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Abstract 
Although many driver mutations are thought to promote carcinogenesis via abnormal splicing, 

the landscape of these splicing-associated variants (SAVs) remains unknown due to the 

complexity of splicing abnormalities. Here we developed a statistical framework to identify 

SAVs disrupting or newly creating splice site motifs and applied it to sequencing data from 

8,976 samples across 31 cancer types. We constructed a catalog of 14,438 SAVs, 

approximately 50% of which consist of SAVs disrupting non-canonical splice sites (including 

the 3rd and 5th intronic bases of donor sites) or newly creating splice sites. Smoking-related 

signature substantially contributes to SAV generation. As many as 14.7% of samples harbor 

at least one SAVs in cancer-related genes, particularly in tumor suppressors. Importantly, in 

addition to previously reported intron retention, exon skipping or alternative splice site usage 

more frequently affected these genes. Our findings delineate a comprehensive portrait of 

SAVs, providing a basis for cancer precision medicine.  
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Introduction 
Comprehensive genomic characterization of multiple cancer types in large-scale genetic 

studies has increasingly broadened the catalog of somatic alterations that dictate cancer 

evolution, including single nucleotide variants (SNVs), small indels (insertions and deletions), 

and copy number alterations1-3. Moreover, it has also revealed disturbances in transcriptional 

regulation, such as expression changes and splicing defects that underlie cancer 

pathogenesis1,2. However, there has been only a little progress in the understanding of how 

somatic alterations in cancer genomes exert direct transcriptional consequences. 

 In cancer transcriptomes, splicing defects play important roles in many aspects of 

cancer development and progression4-7. Discovery of somatic variants affecting RNA splicing 

factors, such as SF3B1 and U2AF1, which induce extensive alterations in RNA splicing 

(trans-acting regulation) in several kinds of cancers, highlights the relevance of RNA 

mis-splicing in cancer pathogenesis7-9. Another mechanism, which is the focus of this paper, 

is cis-acting regulation, in which somatic variants directly cause abnormal splicing of the 

affected gene. For example, somatic variants in canonical splice sites (highly conserved 

GT-AG dinucleotides at exon-intron boundaries) have long been reported to cause 

dysregulation of cancer-related genes4,5. These variants can induce different forms of 

abnormal splicing, such as exon skipping, intron retention, and activation of cryptic splice 

sites (SSs). Recent pan-cancer studies showed that SNVs causing aberrant intron retention 

in exon-intron boundaries are enriched in tumor suppressor genes (TSGs), especially 

TP5310,11. However, the complexity of splicing systems and the perplexing relationship 

between somatic variants and splicing alterations have limited the opportunities for 

systematic analyses of the extent and consequences of splicing-associated variants (SAVs), 

particularly those located other than at canonical sites (non-canonical sites). 

To overcome these limitations, we have developed a novel algorithm, SAVNet 

(Splicing-Associated Variant detection by NETwork modeling), for detecting SAVs based on a 

list of somatic variants in a cohort and its matched RNA sequencing (RNA-seq) data using a 

rigorous statistical framework. Through this approach, we performed a comprehensive 

analysis of a large number of primary cancer samples across 31 cancer types from The 

Cancer Genome Atlas (TCGA), deciphering the landscape of splicing aberrations caused by 

cis-acting variants in human cancers. 

 

Overview of SAVNet framework 
The overview of the proposed framework (SAVNet) is summarized in Fig. 1a. First, we 

collected evidence of abnormal splicing from tumor-derived RNA-seq data. Exon skipping 
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and alternative 5′SS and 3′SS usage were extracted by capturing abnormal splicing junctions 

demarcated by split-aligned sequencing reads, whereas intron retention was identified by 

detecting sequencing reads spanning exon-intron boundaries (Fig. 1b). To obtain reliable and 

interpretable results, we focused exclusively on either (1) a somatic variant located at or 

close to an authentic exon-intron boundary (registered in the Refseq database), in which 

normal splicing is disrupted (SS disruption) or (2) a somatic variant located within a newly 

created SS inferred by an alternative SS usage event (SS creation). As demonstrated later, 

somatic variants and splicing alterations may have complicated relationships: a somatic 

variant occasionally generates different abnormal splicing events, whereas several different 

somatic variants sometimes cause the same splicing event. To represent these intricate 

relationships, we constructed a bipartite graph representing all potential associations 

between somatic variants and abnormal splicing events for each gene. Next, based on a 

probabilistic model for the number of abnormal splicing-supporting reads and the presence of 

a somatic variant, we deduced significant causal relationships through the evaluation of a 

Bayes factor incorporating a Bayesian model averaging framework12,13. A simulation study 

investigating the effect of the number of variant-splicing associations validated that the 

proposed framework can utilize the information from multiple associations for the sensitive 

identification of SAVs (Supplementary Fig. 1a, b). 

