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Introduction

Cancer is the second most frequent cause of death worldwide, killing more

than  8  million  people  every  year  and  responsible  for  1  in  7  deaths1.

Globally, cancer deaths will increase by more than 50% over the coming

decades, attributable to a number of driving forces: an ageing population

in  high  income  countries;  increased  exposure  to  carcinogens  such  as

tobacco2, air pollution and asbestos3 in low- and middle-income countries;

declining physical activity with concomitant rise in obesity worldwide; and

the continued expansion of the human population. While prevention and

treatment  of  competing  causes  of  mortality,  such  as  cardiovascular

disease  and  infections,  have  led  to  major  improvements  in  life

expectancy, the gains for cancer mortality have been more modest. For

many patients,  surgery remains the only curative option,  but  once the

tumour  has  spread  from  its  original  site,  cure  is  often  elusive.

Nonetheless,  in  the last  20 years,  our deepening understanding of  the

biology of cancer has enabled development of new therapeutics effective

in a handful of cancers4,5 – it is this success that motivates the desire to

systematically characterise cancer biology across all tumour types.

‘Cancer’ is a catch-all term used to denote a set of diseases characterised

by autonomous expansion and spread of a somatic clone. To achieve this

behavior, the cancer clone must modify multiple cellular pathways that

enable it to disregard the normal constraints on cell growth, to modify the

local microenvironment favoring its own proliferation, to invade through

tissue  barriers,  to  spread  to  other  organs,  and  to  evade  immune

surveillance6.  No  single  cellular  programme  directs  these  behaviors.

Rather  there  are  many  different  potential  abnormalities  from  which

individual  cancers  draw  their  own  combinations.  In  that  sense,  the

commonalities  of  macroscopic  features  across  tumours  belie  a  vastly

heterogeneous landscape of cellular abnormalities.

This  heterogeneity  arises  from  the  fundamentally  stochastic  nature  of

Darwinian evolution; a process that operates in somatic cells as much as
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species.  The  preconditions  for  Darwinian  evolution  are  three:

characteristics  must  vary  within  a  population;  this  variation  must  be

heritable  from parent  to  offspring;  and  there  must  be  competition  for

survival within the population. In the context of somatic cells,  heritable

variation  arises  from mutations  acquired  stochastically  throughout  life,

notwithstanding  potential  additional  contributions  from  heritable

epigenetic  variation.  A  subset  of  these  mutations  drive  alterations  in

cellular  phenotype,  and  a  small  subset  of  those  variants  confer  an

advantage on the clone in its competition to escape the tight physiological

controls  wired  into  somatic  cells.  The  mutations  conferring  selective

advantage  on  the  clone  we call  ‘driver  mutations,’  as  opposed  to  the

selectively neutral, or possibly slightly deleterious, ‘passenger mutations.’ 

The  discovery  that  cancers  carry  recurrent  and  specific  genetic

abnormalities in the 1970s7 and early 1980s8,9 has fuelled four decades of

research to define the catalogue of genes and mutations that can drive

cancer. This has been accelerated by technological advances in genomic

analysis,  from  gross  descriptions  of  chromosome  structure  by

chromosomal  banding7 and  other  cytogenetic  techniques,  through

positional  cloning  of  inherited  cancer  genes10,  low-throughput  capillary

sequencing11 and comparative genomic hybridisation12, to the current era

of  massively  parallel  whole  genome  sequencing13–17.  The  ever  more

populous  catalogue  of  cancer  genes  has  opened  new  therapeutic

opportunities, with effective drugs being developed for the BCR-ABL fusion

gene of chronic myeloid leukaemia, ERBB2 amplifications of breast cancer

and the BRAF point mutations of melanoma18–20, amongst others. 

International collaborations to sequence whole cancer genomes

The advent of massively parallel sequencing promised a future in which

the cancer genome was finite and knowable. Early studies showed it was

in theory feasible to document every somatic point mutation in a given

cancer,  every copy number  change and every  structural  variant14,15.  In

2008, recognising the opportunity this advance in technology provided,
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the  global  cancer  genomics  community  established  The  International

Cancer  Genome  Consortium  (ICGC)  with  the  goal  of  systematically

documenting the somatic mutations found in 25,000 samples representing

all common tumour types21. 

