and		
I’’’(t)	is	the	corrected	output.	The	corrected	pixels	are	then	correlated	using	the	
standard	correlation	methodology.		

A	second	method	for	correction	of	photobleaching	artefacts	is	to	correlate	
sub-intervals	of	an	 input	time-series,	 through	 local	average	adaptive	correction	
(Widengren	and	Rigler	1998,	Wachsmuth,	Weidemann	et	al.	2003,	Wachsmuth,	
Conrad	 et	 al.	 2015).	 Photobleaching	 affects	 correlation	 especially	 for	 lower	
frequencies,	which	 in	 turn	affects	 the	normalisation	of	 the	curve	and	 therefore	
perturbs	 the	 transit	 time	 calculation.	 If	 rather	 than	 compensating	 for	 this	
directly,	as	 in	 the	previous	method,	 it	 is	also	possible	 to	avoid	 the	 issue	by	not	
correlating	 at	 long	 lag	 times.	 Because	 the	 affect	 of	 the	 photobleaching	 is	
predominantly	mediated	through	the	longer	frequencies	it	can	be	circumvented	
by	not	correlating	up	to	those	times.	Because	we	are	no	longer	correlating	long	
frequencies	 we	 can	 correlate	 the	 input	 time-series	 at	 multiple	 points	 and	
improve	 the	 statistics	 of	 the	 method	 by	 averaging	 the	 correlation	 function	
resulting	 from	each	 section.	 In	 FoCuS-scan	we	provide	 a	means	 to	 do	 this	 and	
implement	it	seamlessly	as	an	alternative	to	the	conventional	correlation	:		
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where	 L	 represents	 the	 number	 of	 intervals	 to	 divide	 up	 our	 intensity	 time-
series,	and	int	is	the	interval	duration	(i.e.	total	duration	of	time	series	divided	by	
L).	 G(j,τ,l)	 is	 our	 correlation	 function	 matrix	 which	 contains	 each	 of	 the	
correlation	 functions.	Once	 the	 correlation	 function	matrix	has	been	 filled,	 one	
output	 correlation	 function	 G’	 is	 created	which	 is	 an	 average	 of	 each	 of	 the	 L	
interval	correlation	functions	at	each	lag	time	and	each	spatial	position:	

	

.	
Once	 correlated	 this	 data	 is	 exported	 as	 normal.	 The	 difficulty	 with	 this	
technique	 is	 to	 choose	 a	 significantly	 long	 interval	 time	 to	 allow	 the	 full	
correlation	function	decay	for	a	particular	species	to	take	shape	(convergence	of	
the	 correlation	 function)	 whilst	 balancing	 the	 need	 to	 shorten	 it	 in	 favour	 of	
reducing	 the	 contribution	 of	 artefacts	 resulting	 from	 photobleaching	 of	 less	
mobile,	 or	 immobile	 species.	 FoCuS-scan	 includes	 an	 interface	 that	makes	 this	
process	 straight-forward	 and	 reproducible	 (See	 supplementary	 materials	 for	
more	information).	
	
	
Fitting	
	
Ultimately	 auto-	 and	 cross-correlation	 functions	 are	 calculated	 to	 establish	 the	
diffusion	 rates	 of	 the	 species	 that	 are	 responsible	 for	 generating	 the	 observed	
functions.	 Once	 the	 correlation	 function	 G(j,	𝜏)	 of	 an	 intensity	 time-series	 I(j,t)	
has	been	calculated	we	want	to	determine	the	characteristic	 transit	 time	of	the	
observed	molecules	 through	 the	observation	spot	along	with	other	parameters	
which	describe	this	function	in	terms	of	the	underlying	physical	processes	which	
created	 it.	 We	 do	 this	 independently	 for	 each	 individual	 curve	 of	 the	 carpet	
rather	 than	considering	 the	whole	ensemble	and	so	 for	simplicity	refer	 to	each	
individual	 correlated	 functions	 as	 G(𝜏).	 Derivations	 which	 link	 G(	𝜏)	 to	 the	
kinetics	 of	 fluctuations	 for	 2-	 and	 3-dimensional	 processes	 and	 have	 been	
derived	 elsewhere	 and	we	 refer	 the	 user	 to	 full	 derivations	 (Elson	 and	Magde	
1974)	 .	 Below	we	 have	 the	 accepted	 definition	 of	 the	 3-dimensional	 diffusion	
correlation	function	G(j,t):	

	
with	 parameters	 τD	 (the	 characteristic	 transit	 time	 of	 the	 observed	molecules	
through	 the	 observation	 spot),	 Ñ	 the	 number	 of	 particles,	 ω2	 a	 constant	 for	
connecting	the	transit	time	in	3-dimensions	to	2-dimensions.	 	FoCuS-scan	has	a	
variety	of	extensions	to	the	classical	diffusion	equation	with	options	that	can	be	
customised	 to	describe	multiple	diffusion	species,	 triplet	 states	and	anomalous	
diffusion:	
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where	Of	 is	 the	offset,	GN(0)	 is	 the	amplitude	of	 the	correlation	 function	 (1/	Ñ,	
inverse	 average	 number	 of	 particles),	 GD	 is	 the	 diffusion	 model	 (2-	 or	 3-
dimensions)	and	GT	is	the	optional	triplet	state.	Triplet	state	equations	are	used	
to	model	the	cases	when	the	fluorophores	under	investigation	have	dark-states	
that	are	induced	by	the	imaging	regime	(Widengren,	Mets	et	al.	1995,	Eggeling,	
Widengren	et	al.	1998).	Within	FoCuS-scan	there	is	the	facility	to	include	one	or	
more	 triplet	 states	 in	 the	 equation.	 Anomalous	 diffusion	 is	 a	 special	 situation	
where	 the	 diffusion	 regime	 deviates	 from	 the	 ideal	 relationship,	 for	 example,	
when	studying	diffusion	using	a	super-resolution	imaging	regime.	Further	details	
for	 the	 specific	 components	 of	 this	 model	 are	 available	 in	 the	 FoCuS-scan	
supplementary	manual.	
	