 In the TCGA cohort, we compiled a total of 4,825,046 SNVs and 523,236 indels 

from 8,976 samples across 31 cancer types that underwent both whole-exome sequencing 

(WES) and RNA-seq using our in-house pipeline (Supplementary Tables 1 and 2 and 

Supplementary Methods). Initially, to determine the relevant positions within authentic SSs, 

we applied SAVNet to these sequencing data and assessed the accuracy of SAVNet for each 

position by calculating position-wise false discovery rates (FDRs) using a permutation of 

combinations of WES and RNA-seq data. Within authentic SSs, SS-disrupting variants at 

positions −3 through +6 of donor sites and −1 through +6 (except for position +4) of acceptor 

sites had low FDR values (below 20%), whereas much higher FDRs were observed at other 

positions (Fig. 1c). This observation prompted us to focus on somatic variants at these 

positions in the subsequent analysis. In addition, to control the overall FDR at these positions 

below 5%, we employed a threshold of 𝑒!.! or greater for the Bayes factor, depending on 

cancer type (Supplementary Fig. 1c). To evaluate the sensitivity of SAVNet under these 

settings, we compared our framework with a previous study consisting of six cancer types 

from the TCGA10. In the overlapping patient population (n = 929), SAVNet detected a 

markedly higher number of SAVs, including two-thirds of those found in the previous study 

(Supplementary Fig. 1d, e). These results demonstrate the excellent detectability and 
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satisfactory accuracy of SAVNet. 

 

Landscape of SAVs in human cancers 
With this optimized setting, we identified 14,438 somatic variants (13,414 SNVs and 1,024 

indels) responsible for 18,036 splicing alterations in the TCGA samples (Fig. 2a and 

Supplementary Table 3). A total of 11,153 SNVs and 875 indels disrupted splicing donor (n = 

6,799) or acceptor (n = 5,229) motifs, of which 4,406 SNVs and 359 indels were not located 

within GT-AG canonical sites. In addition, 2,261 SNVs and 149 indels were detected to 

create novel splicing donor (n = 1,566) and acceptor (n = 844) sites. Thus, 7,175 (49.7%) 

somatic variants would not be expected to be identified by conventional methods that 

concentrate on SAVs involving canonical sites. Although the number of SAVs per sample 

was generally low (median of 1), there were quite a few samples with more instances of 

SAVs, particularly in cancer types with high somatic variant rates, such as lung and skin 

cancers (Fig. 2b). 

Overall, these splicing alterations included exon skipping (n = 6,873), intron retention (n = 

1,917), and alternative 5′SS and 3′SS usage (n = 4,522 and 4,724, respectively) (Fig. 2a). 

Although the vast majority of SAVs caused a single splicing alteration, 2,778 (19.2%) variants 

induced multiple splicing alteration events (Fig. 2c and Supplementary Fig. 2). The 

transcriptional consequences substantially differed according to the somatic variant pattern 

(donor vs. acceptor and disruption vs. creation). Exon skipping and intron retention were 

caused by variants disrupting both donor and acceptor sites (Fig. 2a). As expected, donor 

disruptions tended to generate an alternative 5′SS, whereas acceptor disruptions more 

frequently gave rise to an alternative 3′SS. Interestingly, exon skipping was the most frequent 

consequence of donor disruptions, whereas alternative 3′SS accounted for more than 

one-half of acceptor disruptions. Many new splice donor and acceptor sites were created by 

variants outside authentic SSs. Aberrant splicing events associated with variants in 

trans-acting splicing factors7 showed no overlap with those detected by SAVNet 

(Supplementary Tables 4 and 5). 

 

Positional effects of SAVs disrupting authentic SSs 
To investigate the positional effects of somatic variants on splicing, we evaluated the number 

of SAVs disrupting authentic SSs and their ratio to overall variants according to the distance 

from the exon-intron boundary. This analysis revealed a substantial difference among SS 

positions, although the proportion of splicing outcomes was nearly consistent within donor 

and acceptor SSs, respectively (Fig. 3a and Supplementary Fig. 3a). As previously reported10, 
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canonical GT-AG sites (at positions +1 and +2) had the highest ratios of splicing aberrations 

(18.3%–24.0%). In donor SSs, non-canonical sites showed a comparable total number of 

SAVs with canonical sites, whereas most SAVs in acceptor SSs were present at canonical 

sites. Together with the last exonic bases (−1) of donor sites, whose relevance was pointed 

out in the earlier study10, the fifth intronic bases (+5) also had a relatively high ratio of 

abnormal splicing, followed by the third intronic bases (+3). Besides GT dinucleotides, these 

bases are well conserved and relevant to the interaction with U1 and U5 small nuclear 

RNAs14,15. In fact, using minigene splicing assays16, we experimentally demonstrated that not 

only canonical but also non-canonical site variants cause abnormal splicing (Fig. 3b). The 

transcripts harboring variants at positions +5 as well as −1 showed abnormal splicing, such 

as exon skipping or intron retention, with comparable efficiency to canonical site variants (+1), 

while the wild-type transcripts were largely normally spliced. 

 

Mutational signatures associated with SAV generation 
There were occasional discrepancies between the efficiency of somatic variants to cause 

abnormal splicing and the actual number of SAVs. For instance, position +2 of acceptor sites 

showed only a moderate number of SAVs, albeit the highest SAV ratio (Fig. 3a). These 

discrepancies may be attributed to the overall number of somatic variants (including those not 

associated with splicing alterations) and their substitution patterns at each position, which 

reflect both the unique base composition at SSs and the signatures of mutational processes 

that have been operative17,18. In fact, positions at −1, +1, and +5 of donor sites as well as +1 

of acceptor sites, which were dominated by G bases, showed frequent G > A and G > T 

substitutions, suggestive of age- and smoking-related mutational processes, respectively (Fig. 