The ICGC comprises researchers from The Cancer Genome Atlas (TCGA) in

the USA plus those from 17 countries and other jurisdictions in Europe,

Asia and the Americas. Each ICGC project is  organised around a single

tumour type or a set of related types, for which a set of tumour/normal

pairs derived from a target of 500 donors were characterised by whole

genome  sequencing,  exome  sequencing,  transcriptome  and/or  DNA

methylation  analysis.  The  sample  size  was  chosen  to  provide  enough

power to detect significantly mutated genes in at least 3% of patients

based on an initial estimate of the background mutation rate.

ICGC samples have been carefully pre-screened by histopathologists and

clinicians in order to ensure the accuracy of diagnosis and quality of the

sample. Sequencing of both tumour and matched constitutional DNA are

required to meet minimum coverage and quality requirements. Following

the precepts established in the Human Genome Project, data from ICGC

are rapidly released to the wider scientific community under appropriate

safeguards  to  ensure  ethical  and  regulatory  compliance22.  Since  2008,

funding for ICGC projects has amounted to more than USD$900,000,000,

with individual funding commitments in some countries being the largest

biomedical grants they had ever awarded.

To date,  there are 90 ICGC projects,  of  which 76 have submitted data

across 21 primary organ sites and 31 distinct tumour types. At the time of

writing,  genomic  data  from  20,343  individual  cancer  patients  were

registered in the Data Coordination Center (https://dcc.icgc.org/), of whom

17,570 have molecular data, mostly exomes. Many major breakthroughs

in  the  biology  of  individual  tumour  types  have  emerged  from  these

studies, too numerous to cite exhaustively here, but including discoveries
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of  new  cancer  genes  and  pathways23–27;  insights  into  the  underlying

mutational processes operative in human cancers28–32; delineation of the

patterns  of  tumour  heterogeneity  and  clonal  evolution33–36;  and

development of genomics approaches to inform cancer prevention37 and

clinical  management  of  patients  with  cancer38–40.  Many  of  these

discoveries were enabled by novel computational and statistical methods

designed  to  accurately  detect  various  genomic  alterations  from

sequencing data and analyse them across cohorts of patients to extract

new biological insights.

The Pan-Cancer Analysis of Whole Genomes Collaboration

The early studies from ICGC and TCGA revealed both commonalities and

differences of somatic genomic architecture across tumour types. Some

cancer  genes  are mutated in  many different  tumour  types;  others  are

specific to a single histological subtype41,42. All common tumour types are

characterised by few frequently mutated genes and many rarely mutated

genes;  the  patterns  of  co-mutation  result  in  a  huge  diversity  of

combinations  of  driver  mutations  across  individual  patients43–45.  Some

tumours are driven by coding point mutations while others evolve through

large-scale  restructuring of  chromosomes46;  some cancer  types  mutate

predominantly  tumour  suppressor  genes47 while  others  have  high

frequency of driver mutations activating oncogenes48. 

Numerous  studies  point  to  the  relevance  of  non-coding  regions,  and

projects including ENCODE,49 Blueprint50 and Epigenome Roadmap51 have

revealed  extensive  catalogues  of  tissue-specific  regulatory  elements.

Transcription factors and other proteins interact with enhancers, silencers,

boundary elements, and overall chromatin structure to confer cell-specific

regulatory responses, and recent studies have revealed the relevance of

this  interplay in  cancer.52-57 Given that  cells  are pre-wired according to

built-in control logics that involve coding and non-coding components, it

stands to reason that changes in the DNA that affect these factors may

underlie  the  tissue-specific  nature  of  cancer  onset  and  progression.
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Indeed, some evidence points this way, for example there is evidence that

epigenetic  marks  are  associated  with  mutation  densities  in  cancer,58,59

whereas  cancer-risk  associated  germline  variants  typically  occur  in

intergenic regions and show enrichment with enhancers.60 

The large number of samples subjected to whole genome sequencing by

the ICGC now provides the opportunity to closely examine cancers beyond

their  protein-coding  exomes,  which  are  likely  to  provide  only  partial

insights into the genomic landscape of cancer. Beyond providing insights

into how mutations affect regulatory regions, whole genome sequencing

can detail the full repertoire of classes of structural variation in cancers,

facilitate resolving mutational processes and signatures acting in these,

enable identifying viruses associated with cancers, and allow defining the

full repertoire of germline variants in cancer patients. To tackle the various

opportunties resulting from numerous cancer whole genome sequencing,

16 thematic Scientific Working Groups were formed and overseen by a

Steering  Committee  for  the  PCAWG  collaboration  to  pursue  a

multipronged analysis  of  the non-coding genome’s  influence on cancer

(Table 1).