Data	visualization	
	
Scanning	 FCS	 experiments	 typically	 produce	 large	 quantities	 of	 data	 and	with	
this	comes	the	requirement	for	powerful	visualization	tools	to	handle	this	data	in	
an	 appropriate	way.	 FoCuS-scan	has	multiple	 tools	 that	 allow	users	 to	 analyse	
and	 dissect	 their	 data	 effectively	 including,	 filters,	 scatter	 plots	 and	
histogramming	methods	for	visualizing	populations	of	data.	A	detailed	guide	for	
these	tools	is	available	in	the	supplementary	material	section.	
	
	
Results	
	
Scanning	FCS	simulation	and	live	cell	comparison	
	
To	validate	FoCuS-scan	and	to	understand	the	characteristics	of	diffusion	across	
a	 range	 of	 physiologically	 and	 experimentally	 relevant	 rates	 we	 simulated	
Brownian	 motion	 and	 confocal	 scanning	 acquisition	 in	 2-dimensions	 and	
compared	the	data	to	experiments	performed	on	live	cells	under	similar	settings	
looking	 at	 the	 diffusion	 of	 a	 fluorescent	 DPPE-Atto647N	 lipid	 analogue	 (1,2-
dipalmitoyl-sn-glycero-3-phosphoethanolamine	 tagged	 with	 the	 organic	 dye	
Atto647N)	 in	 the	 membrane.	 	 Figure	 1	 depicts	 experimentally	 acquired	 data	
from	the	DPPE-Atto647N	 lipid	analogue	 in	 the	plasma	membrane	of	a	 Jurkat	T	
cell	 (Fig.	1A)	and	a	sample	of	 the	corresponding	 intensity	and	 integrated	 time-
series	from	an	elliptical	scan	trajectory	(Fig.	1B).	Figure	1C	shows	the	schematic	
for	 a	 scanning	 FCS	 simulation	 with	 very	 similar	 settings	 to	 the	 live	 cell	
experiment	 (including	 photon	 counting	 noise)	 and	 the	 corresponding	 sample	
intensity	and	 integrated	 intensity	 time-series	(Fig.	1D).	Upon	correlation	of	 the	
live-cell	or	simulation	data,	correlation	functions	for	each	pixel	are	produced	and	
can	be	presented	as	a	plot	of	functions	(Fig.	1E	and	1G)	or	as	a	correlation	carpet	
(Fig.	 1F	 and	1H).	 For	 correlation	 carpets	 the	maximum	correlation	 are	 usually	
normalised	to	1.0	along	for	each	function	so	that	the	heterogeneity	in	the	transit	
times	 can	 be	 easily	 observed.	 The	 distribution	 and	 form	 of	 the	 correlation	
functions	 are	 very	 similar	 between	 the	 actual	 live-cell	 data	 and	 also	 those	
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generated	from	the	simulation,	and	so	it	 is	possible	to	explore	the	fundamental	
phenomena	of	scanning	FCS	using	these	simulations.	

Simulated	 intensity	 carpets	 for	molecules	 diffusing	 in	 2-dimensions	 (i.e.	
on	membranes)	with	 diffusion	 coefficients	 of	 D	 =	 1.0,	 0.5,	 0.2	 and	 0.05	 μm2/s	
were	generated,	 respectively,	with	 in	each	case	120	molecules	being	simulated	
for	a	duration	of	30	s,	a	dwell	 time	of	0.002	ms	and	a	scan	rate	of	1800	Hz.	10	
carpets	were	generated	in	total	for	each	condition,	resulting	in	640	measurement	
points	 per	 different	 diffusion	 coefficient	 condition.	 Using	 a	 FCS-based	 analysis	
pipeline,	 each	 measurement	 point	 gave	 a	 value	 of	 the	 average	 transit	 time	
through	 the	observation	 spot,	 and	we	 could	 thus	determine	 the	distribution	of	
transit	 times	along	with	median	values	and	variances	 (or	standard	deviations).	
From	 the	 simulated	 data	 it	 is	 clear	 that	 simulations	 for	 lower	 diffusion	
coefficients,	 i.e.	 slower	 diffusion	 (e.g.	 D	 =	 0.05	 μm2/s)	 exhibit	 larger	 median	
values	 of	 transit	 times	 and	 consequently	 a	 much	 greater	 absolute	 variance	 in	
values	 when	 compared	 to	 distributions	 generated	 from	 higher	 diffusion	
coefficients,	i.e.	faster	diffusion	(e.g.	D	=	1	μm2/s)		(Fig.	2A).			

The	broadening	of	the	distribution	of	determined	transit	times	is	actually	
so	 dramatic	 for	 the	 slow-diffusion	 data	 that	 a	 logarithmic	 axis	 is	 required	 to	
adequately	 visualize	 the	distribution	 across	 the	whole	 range	 of	 simulated	data	
(Fig	 2A	 inset).	 Note	 that	 the	 simulations	 depicted	 in	 Figure	 2A	 included	 no	
additional	 measurement	 noise	 in	 terms	 of	 shot	 noise,	 photon	 counting	 or	
photobleaching,	 yet,	 they	 still	 exhibit	 a	 high	 variance	 in	 terms	of	 the	 observed	
transit	values.	This	observation	proved	that	in	a	typical	scanning	FCS	paradigm	
powerful	 statistical	 effects	 are	 influencing	 the	 experimental	 output.	
Furthermore,	 in	addition	 to	 the	high	degree	of	variance	at	 the	slower	diffusion	
speeds	(0.05	μm2/s)	a	systematic	error	(bias)	is	evident	with	the	deviation	of	the	
population	median	deviating	away	from	the	theoretical	value	being	simulated,	as	
outlined	 further	 on.	 Figure	 2A	 depicts	 a	 simulation	 of	 duration	 30	 s	 that	 is	 a	
realistic	 duration	 for	 an	 experiment	 performed	 on	 live	 cells	 and	 so	 a	 practical	
understanding	of	the	observed	variance	phenomenon	is	very	important.		

