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Abstract

High-affinity antibodies arise within weeks of infection from the evolution of B cell
receptors under selection to improve antigen recognition. This rapid adaptation is
enabled by the frequency and distribution of highly mutable “hotspot” motifs in B cell
receptor genes. High mutability in antigen binding regions (CDRs) creates variation in
binding affinity, whereas low mutability in structurally important regions (FRs) may
reduce the frequency of destabilizing mutations. During the response, the loss of
mutational hotspots and changes in their distribution across CDRs and FRs are
predicted to compromise the adaptability of B cell receptors, yet the contributions of
different mechanisms to gains and losses of hotspots remain unclear. We reconstructed
changes in anti-HIV B cell receptor sequences and show that mutability losses were
about 60% more frequent than gains in both CDRs and FRs, with the higher relative
mutability of CDRs maintained throughout the response. At least 34% of the mutability
losses were caused by synonymous mutations. However, non-synonymous substitutions
caused most of the mutability loss in CDRs. Because CDRs also show strong positive
selection, this result suggests positive selection contributed to as much as 66% of the
mutability loss in those regions. Although recurrent adaptation to the evolving virus
could indirectly select for high mutation rates, we found no evidence of indirect
selection to increase or retain hotspots. Our results suggest mutability losses are
intrinsic to the neutral and adaptive evolution of B cell populations and might constrain
their adaptation to rapidly evolving pathogens such as HIV and influenza.

Introduction 1

High-affinity antibodies arise during the adaptive immune response from the very 2

process that gave vertebrates an adaptive immune system in the first place: adaptation 3

by natural selection. In response to infection or vaccination, mutagenic enzymes and 4

error-prone polymerases cause somatic hypermutation of B cell receptors and thus 5

create variation in their ability to bind antigen [1]. B cells with high-affinity receptors 6

are more likely to receive survival and replication signals from helper T cells, and thus 7

selection for improved antigen binding drives the development of high-affinity B cell 8

receptors that are later secreted as antibodies [2–5]. Understanding how the immune 9

system evolved to facilitate the rapid adaptation of B cell receptors during infection 10

may provide general insights into the evolution of adaptability. 11

Two features of B cell receptor genes suggest their long-term evolution has been 12

shaped by selection for adaptability during infection. First, the germline genes that 13

recombine to produce B cell receptors are enriched for nucleotide motifs that are 14
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targeted with high frequency by the mutagenic enzymes involved in somatic 15

hypermutation [6–8]. High mutation rates provide the genetic variation required for B 16

cell adaptation, and low B cell mutation rates have been linked to immunodeficiency 17

disorders [9,10] and to the decline in immune function with age [11]. Second, mutational 18

“hotspots” occur where mutations are most likely to be beneficial. Hotspots are 19

concentrated in loops of the B cell receptor protein that are directly involved in antigen 20

recognition (complementarity determining regions, CDRs) [12]. In contrast, structurally 21

important regions of the B cell receptor (framework regions, FRs), which are usually 22

less directly involved in antigen binding, are enriched with motifs that have low 23

mutability [12]. In addition, mutations in CDRs are more likely to be non-synonymous 24

and to produce non-conservative amino acid changes than mutations in FRs [13–16]. 25

The differential mutability of CDRs and FRs appears to focus mutations to regions 26

where they are likely to produce variation in antigen affinity without destabilizing the 27

protein. The frequency and distribution of mutational hotspots in B cell receptor genes 28

therefore seem to contribute to their adaptability during immune responses. 29

As B cells mutate during the immune response, however, changes in the frequency 30

and distribution of mutational hotspots might affect the subsequent adaptability of B 31

cell receptors. This change in adaptability may be especially important in B cell lineages 32

that coevolve with pathogens like HIV and influenza. Experimental removal of hotspots 33

decreases somatic hypermutation rates in vitro and in laboratory B cell lines [8]. Loss of 34

highly mutable motifs has been hypothesized to occur during the immune response due 35

to motifs’ propensity to mutate [17,18], and decreased mutation rates due to such 36

“hotspot decay” might explain declines in the evolutionary rates of B cell lineages over 37

several years of HIV infection [19, 20]. In addition, changes in the distribution of highly 38

mutable motifs across FRs and CDRs might increase the frequency of deleterious 39

mutations in the former and decrease the frequency of beneficial mutations in the latter. 40

However, evidence for consistent changes in mutability during the evolution of B cell 41

lineages is inconclusive. Several metrics have been developed to estimate somatic 42

hypermutation rates based on differences in the frequency of mutations across 43

nucleotide motifs, and they range from the discrete classification of motifs into hotspots 44

and non-hotspots [6, 7] to more recent models that quantify relative mutation rates on a 45

continuous scale [12,21,22]. While the average mutability of B cell receptor sequences 46

decreases during HIV infection when measured by the number of classically defined 47

hotspots [17], long-term trends are less consistent for more recent metrics [20]. 48

Factors other than the decay of hotspots through random mutations might affect the 49

mutability of B cell receptors. First, highly mutable motifs might be regained through 50

mutation. Second, selection for affinity and protein stability might favor 51

non-synonymous mutations that incidentally increase or decrease mutability. Finally, 52

selection might act on somatic hypermutation rates themselves. Although selection in 53

theory can favor low mutation rates due to the reduced frequency of deleterious 54

mutations [23,24], rapidly changing environments may indirectly select for a higher 55

mutation rate through its association with beneficial mutations [25–28]. Thus, although 56

short-term differences in fitness among B cells arise from differences in the affinity of 57

their receptors, B cells with more mutable CDRs might have a higher probability of 58

producing high-affinity descendants able to keep up with evolving antigens in the long 59

term. Indirect selection for mutability might therefore retain or increase the frequency 60

of highly mutable motifs in CDRs, while mutability losses in FRs might be selected due 61

to the reduced frequency of destabilizing mutations. 62

Understanding changes in mutability may reveal constraints on B cell adaptation, 63

but the contributions of different mechanisms to changes in the frequency and 64

distribution of mutational hotspots during B cell responses are largely unknown. We 65

investigated the evolution of B cell receptor mutability by fitting phylogenetic models to 66
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sequences from long-lived anti-HIV B cell lineages. In characterizing mutability, we 67

considered two sequence-based features that appear to have been strongly selected in the 68

evolution of the adaptive immune system: overall mutability (the density of mutagenic 69

nucleotide motifs) and also changes in the mutability of CDRs relative to FRs. First, we 70

examined B cell mutability in the unmutated common ancestors of anti-HIV antibodies. 71

