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Abstract 

The regulation of cognitive and emotional processes is critical for proper executive 

functions and social behavior, but its specific mechanisms remain unknown. Here, we 

addressed this issue by studying with functional magnetic resonance imaging the changes in 

network topology that underlie competitive interactions between emotional and cognitive 

networks in healthy participants. Our behavioral paradigm contrasted periods with high 

emotional and cognitive demands by including a sadness provocation task followed by a 

spatial working memory task. We hypothesized that this paradigm would enhance the 

modularity of emotional and cognitive networks and reveal the hub areas that regulate the 

flow of information between them. By applying graph analysis methods on functional 

connectivity between 20 regions of interest in 22 participants we identified two main brain 

network modules, one cognitive and one emotional, and their hub areas: the left 

dorsolateral prefrontal cortex (dlPFC) and the left medial frontal pole (mFP). These hub 

areas did not modulate their mutual functional connectivity following sadness but they did 

so through an interposed area, the subgenual anterior cingulate cortex (sACC). Our results 

identify dlPFC and mFP as areas regulating interactions between emotional and cognitive 

networks, and suggest that their modulation by sadness experience is mediated by sACC. 
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Introduction  

Emotion and cognition are central to the quality and range of everyday human experience1. 

The question of how emotion and cognition interact is re-emerging motivated by advances 

in functional neuroimaging techniques and computational tools2–6. 

Negative affect and anxiety are known to impair working memory (WM) performance7–11, 

which has been associated in neuroimaging studies with deactivation of cortical areas 

typically associated with WM in the prefrontal and parietal cortices7,12,13 and with the 

inverse activation of ventral regions typically associated with emotional processing7,8,12,13. 

However, there is a strong integration between the "emotional brain" and the "cognitive 

brain" in most daily activities3,14,15 so that this segregation is generally blurry except for in 

the most extreme conditions such as in depressed patients16. Inducing recapitulation of a 

sadness experience in healthy subjects achieves a pattern of brain activations consistent 

with the strong opposition between emotional and cognitive circuits observed in depressed 

patients17,18. Dorsal areas are typically deactivated (dorsolateral prefrontal cortex (dlPFC), 

dorsal anterior cingulate cortex (dACC) and parietal cortex) and ventral and subcortical 

areas are activated (insula, orbitofrontal cortex (OFC), subgenual anterior cingulate cortex 

(sACC), amygdala, hippocampus), while some other areas may play the role of 

interconnecting these two networks (basal ganglia, thalamus, rostral ACC)17,18. At present, 

it is unclear whether these integration-segregation dynamics occur diffusely between all 

these participating areas, or whether there are specific areas that channel primarily these 

interactions. Deep brain stimulation (DBS) effectiveness in treatment-resistant depression 

but only at very specific points of the cingulo-frontal bundle suggests the presence of key 

nodes in this distributed network19–21. Here, we study the topology of sadness interactions 

within these brain circuits using network analysis of blood-oxygen level dependent 

(BOLD) time series with graph theory2,4,22, while participants engage in cognitive tasks in 

control and sadness conditions.  

We hypothesized that a paradigm with a strong conflicting emotional and cognitive demand 

would enhance the modularity of emotional and cognitive brain networks in healthy 

participants and thus reveal the cortical areas that act as network hubs, which are critical for 

regulating the flow and integration of information between communities23. We collected 
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functional magnetic resonance imaging (fMRI) data from 22 healthy subjects performing 

this task. Based on these activation patterns we extracted 20 regions of interest (ROI) on a 

subject-by-subject basis and we computed the correlations between fMRI time series in 

pairs of ROIs, obtaining the matrix of functional connectivity for each subject on which we 

applied network measures from graph theory24. We found that the dlPFC acted as connector 

hub of the cognitive subnetwork, and medial fronto-polar cortex (mFP) was the connector 

hub of the emotional subnetwork, but they both interacted via the sACC in the emotional 

subnetwork, and these connectivity patterns were associated with the intensity of the 

sadness experienced by the participants. 
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Methods 

Participants 

Twenty-two healthy participants (28.9 ± 3.9 years of age, mean ± s.d., 10 males) without 

any psychiatric, neurological or medical illness were recruited. All participants were 

screened with the Mini-International Neuropsychiatric Interview (M.I.N.I.) to specifically 

ensure the absence of any ICD-10 psychiatric disorders25 as well as those using 

psychoactive medications. All subjects were screened with Charlson comorbidity index26. 

All volunteers had normal or corrected-to-normal vision and were right-handed, native 

Spanish speakers. The study was carried out in accordance with ethical guidelines and 

deontological criteria established by the Hospital Clínic of Barcelona, as approved by its 

Ethics Committee of Clinical Research (Ref: 2009/4886) and written informed consent was 

obtained from all participants.  

 

 

 

 

 

 

 

 

Figure 1: The two behavioral paradigms: Neutral-WM1 and Sadness-WM2. 
A. The first paradigm is composed of two tasks: a neutral epoch followed by 20 trials of spatial working 
memory with a filtering component.  

B. In the second paradigm, the participants underwent a sadness provocation task. When maximal 
sadness was achieved, participants closed their eyes for a 2-min scan, which was then followed by 
another 20 trials of spatial working memory with a filtering component. Note that in both paradigms the 
same stimuli were presented, the only difference being the sadness induced before in the second 
paradigm. Gray lines mark scanner acquisition periods (320 s). 
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Experimental Design  

The study was composed of two different behavioral paradigms run immediately in 

sequence in the scanner (Fig. 1).  

In the first paradigm (Neutral-WM1), subjects were first instructed to rest in a “neutral 

emotional state” while keeping their eyes closed in a 2-min neutral-epoch scan. Following 

this resting condition, participants engaged in a spatial working memory task (WM1) with a 

filtering component27. In each of 20 working memory trials, 5 bright stimuli were presented 

on a black screen for 1 s, while participants were instructed to maintain fixation on a central 

cross. Stimuli appeared at random locations of equal eccentricity (6 deg. of visual angle) on 

a grid of 16 possible positions27. Of these stimuli, three were red dots and two were yellow 

dots. Participants were instructed to remember only the position of the red dots. Stimuli 

were followed by a dark screen during a delay of 4 s and then a probe stimulus was 

displayed for 4 s at one grid location (Fig. 1). At that point, participants pressed one of two 

buttons with the index or middle finger of their right hand to indicate whether one of the 

red dots had been presented at the location indicated by the probe or not, respectively.  

In 25% of the trials, the probe appeared at a location previously occupied by a yellow dot. 

In these trials, an error response of the participants (yes response) indicated a failure to 

apply the filtering component of the task. We define this type of error as a cognitive 

inhibition error27,28.    