3c, upper). In contrast, position +2 of donor and acceptor sites, which predominantly consist 

of A/T bases, showed a relatively low frequency of somatic variants. Among them, variants at 

canonical GT-AG sites caused splicing alterations, regardless of their base substitution 

pattern, whereas almost all SAVs at positions −1 and +5 of donor sites occurred at G bases, 

indicating almost no effect of substitutions from other bases on splicing (Fig. 3c, lower). In 

addition, positions having a smaller fraction of abnormal splicing were more strongly affected 

by the base substitution pattern. For example, G > A substitutions were the most common at 

position +3 of donor sites, but did not result in splicing aberrations. Moreover, despite their 

low frequency of overall variants, C > G substitutions (compatible with the APOBEC cytidine 

deaminase mutational pattern as shown below) accounted for a considerable proportion of 

SAVs at position +3 of acceptor sites. These findings are consistent with relatively limited 

conservation of splicing motifs at these positions. 
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To evaluate the underlying mutational process for each SAV, we analyzed mutational 

signatures found in the current sample set using pmsignature algorithm17. Among the five 

major mutational signatures (processes generating a large number of somatic variants) 

(Supplementary Fig. 3b), smoking signature showed the largest contribution to SAV 

generation, followed by APOBEC and aging signatures. Signatures related to ultraviolet 

exposure and altered activity of the error-prone polymerase POLE had less impact (Fig. 3d 

and Supplementary Fig. 3c). These differences can partly be explained by the predominance 

of G bases at highly affected positions (−1, +1, and +5 of donor sites and +1 of acceptor 

sites) and the transcriptional strand bias of several mutational signatures, i.e., the smoking 

signature preferentially affects G bases, whereas the ultraviolet signature frequently alters C 

bases. Reflecting these differences among mutational processes, lung squamous cell 

carcinomas (LUSC) had more SAVs than expected from the overall somatic variant rate, 

whereas cancers frequently affected by POLE alterations, such as uterine corpus 

endometrioid carcinomas (UCEC) and colon adenocarcinomas (COAD), as well as 

ultraviolet-associated skin cutaneous melanomas (SKCM) showed a relatively lower number 

of SAVs (Fig. 3e and Supplementary Fig. 3c). 

 

Characteristics of SAVs creating alternative SSs 
Our analysis also revealed the positional distribution of SAVs creating alternative donor and 

acceptor sites. Newly created donor sites were widely distributed in both exons and introns, 

whereas abnormal acceptor sites were created predominantly within the polypyrimidine tract 

(Fig. 3f, upper), likely reflecting the involvement of additional conserved elements in introns, 

such as branchpoint sequences and polypyrimidine tracts14,15. Apparently similar distributions 

were also seen for cryptic SSs activated by variants disrupting the authentic SSs (Fig. 3f, 

lower). However, unlike newly created acceptor sites, a biased localization of cryptic acceptor 

sites toward exons was observed, which can be plausibly explained by a depletion of AG 

dinucleotides in the polypyrimidine tract. 

We also evaluated the substitution pattern of somatic variants creating new splicing sites 

based on their relative position within the newly created SSs. Most newly created donor sites 

resulted from GT canonical site generation through C > T substitutions at position +2, 

whereas variants associated with acceptor creation tended to form a new YAG (Y, 

pyrimidine) motif at positions +3 through +1 (Fig. 3g and Supplementary Fig. 3d). These 

results suggest that, showing a strong bias toward particular base substitutions, these SAVs 

generate additional consensus donor or acceptor motifs that are more efficient for splicing 

than those in authentic SSs, as implicated by stronger splicing strength (assessed by 
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MaxEnt19 or H-bond20 scores) (Supplementary Fig. 3e-g). 

 

Features of genomic sequences associated with SAVs 
Splicing outcomes mediated by SAVs appear to be context-dependent: Somatic variants 

within authentic SSs can cause different forms of splicing aberration, while the same 

substitutions at the same relative position frequently do not alter splicing. To elucidate the 

factors determining the potential of somatic variants within authentic SSs to alter splicing, we 

compared the genomic features of SSs between normal (those not identified as SAVs) and 

abnormal splicing groups (SAVs) (Supplementary Fig. 4a). Generally, SS-disrupting SAVs 

attenuated the splicing strength more than variants that induced no abnormal splicing, 

regardless of the substituted position and consequent splicing alteration type (Fig. 4a and 

Supplementary Fig. 4b-e). A sequence motif analysis revealed a distinctive feature of SSs 

disrupted by SAVs, especially those at positions other than canonical GT-AG sites. As for 

variants occurring at the penultimate (−2) and last (−1) exon bases in the donor SSs, splicing 

motifs with abnormal splicing showed more conserved exonic bases but less conserved 

intronic bases when compared with normal splicing motifs, except for the universally 

conserved canonical GT dinucleotides (Fig. 4b and Supplementary Fig. 4f, g). This difference 

was opposite for SAVs at intronic bases, in which consensus sequences were more 

conserved in introns, especially at positions +4 through +6, but not in exons. These findings 

are compatible with the proposed mutually repressive relationship between the exonic and 

intronic regions of donor sites21,22. Analysis of the disrupted acceptor sites revealed that 

thymine (T) at position +4 was overrepresented in samples with SAVs at position +3, which 

may be due to the frequent C > G substitutions at TpC dinucleotides attributed to APOBEC 

activity17,18 (Supplementary Fig. 4f). 

Consistent with the previous report10, inspection of the exon-intron architecture revealed that 

exon skipping was characterized by a lower GC content in both exons and flanking introns, 

shorter exon and longer intron length, and stronger splicing strength (Fig. 4c and 

Supplementary Fig. 5a-f). These features are characteristic of SSs governed by the exon 

definition mechanism, in which exons are initially recognized by splicing factors23,24. In 

contrast, intron retention and alternative SS usage were associated with longer exon length, 

suggesting that these SSs are regulated in common by the intron definition mechanism. 