Next, we investigated the effects of random mutations and positive selection for amino 72

acid substitutions that increase affinity for antigen. Finally, we tested for selection to 73

increase, retain or decrease the frequency of highly mutable motifs. 74

Results 75

Ancestral B cells have higher mutability in CDRs than FRs 76

To characterize changes in mutability during B cell evolution, we inferred the 77

evolutionary histories of previously reported B cell lineages from three HIV-1 patients. 78

The CH103 and VRC26 lineages comprise heavy and light chain B cell receptor 79

sequences obtained from high-throughput sequencing over 144 and 206 weeks of 80

infection in two patients, respectively [29,30]. We also analyzed heavy chain sequences 81

of three lineages from the VRC01 dataset, which was sampled from a third patient over 82

a 15-year period [19]. The lineages we analyzed were originally investigated for having 83

evolved the ability to neutralize diverse HIV strains. 84

To infer changes in mutability over time, we used Bayesian phylogenetic analyses 85

(Methods) to obtain a sample of time-resolved trees from the posterior distribution of 86

each lineage’s genealogy for the heavy and light chains separately, and to estimate the 87

nucleotide sequences of all internal nodes. Mutabilities of the observed and the inferred 88

internal sequences were estimated using the S5F model. This model assigns relative 89

mutation rates to all five-nucleotide DNA motifs and is based on a large independent 90

dataset of antigen-experienced B cells [21]. The mutability of each sequence was defined 91

as the average S5F score across all sites in the B cell receptor sequence. We estimated 92

the number, magnitude and distribution of mutability changes on all branches by 93

contrasting the mutability of all pairs of parent-descendant nodes. Figure 1 illustrates 94

mutability evolution in the heavy chain of lineage CH103. 95

We first characterized the mutability of each lineage’s unmutated ancestor. In the 96

ancestors of all heavy and light chains, sites in CDRs had higher average mutability 97

than sites in FRs. On average across the seven heavy and light chain ancestors, 98

mutability was approximately 27% higher in CDRs than in FRs (range: 14-34%; 99

Figure S1). Previous analyses of germline V genes (which, together with D and J genes, 100

recombine to produce mature B cell receptors) showed that mutability was lower in FRs 101

and higher in CDRs than expected based on their amino acid sequences, suggesting 102

selection to increase the frequency of highly mutable motifs in CDRs and decrease their 103

frequency in FRs [12,15]. Consistent with those analyses, we found that the FRs of 104

lineage ancestors had lower mutability than expected based on their amino acid 105

sequences. On average across all heavy and light chains, the mean FR mutability of 106

ancestral B cell receptors was lower than 99% of sequences obtained by randomizing 107

their codons (according to usage frequencies in humans [31]) while keeping the amino 108

acid sequences constant (range: 95-100%; Figure S1). However, while V genes often 109

have higher CDR mutability than expected based on their amino acid sequences [12], 110

mean CDR mutability in ancestral B cell receptors was, on average, greater than only 111

54% of randomized sequences with the same amino acid sequence (range: 18-95%, 112

Figure S1). These patterns suggest that adaptation in these cells may on average be 113

constrained more by destabilizing mutations in the FRs than a shortage of beneficial 114

mutations in the CDRs. 115
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Fig 1. Evolution of S5F-mutability in the heavy-chain CH103 B cell lineage. a) Long-term
declines in average mutability across the maximum clade-credibility tree. Nodes are colored
according to the average S5F-mutability of the whole sequence. Branches measured in weeks
are annotated to indicate gains (+) or losses (–) of mutability. b) Average mutability over time
for a combined sample of 100 trees from the posterior distribution. Blue points correspond to
terminal nodes (observed sequences), and black points correspond to inferred internal nodes.
The red line represents an average of regression lines calculated for each tree in a sample of
1000 trees. c) Distribution of changes in mutability for a sample of 100 trees from the posterior
distribution shown as overlaid densities. The inset plot shows the posterior distribution of the
fraction of changes on a tree that were losses constructed from a sample of 1000 trees, with the
95% highest-posterior density interval shown in gray. Red lines indicate the means of the
distributions.
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Fig 2. Frequency of losses relative to the total number of changes in S5F-mutability
during the evolution of anti-HIV B cell lineages. Results are shown for the entire
analyzed region of the B cell receptor, and separately for framework regions (FRs) and
complementarity determining regions (CDRs). Each point denotes the fraction of
changes in mutability that were losses, averaged across a sample of 1000 trees from the
posterior distribution. Vertical red lines indicate the 95% highest-posterior density
interval.

Mutability is more often lost than gained 116

Next we investigated long-term changes in mutability as B cell receptors evolved from 117

their ancestors. Consistent with a previous analysis [17], average mutability decreased 118

with time (Figure 1a,b, Figure S2). To investigate changes in mutability in greater 119

detail, we analyzed the frequency of mutability gains and losses across branches. 120

Mutability losses should arise from hotspot decay, positive selection of the amino acid 121

changes that incidentally decrease mutability, selection for lower mutability due to the 122

reduction in the frequency of deleterious mutations, or a combination of those factors. 123

Mutability gains should reflect gains through mutation, positive selection of amino acid 124

changes that incidentally increase mutability, indirect selection for higher mutation 125

rates by association with beneficial mutations, or a combination of those factors. To 126

summarize the net contributions of mutability-decreasing and mutability-increasing 127

mechanisms, we computed the fraction of branches with mutability losses out of all 128

branches with mutability changes. By computing the frequency of mutability losses for 129

each tree in the posterior sample, we estimated its posterior distribution (Figure 1c). 130

Across the entire BCR sequence, mutability losses occurred more frequently than 131

gains in four of the five lineages (Figure 1a,c, Figure 2). On average across the seven 132

heavy and light chains, approximately 62% of changes in mutability were losses (range: 133

45% – 71%). Mutability losses were more frequent in the light chains (70% and 63%) 134

than in the heavy chains (60% and 62%) of lineages CH103 and VRC26. The frequency 135

of mutability was not significantly different from the frequency of gains in the heavy 136

chain of VRC26 (95% highest posterior interval 48-74%) and was slightly lower than the 137

frequency of gains in lineage VRC01-01 (42-49%). 138

Long-term declines in mutability occurred both in FRs (five of seven heavy and light 139

chains; Figure S3) and CDRs (six of seven heavy and light chains; Figure S4). 140

Consistent with long-term declines in the average mutability of both regions, we found 141

no long-term changes in the difference between CDR and FR mutabilities (Figure S5). 142

Despite considerable amino acid divergence from the unmutated ancestors in FRs 143
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Fig 3. Selection in framework regions (FRs) and complementarity determining regions
(CDRs) of B cell receptors from anti-HIV B cell lineages. Selection strength is measured
as the log odds ratio between the observed ratio of non-synonymous to synonymous
substitution frequencies, π/(1− π), and the ratio expected under the S5F mutability
model in the absence of selection, π̂/(1− π̂) [21,32]. Selection strength values greater
than zero indicate positive selection, and values smaller than zero indicate purifying
selection.