The maturing of datasets from individual ICGC and TCGA working groups

presented the opportunity to formalise a meta-analysis of whole cancer

genomes.  However,  algorithms  for  calling  somatic  mutations  were  not

standardised among the different groups and had evolved considerably in

the first few years of the consortium. For cross-tumour comparisons to be

meaningful, the core bioinformatic analyses would need to be repeated

using  gold-standard,  benchmarked,  version-controlled  algorithms.  To

achieve  this,  the  Pan-Cancer  Analysis  of  Whole  Genomes  (PCAWG)

collaboration  was  established,  comprising  about  700  researchers  from

around  the  world.  A  Technical  Working  Group  implemented  the  core

informatics  analyses,  aggregating  the  raw  sequencing  data  from  the

individual tumour type working groups, aligning it to the human genome

and delivering a set of high quality somatic mutation calls for downstream
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analysis (Figure 1). Scientists from TCGA and ICGC submitted abstracts

outlining  potential  research  projects,  which  were  aggregated  into  16

thematic Scientific Working Groups.  A Steering Committee oversaw the

PCAWG collaboration, reporting to the executive committees of ICGC and

TCGA.

Sample collection

Beginning in early 2015, we inventoried previous submissions of matched

tumour/normal  whole  cancer  genomes  to  the  ICGC  Data  Coordinating

Centre and polled ICGC projects for whole genomes that they anticipated

completing in  the near future.  Our PCAWG inclusion criteria for  donors

included: a matched tumour and normal specimen pair; a minimal set of

clinical  information  including  patient  age,  sex  and  histopathological

diagnosis;  and  characterisation  of  tumour  and  normal  whole  genomes

using Illumina  HiSeq platform 100-150bp paired-end sequencing reads.

The minimum average depth required was 30 reads per genome base-pair

in the tumour sample, and 25 in the normal sample. For the great majority

of  donors,  the  paired  specimens  consisted  of  a  blood  sample  for  the

normal specimen, plus a fresh frozen sample of the primary tumour from a

resection  specimen.  In  a  small  number  of  cases  the  normal  sample

originated  from  tumour-adjacent  normal  tissue  or  another  non-blood

tissue (especially for blood cancers). Most of the tumour samples came

from treatment-naïve, primary cancers, but there were a small number of

donors  with  multiple  samples  of  primary,  metastatic  and/or  recurrent

tumour.  In  addition  to  whole  genome  sequencing,  roughly  half  of  the

donors  had at  least  one tumour  specimen that  had been subjected to

whole  transcriptome  analysis  using  RNA-sequencing,  also  centrally

collected and re-analysed.

Ultimately, we collected genome data from a total set of 2,834 donors.

After an extensive quality assurance process (described below), the data

from 176 donors were deemed unusable and were excluded, leaving 2,658

donors,  including  2,605  primary  tumours  and  173 metastases  or  local
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recurrences. Matching normal samples were obtained from blood (2,064

donors),  tissue  adjacent  to  the  primary  (87  donors),  or  other  sites  of

normal tissue such as bone marrow, lymph node or skin (507 donors). The

mean whole genome sequencing coverage in this set was 30 reads per

base-pair  for  normal  samples,  while  tumours  had  a  bimodal  coverage

distribution with maxima at 38 and 60 reads per base-pair. For 75 donors,

QA results  were  borderline  and these donors  were  flagged in  order  to

caution consortium members that they might be unsuitable for certain

types  of  analysis,  leaving  a  high-quality  core  of  2,583  donors.  RNA-

sequencing  data  was  collected  on  1222  donors  with  genome  data,

including 1178 primary tumours, 67 metastases or local recurrences, and

153 matched normal tissue adjacent to the primary tumour. 

Demographically,  the  cohort  included  1469  males  (55%)  and  1189

females (45%), with a mean age of 56 years (median 60 years; range 1-90

years).  By  using  population  ancestry-differentiated  single  nucleotide

polymorphisms (SNPs) derived from the germline calls, we were able to

estimate the population ancestry of each donor. The continental ancestry

distribution  was  heavily  weighted  towards  Europeans  (77%  of  total)

followed by East Asians (16%), as expected by large contributions from

European,  North  American,  and  Australian  projects  (Supplementary

Table 1).