Through	using	these	simulations	 it	 is	possible	 to	accurately	characterise	
the	 distributions	 and	 describe	 the	 affect	 that	 statistical	 variance	 and	 sampling	
will	 have	 on	 a	 likely	 experiment.	 As	 discussed	 in	 the	 introduction,	 certain	
phenomena	 will	 impact	 on	 different	 aspects	 of	 correlation	 and	 affect	 the	
statistics	 of	 the	 resultant	 function.	 Figure	 2B	 shows	 a	 typical	 scanning	 FCS	
experiment	with	64	curves	generated	from	a	single	simulated	carpet.	Highlighted	
in	 this	 plot	 are	 the	 areas	 known	 to	 be	 affected	 by	 specific	 phenomena	 (e.g.	
shot/duration	 noise,	 bias,	 measurement	 variance).	 The	 top	 of	 each	 curve	 is	
susceptible	 to	 effects	 caused	 by	 poor	 signal-to-noise	 due	 to	 poor	 photon	 yield	
and	other	effects	(annotated	‘shot	noise’)	(Koppel	1974).	If	noise	is	evident	at	the	
bottom	 of	 the	 curve,	 this	 is	 due	 to	 an	 insufficient	 experimental	 duration	
compared	to	the	measured	transit	time	introducing	variance	(Schätzel,	Drewel	et	
al.	 1988,	 Saffarian	 and	 Elson	 2003)	 and	 is	 annotated	 as	 ‘duration	 noise’.		
Variance	in	the	middle	of	curve,	 in	terms	of	the	positions	of	the	curve	inflexion	
points	(or	transit	times),	is	a	consequence	of	non-convergence	of	the	underlying	
molecules	 being	 measured,	 and	 again	 is	 dependent	 on	 the	 duration	 of	 the	
experiment	 and	 the	 speed	 of	 the	 molecule	 being	 measured	 (‘measurement	
variance’).	A	systematic	shift	(‘bias’)	is	also	a	consequence	of	the	duration	of	an	
experiment,	but	also	of	the	correlation	methodology	as	a	whole,	as	we	see	later,	
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measurements	 made	 using	 single	 molecule	 tracking	 do	 not	 suffer	 this	 bias	
(Schätzel,	Drewel	et	al.	1988).	Having	researched	the	possible	causes	of	variance	
in	our	data	it	was	clear	that	our	data	could	be	affected	by	any	number	of	them,	so	
we	sort	to	delineate	each	influence	for	the	benefit	of	our	own	understanding	and	
that	of	subsequent	FoCuS-scan	users.	
	
	
Establishing	 the	 cause	of	 the	variance	and	 systematic	error	 in	 the	 transit	
time	distributions.	
	
To	test	whether	the	observed	variance	and	systematic	errors	were	a	product	of	
correlation,	or	intrinsic	to	the	system	being	studied,	single	molecule	tracking	was	
applied	to	track	molecules	entering	the	observation	volume	for	each	simulation	
(Fig.	3).	Rather	than	the	FCS	approach	of	integrating	the	particles	with	the	PSF,	
the	time	for	each	particle	was	determined	for	the	duration	each	particle	was	in	
the	observation	volume	(1/e2	radius,	212.33	nm,	as	threshold),	and	the	distance	
between	 the	exit	and	entry	point	measured	also	 for	each	event	 (Fig	3A).	Given	
the	 duration	 and	 effective	 distance	 of	 each	 particle	 entering	 the	 observation	
volume	it	was	straightforward	to	calculate	the	transit	 time	of	each	particle	and	
the	 average	 time	 for	 the	 entire	 ensemble.	 Repeating	 this	 for	 each	 simulation	
measurement,	 generated	 a	 population	 of	 measurements	 very	 similar	 to	 those	
generated	through	the	correlation	method.	Figure	3B	compares	the	distribution	
of	values	of	transit	times	generated	from	simulated	diffusion	(D	=	0.2	μm2/s)	and	
analyzed	 by	 correlation	 (green)	 and	 single	 molecule	 tracking	 (black).	 The	
distributions	 obtained	 from	 the	 single	 molecule	 tracking	 analysis	 revealed	
strong	 differences	 to	 those	 obtained	 from	 the	 correlation	 analysis,	 especially	
differences	in	their	median	value	and	their	overall	shape.	These	differences	and	
their	comparison	to	the	theoretical	values	used	in	the	simulations	allowed	us	to	
highlight	 systematic	 and	 convergence	 artifacts	 associated	 with	 the	
determination	of	transit	times	via	(scanning)	FCS.		
	
Explanation	for	the	systematic	and	convergence	artifacts	in	the	transit	time	
distributions.	
	