(16-67% for different heavy and light chains), sequences from the last sampling time in 144

each dataset had lower FR mutability than 95% of randomizations with constant amino 145

acid sequence (range: 70-99.9%, fig. S6). The lower mutability of ancestral FRs relative 146

to their amino acid sequences was therefore retained throughout the evolution of the B 147

cell lineages. CDRs, however, became less mutable relative to their amino acid 148

sequences than the ancestors. On average across the seven heavy and light chains, 149

CDRs of sequences from the last sampling times were more mutable than 28% of their 150

corresponding randomizations (range: 8-64%, Figure S6), down from 54% in ancestral 151

CDRs. Consistent with the net long-term trends, both CDRs and FRs had similar 152

frequencies of mutability losses (FR average 57%, range: 44% – 69%; CDR average 56%, 153

range: 44– 64%; Figure 2 ). 154

Hotspot decay and selection for amino acid substitutions 155

contribute to mutability losses 156

Highly mutable motifs have been hypothesized to decay due to their propensity to 157

mutate [17, 18], but motifs should also be influenced by positive selection. The first case 158

is straightforward. For instance, the hypothetical sequence CAGCTT contains the 159

highly mutable cytosine at the center of the AGCTT motif [7, 8, 21], and a C→T 160

mutation in the underlined position would decrease the mutability of the site 161

approximately 5-fold [21]. Positive selection on amino acid substitutions should 162

influence motifs in two ways. Mutational hotspots can be disrupted if selection favors 163

amino acid sequences whose codons happen to be, on average, less mutable than codons 164

in the ancestral sequence. Selection can also affect mutability in neighboring codons. 165

For example, if selection led to the replacement of CAG (glutamine) for CGG (arginine) 166
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in the sequence CAGCTT, the mutability of the underlined C nucleotide (not involved 167

in the substitution) would decrease approximately 13-fold [21]. 168

To evaluate the strength of positive selection in the B cell lineages, we used 169

BASELINe [32] to quantify deviations in the frequency of non-synonymous substitutions 170

from its expected value in the absence of selection (and under the mutational biases 171

captured by the S5F model). In line with previous analyses of the same datasets [20] 172

and of B cell lineages from healthy donors [33], we detected positive selection in the 173

CDRs of four of the seven heavy and light chains (lineages CH103 and VRC26) and 174

purifying selection in the FRs of all heavy and light chains. Framework regions had 175

fewer non-synonymous substitutions than expected under neutral evolution, while CDRs 176

had more non-synonymous substitutions than the neutral expectation (Figure 3). This 177

result contrasts with repertoire-level analyses showing predominantly purifying selection 178

across both types of regions [34]. 179

To estimate how much of the mutability losses in the CDRs is attributable to 180

selection for amino acid substitutions, we partitioned inferred changes in mutability into 181

changes caused by synonymous substitutions and changes caused by non-synonymous 182

substitutions. Summed across all branches of the maximum-clade-credibility (MCC) 183

trees, non-synonymous substitutions caused a net loss in the average CDR mutability of 184

the same four heavy and light chains where positive selection occurred (Figure 4a). 185

Similarly, synonymous substitutions caused a net decrease in the average CDR 186

mutability of the four lineages whose CDRs were under positive selection. On average 187

across those four lineages, non-synonymous substitutions accounted for approximately 188

66% of the inferred mutability loss in CDRs (range: 40% – 93%). On average, selection 189

for amino acid substitutions may therefore have contributed to as much as 66% of the 190

loss of mutability in the CDRs. 191

To test if the observed synonymous mutability losses were consistent with the decay 192

of mutational hotspots under their predicted S5F mutability, we simulated B cell 193

receptor evolution under a model that allows for variation in mutation rates across 194

motifs based on their S5F mutability scores [21] and thus captures the propensity for 195

certain motifs to mutate (Methods). We compared changes in mutability caused by 196

synonymous substitutions simulated under the S5F-based model to changes under 197

models that do not allow for motif-driven mutation rate variation. Instead, these models 198

assume that the mutation rate is identical across all sites (“uniform” model) or depends 199

on the position within a codon (“codon-position” model), with the relative rate for each 200

position estimated from the data (Methods). For each branch on the MCC tree of each 201

lineage, we started from the inferred nucleotide sequence of the branch’s parent node 202

and simulated 100 replicates of a descendant sequence while constraining the simulations 203

to produce the exact same amino acid substitutions inferred from the data. We also 204

constrained simulated descendant sequences to have the same number of synonymous 205

substitutions as inferred from the data but allowed them to occur at different positions. 206
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Fig 4. Changes in S5F mutability due to synonymous and non-synonymous
substitutions in anti-HIV B cell lineages. A) Changes in mutability caused by
synonymous and non-synonymous substitutions, summed across all branches of B cell
genealogies. B) Changes in mutability due to synonymous substitutions, averaged across
all branches. Gray indicates values inferred from the data, red indicates an S5F-based
model where different nucleotide motifs mutate with different rates, dark blue indicates
a model with no mutation rate variation across sites, and light blue indicates a model
with different mutation rates for each position of a codon. Simulations were performed
independently for each branch on the MCC tree of different anti-HIV B cell lineages,
starting from the inferred sequence of the parent node. Each simulated sequence was
constrained to have the same amino acid sequence as the inferred sequence for the
descendant node. Vertical bars indicate the 95% range obtained from 100 simulations
per model.
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Fig 5. Frequency of losses relative to the total number of changes in whole-sequence
S5F-mutability caused by synonymous substitutions during the evolution of anti-HIV B
cell lineages. Blue indicates changes on terminal branches, and black indicates changes
on internal branches. Results are shown separately for framework regions (FRs) and
complementarity determining regions (CDRs). Each point denotes the frequency of
changes in mutability that were losses, averaged across a sample of 1000 trees from the
posterior distribution. Vertical lines indicate the 95% highest-posterior density interval.