In the second paradigm (Sadness-WM2), participants performed an emotional task, the 

sadness provocation task (SP)29. All subjects had prepared in advance a short 

autobiographical narrative of personal events in which they felt particularly sad, e.g. sad 

experiences most commonly centered on the loss of relatives, friends, or significant 

relationships. Before scanning, the narrative texts were presented on the screen and subjects 

were asked to generate a state of sadness comparable to that originally experienced. After 

the maximum mood intensity was achieved, participants pressed a button, closed their eyes 

and were instructed to stop visualizing, thinking, or ruminating on the text and to focus on 

their feelings of sadness while we acquired fMRI data in a 2-min sadness-epoch scan. 

Following the sadness epoch, and without stopping the scanner, participants performed a 

second spatial working memory task (WM2) with filtering component, following the 

description in the first paradigm. After the scan session, participants reported their 
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subjective rating of the sadness experienced on a 0–7 point scale (5.6 ± 0.17, mean ± 

SEM)30.   

All participants trained for all tasks before the scanner session. We did not reverse the order 

of the paradigms to avoid that sadness affected the Neutral-WM1 paradigm. 

Behavioral analysis 

Participants were divided into two groups depending on their sadness intensity: "high-

sadness group" were those whose subjective sadness rating ranked above the overall mean 

(n=12, mean=6.14, median=6, range 6-7) and "low-sadness group" were those participants 

whose rating ranked below the mean (n=10, mean=4.85, median=5, range 4-5.5). Two 

participants were excluded from the behavioral analysis because they reported difficulty in 

distinguishing the color of the dots during the WM tasks (1 from the high-sadness group, 

and 1 from the low-sadness group). We measured WM performance with the fraction of 

errors, the reaction times and the fraction of cognitive inhibition errors for each subject in 

WM1 and WM2.  

fMRI acquisition  

Brain images were acquired on a 3 Tesla TimTrio scanner (Siemens, Erlangen, Germany) 

using the 8-channel phased-array head coil supplied by the vendor. A custom-built head 

holder was used to prevent head movement, and earplugs were used to attenuate scanner 

noise. High-resolution three-dimensional T1-weighted magnetization prepared rapid 

acquisition gradient echo (MPRAGE) images were acquired for anatomic reference 

(TR=2200 ms, TE=3 ms, FA=7o, 1.0 mm isotropic voxels). A T2-weighted scan was used in 

order to detect possible pathological features (TR=3780 ms, TE=96 ms, FA=120o, voxel 

size 0.8x0.6x3.0mm, 3.0mm thick, 0.3mm gap between slices, 40 axial slices). Functional 

data were acquired using a gradient-echo echo-planar pulse sequence sensitive to blood 

oxygenation level-dependent (BOLD) contrast (TR=2000 ms, TE=30 ms, FA=85o, 3.0mm 

isotropic voxels, 3.0 mm thick, no gap between slices).  Presentation® software and data 

acquisition were synchronized to stimulus pulse sent by the scanner. Participants were 

requested to avoid moving during the whole MRI scan. The total duration of uninterrupted 

scanning time during each of the two behavioral paradigms (Fig. 1) was 320 s, i.e. 160 

volumes.  
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fMRI data analysis  

Preprocessing and statistical analysis were carried out with SPM8 (Wellcome Trust Centre 

for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm). The images were manually aligned 

along the anterior commissure-posterior commissure line. Preprocessing included the 

realignment of the scans for motor correction and the normalization to the Montreal 

Neurological Institute (MNI) template (interpolating to 3 mm cubic voxels). For GLM 

analyses we further applied spatial smoothing with a Gaussian kernel of 10 mm (we also 

tried Gaussian kernels of 8mm and 6mm, which did not affect the GLM results). For the 

functional connectivity analysis the spatial smoothing was not applied because we averaged 

all voxels within each ROI prior to the connectivity analyses.  

A random-effect, epoch-related statistical analysis was performed in a two-level procedure. 

At the first level, a general linear model (GLM) was estimated by using regressors for each 

instruction condition (before WM trials), neutral and sadness epochs, and fixation period, 

memory stimulus, delay period and probe stimulus (Fig. 1). Regressors were convolved 

with the canonical hemodynamic response function in SPM8. The data were high-pass 

filtered (128 s cutoff) to remove low-frequency drifts. Images from contrasts of interest for 

each participant were used in a second-level analysis, treating participants as a random 

effect.  

A paired sample t-test was used to investigate the resulting statistical maps for the contrast 

delay-fixation in WM1 and WM2. The voxel significance was evaluated in a whole-brain 

analysis testing the global null hypothesis that delay-fixation showed no significant 

activation. This analysis was corrected for multiple comparisons (false discovery rate 

(FDR), P < 0.05) and it identified 10 different cortical areas implicated in cognitive 

processing in this task (Table 1). 

Subsequently, a paired sample t-test was used to statistically assess the difference between 

delay activity in WM1 and WM2. A mask was created including the activated areas in both 

WM1 and WM2 in order to compare the difference in the level of activation between WM1 

and WM2. The voxel significance was evaluated in the mask testing the global null 

hypothesis that delayWM1- delayWM2 did not show significant activation. This analysis was 

corrected for multiple comparisons in the working memory mask (false discovery rate 

(FDR), P < 0.05). 
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We used a 2-factor ANOVA to statistically assess the interaction between delay activity in 

the two tasks (delayWM1 and delayWM2) and sadness intensity (high-sadness and low-sadness 

groups). The voxel significance was evaluated in a mask testing the global null hypothesis 

that delayWM1 - delayWM2 and high-sadness - low-sadness groups did not show significant 

interactions. 

We further used a 2-factor ANOVA to statistically assess the interaction between brain 

activity in the passive conditions (Neutral and Sadness) and sadness intensity (high-sadness 

and low-sadness groups). Voxel significance was evaluated in a whole-brain analysis 

testing the global null hypothesis that the interaction between Sadness/Neutral and high-

sadness/low-sadness groups was not significant. This analysis led us to identify 9 different 

cortical and subcortical areas implicated in emotional processing in this task (Punc < 0.05) 

(Table 1). 

For the sACC, which shows significant interaction (small volume correction, 5 mm square 

at -6 21 -9, FWE-corrected, p = 0.038), a paired sample t-test was used to statistically 

assess the difference between Sadness and Neutral epochs in the high-sadness group. 

 

Functional connectivity 

Cognitive and emotional regions of interest (ROIs) were determined from global analysis as 

indicated in Results (see list of ROIs in Table 1). 

Some areas known to be related to emotional processing did not survive the correction by 

multiple comparisons; medial orbitofrontal gyrus left, subgenual anterior cingulate cortex 

right, medial frontal pole bilateral, hippocampus bilateral and amygdala bilateral. Medial 

orbitofrontal gyrus right did not show significant activation and was added as the laterally 

symmetric counterpart of the medial orbitofrontal gyrus left. The locations of the emotional 

ROIs taken around the peak activations of our contrasts were consistent with coordinates in 

the literature29,31–35. Each ROI was defined as a 5 x 5 x 5 voxel cube centered around the 

detected peak activations (for coordinates see Table 1). 