When	 modeling	 stochastic	 random	 processes	 over	 limited	 time	 periods	 there	
will	 always	 be	 some	 deviation	 in	 each	 modeled	 measurement	 from	 those	
acquired	over	an	infinite	time	duration.	For	scanning	FCS	this	deviation	is	clearly	
evident	as	measurement	variance,	this	is	because	of	the	limited	acquisition	time	
with	respect	 to	 the	relatively	slow	diffusion	and	 thus	rate	of	molecular	species	
being	 investigated.	As	highlighted,	 through	 simulating	 single	molecule	 tracking	
we	have	been	able	to	circumvent	the	possibility	that	the	correlation	processing	
and	fitting	is	influencing	the	broadening	of	the	measured	transit	times.	A	closer	
inspection	 of	 the	 median	 values	 and	 variances	 of	 the	 transit	 times	 generated	
from	 either	 analysis	 method	 (FCS	 and	 single	 molecule	 tracking)	 for	 data	
simulated	for	differently	moving	molecules	(D	=	0.05	–	1.0	μm2/s)	and	different	
total	acquisition	times	(3	and	30	s)	revealed	a	high	degree	of	similarity	(Fig.	3C),	
despite	the	general	difference	in	the	original	distribution	(Fig.	3B).	Both	FCS	and	
single	 molecule	 tracking	 have	 a	 characteristic	 precision	 when	 looking	 at	 a	
population	 of	measurements,	 which	 decreases	 with	 total	 acquisition	 time.	 For	
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example,	 for	 data	 simulated	with	D	=	 0.05	μm2/s	 FCS	 analysis	 yielded	median	
values	(and	standard	deviations)	of	transit	times	of	161	±	175	ms	after	3000	ms	
and	 212	 ±	 116	 ms	 after	 30000	 ms	 simulated	 duration,	 and	 single	 molecule	
tracking	analysis	253	±	127	ms	after	3000	ms	and	246	±	92	ms	after	30000	ms	
simulated	 duration.	 Consequently,	 both	 methods	 missed	 some	 accuracy	 to	
reproduce	the	true	input	transit	time	of	225.4	ms,	especially	for	short	acquisition	
times.	Note	that	this	inaccuracy	is	less	a	problem	for	fast	moving	molecules	such	
as	for	the	data	simulated	with	D	=	0.5	and	0.2	μm2/s.		
This	 inaccuracy	 shows	 that	 there	 is	 an	 inherent	 problem	 of	 measuring	 the	
kinetics	 of	molecules	 crossing	 the	 detection	 volume.	 If	molecules	 are	 diffusing	
across	 an	 area,	 some	 will	 take	 longer	 times	 than	 others,	 due	 to	 statistical	
variance.	 If	data	 is	acquired	 for	a	 short	period	of	 time	only	 it	 is	 likely	 that	one	
may	not	probe	enough	 transits	 to	 find	 the	 true	average,	 as	by	chance	one	may	
have	 observed	 only	 a	 limited	 set	 of	 events,	 that	 happened	 to	 be	 on	 average	
quicker	or	slower	than	the	true	average	generated	from	an	infinite	measurement	
time.	The	longer	one	monitors,	the	more	accurate	each	individual	assessment	of	
the	 average	 will	 be	 and	 therefore	 the	 tighter	 the	 resulting	 population	 of	
measurements	will	become.	This	convergence	phenomenon	is	dependent	on	the	
speed	of	the	particle	under	study,	the	length	of	the	study	and	also	the	size	of	the	
area	 used.	 As	 pointed	 out	 (Fig.	 3C),	 in	 the	 simulations	 the	 slower	 moving	
particles	 result	 in	 wider	 distributions,	 and	the	 longer	 the	 duration	 of	 the	
measurement,	 the	 tighter	 the	 distribution	 becomes,	 no	 matter	 of	 the	
speed.	Corrections	 developed	 in	 the	 past	 will	 only	 tackle	 the	 noise	 across	 the	
correlation	 function,	 also	 caused	 by	 the	 lack	 of	 recording	 duration	 (Wohland,	
Rigler	 et	 al.	 2001,	 Saffarian	 and	 Elson	 2003),	 rather	 than	 adjusting	 the	
underlying	 population	 of	 transit	 times	 to	 point	 at	 which	 they	 converge.	While	
dependencies	 of	 the	 noise	 of	 correlation	 data	 on	 the	 measurement	 time	 and	
general	diffusion	speed	have	been	indicated	before	(Koppel	1974,	Saffarian	and	
Elson	2003),	 to	our	knowledge	this	 is	 the	 first	 time	that	simulations	have	been	
run	at	sufficient	numbers	and	at	slow	enough	diffusion	and	thus	molecular	rates	
to	 visualize	 population	 transit	 time	 variance	 of	 this	 scale,	 though	 this	
relationship	has	been	observed	in	experimental	measurements	(Kask,	Günther	et	
al.	 1997).	 Through	 understanding	 the	 underlying	 cause	 of	 the	 variance	 it	 is	
possible	to	devise	strategies	to	cancel	it	out.	
	
		
	
Systematic	error	associated	with	the	correlation	method	
	
Due	to	the	calculation	of	the	correlation	function,	the	FCS	data,	in	addition	to	the	
basic	variance	pointed	out	in	the	previous	paragraph,	also	suffer	from	systematic	
deviations	when	 the	experimental	duration	 is	 limited,	 reducing	 the	accuracy	of	
the	FCS-based	analysis	 further.	This	phenomena	has	been	previously	described	
as	 correlation	 ‘bias’	 (Schätzel,	Drewel	et	 al.	 1988)	and	has	been	pointed	out	 in	
previous	 high-throughput	 screening	 experiments	 (Kask,	 Günther	 et	 al.	 1997,	
Eggeling,	 Brand	 et	 al.	 2003).	 This	 ‘bias’	 is	 highlighted	 by	 our	 current	
observations	 that	 distributions	 of	 transit	 time	 values	 generated	 from	 single	
molecule	 tracking	 analysis	 are	more	 accurately	 describing	 the	 true	 theoretical	
average	 (as	 input	by	 the	simulations)	 than	 those	generated	 from	FCS	(Fig.	3C).	
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Let	us	again	consider	the	example	of	data	simulated	for	D	=	0.05	μm2/s,	with	a	
true	 theoretical	 transit	 time	of	225.4	ms.	The	FCS	analysis	of	 this	data	yields	a	
median	 transit	 time	 and	 standard	 deviation	 of	 161	 ±	 175	 ms	 after	 3000	 ms	
duration	 simulation	 showing	 poor	 accuracy	 but	 achieves	 improved	 accuracy	
with	 a	 value	 of	 212	 ±	 116	 ms	 after	 30000	 ms.	 The	 same	 comparison	 for	 the	
analysis	of	 this	data	set	using	single	molecule	 tracking	analysis	achieves	253	±	
127	ms	and	246	±	92	ms	for	3000	and	30000	ms	simulation	time,	respectively,	
showing	almost	no	 change	 in	median	value	and	a	 smaller	 increase	 in	 standard	
deviation	 with	 reduced	 measurement	 duration.	 Note	 that	 this	 prominent	
difference	 between	 FCS	 and	 single	 molecule	 tracking	 analysis	 in	 decreased	
accuracy	 for	 shorter	 measurement	 times	 diminishes	 for	 the	 simulations	 with	
faster	 moving	 molecules	 (e.g.	 D	 =	 0.5	 –	 1	 μm2/s,	 Fig.	 3C).	 In	 summary,	 our	
simulations	 highlight	 that	 for	 short	 measurement	 times	 on	 especially	 slow	
moving	particles,	the	correlation	bias	is	more	of	a	problem	than	the	variance,	and	
some	corrective	strategies	are	required	to	reduce	the	bias.		
	