Inferred mutability losses due to synonymous substitutions were consistent with the 207

decay of mutational hotspots. On average across all branches, synonymous substitutions 208

simulated under hotspot decay resulted in mutability losses in all seven heavy and light 209

chains (Figure 4b). In contrast, synonymous substitutions simulated with constant 210

mutation rates across motifs (uniform and codon-position models) increased mutability 211

in all lineages. 212

No evidence of indirect selection to retain mutability 213

Under persistent or recurrent selective pressures, alleles that increase the mutation rate 214

may be indirectly selected due to their association with beneficial mutations [25–28]. 215

Indirect selection for increased mutation rates might therefore lead to the conservation 216

of highly mutable motifs in CDRs, where mutations that improve affinity are selected 217

for during B cell evolution. In contrast, selection to reduce the frequency of deleterious 218

mutations [23,24] might directly favor mutability losses in FRs. 219

To test if mutability is subject to direct or indirect selection over the long term, we 220

compared the frequency of synonymous changes in mutability between terminal and 221

internal branches of the B cell trees. Terminal branches are expected to be enriched for 222

deleterious mutations [35–38]. If mutability losses are deleterious in the long term, 223

branches where mutability losses occurred should be less likely to contribute 224

descendants to the B cell population, and would therefore be more likely terminal, 225

rather than internal branches. In contrast, mutability losses should be more frequent on 226

internal branches if mutability losses are beneficial. Because changes in mutability due 227

to non-synonymous substitutions may be driven by selection for B cell receptor affinity 228
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and stability, we first restricted the analysis to mutability changes from synonymous 229

substitutions. 230

We found no consistent evidence of selection to increase, retain, or decrease 231

mutability (Figure 5). In one instance (the CDRs of light chain VRC26), mutability 232

losses were more frequent on terminal branches than on internal branches, possibly 233

indicating selection against mutability losses. In another instance (FRs of heavy chains 234

VRC26), mutability losses were more frequent on internal branches than on internal 235

branches, suggesting selection for mutability losses. In the remaining cases, the 236

frequencies of synonymous mutability losses were similar in terminal and internal 237

branches for both FRs and CDRs. The same lack of general trends was seen when we 238

compared terminal branches, internal branches that belong to the main “backbone” of 239

the tree, and other internal branches [38] (Figure S7), and also when we included 240

mutability changes due to non-synonymous substitutions (results not shown). 241

Results are consistent for three of four mutability metrics 242

In addition to the S5F model [21], we repeated the analyses using three other mutability 243

metrics. The different mutability metrics were estimated from databases of somatic 244

mutations not subject to the effect of selection, such as synonymous mutations, 245

mutations in non-coding flanking regions of V genes, and mutations in unproductive B 246

cell receptor genes that are not expressed by B cells but still undergo somatic 247

hypermutation. Two of the alternative metrics are based on a discrete classification of 248

DNA motifs into either hotspots or regular motifs: the number of WRCH and DGYW 249

hotspots [7] or the number of “overlapping” (WGCW) hotspots [8], where W = {A/T}, 250

R = {A/G}, H = {A/T/C}, D = {A/T/G} and Y = {C/T}. We also quantified 251

mutability using the 7-mer model, which, similar to the S5F model, assigns relative 252

mutation rates to different motifs on a continuous scale, but does so for seven- instead 253

of five-nucleotide motifs [22]. 254

Consistent with the results for S5F mutability, hotspots and overlapping hotspots 255

decreased in number over time (Figure S8 and Figure S9) and were lost more frequently 256

than gained (Figure S11). In contrast, average 7-mer mutability increased over time in 257

four of five lineages (Figure S10), and losses of 7-mer mutability were approximately as 258

frequent as gains across the entire B cell receptor sequence (fig. S11). 259

Discussion 260

We used phylogenetic methods to reconstruct changes in B cell receptor sequences and 261

found consistent loss of mutational hotspots over the course of the adaptive immune 262

response. Our analyses shed light on previous studies of long-term trends in 263

mutability [17,20] by quantifying the contributions of different mechanisms to these 264

losses. Selection for amino acid substitutions appears to have driven most of the 265

mutability losses in the CDRs—precisely the regions where high mutation rates 266

contribute the most to adaptation. However, mutability changes caused by synonymous 267

substitutions throughout the sequence demonstrate mutability losses also arose from the 268

spontaneous decay of highly mutable motifs through neutral mutations. We also show 269

that both FRs and CDRs lost mutability frequently, and the higher mutability of CDRs 270

relative to FRs observed in ancestral receptors persisted over at least several years of B 271

cell evolution. Disruption of highly mutable motifs through selection and hotspot decay 272

therefore seems to be intrinsic to the evolution of B cells during affinity maturation. 273

These factors counteract the high mutation rate selected in the evolution of 274

immunoglobulin genes, and they suggest adaptability may inevitably become 275

compromised in evolving B cell lineages. However, the relatively high mutation rate in 276
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the CDRs compared to the FRs was preserved in these lineages, suggesting that some 277

degree of adaptability may still be maintained. (These observations may reflect survival 278

bias: lineages in which mutability differences between CDRs and FRs decrease over 279

time may be less likely to persist in the long term.) 280

Theoretical simulations [26] and experimental evolution of bacteria [27,28] suggest 281

recurrent adaptation in asexual populations can select for increased mutation rates over 282

the long term, but we found no consistent evidence of selection to increase or retain 283

mutability during B cell evolution. Any long-term benefits of high mutation rates (in 284

terms of increased chance of producing beneficial mutations) appear insufficient to 285

overcome the rapid decay of highly mutable motifs through mutation and/or positive 286

selection on amino acid substitutions. We also did not detect selection for reduced 287

mutability in FRs, despite the potential for mutability losses to decrease the rate of 288

destabilizing mutations. Because mutability is already low in the FRs of V genes [12,15] 289

and ancestral B cell receptors (this study), it is possible that the fitness effect of 290

mutability losses in FRs is so small that they are nearly neutral given the effective size 291

of the B cell population. Under this “drift-barrier” hypothesis [24], selection would 292

therefore not be able to fix mutability losses. 293

Losses of mutational hotspots in CDRs may reduce the adaptability of antibody 294

responses since lower mutation rates reduce the supply of genetic variation available for 295

selection. Declines in mutation rates caused by hotspot losses may have contributed to 296

reported declines in the evolutionary rates of broadly neutralizing B cell lineages during 297

chronic HIV infection [20]. However, these losses may not be important for lineages that 298

bind to conserved sites. As B cell receptors evolve high affinity for conserved sites, 299

beneficial substitutions become rare, and the corresponding transition from positive to 300

purifying selection should cause substitution rates to fall [20]. In line with the previous 301

analysis [20], we found the longest-lived lineages to be under the strongest purifying 302

selection in the CDRs. Those lineages also had minimal cumulative changes in 303

mutability, suggesting most of the mutability loss occurred during early adaptation. 304