 

Enrichment of SAVs in TSGs 
To evaluate the role of SAVs during cancer development, we investigated which genes are 

frequently altered by SAVs. Strikingly, the majority of frequently affected genes (present in ≥ 
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10 samples across the entire cohort) were well-established TSGs (Fig. 5a, b and 

Supplementary Fig. 6a, b). In consistent with this study10, in which intron retention was 

argued to be a major mechanism of SAV-induced TSG inactivation, SAVs that caused intron 

retention showed the strongest enrichment of TSGs, regardless of the cancer gene sets1,25,26. 

However, SAVs associated with exon skipping and alternative SS usage also had a greater 

proportion of TSGs, even when compared with nonsense variants, accounting for 88% of 

SAVs affecting TSGs (Fig. 5c). These findings suggest that, together with intron retention, 

exon skipping and alternative SS usage play crucial roles in TSG inactivation. In contrast, 

oncogenes were less frequently affected by SAVs, comparable to missense variants. In total, 

1,684 SAVs in candidate cancer-related genes25 were identified in 14.7% of the TCGA 

samples (1,315 of 8,976). Particularly, as many as 914 SAVs found in 9.3% of samples 

targeted well-known TSGs1, of which 341 were not located at canonical sites. Moreover, 

SAVs accounted for 9.5% of loss-of-function variants in these genes. Therefore, SAVs 

represent an important but previously underestimated mechanism for TSG inactivation, 

irrespective of splicing outcome. 

Like nonsense variants, splicing alterations are thought to trigger nonsense-mediated decay 

(NMD), a surveillance mechanism that selectively degrades abnormal transcripts containing 

a premature termination codon6,10. To clarify the effects of SAVs on gene expression through 

NMD in TSGs, we investigated the whole transcript level across different types of abnormal 

splicing. In line with the previous report10, transcripts with intron retention showed a 

substantially lower expression level than normal transcripts, which was comparable to those 

with nonsense variants (Fig. 5d). The expression of transcripts with exon skipping or 

alternative SS usage was also reduced when their splicing alterations caused frameshift 

changes. 

 

Genes frequently altered by SAVs 
Among genes frequently targeted by SAVs, TP53 was the most frequently altered gene, 

affecting 233 samples in 22 cancer types (Fig. 5a). Although the last bases of exons 4, 6, and 

9 were reported to be frequently mutated10,11, we identified a number of recurrent variants at 

splice donor and acceptor sites of introns 3 through 9, with prominent base-level and/or 

SS-level hotspots at donor and acceptor sites of intron 4 (Supplementary Tables 6 and 7). 

Approximately one-half of recurrent SAVs simultaneously produced different types of 

abnormal splicing, while identical abnormal splicing events were generated by different SAVs, 

such as retention of introns 7, 8, and 9 caused by donor and acceptor SAVs of each intron 

(Fig. 6, upper left). Most of these SAVs induced frameshift splicing alterations, likely leading 
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to mRNA degradation through NMD, whereas other SAVs generated in-frame exon skipping 

or alternative SS usage, such as exon 5 acceptor variants activating cryptic 3′SS, followed by 

15-amino acid deletion. PIK3R1, encoding the p85 regulatory subunit of phosphatidylinositol 

3-kinase, ranked second (39 samples), approximately one-half of which were found in UCEC 

(Fig. 5a). The majority of these SAVs caused in-frame exon skipping (mainly involving exon 

4) resulting in a deletion of the iSH2 domain, which is also affected by the small deletions 

typically observed in this gene27 (Fig. 6a, upper right). 

In many genes, particularly NF1 and RB1, most SAVs and consequent splicing alteration 

events were diverse and widely distributed throughout the entire gene (Supplementary Fig. 

7a, upper and middle), whereas several genes displayed prominent hotspots of SAVs 

(Supplementary Tables 6 and 7). Among the latter genes, SAVs affecting the same SSs 

tended to generate identical splicing consequences (Fig. 6b and Supplementary Fig. 7b). A 

typical example was CDKN2A, a well-known TSG that encodes the p16INK4A and p14ARF 

proteins, which was recurrently affected by SAVs targeting exon 2 common to both proteins. 

Other instances included GATA3 SAVs found in breast invasive carcinomas (BRCA), in 

which most of them were the identical CA dinucleotide deletion at the acceptor site of exon 5, 

thus activating a cryptic 3′SS (7 nucleotides downstream), (Fig. 6a, lower left). Utilization of 

this cryptic splice acceptor caused a reading frameshift, resulting in loss of the second zinc 

finger (ZnF2) domain28. As was the case with GATA3, several genes showed tissue 

specificity, such as FUBP1 and ATRX in lower grade gliomas (LGG), although most of the 

frequently altered genes were relevant across many cancer types (Fig. 5a). 

Together with these well-established TSGs, SAVNet identified several recurrently altered 

genes (found in ≥10 samples) which had not been included in the cancer-related gene list25 

but reported or predicted to function in a tumor suppressive manner, including KANSL129, 

NIPBL30, CUL331, MYH932, SMCHD133, and HUWE134 (Fig. 5a). Thus, SAVNet may have 

potential to identify putative TSGs that are more prone to be affected by splicing aberrations. 