The ROI signals were obtained by linear detrending preprocessed data without spatial 

smoothing for each voxel, and then by averaging across all voxels within the ROI. We 

removed covariations common to all ROIs by applying a signal regression36,37. This 

procedure removes global fluctuations related to physiological artifacts such as heart rate, 
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respiration, and scanner noise that are seen throughout the brain artificially, but it could also 

introduce spurious anticorrelations (See Discussion)36,38,39.  

 

Regions Hemisphere Abbrev. MNI coordinates 

x y z

Dorsolateral prefrontal cortex 

(Middle frontal gyrus, BA 9, 46)  

Left 

Right 

dlPFCl 

dlPFCr 

-45 

42 

24 

15 

30 

39

Inferior frontal gyrus 

(BA 44, 45)  

Left 

Right

iFGl 

iFGr 

-33 

48 

22 

19 

0 

0

Medial superior frontal gyrus 

(BA 6)  

Left 

Right

mSFGl 

mSFGr 

-7 

8 

27 

35 

45 

42

Intraparietal sulcus 

(BA 7)  

Left 

Right

IPSl 

IPSr 

-33 

40 

-50 

-50 

41 

42

Postcentral gyrus 

(BA 1, 2, 3)  

Left 

Right

PCGl 

PCGr 

-33 

54 

-24 

-21 

57 

48

Subgenual anterior cingulate cortex 

(BA 25)  

Left 

Right

sACCl 

sACCr 

-5 

15 

22 

28 

-7 

-9

Medial frontal pole 

(BA 10)  

Left 

Right

mFPl 

mFPr 

-8 

8 

66 

66 

6 

9

Amygdala Left 

Right

Amyl 

Amyr 

-27 

27 

-12 

-9 

-15 

-18

Hippocampus  Left 

Right

Hipl 

Hipr 

-18 

21 

-21 

-21 

-27 

-15

Medial orbitofrontal gyrus 

(BA 11, 12)  

Left 

Right

mOFGl 

mOFGr 

-15 

15 

48 

48 

-9 

-9

 

Table 1: Regions identified in the task-based analyses. MNI coordinate system. BA = Broadmann area 

 

 

To focus on temporal fluctuations of the BOLD signal not related to the imposed structure 
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of the paradigms (two tasks (SP/resting and WM), change of task in a time scale of 2 min) 

ROI signals were band-pass filtered in the range 0.018-0.26 Hz (i.e. maintaining temporal 

fluctuations in time scales from 4 seconds to 1 minute). Functional connectivity between 

areas was computed with the Pearson correlation coefficient between the 320-sec signals 

for each pair of ROIs in our database (Table 1), separately for each of the two behavioral 

paradigms (Fig. 1). 

We tested the functional significance within our task of correlations between ROIs 

identified as hubs of the network (see below) with ANOVA tests. For sACCl-dlPFCl and 

sACCl-mFPl correlations, we ran a 3-factor ANOVA tests with the factors: paradigm 

(Neutral-WM1 vs. Sadness-WM2), sadness intensity (high-sadness vs. low-sadness groups) 

and participant identity as a random factor. The interaction between sadness intensity and 

paradigm was significant for both connections (false discovery rate (FDR), P < 0.05; 

p=0.0006 for sACCl-dlPFCl; p = 0.0434 for sACCl-mFPl), so we separated the data for 

each group and we performed a paired sample t-test comparing correlations for different 

sadness groups and paradigms.  

Graph analysis 

For each subject and behavioral paradigm, the correlation matrix between our ROIs is the 

adjacency matrix of the weighted graph that represents the corresponding brain network2. 

The symmetrical adjacency matrix resulting from our undirected graph was characterized 

for having positive and negative weights. We used algorithms adapted to this type of data 

using standard graph theory methods on Matlab (Brain Connectivity Toolbox developed by 

O. Sporns, Indiana University, Bloomington, IN; (https://sites.google.com/site/bctnet/)24,40.    

We calculated the community structure from the mean correlation matrix across subjects. 

To identify the best partition in modules (communities), we quantified its modularity by a 

quality function Q, which we optimized. Q is a scalar value between –1 and 1 that measures 

the density of links inside communities as compared to links between communities.  Large 

values of Q reflect more segregation, or equivalently, decreased integration, between 

different communities. The best partition is defined as the set of communities with the 

largest modularity Q. The modularity analysis has two free parameters (resolution 

parameters γ+ and γ–) that allow weighing differently the positive and negative correlations 

in the connectivity, and this has an impact in the community structure that the method 
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identifies. We used resolution parameters (γ+ = 1, γ– = 1), and (γ+ = 1, γ– = 0.75) in our 

analyses (Results)41,42. 

 

Once we calculated the community structure, we measured the degree and the participation 

coefficient of each node (i.e. ROI in Table 1), and the global efficiency of each network 

community. The degree of a node is the number of connections to that node. The degree has 

a straightforward neurobiological interpretation: nodes with a high degree are interacting, 

structurally or functionally, with many other nodes in the network. In our weighted graph, 

we validated a connection if its corresponding absolute weight exceeded a pre-defined 

threshold (range 30%-45%) relative to the absolute strongest correlations. In the results, we 

consider high-degree areas when their degree is greater than the network mean degree plus 

one standard deviation. These areas are candidates to be defined as hubs of the networks, as 

previously argued in the literature23. The Participation coefficient is a measure of diversity 

of intermodular connections of individual nodes, it compares the degree of a given node to 

the number of connections within its own subnetwork. This measure requires a previously 

determined community structure (see above)23. Global efficiency (GE) measures the 

average strength of the shortest paths in the network and can be interpreted as the overall 

“efficiency of communication” minimizing the cost of communication over the most direct 

paths in the networks. Global efficiency requires as inputs a measure of node dissimilarity, 

or the “cost” of a connection; which we defined as the inverse of the functional connection 

weight. We calculated GE for each community, separately. Since within each community 

most of the functional connectivity weights are positive, negative weights were set to zero 

for this analysis24.   

 

Statistical significance of group differences was assessed with permutation tests, where we 

permuted randomly the assignment of data to each group and we repeated the measure 

1,000 times. We reported a significant difference if the difference between the actual groups 

was larger that 95% of the samples generated randomly (p < 0.05). 
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Results 

We recorded fMRI brain activity in 22 participants while they engaged in two identical 

working memory tasks  (WM1, WM2), separated by a period in which a sadness state was 

induced by remembering a previously identified biographical sketch (Fig. 1). After the scan 

session, participants reported their subjective rating of the sadness intensity. We sought to 

identify the functional changes induced by the sadness state in brain networks engaged in 

regulating the interaction between cognition and emotion.  

 

Behavioral analysis  

Across participants, the mean number of error trials, of cognitive inhibition error trials (see 

Experimental design), and the mean reaction times did not change significantly from the 

working memory session before sadness induction (WM1) to the working memory session 

after sadness induction (WM2) (Table 2, paired sample t-test: p = 0.5, p = 0.6, p = 0.85, 

respectively, n=20). 