However, as a result of hotspot loss, these lineages might adapt poorly if formerly 305

conserved antigenic sites suddenly acquire mutations. 306

A direct link between motif-based mutability scores and absolute rates of B cell 307

mutation in vivo is still lacking. Hotspot loss is associated with reduced substitution 308

rates [19, 20], which are influenced not only by the underlying mutation rate but also by 309

changes in selective pressures and generation times [20]. Using robust counting [39] and 310

a random local clock model [40], we found no evidence for consistent declines in the 311

synonymous or non-synonymous substitution rates of these lineages (Figures S12 312

to S15). Simulation-based power analysis (Supplementary Methods) revealed that 313

synonymous and non-synonymous substitution rates had to decline at least 50% to be 314

detected with this method (Figures S16 and S17). Observed long-term declines in 315

average S5F mutability were less than 50% (Figure S2) and suggest their effects on 316

substitution rates would not have been detected, assuming a one-to-one relationship 317

between S5F mutability and the actual mutation rate. Additionally, inference of B cell 318

genealogies may be affected by non-equilibrium nucleotide frequencies, distorting 319

inferences of absolute rates [17]. Analyzing B cell sequences from controlled 320

experimental infections with customized substitution models (e.g., [17, 34,41]) could 321

help quantify the relationship between mutability metrics and absolute mutation rates. 322

Our results suggest a trade-off between the short-term and long-term adaptability of 323

antibody responses. Repeated infections by antigenically related pathogens, such as 324

influenza viruses, often recall memory B cell populations [42–45]. Preferential 325

recruitment of less mutable B cells at the expense of naive (or perhaps younger memory) 326

B cells may compromise the long-term adaptability of the immune repertoire to these 327

pathogens. Protection against such pathogens may rely on a robust naive response that 328
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can complement preexisting B cell lineages once they fail to adapt to new antigens. 329

Finally, some strategies for eliciting universal responses against HIV and influenza 330

attempt to recapitulate the evolution of long-lived, highly mutated B cell lineages that 331

were found to produce broadly neutralizing antibodies in infected patients [46]. Our 332

results suggest those approaches may be hindered by a decrease in the adaptability of 333

highly mutated antibodies. 334

Materials and Methods 335

Sequence data 336

We analyzed BCR sequences from three published studies of B cell lineages sampled 337

longitudinally in individual HIV-1 patients not subject to antiretroviral therapy. The 338

CH103 lineage comprises broadly neutralizing antibodies (bnAbs) isolated from 339

individual B cells and clonally related sequences bioinformatically isolated from 340

high-throughput sequencing over 144 weeks of HIV-1 infection in a single donor [29]. 341

Likewise, the VRC26 lineage comprises both bnAbs isolated from individually sorted B 342

cells and clonally related heavy-chain sequences obtained from high-throughput 343

sequencing over 206 weeks of HIV-1 infection in a different patient [30]. In both cases, 344

BCR sequences obtained from high-throughput sequencing were classified as clonally 345

related to the isolated antibodies based on V and J gene usage. A third lineage, VRC01, 346

was sampled longitudinally from a third HIV patient for 15 years starting from 347

approximately five years after the date of infection. VRC01 is a large lineage that 348

possibly consists of multiple independent B cell lineages [19,20]. We therefore used 349

PARTIS, a recently developed hidden-markov-model-based method [47] to partition the 350

heavy-chain VRC01 dataset into sets of sequences likely to have descended from the 351

same naive B cell, and to identify their most likely germline V and J genes. We 352

analyzed the three largest lineages identified in this way, hereafter VRC01-13, VRC01-01 353

and VRC01-19. We aligned each set of sequences in MACSE v1.01b [48] along with 354

their concatenated V and J genes (for the heavy chains) or along with their V genes 355

only (light chains) (Table 1). Including the J genes in the light chain datasets produced 356

bad alignments across the J region. 357

Table 1. BCR alignments analyzed. The number of sequences includes the V+J or V
germline sequences.

Lineage (chain) V gene J gene N sequences N sites
CH103 (heavy) IGHV4-59*01 IGHJ4*01 460 321
CH103 (light) IGLV3-1*01 – 175 285
VRC26 (heavy) IGHV3-30*18 IGHJ3*01 681 489
VRC26 (light) IGLV1-51*02 – 464 294
VRC01-13 (heavy) IGHV1-2*04 IGHJ1*01 157 351
VRC01-01 (heavy) IGHV-ORF15-1*04 IGHJ4*03 124 372
VRC01-19 (heavy) IGHV1-2*04 IGHJ1*01 110 438

Phylogenetic inference 358

Using BEAST v.1.8.2 [49], we fit Bayesian phylogenetic models to the BCR sequence 359

data in order to estimate time-resolved genealogies and internal node sequences for 360

heavy and light chains separately. We used a GTR nucleotide substitution model, 361

assumed a random local clock model to account for potential variation in substitution 362

rates [40], and enabled robust counting [39] to estimate the numbers of synonymous and 363

non-synonymous changes on each branch. To reduce the number of parameters, we used 364
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empirical base frequencies and assumed a shared nucleotide transition matrix across 365

codon positions for the robust counting inference. The inferred dynamics of mutability 366

losses and gains were qualitatively robust to the choice of demographic model (constant 367

population size, logistic or exponential growth) used to calculate coalescent prior 368

probabilities (Supplementary Methods). We set the V+J or V germline sequence of each 369

alignment as the outgroup and assigned them a sampling time of zero to represent the 370

assumption that, at the start of the infection, the ancestral BCR sequence was close to 371

its corresponding germline genes (except for insertions and deletions at the junctions). 372

For each dataset, four independent MCMC chains were set to run for 500 million steps 373

and sampled every 1,000 steps (for parameter values) and every 10,000 steps (for trees). 374

We downsampled the set of trees recovered by the MCMC chains to obtain 1,000 trees 375

per chain, sampled at regular intervals between the end of the the burn-in and the end 376

of the entire chain. 377

Because of the long computation times for the larger datasets (lineages VRC26 and 378

CH103), their MCMC chains were interrupted before 500 million steps had been 379

reached. With the exception of heavy-chain VRC26, interrupted chains had ESSs close 380

to or greater than 200 for most parameters and for the likelihood, prior and posterior 381

probabilities. Although MCMC chains failed to converge for the heavy chain data of 382

lineage VRC26, estimates of the parameters of interest (mean mutability changes and 383

fraction of mutability losses across the tree) were numerically close across replicate 384