Conversely, MET, which encodes a hepatocyte growth factor receptor, was the only 

frequently affected oncogene, whose variants in the exon 14 donor site caused in-frame exon 

skipping known to activate c-Met35 (Fig. 5a and Supplementary Fig. 7a, lower left). 

Additionally, SAV hotspot analysis also identified recurrent SAVs occurring at the donor site 

of exon 3 of MIEN1, a putative oncogene located on the HER2 amplicon36 (Fig. 6b and 

Supplementary Fig. 7a, lower right). Although the underlying mechanisms need to be clarified, 

SAVs may contribute to the activation of several oncogenes. 
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Discussion 
The development and application of SAVNet have led to the systematic detection of a 

substantial number of SAVs that had been overlooked by earlier studies10,11, although we 

focused only on those disrupting or creating splicing donor or acceptor motifs. Following 

previous studies10,11,37, our comprehensive and thorough analysis revealed the landscape of 

cis-acting somatic variants affecting splicing, characterized their positional differences and 

genomic features as well as underlying mutational processes in details, and argued that they 

include driver mutations, especially those inactivating TSGs. In particular, we demonstrated 

that exon skipping and alternative SS usage were more frequently involved in SAV-mediated 

TSG inactivation than intron retention. In addition, we clarified the relevance of SAVs at 

non-canonical sites, including the previously unrecognized position +3 and +5 of donor sites. 

The proposed framework with FDR control, which can dissect complex variant-splicing 

associations based on the Bayesian approach, is applicable to identify additional classes of 

somatic variants that disrupt splicing regulatory elements, including exonic and/or intronic 

splicing enhancers and silencers, although further elaboration of association rules will be 

required. Based on our findings, not only exonic but also intronic SNVs near exon-intron 

boundaries should be carefully evaluated as pathogenic variants, irrespective of the presence 

of amino acid changes. In the era of precision medicine, our framework will be critical to 

capture all driver variants, including previously overlooked SAVs, in cancer patients. 
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URLs 
SAVNet, https://github.com/friend1ws/SAVNet 

Cancer Gene Census database, http://cancer.sanger.ac.uk/census 
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Methods 
Download of TCGA WES and RNA-seq data 
WES and RNA-seq data were downloaded from Cancer Genomic Hub 

(https://cghub.ucsc.edu, currently hosted at NCI Genomic Data Commons 

(https://gdc-portal.nci.nih.gov/legacy-archive)). We used samples whose tumor and matched 

control WES and RNA-seq data are all available. We excluded LAML (acute myeloid 

leukemia) and OV (ovarian serous cystadenocarcinoma), because most of their DNA 

samples underwent whole genome amplification, leading to a large amount of artefactual 

variants.  

 

Alignment of TCGA WES data 
As a reference genome, we used the sequences of assembled chromosomes, un-localized 

and un-placed scaffolds from GRCh37 (human reference assembly) as well as NC_007605 

(Epstein-Barr virus) and hs37d5 (decoy from the 1000 Genomes Project Phase II) sequences. 

In WES analysis, for downloaded sequence data in BAM format, we first convert it to FASTQ 

format using bamtofastq command (with collate=1 

exclude=QCFAIL,SECONDARY,SUPPLEMENTARY options) of biobambam 

(https://github.com/gt1/biobambam). FASTQ-formatted sequence were aligned with 

BWA-MEM version 0.7.838 with −T0 option and sorted by biobambam bamsort command 

(with index=1 level=1 inputthreads=2 outputthreads=2 calmdnm=1 

calmdnmrecompindentonly=1 options). Then, PCR duplicates were removed by biobambam 

bammarkduplicates command (with markthreads=2 rewritebam=1 rewritebamlevel=1 

index=1 options). 

 

Detection of somatic SNVs and short indels 
Our approach for detecting somatic SNVs and short indels consists of the following five 

steps: 

(1) Identification of candidate somatic SNVs and short indels using the approach based on 

Fisher’s exact test (as previously described8), which is currently implemented in 

GenomonFisher (https://github.com/Genomon-Project/GenomonFisher). 

(2) Excluding candidates present in pooled control samples by using EBFilter 

(https://github.com/Genomon-Project/EBFilter), a variant filtering algorithm based on a 

rigorous empirical Bayesian framework39.  

(3) Local re-alignment of short reads around candidate variants, which is implemented in 

GenomonMutationFilter (https://github.com/Genomon-Project/GenomonMutationFilter). 
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(4) Removal of putative OxoG artifacts. 

(5) Annotation of the variants using Annovar40. 

 

For step (1), we tallied up the numbers of mismatched bases at each position using short 

reads with mapping quality of ≥ 20 (for SNVs and indels) and with base quality of ≥ 15 (for 

SNVs). First, we roughly extracted the candidates satisfying the following criteria: (A) 

sequence depth ≥ 10, (B) mismatch ratio in tumor samples ≥ 0.05, (C) number of 

variant-supporting reads ≥ 4, and (D) mismatch ratio in matched control samples < 0.03. Next, 

we performed Fisher’s exact test to assess the differences in the ratios of the numbers of 

reference-supporting to variant-supporting reads between tumor and matched control 

samples, and candidate variants with P-value ≤ 0.1 were adopted. 

For step (2), we performed filtering of all the remaining candidates, based on a beta-binomial 

error model, as described previously39. Briefly, we estimated the parameters of the 

beta-binomial error model using non-matched control samples (20 samples in this paper), 

obtained the predictive distributions of the mismatch ratios, and compared them with the 

observed mismatch ratio of tumor samples to quantify the statistical significance. We adopted 

candidate variants with P-value < 10-4. 