Histopathology harmonisation

In  order  to  simplify  the  process  of  cross-tumour  analyses,  the  PCAWG

Pathology  and  Clinical  Correlates  Working  Group  consolidated  and

harmonised the histopathology descriptions of the tumour samples, using

the  icd-0-3  tumour  site  type  controlled  vocabulary

(https://seer.cancer.gov/icd-o-3/) as its basis, in consultation with the leads

of each of the contributing projects and a small group of expert anatomic

pathologists. We described each tumour type using a four-tier hierarchical

system  consisting  of  Embryonic  Origin  (Mesoderm,  Ectoderm  or

Endoderm),  Organ  System (such  as  Breast),  Major  Histologic  Type  (for
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example,  Adenocarcinoma),  and  Major  Histological  Subtype  (such  as

Infiltrating duct carcinoma). In addition, each tumour type was assigned a

short abbreviation (e.g., Breast-AdenoCa) and a standard colour for use in

charts and tables. Overall, we established 39 distinct tumour types in the

PCAWG  data  set  (Table  2).  The  largest  tumour  type  cohorts  were

hepatocellular carcinoma (Liver-HCC: 318 donors, 327 tumour specimens),

pancreatic adenocarcinoma (Panc-AdenoCa: 239 donors, 241 specimens),

and prostate cancer (Prost-AdenoCa: 210 donors, 286 specimens). Twelve

tumour  types  had  fewer  than  20  representatives,  including  lobular

carcinoma of the breast, cervical adenocarcinoma, and benign neoplasms

of  bone  and  cartilage.  These  tumour  types,  comprising  a  total  of  56

specimens, were excluded from tumour-type specific cohort analyses due

to lack of statistical power, but were included in pan-cancer analyses. 

Uniform processing and variant calling

In  order to generate a consistent  callset that could be used for  cross-

tumour  type analysis,  we analysed all  samples  using a  uniform set  of

algorithms for alignment, variant calling, and quality control. We used the

BWA-Mem algorithm61 to align each tumour and normal sample to human

reference  build  hs37d50.62 Somatic  mutations  were  identified  in  the

aligned data using three established pipelines, run independently on each

tumour/normal  pair.  Each  of  the  three  pipelines,  labeled  “Sanger”,

“EMBL/DKFZ”  and  “Broad” after  the  computational  biology  groups  that

created and/or assembled them, consisted of multiple software packages

for calling somatic single  nucleotide variations (SNVs) and indels,  copy

number alterations (CNAs), and somatic structural variations (SVs). Each

pipeline  provided  post-processing  filters  to  remove  likely  false  positive

variant calls. A final set of filters were also run systematically across the

entire set of PCAWG variants.

To assess the quality of the results from these three core pipelines, and to

determine  whether  any  other  variant  calling  approaches  would  add

additional  value  to  the  call  set,  we  performed  a  systematic  test  and
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laboratory-based validation of 16 different computational pipelines. After

this  assessment,  described  below,  we  decided  to  run  two  additional

callers63,64  on all samples to improve our ability to detect low-frequency

SNVs and indels. 

Following  execution  of  each  variant-calling  pipeline,  we  merged  the

pipeline outputs for each variant type separately (SNVs, indels, CNAs, SVs)

in order to achieve greater accuracy than provided by individual pipelines.

The SNV and indel merge algorithms were designed and tested using the

laboratory validation exercise described below as a gold standard. 

RNA-Sequencing  data  were  uniformly  processed to  produce normalised

gene-level  expression  values,  splice  variant  quantifications  and

measurements  of  alternative  promoter  usage,  and  to  identify  fusion

transcripts, quantify allele-specific expression, and identify RNA edit sites.

Calls of common and rare germline variants including single nucleotide

variants, indels, SVs and mobile element insertions were generated using

previously  established  principles  for  population-scale  genetic

polymorphism  detection.65,66 The  uniform  germline  data  processing

workflow comprised variant discovery using six different variant callers,

followed by call-set merging, variant genotyping and statistical haplotype-

block  phasing.  Somatic  retrotransposition  events,  including  Alu and

LINE/L1  insertions,67  L1-mediated  transductions68  and  pseudogene

formation,69  were  called  using  a  single,  well-validated  pipeline.63  We

removed  these  retrotransposition  events  from  the  SV  call-set.