MCMC chains, and we therefore present the results in the main text. 385

To investigate their ability to detect consistent changes in mutability, we repeated 386

the phylogenetic analyses on alignments simulated using different population genetic 387

models (Supplementary Methods). For alignments simulated under a model where all 388

sites are equally likely to mutate, mutability losses were estimated to be approximately 389

as frequent as gains. As expected, mutability losses were estimated to be more frequent 390

than gains in datasets simulated under an S5F-based model, where motifs with high 391

S5F score have a high probability of mutating. 392

Simulations of sequence evolution on MCC trees 393

For each branch on an MCC tree, we compared the nucleotide sequences of the parent 394

and descendant nodes to identify the number of codon sites with non-synonymous and 395

synonymous differences. Starting from the parent sequence, we simulated an alternative 396

descendant sequence constrained to have 1) the same number of non-synonymous and 397

synonymous differences from the ancestor and 2) the same amino acid sequence as the 398

true descendant. 399

Each simulation was done in two steps. First, for each codon site with a 400

non-synonymous difference, we identified all codons coding for same amino acid and 401

with the same number of nucleotide differences from the ancestral codon as the true 402

descendant codon. We used different models to compute the probability of each possible 403

descendant codon (including the true descendant) replacing the ancestral codon. Let A 404

be the ancestral codon and D one of the possible descendant codons. For the case where 405

A and D differ by a single nucleotide, we define the transition rate from A to D as: 406

RA→D = µi × P (ai → di| mutation at i) (1)

where i ∈ {1, 2, ..., L} is the position where codon A differs from codon D, L is the 407

length of the nucleotide sequence, µi is the mutation rate at position i, and ai and di 408

are the nucleotides at position i in A and D, respectively. For the case where the 409

transition from A to D requires more than one nucleotide substitution, we define RA→D 410

as the product of the right-hand side of Equation (1) applied to all intermediary 411

one-nucleotide steps between A and D, summed across all the possible orders in which 412
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the required mutations can be introduced. For example: 413

RAAC→AGT = RAAC→AGC ×RAGC→AGT +RAAC→AAT ×RAAT→AGT (2)

We simulate the evolution of a descendant sequence by sampling a codon from the set of 414

possible descendant codons according to their transition rates from the ancestral codon. 415

The probability of sampling codon Dk is given by: 416

P (Dk) =
RA→Dk∑
j RA→Dj

(3)

where k and j index the possible codons. 417

After simulating evolution at all codon sites where non-synonymous substitutions 418

ocurred, we introduced the same number of synonymous mutations as the number of 419

synonymous codon differences between the ancestral sequence and the true descendant 420

sequence. We allowed synonymous mutations to occur at any codon site except for sites 421

where non-synonymous mutations occurred. To introduce each synonymous mutation, 422

we randomly sampled a nucleotide site, replaced its nucleotide, and either kept the 423

mutation (if it was synonymous) or rejected it (if it was non-synonymous). To simplify 424

implementation, we did not allow for synonymous differences involving more than one 425

nucleotide difference to be simulated – once a codon site was hit by a synonymous 426

mutation, nucleotide sites in that codon could no longer be sampled for subsequent 427

mutations. On average across all datasets, 99.1% of inferred synonymous changes 428

involved a single nucleotide difference (min. 96.1%, max. 99.8%). 429

Using different models to parameterize Equation (1) and to sample sites for 430

synonymous mutations, we created scenarios where the mutation rate at a site either 431

depends on the nucleotide motif centered at that site, or is independent of nucleotide 432

motifs (see below). To model nucleotide transitions, we made use of the fact that, in 433

addition to estimating the relative mutation rate of different motifs, the S5F model 434

includes the probability of transitions between nucleotides, given the motif where a 435

mutation occurs. All simulations used the S5F-based nucleotide transition probabilities 436

from [21], regardless of whether they assumed variable or constant mutation rates across 437

motifs. 438

To simulate sequence evolution under an S5F-based model, we let µi in Equation (1) 439

be given by: 440

µi = S5F(Si) (4)

where S5F(Si) is the S5F-score of the five nucleotide motif Si centered at i, from [21]. 441

In addition to the S5F-based model, we performed simulations under two models 442

that assume mutation rates do not depend on the local nucleotide sequence around each 443

site. First, we simulated sequence evolution under a uniform model where all sites are 444

equally likely to mutate (µi = 1, regardless of the nucleotide occupying i and the 445

neighboring positions). Second, we used a codon-position-based model, where codon 446

positions 1, 2 and 3 have different mutation rates. Estimates of the relative mutation 447

rates of each codon position were obtained from the robust counting inference 448

performed in BEAST and used to parameterize the simulations. 449
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Supplementary information

Simulation of B cell receptor alignments

To assess the power of a random local clock model [40] combined with robust
counting [39] to detect changes in synonymous and non-synonymous substitution rates
during B cell evolution, we used those mehtods to analyze B cell alignments simulated
under different scenarios of change in the underlying mutation rates:

Scenario 1: uniform mutability, constant mutation rate.
Scenario 2: uniform mutability, decreasing mutation rate.

2a: 10% decrease in rate over simulation period
2b: 20% decrease in rate
2c: 30% decrease in rate
2d: 40% decrease in rate
2e: 50% decrease in rate

Scenario 3: context-dependency in mutation rates and / or transition probabilities.
3a: S5F context dependency in mutation rates and transition probabilities
3b: hotspot context dependency in mutation rates, uniform transition

probabilities, hotspots 3x more likely to mutate
3c: hotspot context dependency, hotspots 30x more likely to mutate

For the simulations, we modified a simple forward-time Wright-Fisher model to
impose a fitness cost on non-synonymous mutations. The status of a mutation
(synonymous or non-synonymous) is defined relative to a fixed reference sequence. As a
reference sequence, we used the heavy chain sequence at the root node of lineage CH103,
inferred under a logistic growth prior (98-100% identical to sequences inferred in four
replicate chains under a constant population size prior). An initial population is
generated consisting of a single copy of the reference sequence. At each subsequent
generation t, Nt sequences are produced by replicating sequences from the previous
generation with the possibility of mutation. We assumed N grows logistically:

Nt = Nt−1 + rNt−1

(
1− Nt−1

K

)
(5)

with N0 = 1 and Nt rounded to the nearest integer. Logistic growth assumes the B cell
population initially expands exponentially and then saturates at the carrying capacity
K.

The probability that a newly generated sequence at generation t descends from
sequence i in generation t− 1 is equal to the fitness of sequence i, wi, normalized by the
sum of fitness values across the entire population at t− 1. Any sequence i whose amino
acid translation is the same as that of the reference sequence has fitness wi = 1. Each
non-synonymous mutation relative to the reference sequence adds s to the value of wi,
with negative values of s representing a fitness cost (wi cannot go below 0). Newly
generated sequences undergo mutations at fixed or variable rates, depending on the
scenario.