For step (3), we performed local re-alignment of all short reads surrounding the candidate 

variants and their paired reads to the reference and variant-containing sequences, and 

counted the numbers of reference- and variant-supporting read pairs for tumor and matched 

control samples. We used “read pair-based” count to avoid double counting of a variant 

located in both reads of a single read pair with a small insert size. Then, we adopted 

candidates satisfying the following criteria: (A) number of variant-supporting read pairs in 

tumor samples ≥ 4, (B) number of variant-supporting read pairs in matched control samples ≤ 

1, and (C) P-value of Fisher’s exact test comparing the ratios of the numbers of reference- 

and variant-supporting read pairs between tumor and matched control samples ≤ 0.1. 

For step (4), to remove putative OxoG artifacts41, we calculated ALT_F1R2 (the number of 

variant-supporting read pairs whose first and second parts are aligned in the forward and 

reverse directions, respectively) and ALT_F2R1 (the number of variant-supporting read pairs 

whose first and second parts are aligned in the reverse and forward directions, respectively) 

for C > A and G > T substitutions. Then, C > A substitutions were removed if ALT_F1R2 < 2 

or ALT_F2R1 / (ALT_F1R2 + ALT_F2R1) > 0.9, and G > T substitutions were removed if 

ALT_F2R1 < 2 or ALT_F1R2 / (ALT_F1R2 + ALT_F2R1) > 0.9. 
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Alignment of TCGA RNA-seq data 
Genome indexes were generated using STAR version 2.5.2a42 with the GRCh 37 release 19 

GTF file 

(ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf

.gz) and –sjdbOverhang 100 option. For each sample, alignment to the reference genomes 

was performed by STAR version 2.5.2a with the following options: --runThreadN 6 

--outSAMtype BAM Unsorted --outSAMstrandField intronMotif --outSAMunmapped Within 

--outSJfilterCountUniqueMin 1 1 1 1 --outSJfilterCountTotalMin 1 1 1 1 

--outSJfilterOverhangMin 12 12 12 12 --outSJfilterDistToOtherSJmin 0 0 0 0 --alignIntronMax 

500000 --alignMatesGapMax 500000 --alignSJstitchMismatchNmax -1 -1 -1 -1 

--chimSegmentMin 12 --chimJunctionOverhangMin 12. Then, sorting and indexing of BAM 

files were performed using SAMtools version 1.2. 

 

Quantification of expression values for each gene from RNA-seq data 
To quantify gene expression, we used our in-house software GenomonExpression 

(https://github.com/Genomon-Project/GenomonExpression), which calculates a slightly 

modified version of FPKM (fragments per kilobase of transcript per million mapped reads) 

measures43. Briefly, after excluding improperly aligned or low-quality read pairs (mapping 

quality < 20), sequence depth in the exonic regions was calculated, and normalized as per 

kilobase of exon as well as per million of aligned bases for each RefSeq gene. For genes with 

multiple transcript variants, their expression values were determined by selecting a transcript 

variant with the maximum FPKM value.  

 

Identification of splicing-associated variants (SAVNet) 
To identify splicing-associated variants (SAVs), we developed and applied the novel 

approach, SAVNet (https://github.com/friend1ws/SAVNet), which consists of the following 

steps: 

1. Collection of evidences of different types of abnormal splicing 

We consider four types of abnormal splicing: exon skipping, alternative 5′ splice site (SS), 

alternative 3′SS usage and intron retention. The first three types (exon skipping, alternative 

5′SS, alternative 3′SS) are extracted using splicing junctions (defined as pairs of start and 

end positions demarcated by spliced-aligned reads). We first extract abnormal splicing 

junctions (not registered in RefSeq genes 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz)) with ≥ 2 

supporting reads (number of uniquely mapped reads crossing the junction) in at least one 
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sample in the cohort by processing SJ.out.tab files generated as by-products of the STAR 

alignment step. Then, using our in-house program (junc_utils, 

https://github.com/friend1ws/junc_utils), we classify each splicing junction into exon skipping, 

alternative 5′SS or alternative 3′SS by the following criteria. 

• Exon skipping: Two ends of the splicing junction correspond to annotated intron start 

(splicing donor) and end (splicing acceptor) sites of a gene, respectively.  

• Alternative 5′SS: One end of the splicing junction corresponds to an annotated intron 

end (splicing acceptor) site of a gene, whereas the other end is located within the gene, 

but not at an annotated intron start (splicing donor) site of the gene. 

• Alternative 3′SS: One end of the splicing junction corresponds to an annotated intron 

start (splicing donor) site of a gene, whereas the other end is located within the gene, 

but not at an annotated intron end (splicing acceptor) site of the gene. 

Splicing junctions that do not meet any of the above are removed. 

Intron retentions are identified by our in-house program (intron_retention_utils simple_count 

command, https://github.com/friend1ws/intron_retention_utils). For each exon-intron 

boundary, the number of putative intron retention reads (those covering ≥ 10 bp of both sides 

of the exon-intron boundary) as well as that of normally spliced reads covering the last exonic 

base of the exon-intron boundary is counted. In this paper, to remove events observed in 

non-cancer samples, we used a panel of 742 control samples (collected from the TCGA 

cohort) and filtered out splicing junctions with ≥ 2 supporting reads in ≥ 8 control samples, 

and intron retentions whose intron retention fraction (the number of intron retention reads 

divided by total reads covering the exon-intron boundary) is ≥ 0.05 in ≥ 8 control samples. 