Mitochondrial DNA mutations were called using a published algorithm.70

Core alignment and variant calling by cloud computing

The requirement to uniformly realign and call variants on more than 6,800

whole genomes presented significant computational challenges. The raw

sequencing  reads  amounted  to  over  650  terabytes  (TB),  which

corresponds to the size of a high definition movie running continuously for

30 years.  If  run serially,  the execution of  the alignment and the three
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variant-calling  pipelines  would  have  taken  roughly  19  days/donor  to

execute on a single computer, or 145 years to complete the entire project.

To  accomplish  this  part  of  the  analysis,  we  adopted  a  cloud-compute

based architecture71 in which the alignment and variant calling was spread

across  13  data  centres  distributed  across  three  continents.  The  data

centres represented a mixture of  commercial  infrastructure-as-a-service

cloud compute, academic cloud compute, and traditional academic high-

performance  computer  clusters,  together  contributing  more  than  10

million CPU core-hours to the effort. All told, the uniform alignment and

variant calling took 23 months to execute – this included the data transfer,

software development, and debugging time. On a cloud compute system

running a  fleet  of  200 virtual  machines,  we estimate  that  without  the

overhead of software development and debugging, the project would take

eight months to complete if repeated today.

The PCAWG-generated alignments, variant calls, annotations, and derived

data  sets  are  available  for  browsing  and  download  at

http://dcc.icgc.org/pcawg/. In addition, for the convenience of researchers

who wish to avoid long data transfer times, a large subset of the data is

pre-loaded and available for cloud-based computing on various platforms

(see https://dcc.icgc.org/icgc-in-the-cloud).

 

Quality assessment and control

Each donor and specimen was subject to a series of quality assessment

(QA) and control (QC) steps. At the level of aligned reads, we tested for:

minimum  overall  coverage  of  aligned  reads;  coverage  across

chromosomes;  strand  bias;  insert  size  distribution;  nucleotide  content;

base  mismatch  rate;  indel  rate;  the  number  of  unaligned  reads;  and

concordance between the clinical sex of the donor and the sex inferred

from  the  presence  of  Y  chromosome  markers  and  sex  chromosome

coverage. At the level of tumour/normal pairs and variant calls, we tested

for: sharing of germline polymorphisms among the specimens from the

same  donor  to  detect  sample  swaps;  the  presence  of  common
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polymorphisms  from  two  or  more  individuals  to  detect  sample

contamination;  the  presence  of  low-frequency  somatic  variants  in  the

normal  sample  to  detect  tumour-in-normal  contamination;72 and  the

presence of mutational  signatures associated with sequencing artefacts

such as oxidative damage. Of the  176 donors  excluded on the basis of

failing one or more of the QA tests, the most common reason for failure

was  RNA  (cDNA  library)  contamination  of  tumour  or  normal,  which

manifested as multiple intron-length deletions in a substantial proportion

of  reads  (39  donors).  This  was  followed  by  lack  of  required  clinical

metadata, apparent misdiagnosis, or a disagreement between the clinical

and genomic sex (29 donors),  and unacceptably  high levels  of  tumour

DNA in the normal sample (15 donors). Sample swaps were relatively rare

(6 donors),  and there were a small  number of  donors excluded due to

unique artefacts including contamination of tumour with a mouse library

and the presence of a sibling’s genome in the blood of a leukaemia donor,

presumably due to a bone marrow transplant. One cohort (of 33 acute

myeloid leukaemias) was removed entirely due to a pervasive sequencing

artefacts in SNV calls.

Among  the  non-excluded  specimens,  735  showed  signs  of  oxidative

damage,  as evidenced by high levels  of  G>T transversions among the

variant calls.73 These artefactual variants were identified and removed by

a purpose-built filter.74  The 75 donors that were deemed to be borderline

following  QA  were  flagged  for  a  variety  of  reasons  including  an

unexpectedly high fraction (>15%) of paired reads mapping to different

chromosomes, an unusual mutational signature that did not correspond to

a  known  biological  process  or  artefact,  or  a  level  of  tumour-in-normal

contamination  that  approached,  but  did  not  exceed,  the  cut-off  level

(15%). We consider these suitable for some, but not all, analytic questions

and left  the choice of  whether to use them or not  to the downstream

analytic groups.