Modeling relative and absolute mutation rates

Different models have been proposed to describe variation in somatic hypermutation
rates across different nucleotide motifs [7, 21,22]. For site i in sequence j, those models
can be used to assign a relative mutation rate mi,j to site i, based on its local sequence
context in sequence j. However, the precise relationship between the relative mutability
of a site and the site’s absolute mutation rate is unclear. To model absolute mutation
rates as a function of the relative mutability of a sequence’s motifs, we assume that the
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average mutation rate per site per generation for sequence j, µj , is proportional to the
sequence’s average relative mutability, mj :

µj = k ×mj (6)

Let m0 be the average relative mutability of the reference sequence. We choose k so
that the reference sequence has an average mutation rate per site per generation, µ0,
equal to 1/4L, where L is the sequence length (in number of nucleotides):

k =
1

m04L
(7)

In preliminary simulations under default values for other parameters (see below), this
choice of µ0 = 1/4L produced alignments visually similar to those observed for real B
cell lineages in terms of overall nucleotide diversity. For any sequence j, the average
mutation rate per site per generation is then given by:

µj =
mj

m04L
(8)

Thus, a sequence with half the average relative mutability of the reference sequence has
half the average mutation rate per site per generation. Finally, site-specific mutation
rates per generation for sequence j are given by:

µi,j = mi,j × k =
mi,j

m04L
(9)

Note that scaling site-specific mutation rates to 1/4L does not change the relative
mutability of the sites. For example, for sites a and b in the same sequence j:

µa,j

µb,j
=
ma,j

mb,j

To models scenarios 1 and 2 (where mutation rates are independent of sequence
context) we let µi,j(t) = c(t)× 1/4L be the mutation rate per time per generation for
all sites in all sequences at generation t, where 0 ≤ c(t) ≤ 1. In scenario 1 we let
c(t) = 1 for all t, whereas in scenario 2 we choose decreasing values of c(t) for different
time intervals

In the S5F-based parameterization (scenario 3a), we set mi,j to the relative
mutability scores from [21], based on a five-nucleotide window centered on site i. The
first two sites and the last two sites, for which S5F is indeterminate since the neighbors
are unknown, are assigned mutability zero. We used motif-specific transition
probabilities between nucleotides inferred by the S5F model along with motif-specific
mutation rates.

In the “hotspot” parameterization (scenarios 3b-c), we let mi,j be either 1, if site i is
not at the central position of a hotspot, or h, if it is. Site i is at the central position of a
hotspot if it is occupied by the underlined nucleotide in a WRCH or a DGYW motif,
where W = {A/T}, R = {A/G}, H = {A/T/C}, D = {A/T/G} and Y = {C/T} [7].
A site is assigned mutability 1 f it cannot be determined whether or not that site is at
the center of a WRCH or a DGYW motif (for example, the left neighbors of the first
site in a sequence and the right neighbors of the last site in a sequence are unknown).
We assumed uniform transition probabilities between nucleotides.

We ran all simulations withs = −0.01, r = 0.7 and K = 1000 for 2000 generations,
sampling 25 sequences every 250 generations starting at generation 500. We decreased
c(t) by 0.2 every 250 generations starting at generation t = 1000 for scenario 2a, by 0.4
every 250 generations starting at generation t = 1000 for scenario 2b, by 0.5 every 250
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generations starting at generation t = 750 for scenario 2c, by 0.8 every 250 generations
starting at generation t = 1000 for scenario 2d, and by 0.1 every 250 generations
starting at generation t = 1000 for scenario 2d.

We analyzed the simulated alignments using BEAST v.1.8.2 to test if declines in
synonymous and non-synonymous substitution rates are correctly detected in scenarios
2 and 3.

Changes in substitution rates over time

For each tree in the posterior distributions inferred for observed and simulated
alignments, we computed the estimated synonymous and non-synonymous substitution
rates for each branch by dividing estimated counts of synonymous and non-synonymous
substitutions (obtained by robust counting) by the branch’s length measured in time.
For each tree in the posterior distributions of simulated alignments, we estimated
pairwise linear regression coefficients between branch times (predictor variable,
measured at each branch’s parent node) and total, synonymous and non-synonymous
substitution rates (response variables).

Supplementary figures
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Fig S1. Mutability of the inferred ancestral sequences of long-lived B cell lineages (red
squares) compared with the distribution of mutability values obtained by randomizing
the ancestral codon sequence while keeping the amino acid sequence constant. Results
are shown for the whole sequences (WS) and separately for framework regions (FRs)
and complementarity determining regions (CDRs).
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a) CH103 heavy chain b) CH103 light chain c) VRC26 heavy chain

d) VRC26 light chain e) VRC01-13 heavy chain f) VRC01-01 heavy chain

g) VRC01-19 heavy chain

Fig S2. Evolution of S5F-mutability in long-lived B cell lineages. Scatterplots show
S5F-mutability over time for nodes from a sample of 100 trees from the posterior
distribution. Blue points correspond to terminal nodes (observed sequences), and black
points correspond to internal nodes whose sequences were inferred statistically. The red
line represents an average of regression lines calculated for each tree in a sample of 1000
trees. Solid lines indicate instances indicate significant relationships (where the
highest-posterior density of the slope did not overlap zero), and dashed lines indicate
non-significant relationships.
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a) CH103 heavy chain b) CH103 light chain c) VRC26 heavy chain

d) VRC26 light chain e) VRC01-13 heavy chain f) VRC01-01 heavy chain

g) VRC01-19 heavy chain

Fig S3. Evolution of S5F-mutability in the framework regions (FRs) of long-lived B
cell lineages. Scatterplots show S5F-mutability over time for nodes from a sample of 100
trees from the posterior distribution. Blue points correspond to terminal nodes
(observed sequences), and black points correspond to internal nodes whose sequences
were inferred statistically. The red line represents an average of regression lines
calculated for each tree in a sample of 1000 trees. Solid lines indicate instances indicate
significant relationships (where the highest-posterior density of the slope did not overlap
zero), and dashed lines indicate non-significant relationships.
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a) CH103 heavy chain b) CH103 light chain c) VRC26 heavy chain