 

2. Association of splicing alterations with somatic variants to construct possible 

variant-splicing bipartite graphs 

In this step, we list up candidate combinations of somatic variants and possibly associated 

splicing alterations for each gene, which are subject to further investigation in the later step. 

For each gene, let 𝒈 = (𝑔!,𝑔!,⋯ ,𝑔!) ∈ {0,1,⋯ ,𝑀}! denote the status of somatic variants of 

𝑁 samples in the cohort, where 𝑀 denotes the number of distinct somatic variants, 𝑔! = 0 

represents that the 𝑛-th sample does not have any somatic variants in the target gene and 

𝑔! = 𝑚 represents that 𝑛 -th sample has the 𝑚 -th somatic variant. Also, let 

𝒚! = (𝑦! 
! , 𝑦! 

! ,⋯ , 𝑦! 
! ), 𝑗 =  1,2,⋯ , 𝐽 denote the number of supporting reads (the number of 

putative intron retention reads for intron retention) for the 𝑗-th splicing alteration, and let 

𝒘 = (𝑤!,𝑤!,⋯ ,𝑤!) ∈ ℝ!!  denote the weight for each sample used for normalization to 

negate variations in the amount of total sequence reads. We set 𝑤! = 𝑈! 10!, where 𝑈! is 
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the number of uniquely aligned read pairs of the 𝑛-th sample.  

The 𝑚-th somatic variant is considered to be associated with the 𝑗-th splicing alteration if the 

following three conditions are satisfied: 

i. Their positional relationship implicates that the abnormal splicing can be a 

consequence of disruption of authentic SSs (those registered in the Refseq 

database) or creation of novel SSs caused by the somatic variant. More specifically, 

we check the following relationship: 

• Abnormal splicing junction events caused by authentic SS disruption: (A) A 

somatic variant occurs at authentic splicing donor (between positions −3 (the 

third exonic base) through +6 (the sixth intronic base)) or acceptor sites 

(between −1 through +6), and (B) An abnormal splicing junction event (exon 

skipping and alternative 5′SS and 3′SS) encompass or are located 100 bp 

within the variant. 

• Abnormal intron retention caused by authentic SS disruption: (A) A somatic 

variant occurs at authentic splicing donor or acceptor sites, and (B) an intron 

retention occurs at the disrupted SS or its opposite site of the same intron.  

• Alternative SS usage caused by new SS creation: A somatic variant occurs 

within the newly created SS of an un-annotated junction end of an abnormal 

splicing event (alternative 5′SS or 3′SS). 

ii. The average number of supporting reads for the 𝑗-th splicing alteration in samples 

with the 𝑚-th somatic variant is at least three times larger than those in samples 

without any somatic variants of the gene in consideration: 

!! 
!

!:!!!!

!!!:!!!!
≥ 3×  !! 

!
!:!!!!

!!!:!!!!
. 

iii. The median number of supporting reads for the 𝑗-th splicing alteration in samples 

without any somatic variants of the gene in consideration is zero. 

We create a bipartite graph (𝑉! ,𝑉!,𝐸) for the entire structure of variant-splicing associations, 

where vertices (𝑉! ,𝑉!) represent somatic variants and splicing alterations, and edges (𝐸) 

represent combinations of associated somatic variants and splicing alterations.  

 

3. Pruning of edges to select the best model explaining the data 

Here, we choose a sub-graph of the bipartite graph constructed in the previous step, which 

the most effectively explain the status of somatic variants and their impacts on splicing 

alterations (quantified by the numbers of supporting reads). We use the idea of “configuration” 

from previous eQTL and GWAS studies performed in complicated situations12,13. The 
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configuration here is a |𝐸|-dimensional binary vector 𝜸 = (𝛾!,!)(!,!)∈!, where 𝛾!,! ∈ {0,1} 

indicates whether the 𝑚-th variant and the 𝑗-th splicing alterations have a causal relationship 

(1) or not (0). When there is no causal relationship between any somatic variants and splicing 

alterations (which we call the null model henceforth), 𝜸 = 𝜸! where 𝜸! is a vector whose 

elements are all zero (∀(𝑚, 𝑗) ∈ 𝐸, 𝛾!,!! = 0). Under a configuration 𝜸, we classify somatic 

variants into “active” (ℳ!"#$%&
! (𝜸) = {𝑚|𝛾!,! = 1})  and “inactive” (ℳ!"#$%!&'

! (𝜸) = {𝟎} ∪

{𝑚|𝛾!,! = 0}) for the 𝑗-th splicing junction. 

For each configuration 𝜸 , we assume that the supporting reads 𝒚!  are generated by 

Poisson distributions whose parameters are dependent on the activity status of somatic 

variants and multiplied by sample weights. The parameter of the Poisson distribution for the 

n-th sample is set to 𝑤!𝜆! when it has only inactive variants on the 𝑗-th splicing alteration 

( 𝑔! ∈ℳ!"#$%!&'
! (𝜸)) , whereas it is set to 𝑤!𝜆!  for active variants ( 𝑔! ∈ℳ!"#$%&

! (𝜸)) . 