Removing	systematic	bias	and	improving	convergence	
	
There	are	several	potential	solutions	for	reducing	the	bias	and	for	assisting	in	the	
convergence	of	the	measurements.	The	first	and	most	obvious	is	to	increase	the	
measurement	time	for	a	longer	more	stable	measurement.	The	drawback	of	this	
approach	is	that	biological	specimens	such	as	cells	may	become	damaged	due	to	
phototoxic	effects,	might	move	during	acquisition,	or	the	dynamics	under-study	
may	 change,	 and	 overall	 this	 limits	 the	 number	 of	 measurements	 that	 can	 be	
made.	 The	 second	 is	 to	 apply	 a	 correction	 to	 the	 correlation	 function	which	 is	
possible	 through	 the	 calculation	 and	 application	 of	 a	 1st	 order	 bias	factor	
(Saffarian	and	Elson	2003).	The	third	proposed	technique	is	to	reduce	the	size	of	
the	 observation	 volume,	 which	 can	 be	 achieved	 by	 applying	 FCS	 on	 a	 super-
resolution	STED	microscope	(Kastrup,	Blom	et	al.	2005,	Eggeling,	Ringemann	et	
al.	 2009,	 Rossow,	 Sasaki	 et	 al.	 2010,	 Honigmann,	 Mueller	 et	 al.	 2014,	Waithe,	
Clausen	 et	 al.	 2015).	 Reducing	 the	 observation	 spot	 size	 of	 the	 acquisition	
improves	 the	accuracy	and	precision	of	 scanning	FCS	measurements.	 In	Figure	
3D	 the	 effects	 of	 reducing	 the	 observation	 volume	 through	 using	 a	 STED	
microscope	 are	 simulated	 on	 datasets	 only	 3000	 ms	 in	 length.	 Clear	 gains	 in	
accuracy	 are	 seen	 for	 slower	 transit	 times	 when	 compared	 to	 analysis	 using	
conventionally	 sized	 confocal	 observation	 volumes.	 For	 simulated	 experiments	
with	molecules	diffusing	with	D	=	0.05	and	0.2	μm2/s	we	using	the	FCS	analysis	
obtained	 median	 values	 of	 diffusion	 coefficients	 of	 0.066	 and	 0.22	 μm2/s,	
respectively,	for	an	observation	spot	of	60	nm	in	diameter	(STED)	and	0.086	and	
0.25	μm2/s,	 respectively,	 for	 the	 conventional	 confocal	 observation	 spot	 (250	
nm	 in	diameter).	The	use	of	 the	60	nm	 large	observation	spots	 is	however	not	
advisable	for	very	fast	moving	molecules	with	diffusion	coefficients	of	0.5	μm2/s	
or	greater	because	in	these	cases	the	transit	times	are	too	close	to	the	temporal	
resolution	 of	 the	 scan	 line	 (in	 this	 case	 1800	 Hz,	 i.e.	 0.556	 ms	 between	 line	
repetitions);	however	a	higher	scan	rate	would	correct	this	(e.g.	by	using	a	fast	
resonance	scanner).	For	slower	diffusing	species	(D	=	0.2-0.05	μm2/s),	reducing	
the	 observation	 spot	 size	 as	 in	 the	presented	 case	 can	be	 equivalent	 to	 a	 10	 x	
increase	 in	 experiment	 duration,	making	 it	 possible	 to	 take	 accurate	 unbiased	
measurements	in	a	fraction	of	the	time.	
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Noisy	data,	error	metrics	and	data	visualization	
	
As	discussed	in	the	introduction,	several	studies	have	investigated	the	impact	of	
noise	 in	 terms	 of	 assessing	 the	 quality	 of	 correlation	 functions.	 One	 of	 the	
standard	 approaches	 is	 to	 establish	 the	 signal-to-noise	 ratio	 for	 a	 given	
correlation	 function	S/N	=	G(t)/var(G(t))0.5	 (Koppel	1974).	When	we	applied	a	
normalized	variant	of	the	signal-to-noise	formula	(Krichevsky	and	Bonnet	2002)	
to	 our	 data	 taken	 for	 30000	 ms,	 we	 found	 that	 the	 average	 S/N	 for	 our	
measurements	was	 linearly	 dependent	 on	 the	measured	 transit	 time	 (Fig	 5A).	
This	means	that	the	longer	the	transit	time	the	less	certain	one	is	as	to	the	true	
value	 of	 that	 data-point	 as	 well	 as	 explaining	 why	 the	 distributions	 are	 log-
normal	 in	 appearance.	 Each	 calculated	 point	 is	 effectively	 convolved	 with	 an	
error	 that	 increases	with	 transit	 time	producing	non-symmetrical	distributions	
(Can	 and	Log	2001).	 This	 effect	 is	 very	 likely	 linked	 again	 to	 the	 length	 of	 the	
measurement	duration	and	the	effect	this	can	have	on	the	variance	of	a	function	
due	 to	 slower	 moving	 particles	 residing	 longer	 in	 the	 detection	 volume.	
Histogramming	 techniques,	 although	 reliable	 for	 binning	 and	 visualization	 of	
data,	assume	in	most	cases	a	finite	bin	size.	Because	the	distributions	we	observe	
can	 span	 large	 transit	 time	 margins	 we	 wanted	 a	 method	 of	 binning	 and	
visualization	which	could	take	into	account	the	increased	margin	for	uncertainty	
with	longer	transit	times.		
	