 

 

Tasks Mean errors Cognitive inhibition errors Reaction time 

WM1 3.15 ± 0.48  1.35 ± 0.24 1.334 ± 0.059 s  

WM2 3.4 ± 0.5 1.3 ± 0.24 1.307± 0.061 s  

Table 2: Behavioral measures. Indicated are parameters of behavioral responses in the 20-trial 

WM tasks of the Neutral-WM (WM1) and Sadness-WM (WM2) paradigms. We report mean ± 

SEM, n=20. 

As defined in our analysis, we split participants according to their subjective report on 

sadness intensity (see Behavioral analysis). We found that participants in the high-sadness 

group diminished their WM performance following sadness provocation (Fig. 2A, Table 3, 

3-way ANOVA with factors high-sadness/low-sadness, WM1/WM2 and subject identity, 

n=20, p = 0.04 for the interaction between high-sadness/low-sadness groups and 

WM1/WM2, paired sample t-test p = 0.033 for WM1-WM2 errors in the high-sadness 
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group, p = 0.37 for WM1-WM2 errors in the low-sadness group). This underscores the 

validity of this subjective report, so that we used it in the following to identify effects 

associated specifically with the experience of sadness. 

 

 

 

Figure 2: Sadness intensity disrupted WM 
performance and activated the sACCl.   

A. Mean number of error trials during working 
memory tasks: The high-sadness group presented 
more errors in WM2 relative to WM1. 

B. A significant interaction between 
Sadness/Neutral and high-sadness/low-sadness 
groups in sACCl (ANOVA T-contrast, 6-voxel 
cluster, peak activation at –6 21 –9.   

C. Significant sACCl activation during sadness 
relative to neutral states (Fig. 1) in the high-
sadness group (20-voxel cluster, peak activation at 
–3 21 –9. The intersection of lines marks the peak 
cluster activation of B (–6 21 –9 coordinates). 
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 High-sadness:

Mean errors  

Low-sadness:

Mean errors  

WM1  3.27 ± 0.74  3 ± 0.62  

WM2  4.18 ± 0.75 2.44 ± 0.5  

Table 3: Mean number of errors in high-sadness and low-sadness groups. 

Mean number of errors in the 20-trial WM tasks of the Neutral-WM (WM1) 

and Sadness-WM (WM2) paradigms. We report mean ± SEM, n=11 (high-

sadness), n=9 (low-sadness). 

 

fMRI BOLD response during working memory 

We first identified the cortical areas that are supporting the memory component of the 

working memory task in the cognitive network during WM1 and WM2. We conducted a 

whole brain analysis to find regions activated in a delay-fixation contrast (see fMRI data 

analysis). We found significant activation (False Discovery Rate, FDR, p < 0.05, 

Supplementary Fig. S1) in the cognitive areas: dorsolateral prefrontal cortex (dlPFC), 

intraparietal sulcus (IPS), medial superior frontal gyrus (mSFG), postcentral gyrus (PCG) 

and inferior frontal gyrus (iFG) (Supplementary Fig. S1A for WM1 and Supplementary Fig. 

S1B for WM2, for coordinates see Table 1). We tested changes in delay activity in these 

areas by applying a mask on a delayWM1−delayWM2 contrast (Supplementary Fig. S1C), and 

we found a significant reduction in activity during delayWM2 in all these areas (FDR, p < 

0.05). However, we could not attribute this decrease unambiguously to sadness experience, 

as we could not find an interaction between the factors high-sadness/low-sadness and 

WM1/WM2 in none of these areas (2-way ANOVA, FDR p < 0.05, mask with areas in 

Supplementary Fig. S1A-B).  

 

 

fMRI BOLD activity related to sadness experience 

We then looked for the anatomical regions activated during the Sadness epoch (Fig. 1). 

Previous studies have pointed to the sACC as an area involved in sadness processing. 
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Across all participants, we did not find a significant activation in the sACC, or in any other 

area, in the Sadness epoch relative to the Neutral epoch (2-way ANOVA whole brain 

analysis with factors epoch and sadness intensity, T-contrast, FDR p < 0.05). Nevertheless, 

it is known that factors associated with individual differences at both neuroanatomical and 

behavioral levels may account for the difficulty in detecting sACC activation (Smith et al., 

2011). We thus resorted to a region of interest (ROI) analysis, where we defined the sACC 

ROI (125-voxel cube, center in Table 1) based on available evidence from previous 

neuroimaging studies29,32,33. Using this ROI as a mask in the above analysis, we found a 

significant interaction between Sadness/Neutral epoch and high-sadness/low-sadness 

groups in the left hemisphere (sACCl, Fig. 2B, cluster of 6 voxels, peak activation at –6 21 

–9, 5-mm-square small volume SVC and FWE corrections, p = 0.038). Sadness 

provocation evoked an increase in the BOLD signal in the sACCl during Sadness compared 

with Neutral in the high-sadness group (Fig. 2C, cluster of 20 voxels, peak activation at –3 

21 –9, SVC and FWE, p = 0.014). In other words, subjects who achieved an intense sadness 

state activated the left sACC.  

Thus, the association of sACC activations with sadness reports was in contrast with its lack 

of statistical significance in FDR-corrected whole-brain Neutral-Sadness contrasts. Based 

on this result, we decided to define the network of areas putatively involved in sadness 

processing by lowering our statistical threshold (whole brain uncorrected tests at punc < 

0.05) in a 2-factor ANOVA testing the interaction between the factors epoch (Neutral / 

Sadness) and sadness intensity (high-sadness / low-sadness). This analysis led us to identify 

9 different bilateral cortical and subcortical areas implicated in emotional processing in this 

task (see Table 1). 

 

Community structure distinguishes emotional and cognitive networks 

Based on these BOLD activations, consistent with previous literature29,31–35 we thus defined 

a set of ROIs (Table 1) that would be presumably implicated in the regulation of cognitive 

and emotional task demands, and we set to determine how sadness experience was 

associated with functional changes in network topology.  

For each pair of ROIs we estimated their functional connectivity as the linear dependence 

of the temporal fluctuations in the corresponding signals, as measured by the Pearson 
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correlation coefficient. This led us to define a symmetrical connectivity matrix containing 

the correlation coefficients between all possible pairs of ROIs. This matrix consists of 

positive and negative correlations (see Functional connectivity and Graph analysis). We 

obtained one such connectivity matrix independently for each subject, and we then 

averaged together these matrices to obtain a matrix of the averaged connectivities across 

participants. We applied graph-theoretic analyses by considering ROIs as nodes and the 

functional connectivity between each pair of ROIs as the corresponding edge.  