d) VRC26 light chain e) VRC01-13 heavy chain f) VRC01-01 heavy chain

g) VRC01-19 heavy chain

Fig S4. Evolution of S5F-mutability in the complementarity determining regions
(CDRs) of long-lived B cell lineages. Scatterplots show S5F-mutability over time for
nodes from a sample of 100 trees from the posterior distribution. Blue points correspond
to terminal nodes (observed sequences), and black points correspond to internal nodes
whose sequences were inferred statistically. The red line represents an average of
regression lines calculated for each tree in a sample of 1000 trees. Solid lines indicate
instances indicate significant relationships (where the highest-posterior density of the
slope did not overlap zero), and dashed lines indicate non-significant relationships.
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Fig S5. Evolution of the difference in mutability between complementarity determining
regions (CDRs) and framework regions (FRs) in long-lived B cell lineages. The relative
difference is calculated as the average mutability of CDRs minus the average mutability
of FRs, divided by the average mutability of FRs. Each point corresponds to a node in
the maximum-clade-credibility tree of each lineage. Linear regression lines are shown in
red.
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Fig S6. Mutability of B cell receptor sequences from different B cell lineages relative to
the expected distribution of mutability values obtained by randomizing codon sequences
while keeping the amino sequences constant. The distribution of mutability percentiles
obtained for sequences sampled at the last sampling time point in each dataset is shown
in gray. The mutability percentile of each lineage’s ancestor is shown in red. Results are
shown separately for framework regions (FR) and complementarity determining regions
(CDRs).
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Fig S7. Frequency of mutability losses relative to the total number of changes in S5F
mutability caused by synonymous substitutions during the evolution of anti-HIV B cell
lineages. Blue indicates changes that on terminal branches, orange indicates changes
along the trunk of the tree, and black indicates changes on the remaining internal
branches. Results are shown separately for framework regions (FRs) and
complementarity determining regions (CDRs). Each point denotes the frequency of
changes in mutability that were losses, averaged across a sample of 1000 trees from the
posterior distribution. Vertical lines indicate the 95% highest-posterior density interval.
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a) CH103 heavy chain b) CH103 light chain c) VRC26 heavy chain

d) VRC26 light chain e) VRC01-13 heavy chain f) VRC01-01 heavy chain

g) VRC01-19 heavy chain

Fig S8. Evolution of the number of WRCH/DGYW hotspots in long-lived B cell
lineages. Scatterplots show the number of hotspots over time for nodes from a sample of
100 trees from the posterior distribution. Blue points correspond to terminal nodes
(observed sequences), and black points correspond to internal nodes whose sequences
were inferred statistically. The red line represents an average of regression lines
calculated for each tree in a sample of 1000 trees. Solid lines indicate instances indicate
significant relationships (where the highest-posterior density of the slope did not overlap
zero), and dashed lines indicate non-significant relationships.
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a) CH103 heavy chain b) CH103 light chain c) VRC26 heavy chain

d) VRC26 light chain e) VRC01-13 heavy chain f) VRC01-01 heavy chain

g) VRC01-19 heavy chain

Fig S9. Evolution of the number of overlapping hotspots in long-lived B cell lineages.
Scatterplots show the number of overlapping hotspots over time for nodes from a
sample of 100 trees from the posterior distribution. Blue points correspond to terminal
nodes (observed sequences), and black points correspond to internal nodes whose
sequences were inferred statistically. The red line represents an average of regression
lines calculated for each tree in a sample of 1000 trees. Solid lines indicate instances
indicate significant relationships (where the highest-posterior density of the slope did
not overlap zero), and dashed lines indicate non-significant relationships.
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a) CH103 heavy chain b) CH103 light chain c) VRC26 heavy chain

d) VRC26 light chain e) VRC01-13 heavy chain f) VRC01-01 heavy chain

g) VRC01-19 heavy chain

Fig S10. Evolution of 7-mer mutability in long-lived B cell lineages. Scatterplots show
7-mer mutability over time for nodes from a sample of 100 trees from the posterior
distribution. Blue points correspond to terminal nodes (observed sequences), and black
points correspond to internal nodes whose sequences were inferred statistically. The red
line represents an average of regression lines calculated for each tree in a sample of 1000
trees. Solid lines indicate instances indicate significant relationships (where the
highest-posterior density of the slope did not overlap zero), and dashed lines indicate
non-significant relationships.
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Fig S11. Frequency of mutability losses relative to the total number of changes in
mutability during the evolution of anti-HIV B cell lineages. Rows correspond to different
mutability metrics, and column contain results obtained for the whole analyzed region
of the BCR sequence, and separately for framework regions (FRs) and complementarity
determining regions (CDRs). Each point denotes the frequency of changes in mutability
that were losses, averaged across a sample of 1000 trees from the posterior distribution.
Vertical red lines indicate the 95% highest-posterior density interval.
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Fig S12. Total substitution rate inferred from the random local clock model, as a
function of time for the observed lineages. Each plot shows the points corresponding to
a sample of 100 trees from the posterior distribution inferred by BEAST. Terminal
branches are shown in blue, and internal branches are shown in black.
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Fig S13. Total substitution rate inferred from robust counting (summing synonymous
and non-synonymous rate estimates), as a function of time for the observed lineages.
Each plot shows the points corresponding to a sample of 100 trees from the posterior
distribution inferred by BEAST. Terminal branches are shown in blue, and internal
branches are shown in black.
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Fig S14. Robust counting synonymous substitution rate as a function of time for the
observed lineages. Each plot shows the points corresponding to a sample of 100 trees
from the posterior distribution inferred by BEAST. Terminal branches are shown in
blue, and internal branches are shown in black.
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Fig S15. Robust counting non-synonymous substitution rate as a function of time for
the observed lineages. Each plot shows the points corresponding to a sample of 100
trees from the posterior distribution inferred by BEAST. Terminal branches are shown
in blue, and internal branches are shown in black.
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Fig S16. Relationship between robust counting substitution rates and time for
simulations performed under different levels of decline in the overall mutation rate.
Each black line is the linear regression line between branch-specific rates and times for a
single tree from the posterior distribution inferred for a simulated alignment using
BEAST. Each plot shows a sample of 500 lines. The red lines are the “average”
regression lines, with the average intercept and the average slope calculated from a
larger sample of 1000 trees from each distribution.
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Fig S17. Relationship between robust counting substitution rates and time for
simulations performed under models where the mutation rate at each site depends on its
S5F mutability or on whether that site is at the center of a WRCH/DGYW hotspot (in
which case it mutates either 3 or 30 times more frequently than non-hotspots sites).
Each black line is the linear regression line between branch-specific rates and times for a
single tree from the posterior distribution inferred for a simulated alignment using
BEAST. Each plot shows a sample of 500 lines. The red lines are the “average”
regression lines, with the average intercept and the average linear coefficient calculated
from a larger sample of 1000 trees from each distribution.
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