Density	kernel	estimation	bandwidth	calculations		
	
Density	 kernel	 estimation	 is	 an	 alternate	 technique	 to	histogramming	used	 for	
visualizing	 and	 also	 for	 estimating	 the	 probability	 density	 distribution	 of	 a	
random	variable.	With	this	method	each	data	point	is	represented	with	a	kernel	
(typically	a	Gaussian)	and	the	bandwidth	of	the	kernel	is	set	to	a	static	width	for	
each	point	or	 is	varied	depending	on	a	suitable	metric.	Because	 the	kernel	size	
can	be	set	dynamically,	it	is	advantageous	over	conventional	histogram	methods,	
which	are	restricted	to	a	static	bin	and	cannot	be	tuned	to	individual	data	points.	
Here	 we	 trialed	 using	 density	 kernel	 estimation	 with	 a	 variable	 bandwidth	
proportional	to	the	level	of	error	we	obtained	from	three	different	error	metrics.	
Each	 transit	 time	data	point	was	 represented	as	a	Gaussian	kernel	of	 standard	
deviation	 equal	 to	 the	 error	 associated	 with	 the	 calculation	 of	 that	 particular	
transit	 time	 measurement.	 In	 addition	 to	 the	 signal-to-noise	 estimation	 we	
implemented	 two	 additional	metrics	 for	 calculating	 the	 variance	 of	 our	 transit	
time	 data	 populations	 and	 first	 wanted	 to	 establish	 there	 suitability	 as	 error	
metrics	 for	 correlation.	 The	 first	 method	 was	 to	 use	 the	 standard	 deviation	
calculated	 for	 our	 transit	 time	 parameter	 during	 curve	 fitting	 using	 the	 lmfit	
python	 library.	 This	 method	 was	 very	 efficient	 to	 calculate	 as	 this	 error	
parameter	accompanies	each	of	our	 fitting	operations.	Our	second	method	was	
to	 perform	 bootstrapping	 on	 our	 correlation	 data,	 followed	 by	 calculating	 the	
standard	 deviation	 of	 the	 transit	 times	 generated	 across	 the	 bootstraps.	
Bootstrapping	is	a	commonly	used	statistical	test	for	assessing	the	accuracy	of	an	
estimator,	 in	 this	 case	 the	 estimator	 being	 the	 correlation	 function.	
Bootstrapping	is	often	used	when	parametric	inference	is	impossible	or	difficult,	
as	 is	 the	case	when	calculating	correlation	factor	error.	 In	this	method	we	take	
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each	 of	 our	 correlated	 measurements	 and	 then	 randomly	 sample	 with	
replacement	the	function	to	form	a	bootstrap	sample.	This	process	is	repeated	a	
number	of	times	(we	use	5-100x)	and	the	transit	time	calculated	for	each	of	the	
distributions,	 and	 the	 standard	 deviation	 calculated	 across	 the	 population.	We	
found	 that	 for	 both	 the	 methods	 trialed,	 the	 curve	 fitting	 standard	 deviation	
parameter	and	the	bootstrapping	method,	both	gave	error	measures	consistent	
with	 the	 signal-to-noise	 statistic	 calculated	 for	 each	 curve	 (Fig.	 4B-C).	 Each	 of	
these	methods	had	a	positive	linear	relationship	with	regard	to	the	transit	time	
for	each	of	the	generated	datasets	and	a	distribution	similar	in	form	to	the	signal-
to-noise	 estimation	 and	 so	 we	 deemed	 them	 good	 potential	 candidates	 to	
express	the	error	in	our	density	kernel	visualization.	
	
Density	kernel	estimation	visualization	
	
Once	 we	 have	 established	 our	 potential	 error	 metrics	 we	 trialed	 each	 on	 the	
data.	To	 compare	our	methods	we	 first	 amalgamated	data	 into	 a	 single	 transit	
time	 distribution	 from	 simulations	 of	 1.0	 μm2/s,	 0.5	 μm2/s	 and	 0.2	 μm2/s	
diffusion	rates.	Next	we	histogrammed	the	data	using	a	bin-size	=	2,	optimized	
for	the	transit	time	relating	to	1.0	μm2/s.	The	average	signal-to-noise	ratio	data	
produced	kernels	of	a	width	which	was	far	too	large	(data	not	shown),	however	
the	 curve	 fit	 error	 and	 the	 bootstrap	 methods	 both	 produced	 density	 kernel	
visualizations	which	were	 highly	 similar	 to	 the	 input	 data	with	 the	 histogram	
(optimized	 for	 1.0	 μm2/s	 )	 (Fig.	 4D).	 We	 found	 that	 the	 bootstrap	 method	
produced	 a	 distribution	 remarkably	 similar	 to	 the	 histogram	 distribution	 and	
was	 tighter	 than	 the	 curve	 fit	 error	method.	We	 also	 show	 that	 as	 little	 as	 5x	
bootstraps	 is	 necessary	 to	 accurately	 represent	 the	distribution	of	 the	data,	 as	
both	 this	 distributions	 are	 highly	 similar.	 Density	 Kernel	 estimation	 is	
advantageous	 as	 the	 output	 function	 can	 be	 interpolated	 to	 any	 degree	 of	
accuracy	 and	 also	 there	 is	 no	 requirement	 to	 define	 a	 bin-size,	 making	 it	
advantageous	 over	 histogramming.	 In	 summary,	 the	 bootstrapping	method,	 as	
an	 error	 metric,	 closely	 matches	 the	 trends	 of	 more	 well	 defined	 metrics	 of	
variance	 such	 as	 signal-to-noise	 and	 can	 be	 used	 as	 an	 appropriate	 scale	
invariant	metric	 for	 density	 kernel	 bandwidth	 estimation,	 which	 is	 a	 superior	
visualization	method	when	compared	to	histograms.	
	