We first asked if the pattern of connectivities defined subnetworks of areas that had distinct 

connectivity within and across subnetworks. This can be determined through a community 

detection algorithm that finds the assignment of nodes (ROIs) in communities 

(subnetworks) by maximizing the modularity Q of the partition (see Graph analysis). This 

community detection algorithm applied to our experimental grand-average connectivity 

matrix identified two main communities that coincide with the results of our BOLD 

contrast analyses above: the cognitive module (areas mSFG, PCG, IPS, dlPFC and iFG, 

Supplementary Fig. S1), and the emotional module (areas sACC, medial Frontal Pole 

(mFP), medial orbitofrontal gyrus (mOFG), Amygdala (Amy) and Hippocampus (Hip)) that 

was related to sadness (Fig. 3A-B, Supplementary Fig. S2A-B). The pattern of correlations 

shows that these subnetworks interact with each other mainly through positive correlations 

(Fig. 3A-B, Supplementary Fig. S2A-B, red lines) and between them mainly through 

negative correlations (Fig. 3A-B, Supplementary Fig. S2A-B, blue dashed lines), as seen in 

the distributions of correlations (Figs. 3C and Supplementary Fig. S2C). The modularity 

was higher for Sadness-WM2 than for Neutral-WM1 (Q = 0.431 vs. Q = 0.412, permutation 

test, p = 0.008, Table 4), suggesting that the emotional and cognitive communities get more 

segregated following an episode of intense sadness. We confirmed this by applying the 

community detection algorithm to the average correlation matrices obtained separately for 

the high-sadness and the low-sadness groups in the paradigm Sadness-WM2. The 

community assignment of the different ROIs did not change based on sadness intensity 

(Fig. 3D-E), but the modularity Q was indeed higher for the high-sadness group than for 

the low-sadness group (Q = 0.443 vs. Q = 0.405, permutation test, p < 0.0001, Table 4), 

confirming our hypothesis.  
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Figure 3: Cognitive and emotional communities for Sadness-Working memory.  

A. 3D-graphical representation of the networks, the ROIs are located according to real-world coordinates. 
Mean significant correlations are plotted; positive correlations in red lines and negative correlations in blue 
dashed lines, shading brain for schematic purposes.  

B. Matrix of the mean correlations across subjects. The analysis identified two main modules, the cognitive 
and emotional communities separated by the dashed black line. Into the emotional community, two sub-
communities were found (separated by the red line), corresponding to the emotional areas in the cortex and the 
limbic system (subcortical areas).  

C. Correlation distributions for all subjects. The correlations between cognitive and emotional modules (inter-
modules), plotted in blue were mainly negative (mean ± SEM = –0.15 ± 0.004). The correlations within the 
cognitive module (intra-cognitive, plotted in orange, mean ± SEM =0.089 ± 0.005) and the correlations within 
the emotional module (intra-emotional, plotted in red, mean ± SEM = 0.048 ±0.009) were both positively 
biased. 

D. Matrix of the mean correlation for high-sadness subjects. The analysis identified two main modules, 
cognitive and emotional communities separated by the red line.  

E. Matrix of the mean correlation for low-sadness subjects. The analysis identified three modules, one 
cognitive and two emotional communities separated by the red line. Note that for the low-sadness group, but 
not for the high-sadness group, the algorithm was able to detect within the emotional community the two sub-
communities reported for all subjects (cortical and subcortical areas).  
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When we had the community detection algorithm apply more weight to the positive 

correlations (see Graph analysis), it identified two sub-communities within the emotional 

community (Figs. 3B and Supplementary Fig. S2B, red line). These sub-communities 

corresponded to emotional areas in the cortex (sACC, mOFG and mFP) and the limbic 

system (Amy and Hip), respectively. Consistent with this substructure in the emotional 

community, the mean correlation within the emotional community was lower than within 

the cognitive community (Figs. 3C and Supplementary Fig. S2C; 2-way ANOVA, p = 0.044 

and p = 0.0062, respectively). In these conditions, the modularity Q in Sadness-WM2 was 

higher than in Neutral-WM1 (Q = 0.352 vs. Q = 0.332, permutation test, p < 0.0005, Table 

4), but it was not significantly different between the high-sadness and low-sadness groups 

during Sadness-WM2 (Q = 0.355 vs. Q = 0.345, Table 4). This reflected the fact that the 

two emotional sub-communities enhanced their integration in the high-sadness group: the 

community detection algorithm was unable to distinguish the emotional sub-communities 

in the high-sadness group (Fig. 3D). Taken together, this suggests that sadness experience 

causes the segregation of cognitive and emotional networks, while at the same time 

promoting more integration between cortical emotional areas (sACC, OFC and mFP) and 

the limbic system (Amy and Hip). 

 

  Sadness-WM2 / 

Neutral-WM1 

high-sadness /  

low-sadness 

Modularity Q (g+ = g– = 1) ↑ (p = 0.008) ↑ (p < 0.0001) 

Modularity Q (g+ = 1, g– = 0.75) ↑ (p < 0.0005) NS (p = 0.14) 

Global efficiency (emotional) ↑ (p = 0.016) NS (p = 0.72) 

Global efficiency (cognitive) NS (p = 0.27) NS (p = 0.56) 

 

 

 

We then turned to studying whether subnetworks changed their internal connectivity in the 

task. Global efficiency (GE) computes an estimate of the average inter-node distance within 

a given community, and it provides a measure of its integration within the network. A 

community with higher GE will have “shorter paths” between the nodes (with path distance 

Table 4: Network- and community-level measures. 
Arrow denotes the direction of change, and items in bold are statistically significant.  
NS = non-significant.  Significance (p value) calculated using permutation tests. 
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defined as the inverse of the functional connectivity between two nodes, see Graph 

analysis). We calculated GE separately for each cognitive and emotional network, and 

separately for Sadness-WM2 and Neutral-WM1. We found significantly higher GE for the 

emotional network during the Sadness-WM2 compared to the Neutral-WM1 paradigms (GE 

= 0.091 and 0.082, respectively, permutation test, p = 0.016), but not for the cognitive 

network (Table 4). When we compared the high-sadness and low-sadness groups, we did 

not find a significant difference in the GE of either the emotional or the cognitive networks 

(Table 4).   

These results suggest that intense sadness mostly affects the interaction between emotional 

and cognitive subnetworks (increases modularity Q), increases the internal integration of 

the emotional module (increases GE), and has little effect on interactions within the 

cognitive subnetwork (stable GE).  