Validation, benchmarking and merging
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In  order  to  evaluate  the  performance  of  each  of  the  mutation-calling

pipelines and determine the strategy for integrating them, we performed

a large-scale deep sequencing validation experiment. We selected a pilot

set of 63 tumour/normal pairs from 23 cancer types across 26 contributing

sequencing projects,  on which  we ran the three main mutation calling

pipelines, and an additional 13 tools. The 63 tumours were chosen to have

a wide range of somatic mutation frequencies in order to provide accurate

representation of sensitivity and specificity estimates across samples. Of

the 63 cases, 50 had sufficient DNA in both tumour and normal samples to

enable deep sequencing targeting the putative mutated sites through DNA

hybridisation  capture.  We  selected  ~250,000  SNVs  and  indels  for

validation by first stratifying mutations based on the number of methods

that called them and then evenly sampling from each of these strata. This

enabled us to estimate, for each method, false-positive and false-negative

rates,  which  were  used  to  calculate  performance  metrics  such  as

precision, sensitivity and a combined (F1) score.

Next, we examined multiple methods for integrating calls made by each of

the  three pipelines.  We evaluated the  performance of  simple  methods

(such as taking the union or intersection of  the calls)  as well  as more

sophisticated methods that used, beyond the three pipelines, additional

parameters  (such  as  coverage,  variant  allele  frequency  and  nearby

sequence context) to predict whether a mutation is real or not. The final

consensus calls for SNVs were based on a simple approach that required

two or more methods to agree on a call. For indels, because methods were

less concordant, we used logistic regression to integrate the calls. The SV

merge accepted all  calls  made by two or more of the four primary SV

callers (one pipeline has two SV callers).

Overall,  the  sensitivity  and  precision  of  the  consensus  calls  were  95%

(CI90%:  88-98%) and 95% (71-99%) respectively  for SNVs. For indels,  in

keeping with greater challenges in identification accuracy, sensitivity and

precision  were  60%  (34-72%)  and  91%  (73-96%).  Using  manual
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assessment of called SVs as a gold standard, the false discovery rate of

merged calls was estimated to be 2.5%, with 10% of true calls rejected.

For  all  mutation  types,  accuracy  was  reduced  in  repeat-rich  regions

relative to coding and other unique regions. 

Pan-cancer burden of somatic mutations

Across  the  2,583 donors  in  the  PCAWG dataset,  we called  43,778,859

SNVs;  410,123  somatic  multi-nucleotide  variants;  2,418,247  somatic

indels; 288,416 SVs; 21,076 somatic retrotransposition events; and 8,185

de novo  mitochondrial  DNA variants (Supplementary Table 1).  There

was considerable heterogeneity in the burden of somatic mutations across

patients and tumour types (Figure 2). For example, the median number

of base substitutions across different tumour types spanned more than

two  orders  of  magnitude,  from  a  median  of  169/patient  in  pilocytic

astrocytoma to 70,873/patient in melanoma. Similarly, within each tumour

type, the burden of somatic substitutions typically varied over 2 orders of

magnitude,  with  the  range  observed  in  breast  adenocarcinoma  being

1,203  in  one  patient  to  65,065  in  another.  Similar  heterogeneity  was

observed for other classes of somatic variation.

Strikingly, at the level of tumour types, there was a broad correlation in

mutation burden among the different classes of somatic variation (Figure

2).  Thus,  melanomas,  squamous  cell  carcinomas  of  the  lung  and

oesophageal  adenocarcinomas  all  showed  high  rates  of  somatic

substitutions,  indels,  structural  variation  and  retrotransposition.  In

contrast, the genomes of blood cancers and childhood brain tumours were

generally  quiet  and  stable,  with  relatively  few  variants  of  any  type.

Analysed  at  a  per-patient  level,  this  correlation  held  (Supplementary

Figure 1). 

This correlation in burden among different classes of somatic mutation has

not  been delineated on a  pan-cancer basis  before,  and the underlying

causes are unclear. It is likely that age plays some role – we observe a
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correlation  of  most  classes  of  somatic  mutation  with  age  at  diagnosis

(~190  substitutions/year,  p=0.02;  ~22  indels/year,  p=5x10-5;  1.5

SVs/year, p<2x10-16; Figure 3). Other factors are also likely to contribute

to  the  correlations  among  classes  of  somatic  mutation,  since  there  is

evidence  that  some  DNA  repair  defects  can  cause  multiple  types  of

somatic  mutation75  and a single  carcinogen can cause a range of  DNA

lesions.76
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Table 1. PCAWG Working Groups.