	
Photobleaching	correction	
	
Due	to	the	repetitive	nature	of	FCS	measurements,	some	photobleaching	is	likely	
to	occur	during	 the	 course	of	 a	 scanning	FCS	acquisition	 experiment.	 Scanning	
FCS	suffers	from	photobleaching	less	than	point	FCS	due	to	the	sequential	nature	
of	the	line	scanning	and	therefore	reduced	continuous	exposure	of	any	one	point	
to	 the	 laser,(Donnert,	 Eggeling	 et	 al.	 2009)	 however	 some	 photobleaching	 can	
still	occur.	Photobleaching	represents	loss	of	information	and	corrections	should	
be	 applied	 with	 care.	 Fortunately,	 due	 to	 the	 differential	 nature	 of	
photobleaching,	in	that	it	affects	immobile	fluorescent	fractions	much	more	than	
mobile	fractions,	it	is	possible	to	extract	the	signal	from	the	mobile	fraction	near	
perfectly	 despite	 a	 seemingly	 large	 effect	 on	 the	 unwanted	 immobile	 fraction.	
The	main	perturbation	which	occurs	to	a	correlation	signal	as	a	consequence	of	
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photobleaching	 is	 due	 to	 the	 effect	 that	 photobleaching	 has	 on	 the	 lower	
temporal	frequencies	of	the	correlation	function	and	the	overall	impact	this	has	
on	the	normalisation	of	the	correlation	function	(Icenogle	and	Elson	1983,	Hess	
and	 Webb	 2002).	 The	 photobleaching	 occurs	 on	 a	 different	 time-scale	 to	 the	
mobile	fraction	which	are	left	relatively	unaffected	except	that	the	normalisation	
of	 the	correlation	 function	as	whole	 is	perturbed	which	can	affect	 the	 fitting	of	
the	 correlation	 function.	 This	 effect	 is	 clearly	 visualised	 in	 Figure	 5.	 In	 Fig.	 5A	
there	 is	 a	 simulated	 intensity	 time-series	 of	 diffusing	 molecules	 with	 no	
photobleaching	and	in	Fig.	5B	the	same	intensity	time-series	is	depicted	but	with	
the	 addition	 of	 photobleaching	 simulated	 through	 the	 addition	 of	 a	 mono-
exponentially	 decaying	 function.	 When	 these	 signals	 are	 correlated	 we	 obtain	
correlation	functions	depicted	in	figure	5C	with	the	correlation	curves	generated	
from	 the	 non-photobleaching	 signal	 (green)	 and	 the	 photobleached	 signal	
(black).		The	correlation	curve	generated	from	the	photobleaching	signal	lacks	an	
inflexion	 point	 due	 to	 the	 perturbation	 that	 the	 photobleaching	 has	 on	 the	
normalisation	 of	 the	 signal.	 Through	 using	 either	 of	 the	 two	 photobleaching	
correction	algorithms	it	is	possible	to	restore	the	curve	to	something	much	more	
similar	 to	 the	 non-photobleached	 original	 (Fig.	 5C,	 red	 and	 blue	 lines).	
Correction	 method	 1	 involves	 fitting	 a	 mono-exponential	 function	 to	 the	
intensity	signal	of	the	whole	intensity	carpet	and	then	a	correction	is	applied	to	
the	 intensity	 signal	 for	 the	 intensity	 over	 time	 (see	methods	 for	more	 details)	
(Ries,	Chiantia	et	al.	2009).	This	has	the	effect	that	the	normalisation	of	the	signal	
is	 corrected	directly	but	will	 introduce	artefacts	 if	 the	photobleaching	 signal	 is	
not	 mono-exponential	 or	 differs	 between	 positions	 of	 the	 carpet.	 Correction	
method	 2	 (local	 averaging)	 involves	 breaking	 up	 the	 intensity	 signal	 for	 each	
pixel	 up	 into	 time-series	 of	 shorter	 length,	 correlating	 each	 section	 and	 then	
averaging	 the	 output	 function	 (Wachsmuth,	 Conrad	 et	 al.	 2015).	 Although	 the	
time-series	sequence	is	reduced	in	length,	which	will	increase	the	variance	of	the	
species	being	studied,	the	averaging	of	the	correlated	sequences	will	reduce	the	
broadening	 effect	 this	 has	 on	 the	 population	 data.	 However,	 when	 used	 for	
slower	diffusing	species	it	is	likely	that	some	bias	may	be	introduced	as	a	result	
of	 the	 temporally	 shortened	 sequence.	 This	 approach	works	well	 however	 for	
faster	 moving	 species	 as	 the	 photobleaching	 affects	 on	 the	 lower	 temporal	
frequencies	will	be	filtered	out	through	using	sections	of	shorter	length.	Analysis	
of	a	population	of	data	as	shown	in	Figure	5D	shows	that,	 in	terms	of	restoring	
the	signal,	 so	 that	 the	 transit	 time	measurements	are	accurate,	both	correction	
method	 1	 and	 2	 are	 far	 superior	 to	 no	 correction,	 and	 correction	 method	 2	
produces	 a	 distribution	 most	 similar	 to	 the	 original	 non-photobleached	
population	 with	 the	 closest	 median	 population	 transit	 time.	 In	 summary	
although	 photobleaching	 should	 be	 avoided	 initially	 through	 design	 of	 the	
experiment	 (suitable	 fluorophores,	 low	 laser	 power	 etc.),	 photobleaching	
correction	 methods	 are	 highly	 effective	 at	 reducing	 the	 impact	 that	 the	
photobleaching	 has	 on	 the	 data	 distribution.	 FoCuS-scan	 has	 two	 accepted	
methods	that	are	effective	at	correcting	likely	photobleaching	artefacts	and	these	
should	 be	 used	when	 appropriate	 to	 restore	 a	 signal	 through	 correction	 of	 its	
normalisation.	
	