 

Hub identification and their modulation by strong emotional demands 

The network-level properties studied above suggest a modulation in the interaction between 

the networks according to the emotional or cognitive demands. We wondered if specific 

areas (hubs) mediated these interactions. We investigated this by measuring, in each 

participant's connectivity matrix, two network parameters for each node: the degree, and 

the participation coefficient (see Graph analysis). The degree of a node in the network is 

the number of connections it has to other nodes, and the participation coefficient compares 

this number of connections to the number of connections within the node's own 

subnetwork. Nodes with a high degree and a high participation coefficient are known as 

connector hubs, and they are candidates to mediate interaction between subnetworks23. For 

these measures we considered strong absolute correlations, above a threshold of the 

absolute maximal correlation, for each subject. We identified connector hub nodes as those 

ROIs with degree one standard deviation above the network's mean degree, and with 

participation coefficient above the network's mean participation coefficient, following the 

criteria of previous studies23.  
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During the Neutral-WM1 paradigm we identified 5 connector hub ROIs: IPSr, IPSl, dlPFCl, 

mFPl and mSFGl (Fig. 4A). On the other hand, during the Sadness-WM2 paradigm we 

identified 3 connector hubs: IPSr, IPSl and mFPr (Fig. 4B). These connector hubs were 

consistently identified independently of the threshold applied to the correlation matrix 

(Supplementary Figs. S3A, S3B)). We noticed that the IPS and mFP were present in both 

task paradigms, while dlPFCl and mSFGl appeared only in the Neutral-WM1 paradigm. 

The drop of dlPFCl from the list of connector hubs was significant, in that its degree 

decreased significantly from Neutral-WM1 to Sadness-WM2 (3-way ANOVA with factors: 

Figure 4: Hubs identification, dlPFCl decreases their degree after sadness.

Degree (left panels) and participation coefficient (right panels) analysis applying a threshold of 35% to 
the correlation matrices of each subject. 

A. During the Neutral-WM1 paradigm 5 regions were identified as hubs (green bars): IPSr, IPSl, dlPFCl, 
mFPl and mSFGl. Their participation coefficients were above the mean, so they were classified as 
connector hubs.   

B. During the Sadness-WM2 paradigm 3 regions were identified as hubs (green bars): IPSr, IPSl, mFPr, 
which were classified as connector hubs. Note that the ordering of areas is the same as in A. 

C. The dlPFCl was the only hub that presented a significant decrease in the degree from Neutral-WM1 
to Sadness-WM2and a marginally-significant decrease in participation coefficient. Error bars mark 
standard error of the mean. 
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task paradigm, sadness intensity, and subject, threshold 35%, main effect of paradigm p = 

0.014, all other effects and interactions not significant, Fig. 4C), independently of the 

applied threshold (range 30%-45%, Fig. 5A). The dlPFCl participation coefficient also 

showed a marginally-significant decrease (Fig. 4C, main effect of paradigm p = 0.08). 

However, the degree of the dlPFCl was not significantly modulated by the intensity of 

sadness (3-way ANOVA, threshold 35%, interaction between task paradigm and sadness 

intensity p = 0.55). Instead, we found that the degree of the mFPl was modulated by 

sadness intensity in a range of thresholds: it increased for the high-sadness group and it 

decreased for the low-sadness group relative to Neutral-WM1 (3-way ANOVA, interaction 

between task paradigm and sadness intensity, p < 0.05, Fig 5B).  These results identified 

dlPFCl as a connector hub in the cognitive subnetwork that reduced its coupling following 

sadness induction, and mFPl as a connector hub in the emotional subnetwork that increased 

its coupling specifically in those participants that experienced a stronger emotional state 

after sadness induction. 

 

 

Figure 5: The dlPFCl was modulated across 
paradigms and mFPl was modulated by sadness 
intensity, robustly across thresholds of the 
correlation matrix.  

A. The decrease in the degree for the dlPFCl 
during Sadness-WM2 was stable across 
thresholds. Black asterisks mark significant main 
effect of paradigm (3-way ANOVA, p <0.05). 

B. The mFPl was the only hub that was modulated 
by the sadness intensity. It increased its degree in 
the high-sadness group and it decreased it in the 
low-sadness group. Black asterisks mark 
significant interaction between task paradigm and 
sadness intensity (3-way ANOVA, p <0.05).  
We mark with a triangle when the corresponding 
region is classified as a hub among the rest of 
areas. Error bars mark standard error of the 
mean. 
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Changes in functional connectivity underlie behavioral differences and hub modulations  

We investigated the mechanism underlying the hub modulations described above by first 

testing if a change in the functional connectivity between the 2 connector hub nodes, 

dlPFCl and mFPl, could explain the modulations of their degree. We analyzed the change in 

the correlation between these 2 hub nodes for each participant, task paradigm and sadness-

intensity groups. The functional connectivity between dlPFCl and mFPl did not present 

either a main effect of task epoch (Neutral-WM1 vs. Sadness-WM2, 3-way ANOVA, p = 

0.48) or an interaction between high-sadness/low-sadness and Neutral-WM1/Sadness-

WM2, (3-way ANOVA, p = 0.12). Direct interactions between the 2 hub nodes were thus 

not a mechanism supported in our data for the network modulation operated by the sadness 

state. 

Then, we looked for other nodes that could mediate the modulation of the connector hubs. 

We analyzed the change in correlations (as a measure of functional connectivity) between 

the 2 connector hub nodes (mFPl and dlPFCl) and all other network areas for each 

participant, task paradigm and sadness-intensity groups. We thus tested a total of 19 

pairwise correlations for each connector hub node, and we corrected our tests for the 

multiple comparison problem by controlling the false discovery rate (FDR) at a level 

α=0.05.  

The functional connectivity between dlPFCl and sACCl presented a significant interaction 

between high-sadness/low-sadness and Neutral-WM1/Sadness-WM2, (3-way ANOVA, p = 

0.0006, p (FDR-corr) = 0.036). The correlations between dlPFCl and sACCl became more 

negative after sadness provocation only in the high-sadness group (Fig. 6A, paired sample 

t-test p=0.0001 for high-sadness and p=0.49 for low-sadness). In other words, only the 

group reporting more intense sadness presented a stronger anticorrelation between sACCl 

and dlPFCl after sadness induction. This suggests that the interactions of dlPFCl with 

sACCl could be associated with the reduction in dlPFCl network degree following sadness 

induction (Figs. 4C and 5A). 
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The anticorrelation between sACCl and dlPFCl was in addition related to the functional 

activation of sACCl (Fig. 2B-C) and deactivation of cognitive areas (Supplementary Fig. 

S1C) as we found a significant inter-individual anticorrelation between the contrast 

Sadness-Neutral in sACCl and the contrast delayWM2-delayWM1 in the left dlPFC (RPearson = –

0.5197, p = 0.0132).  Moreover, this anticorrelation was significantly stronger (permutation 

test, p = 0.042) in the high-sadness group (RPearson = –0.6639, p = 0.0186), than in the low-

sadness group (RPearson = –0.1264, p = 0.7278) (Fig. 6B). 

Figure 6: Sadness intensity increased the sACCl-dlPFCl anticorrelation and the sACCl-mFPl correlation.

A. Subject-by-subject correlations for sACCl-dlPFCl and sACCl-mFP during Neutral-WM1 and Sadness-
WM2. High-sadness subjects are plotted with red lines, low-sadness subjects with blue lines and the 
population averages are plotted in thick lines, respectively.  

Left, High-sadness subjects and not low-sadness subjects presented significant increased anticorrelations 
between sACCl and dlPFCl during Sadness-WM2 compared to Neutral-WM1.  