Working Group Name Role

PCAWG Technical Working Group
Clinical and molecular data management, execution of
uniform alignment and core somatic mutation calling 
pipelines.

PCAWG Quality Control Working Group Quality assurance

PCAWG Ethics and Legal Working Group Policy and data access issues relating to distribution of
data across compute clouds.

PCAWG Reference Annotations Working 
Group

Developed the reference set of genome annotations 
for use across the project.

PCAWG SNV Calling Working Group
Benchmarking of somatic single nucleotide variation 
and indel calling pipelines and development of 
methods for merging them.

PCAWG Drivers and Functional 
Interpretation Working Group

Identification and characterization of coding and non-
coding drivers.

PCAWG Transcriptome Working Group Exploration of the effect of genomic variation on 
transcription.

PCAWG Epigenome Working Group Exploration of the interactions between genomic 
variation and the epigenome.

PCAWG Structural Variation Working 
Group

Identification and characterization of structural 
variations in the cancer genome.

PCAWG Mutational Signatures Working 
Group

Characterization of exposures and other mutational 
processes acting on the cancer genome.

PCAWG Germline Cancer Genome 
Working Group

Large scale haplotyping of PCAWG donors. Exploration 
of the interaction between germline and somatic 
mutations.

PCAWG Pathology and Clinical 
Correlates Working Group

Harmonization of tumour types and clinical 
descriptions. Exploration of clinical significance of 
somatic and germline variation.

PCAWG Evolution and Heterogeneity 
Working Group

Characterisation of evolutionary history of cancer 
genomes.

PCAWG Portals and Visualisation 
Working Group

Developed software systems for community access to 
PCAWG data set and interpretation.

PCAWG Mitochondrial Genome and 
Immunogenomics Working Group

Exploration of variation affecting the mitochondrial 
genome and the immune system..

PCAWG Pathogens Working Group Discovery of the presence of pathogen DNA in tumour 
samples and interpretation of significance.

Table 2. Overview of tumour types included in PCAWG project.

Organ Abbreviatio
n Included subtypes Cas

es Sex Age

F M Me
d

10-
90th

Neural crest

Skin Skin-
Melanoma

Malignant melanoma 107 38 69 57 38-77

CNS CNS-Medullo
Medulloblastoma; Large cell 
medullo.; Desmoplastic 
medullo.

141 65 76 9 3-27

CNS CNS-PiloAstro Pilocytic astrocytoma 89 47 42 8 3-16
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CNS CNS-GBM Glioblastoma 39 12 27 59 43-70

CNS CNS-Oligo Oligodendroglioma 18 9 9 40 27-59

Mesoderm

Uterus Uterus-
AdenoCA

Serous cystadenocarcinoma;
Endometrioid adeno. 44 44 0 69 57-80

Ovary Ovary-
AdenoCA

Adenocarcinoma; Serous 
cystadenocarcinoma

110 110 0 60 48-74

Myeloid Myeloid-MPN

Polycythaemia vera; 
Essential 
thrombocythaemia; 
Mastocytosis

23 12 11 54 38-72

Myeloid Myeloid-AML Acute myeloid leukaemia 13 5 8 50 39-69

Myeloid Myeloid-MDS
MDS with ring sideroblasts; 
Chronic myelomonocytic 
leukaemia

2 1 1 76 74-77

Lymphoid Lymph-BNHL
Burkitt; Follicular; Diffuse 
large B-cell; Marginal zone; 
Post-transplant

107 51 56 57 10-74

Lymphoid Lymph-CLL Chronic lymphocytic 
leukaemia

90 30 60 61 46-78

Kidney Kidney-RCC Clear cell; Papillary 143 53 90 60 48-75

Kidney Kidney-ChRCC Chromophobe RCC 43 19 24 47 34-67

Head/Neck Head-SCC Squamous cell carcinoma 56 10 46 53 34-68

Cervix Cervix-SCC Squamous cell carcinoma 18 18 0 39 26-52

Cervix Cervix-
AdenoCA Adenocarcinoma 2 2 0 39 33-45

Bone/Soft 
Tissue

Bone-
Osteosarc Osteosarcoma 36 20 16 20 9-58

Bone/Soft 
Tissue Bone-Leiomyo Leiomyosarcoma 34 15 19 61 51-78

Bone/Soft 
Tissue Bone-Epith Chordoma; Adamantinoma 10 4 6 60 37-67

Bone/Soft 
Tissue Bone-Cart Chrondromyxoid fibroma; 

Chondroblastoma 9 2 7 16 13-48

Bone/Soft 
Tissue

Bone-
Osteoblast Osteoblastoma 5 2 3 18 12-30

Bone/Soft 
Tissue Bone-Benign Osteofibrous dysplasia 1 1 0 26 26-26

Endoderm

Thyroid Thy-AdenoCA
Adenocarcinoma; Follicular 
adeno.; Columnar cell 
adeno.