Conclusion	
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Scanning	 FCS	 is	 a	 powerful	 technique	 for	 establishing	 the	 spatio-temporal	
kinetics	of	diffusion	in	live	cells	or	potentially	in	supported	lipid	bilayers.	So	far	
the	 technique	 has	 only	 seen	 limited	 use	 within	 the	 life	 sciences	 due	 to	 the	
requirements	of	specialist	equipment	and	analysis	software	as	well	as	the	need	
for	validation	within	this	area.	With	FoCuS-scan	it	is	now	possible	to	process	and	
analyse	 data	 acquired	 on	 conventional	 confocal	 scanning	 microscopes.	
Furthermore,	 scanning	 FCS	 has	 great	 potential	 to	 be	 applied	 in	 future	 to	 also	
quantify	 more	 complex	 diffusion	 and	 reaction	 dynamics	 of	 molecules	 such	 as	
molecule	 oligomerisation	 and/or	 transient	 binding	 events	 in	 living	 cells.	 Such	
analysis	will	 require	 additional	 strategies	 to	 fulfil	 the	 obvious	 demand	 in	 cell-
biology	to	systematically	and	statistically	robustly	quantify	these	processes.		This	
article	 describes	 the	 performance	 of	 scanning	 FCS	 across	 a	 broad	 range	 of	
biological	 relevant	 diffusion	 length	 scales	 and	 highlights	 the	 limitations	 and	
practical	considerations	when	performing	these	experiments.	
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Figure	 1:	 Simulations	 closely	 match	 experimental	 data.	 Experimental	 and	
simulated	 scanning	 FCS	 data	 visualized	 as	 time-series,	 correlation	 plots	 and	
correlation	carpets.	A)	2-dimensional	scanning	confocal	monograph	of	 Jurkat	T	
cell	 surface	 labelled	 with	 Atto647N-DPPE,	 10	 μm	 scale	 (white	 bar)	 and	
representative	elliptical	scan	line	(blue	circle).	B)	Intensity	time-series	from	the	
live-cell	experiment,	(upper	panel)	for	all	pixels	(y-axis)	and	first	150	scan	lines	
(x-axis)	and	(lower	 panel)	 intensity	 integrated	over	all	pixels	against	 time.	C)	
Schematic	 representing	 the	 molecular	 simulation	 and	 scan	 line	 with	 labeled	
diffusing	molecules	 (red	dots),	observation	spot	 (green	dot,	diameter/FWHM	=	
250	nm),	scan	line	(green	line),	and	scanning	parameters	as	given.	D)	Intensity	
time-series	from	simulated	experiment,	(upper	panel)	for	all	pixels	(y-axis)	and	
first	 150	 scan	 lines	 (x-axis)	 (intensity	 carpet)	 and	 (lower	 panel)	 intensity	
integrated	 over	 all	 pixels	 against	 time.	 (E-H)	 Correlation	 curves	 yielded	 from	
individual	pixels	positioned	along	scanning	orbit	as	individual	plots	(E	and	G)	or	
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represented	as	a	normalized	carpet	(F	and	H,	y-axes:	spatial	pixel	number	along	
scanned	line;	x-axes:	correlation	lag	times	τ;	left	graph:	time-integrated	intensity	
for	each	pixel	from	0	(white)	to	maximum	(dark	red);	red	graph:	color	bar	coding	
of	 normalized	 correlation	 data),	 for	 the	 live	 cell	 experiment	 (E	 and	F)	 and	 the	
simulated	experiment	(G	and	H).	
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Figure	 2:	 Simulated	 data	 generated	 across	 physiological	 ranges	 exhibit	
varying	degrees	of	noise	 and	 statistical	 variance.	A)	Histogram	of	values	of	
transit	times	determined	via	correlation	analysis	from	640	measurements	from	
scanning	 FCS	 simulations	 with	 1.0	 μm2/s	 (grey),	 0.5	 μm2/s	 (turquoise),	 0.2	
μm2/s	(green)	and	0.05	μm2/s	(blue)	diffusion	rates,	representing	10x	carpets	
from	 each	 simulation.	 (Inset)	 The	 same	 data	 but	 with	 natural	 logarithm	 of	
transit	 time	 values.	 B)	 Correlation	 functions	 from	 0.2	 μm2/s	 diffusion	
simulations	 (black	 dots)	 with	 parameterised	 fits	 (blue	 lines)	 with	 different	
forms	of	noise	annotated	on	the	different	parts	of	the	curve,	and	(lower	panel)	
residuals	from	curve	fitting	(grey	lines).	
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Figure	 3:	 Variance	 in	 transit	 time	measurements	 is	 underlying	 statistical	
variance	 of	 particle	 movement,	 bias	 is	 characteristic	 of	 correlation	
methodology.	 Comparison	 of	 transit	 time	 populations	 from	 different	 analysis	
methods	 and	 for	 different	 measurement	 durations	 of	 the	 simulations.	 A)	
Schematic	 representation	of	 the	 single	molecule	 tracking	 analysis	method.	The	
Euclidean	 distance	 between	where	 the	 particle	 entered	 (1)	 and	 exited	 (2)	 the	
observation	spot	area	(circle	marking	the	observation	spot/PSF	boundary,	1/e2	
diameter	of	the	250	nm	FWHM	PSF	as	border)	 is	measured	and	divided	by	 the	
duration.	B)	Histogram	(bin	size=14,	D=0.05	μm2/s)	of	transit	time	values	from	
640	simulated	measurements	determined	with	single	molecule	tracking	method	
(black)	 and	 with	 correlation	 analysis	 (green).	 C)	 Median	 and	 standard	
deviations	(error	bars)	of	transit	time	values	from	640	simulated	measurements	
with	 different	 theoretical	 simulated	 diffusion	 coefficients	 and	 durations	 and	
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determined	with	 the	 different	 analysis	methods	 (single	molecule	 tracking	 and	
correlation),	 as	 labelled.	D)	Median	 values	 of	 diffusion	 coefficients	 determined	
from	 640	 simulated	 measurements	 with	 a	 spot	 size	 of	 60	 nm	 FWHM	 (STED)	
compared	 to	 a	 spot	 size	 of	 250	 nm	 FWHM	 (confocal)	 and	 different	 diffusion	
coefficients	of	1.0	μm2/s	(grey),	0.5	μm2/s	(turquoise),	0.2	μm2/s	(green)	and	
0.05	μm2/s	(blue).	Error	bars	represent	inter-quartile	range	of	obtained	values.	
Grey	 dashed	 lines	 in	 C	 and	 D	 represent	 theoretically	 expected	 values,	 and	
deviation	of	bars	from	nearest	line	represents	bias.	
	
	

	
	
Figure	 4:	 Density	 kernel	 estimation	 enables	 visualization	 of	 transit	 time	
distributions	 across	 scales.	 A-C)	 Scatter	 plots	 comparing	 transit	 time	
measurements	 from	 640	 simulations	 (30	 s	 duration,	 120	 mol.)	 with	 diffusion	
coefficients	of	1.0	μm2/s	(grey),	0.5	μm2/s	(turquoise),	0.2	μm2/s	(green)	and	
0.05	μm2/s	(blue)	with	different	error	metrics,	signal-to-noise	(A),	correlation	fit	
standard	deviation	(B)	and	standard	deviation	of	100x	bootstrap	samples	(C).	D)	
Density	 kernel	 estimation	 of	 the	 data	 of	 A	 (shown	 here	 as	 histogram,	 with	
binsize=2)	 with	 different	 error	 metrics	 compared	 to	 Histogram	 visualization	
method	with	widths	corresponding	to	100x	bootstrap	(blue-line),	5x	bootstrap	
(red-line),	correlation	fit	standard	deviation	(green-line).	
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Figure	 5:	 Photobleaching	 dramatically	 affects	 transit	 time	measurements	
but	can	be	restored	through	suitable	corrections.		A,B)	Intensity	time-series	
from	a	simulated	experiment	(D	=	0.5	μm2/s,	duration	3000	ms),	integrated	over	
all	 pixels	 from	 simulation	 without	 (A)	 and	 with	 photobleaching	 (B).	 (C)	
Respective	correlation	curves	from	the	simulation	without	(black	line)	and	with	
photobleaching	(green	line,	analyzed	in	the	conventional	way),	and	in	the	latter	
case	with	correction	method	1	(red	 line)	and	correction	method	2	(blue	 line).	
D)	 Whisker	 plots	 of	 values	 of	 transit	 times	 determined	 from	 64	 simulated	
measurements	 generated	 with	 and	 without	 photobleaching,	 original	 data	 and	
analysis	without	correction	and	with	correction	methods	1	and	2,	as	labeled.	
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