Right, sACCl and mFPl correlations presented a significant interaction between sadness intensity (High-
sadness vs. low-sadness subjects) and paradigm (Neutral-WM1 vs. Sadness-WM2). 

B. For the high-sadness group (right) but not for the low-sadness group (left), we found a significant 
anticorrelation between sACCl (Sadness-Neutral) and dlPFCl (WM2- WM1) BOLD activity: the stronger 
the BOLD activity in sACCl during sadness, the weaker the BOLD activity in dlPFCl during WM2.  
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We then wondered if the functional connectivity between mFPl and sACCl was also 

modulated by sadness. Indeed, the connector hub mFPl presented a significant interaction 

(high-sadness/low-sadness vs. Neutral-WM1/Sadness-WM2) in its correlation with sACCl 

(Fig. 6A, right, 3-way ANOVA, punc = 0.043). Correlations of mFPl with all other areas did 

not reach significance (p>0.05). The correlation between sACCl and mFPl showed a 

marginally significant increase after sadness provocation only in the high-sadness group 

(Fig. 6A, right, paired sample t-test p = 0.083 for high-sadness and p = 0.26 for low-

sadness). The correlation between mFPl and sACCl points at the association of the mFPl-

sACCl connection with the sadness-dependent modulation of mFPl network degree (see 

Fig. 5B). 

In summary, we found sadness-related effects at three different levels: behavioral, in 

functional activity, and in network structure. Importantly, we evaluated the association with 

sadness by testing the interaction between behavioral paradigm and sadness intensity 

report, which emphasizes the role of sadness experience in all these modulations. At the 

behavioral level, the subjects that reported highest emotional scores diminished their 

performance in the working memory task after sadness provocation (Fig. 2A and Table 3). 

At the level of functional brain activity, we found an overall decrease in activation in the 

cognitive areas (Supplementary Fig. S1C), an increase in sACCl activity (Fig. 2B,C) and an 

inter-individual anticorrelation between sACCl and dlPFCl activity (Fig. 6B). Finally, the 

graph analysis showed a stronger segregation between emotional and cognitive networks 

following a strong emotional experience (Table 4), with the connectivity degree of the 

cognitive connector hub dlPFCl being down-regulated after sadness provocation (Fig. 5A) 

and that of the emotional connector hub mFPl being up-regulated by sadness intensity (Fig. 

5B). Sadness intensity also modulated the functional connectivity of these connector hubs, 

via sACCl: it increased the correlation between sACCl and mFPl and the anticorrelation 

between sACCl and dlPFCl (Fig. 6A). We summarize these findings schematically in 

Figure 7. 
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Figure 7: Schematic summary: Sadness-related effects in functional activity and in network 
structure. 
The sACC was a key area: following sadness provocation and specifically for high-sadness participants it 
showed an increase in the negative functional connectivity with dlPFCl and an increase in the positive 
functional connectivity with mFPl. These functional connectivity modulations could underlie the 
modulations of dlPFC and mFP as hubs of their respective networks: The dlPFCl degree was decreased 
after sadness provocation and the mFPl degree was modulated by sadness intensity. Red (blue) denotes 
degree increases (degree decreases) and dashed (continuous) arrows denote negative (positive) 
functional connectivity.  
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Discussion 

We applied here graph-theoretic network analysis to identify functional changes in brain 

networks associated with states of sharp emotional and cognitive contrast. Based on 

functional activations in concatenated working memory and sadness induction tasks, we 

identified two distributed brain networks, one comprising cognitive regions (dlPFC, IPS, 

iFG, mSFG, PCG) and another one comprising emotional regions (mFP, sACC, mOFG, 

Amy, Hip), which could be further decomposed in cortical and subcortical partitions43. The 

modularity of these brain networks increased following sadness induction, consistent with 

the hypothesis that a sadness state increases the competition between emotional and 

cognitive subnetworks17,44. In contrast, we found a reduction of modularity within the 

emotional community43, suggesting a role of sadness experience in functionally integrating 

cortical and subcortical processing within this subnetwork. Two areas emerged from our 

analysis as task-related connector hubs in the cognitive and emotional brain subnetworks 

based on their modulation by the sadness induction protocol: the dlPFCl in the cognitive 

community and the mFPl in the emotional subnetwork. Our data did not support direct 

interactions between these two hubs but instead coordination via an interposed area, the 

sACC, as the mediator of sadness-induced modulations in network structure. 

In the cognitive network, the connector hub dlPFCl presented a significant decrease in 

connection degree following sadness induction (Figs. 4C and 5A), suggesting that the 

sadness state reduced the effective coupling of this area and thus its ability to influence 

brain processing. Recent evidence has shown that the fronto-parietal brain network, which 

underlies cognitive control45,46, has especially high global connectivity (i.e., average 

connectivity with the rest of brain regions47), and the global connectivity of the left dlPFC 

was specifically identified as the mechanism by which the fronto-parietal network might 

control other networks48.  Moreover, previous work also attributed a top-down control role 

to dlPFC in spatial working memory based on neuroimaging data and computational 

models49. Integrating previous literature and our results, the decreases in the degree of the 

dlPFCl could be related with the overall decrease of the BOLD activity in the cognitive 

network after sadness experience (Supplementary Fig. S1C) and the decline in the 

participants' WM performance (Fig. 2A, Table 3) based on the dlPFC diminished capability 

of exerting cognitive control during the WM task. 
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Several studies have found attenuated spatial WM performance during negative task-

irrelevant affect7–10,12,50, associated with marked decreases in dlPFC activity7,8,12,13. 

However, these studies were performed using intervening task-irrelevant aversive stimuli 

and are thus subject to possible confounds due to attention capture by the noxious stimulus. 

To address this issue we designed here a paradigm with separate episodes of strong 

conflicting emotional and cognitive demands (Fig. 1), respectively. In these tasks the 

outcomes do not depend on the integration of emotional and cognitive aspects. We used a 

sadness provocation task29 to induce a sadness state, followed by a spatial WM task27 

(Sadness-WM2 paradigm), and we compared with a control paradigm that concatenates a 

neutral epoch and spatial WM task (Neutral-WM1 paradigm) (Fig. 1). In the Sadness-WM2 

paradigm, the cognitive modulations mediated by emotional demands were provoked by an 

emotional state elicited before the cognitive task. Therefore, unlike previous studies our 

results do not depend on external distractors or emotional stimuli during the WM task. To 

our knowledge, only one study before has used a similar strategy on medicated depressed 

patients51. They found WM performance deficits following sadness induction in both 

controls and depressed patients. This is in line with our finding of impaired WM 

performance in subjects with higher sadness scores, and supports the role of emotional 

states in conditioning cognitive function, without any confounds of possible acute 

attentional shifts by intervening cues as in previous studies.  