48 37 11 50 30-75

Stomach Stomach-
AdenoCA

Adenocarcinoma; Papillary; 
Tubular; Mucinous adeno. 68 18 50 65 48-78

Prostate Prost-
AdenoCA Adenocarcinoma 199 0 199 59 47-71

Pancreas Panc-
AdenoCA

Adenocarcinoma; Acinar cell
Ca.; Mucinous; 

232 114 118 67 50-79

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 12, 2017. ; https://doi.org/10.1101/162784doi: bioRxiv preprint 

https://doi.org/10.1101/162784
http://creativecommons.org/licenses/by-nd/4.0/


Adenosquamous Ca.

Pancreas Panc-
Endocrine Neoroendocrine carcinoma 81 28 53 59 38-74

Lung Lung-SCC Squamous cell carcinoma; 
Basaloid SCC 47 10 37 68 55-77

Lung
Lung-
AdenoCA

Adenocarcinoma; Mucinous 
adeno.; Adenocarcinoma in 
situ

37 20 17 66 48-77

Liver Liver-HCC
Hepatocellular carcinoma; 
HCC + cholangio; 
Fibrolamellar HCC

314 88 226 67 50-78

Esophagus Eso-AdenoCA Adenocarcinoma 97 14 83 70 56-79

Colon/Rectum colourect-
AdenoCA

Adenocarcinoma; Mucinous 
adeno. 52 28 24 68 48-81

Bladder Bladder-TCC Transitional cell carcinoma; 
Papillary TCC 23 8 15 65 52-80

Biliary Biliary-
AdenoCA

Cholangiocarcinoma; 
Papillary cholangioca. 34 15 19 64 53-76

Ectoderm

Breast
Breast-
AdenoCA

Infiltrating duct carcinoma; 
Mucinous adeno.; Medullary 
Ca.

195 194 1 56 39-76

Breast Breast-
LobularCA

Lobular carcinoma 13 13 0 52 42-68

Breast Breast-DCIS
Ductal carcinoma in situ; 
Duct micropapillary 
carcinoma

3 3 0 55 43-60

Total
258

3
11
60

142
3 60

21-
76
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FIGURE LEGENDS

Figure  1.  Flow-chart  showing  key  steps  in  the  analysis  of  PCAWG

genomes

Figure  2.  Distribution  of  numbers  of  somatic  mutations  of  different

classes across the different tumour types included in the PCAWG project.

The y axis is on a log scale. SNVs, single nucleotide variants (single base

substitutions); Indels, insertions or deletions <100 base pairs in size; SVs,

structural variants; Retrotranspositions, counts of somatic retrotransposon

insertions, transductions and somatic pseudogene insertions.

Figure 3. Numbers of somatic mutations by age at diagnosis. Points are

coloured by tumour type, using the colour scheme in Figure 3. The y axis

is on a log scale for all except mitochondrial DNA mutations. SNVs, single

nucleotide  variants  (single  base  substitutions);  Indels,  insertions  or

deletions  <100  base  pairs  in  size;  SVs,  structural  variants;

Retrotranspositions,  counts  of  somatic  retrotransposon  insertions,

transductions and somatic pseudogene insertions; MNVs, multinucleotide

variants (mostly dinucleotide substitutions); mtDNA mutations, number of

somatic mutations in the mitochondrial genome.
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SUPPLEMENTARY FIGURE LEGENDS

Supplementary  Figure  1.  Pairwise  comparison  of  rates  of  different

classes  of  somatic  mutation.  Points  are  coloured  by  tumour  type,  as

depicted  in  the  legend.  The  y  axes  are  on  a  log  scale.  SNVs,  single

nucleotide  variants  (single  base  substitutions);  Indels,  insertions  or

deletions  <100  base  pairs  in  size;  SVs,  structural  variants;

Retrotranspositions,  counts  of  somatic  retrotransposon  insertions,

transductions and somatic pseudogene insertions.
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