Intensity and duration are two central characteristics of an emotional response52. In our 

task, participants provided a subjective rating (on a scale 0-7) of the sadness intensity 

reached after the scanning session. We confirmed (Fig. 2) that this report was indeed 

measuring effective sadness intensity by validating its correlation with cognitive 

performance51 and with the activation of sACC29. Negative emotional traits in healthy 

people are known also to be associated with increased sACC activation following sadness 

induction53, so our sadness report may be also associated with personality traits of the 

participants. We then used this report in all our analyses to confirm the unambiguous 

association of sadness with differences between our two behavioral paradigms, and thus 

overcome two confounds in our paradigm. For one, in our paradigm we contrasted the 

induction of an emotional memory with a non-emotional resting epoch without any 
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biographical memory component. We reasoned that this would emphasize the competition 

between cognitive and emotional processing, while also simulating the rumination 

associated with depression, but it did incorporate a memory confound that had to be 

addressed. Secondly, we did not reverse the order of the paradigms, because a previous 

study found that the sadness block generated some residual effect in control blocks51. This 

could pose interpretation problems associated with the sequence of tasks (practice, 

tiredness). We addressed both of these confounds in our analyses by testing the relation of 

our effects with the intensity of the sadness reported by participants.  Specifically, we tested 

the statistical significance of an interaction between the factors paradigm and sadness 

intensity in our analyses of variance (ANOVA) tests. Most of the changes in network 

structure and functional connectivity reported in this study are supported by such a 

significant ANOVA interaction, thus supporting their unambiguous association with a 

change in emotional state. 

 

The emotional connector hub was identified as area mFPl based on its modulations by 

emotional demands. Sadness experience increased the degree of the mFPl in the high-

sadness group relative to the low-sadness group (Fig. 5B), suggesting that intense sadness 

increases the influence of mFPl on other brain areas. The mFP (part of medial prefrontal 

cortex) has been described as part of the default mode network, which drives the self-

reference processes54–58. The modulation in the mFPl degree by sadness intensity could be 

related with more intense self-reference processes in participants of the high-sadness group. 

 

Modulations of the mFPl and dlPFCl degree in our study are in line with the flexible hub 

theory recently presented59 and they suggest that these hubs are capable of functional 

connectivity adaptations in order to balance cognitive and emotional demands. We found 

that these adaptations occur coordinated through the sACCl, as it showed more negative 

functional connectivity with dlPFCl and more positive functional connectivity with mFPl 

following sadness provocation, and specifically for high-sadness participants (Figs. 6 and 

7). Remarkably, we also found an inter-individual negative correlation between sACCl and 

dlPFCl BOLD activity, which was higher in the high-sadness group (Fig. 6B). Such result 
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is similar to the inter-individual negative correlation found between the amygdala and 

inferior frontal gyrus during a working memory task with a negative task-irrelevant 

stimulus presented during the delay60.   

There has been substantial debate surrounding the appropriate interpretation of negative 

correlations observed with resting state functional connectivity when including a 

preprocessing step termed global signal regression36–39,61,62. This data processing step can 

improve the specificity of resting state correlations and the correspondence with anatomy36 

and electrophysiology37, but there are mathematical concerns that anticorrelations could 

emerge as an analysis  artifact39. In order to test if global signal regression generated 

artifactual correlation patterns in our data, we repeated our analyses without global signal 

regression preprocessing and we found that this did not affect the relative relationships 

between functional connectivity in our conditions of interest (Supplementary Fig. S4). 

However, the results with data preprocessed with global signal regression fit together more 

consistently and provided an easier interpretation. In particular, note that without global 

signal regression the correlation between sACC and dlPFC became practically zero after 

sadness induction (Supplementary Fig. S4A), which would be interpreted as sACC and 

dlPFC becoming decoupled. This decoupling does not fit with other results, in particular 

with the strong inter-individual correlation that we found between BOLD activity in sACC 

and dlPFC (see also18), especially in the high-sadness group (Fig. 6B). Also, a decoupling 

effect of sadness is at odds with the observed correlation between focal PFC stimulation 

(TMS) treatment outcome and dlPFC-sACC anticorrelation strength in depressed patients63. 

Because the results are qualitatively unchanged by global signal regression, but provide a 

much more direct interpretation, we favor here this preprocessing step.  

Thus, in our analysis the sACC was not identified as a connector hub area but it did emerge 

as a key region that coordinates cognitive and emotional connector hub areas, and is thus 

capable of influencing the global functional network structure. These results provide a new 

perspective on the previously reported implication of sACC in sadness and depression. 

Previous studies consistently associate sACC with acute sadness, major depression and 

antidepressant treatment effects, suggesting a critical role for this region in modulating 

negative mood states18,29,64. In addition, sACC connections to the brainstem, hypothalamus, 

and insula have been implicated in the disturbances of circadian regulation associated with 
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depression and it has been described as a visceral-motor region65–67. Reciprocal pathways 

linking sACC to orbitofrontal, medial prefrontal and various parts of the anterior and 

posterior cingulate cortices constitute the neuroanatomical substrates by which primary 

autonomic and homeostatic processes influence various aspects of learning, memory, 

motivation and reward65,68–70. In depressed patients, the resting-state sACC functional 

connectivity with the default mode network (DMN) was found stronger than in control 

participants, and it further correlated with the length of the patients’ depressive episodes71. 

All these data reinforce the idea that sACC is implicated in sadness regulation and our 

results indicate that this could be by means of its regulatory role in relation to two hub 

network areas, rather than a direct driving mechanism. In our study, participants that 

reported strong sadness experience had brain activity patterns similar to those previously 

reported for depressed patients: an activation of the sACC 17,33, a deactivation of 

dlPFC33,72,73 and an increase in the anticorrelation between sACC and dlPFC 18,63. This 

underscores the idea that the network dynamics underlying negative emotional state in 

healthy subjects could be, when pathologically exacerbated, responsible for behavioral 

symptoms in depressed patients17,18. Indeed, the three areas that we have identified have 

been repeatedly associated with antidepressant treatments: response to selective serotonin 

reuptake inhibitors is related to sACC activity74–76, TMS of dlPFC is most effective in sites 

strongly anticorrelated with sACC63, response to TMS of dorso-medial PFC depends on the 

connectivity of the mFP77, response to cognitive behavioral therapy is related to changes in 

the three areas76, and recent results of DBS (subgenual white matter stimulation) link its 

therapeutic effect to fibers reaching the mFP20.  

The fact that some of these interventions are very focal and yet address symptoms 

supported by the activity of system-wide networks18, could be explained by our findings of 

a modular structure in these networks, coordinated by one area (sACC) regulating two 

connector hubs (dlPFC and mFP). Conversely, also a very focal dysfunction in the network, 

in one of these coordinating areas, could have profound impact in functions subserved by 

distant circuits, as recently shown in a computational network model of sACC and dlPFC44. 

Depression as a circuit-level manifestation of a sharply localized disease remains an 

enticing hypothesis, supported by distributed sadness circuits that interact via very specific 

coordinating cortical areas. 
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