Additionally, we assume that 𝜆! and 𝜆! are generated by Gamma distribution with shape 

and rate parameters (𝛼!,𝛽!), (𝛼!,𝛽!), respectively. In this study, we set (𝛼!,𝛽!)  =  (1,1) and 

(𝛼!,𝛽!) = (1,0.01). Therefore, the likelihood of 𝒚! given 𝜸 is 

Pr (𝒚!| 𝐠,𝜸) = Pr 𝑦!
!

!:!!∈ℳ!"#$%!&'
! (𝜸)

λ!) Pr (𝜆!|𝛼!,𝛽!)𝑑λ!

× Pr(𝑦!
!|λ!)Pr (𝜆! 𝛼!,𝛽! 𝑑λ!

!:!!∈ℳ!"#$%&
! (𝜸)

=
𝑤!
!!
!

𝑦!
!!

!

!!!

×
Γ 𝑦!

!
!:!!∈ℳ!"#$%!&'

! (𝜸) +𝛼!

Γ 𝛼!

𝛽!
!!

( 𝑤!!:!!∈ℳ!"#$%!&'
! (𝜸) + 𝛽!)

!!
!

!:!!∈ℳ!"#$%!&'
! (𝜸)

!!!

×
Γ(𝑦!

! + 𝛼!)
Γ(𝛼!)!:!!∈ℳ!"#$%&

! (𝜸)

𝛽!
!!

(w! + 𝛽!)!!
!!!!

, 

and the likelihood of whole the data (𝐘 = {𝒚!}!!!,!,⋯,!) is Pr (𝐘| 𝒈,𝜸) = Pr (𝒚!| 𝒈,𝜸)!
!!! . Also, 

the likelihood of 𝒚! under the null model 𝜸 = 𝜸𝟎, which can be calculated as a special case 

of the above, is 

Pr! (𝒚!| 𝜸𝟎) = !

!!
! !

!
!!!

Γ !!
!!

!!! !!!
Γ !!

!!
!!

(!!!!) !!
!!

!!! !!!
, 
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and the likelihood of whole the data is Pr! (𝐘| 𝜸𝟎) = Pr! (𝒚!| 𝜸𝟎)!
!!! .  

For each variant 𝑚, we perform Bayesian model comparison to determine whether the 

somatic variant has any causal relationships with any splicing alterations (∃𝑗, 𝛾!,! = 1) or not 

(∀𝑗, 𝛾!,! = 0). Typically, to perform model comparison, we evaluate Bayes factor between the 

two distinct models. Here, as there are often many distinct null and non-null models, we 

aggregate these models through Bayesian Model Averaging and evaluate the Bayes factor 

between the aggregated null and non-null models:  

BF(𝑚) =
!" (𝐘| 𝒈,𝜸)!" (𝜸)𝜸:∃𝒋,!!,!!!

!" (𝐘| 𝒈,𝜸)!" (𝜸)𝜸:∀𝒋,!!,!!!
, 

where Pr (𝜸) is set to be the uniform distribution. The variant 𝑚 is identified as a SAV if its 

logarithm of Bayes factor is above the threshold (the default value is set to 3). Also, the 

splicing alterations caused by the variant 𝑚 are identified by selecting the best model by 

argmax𝜸:∃𝒋,!!,!!!Pr (𝐘| 𝒈,𝜸). 

 

4. Evaluation of FDR by permutation 

To evaluate FDR, we permute the pairs of genomic and transcriptome data so that somatic 

variants and splicing alterations from different patients are coupled, and perform the same 

procedures (step 1 to 3). Assuming that 𝐷!"#$%! and 𝐷!
!"#$ (𝑖 =  1,⋯ , 𝐼) are the numbers of 

SAVs identified in the original step (correct combinations) and in the 𝑖 -th permutation 

procedure, respectively, then FDR is estimated as 

FDR = 𝑚𝑖𝑛(1,
!
! !!

!"#$!
!!!

!!"#$%!
). 

In this paper, we performed 100 permutation trials (𝐼 =  100). 

 

5. Post-processing and rescuing SAVs 

SAVs causing alternative intronic 5′ or 3′SSs are generally accompanied with intron retention 

at the original authentic SSs. Therefore, in these cases, we removed intron retention and 

retained only alternative 5′SS or 3′SSs in this paper. To sensitively detect recurrent SAVs, we 

performed additional screening and adopted variants satisfying the following criteria: (A) the 

combination of the same somatic variants (the same substitution at the same position) and 

the same splicing alterations was identified in other samples by the SAVNet procedure 

described above, (B) variant mismatch ratio in tumor samples ≥ 0.05, (C) number of 

variant-supporting reads ≥ 3, (D) mismatch ratio in tumor samples ≥ 10-fold of that in 

matched control samples, (E) number of reads supporting associated splicing alterations ≥ 2. 
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Evaluation of influences of spliceosome variants on abnormal splicing 
First, in the TCGA cohort, we searched for previously known somatic variants of splicing 

factors, including missense variants at K700, K666, H662, R625, E622, G740, G742, N626, 

and E902 of SF3B1, S34 and Q157 of U2AF1, and P95 of SRSF2, as well as missense, 

nonsense and frameshift variants of ZRSR27. First, for each cancer type, we extracted 

splicing alterations with ≥ 2 supporting reads in at least one sample. Then, we identified 

splicing factors affected in ≥1% samples within each cancer type, and compared the number 

of RNA-seq reads supporting each splicing alteration between samples with and without the 

splice factor variants to derive P-value using t-test. Finally, we calculated Q-value for each 

splicing alteration using qvalue R package and splicing alterations with Q-value < 0.05 were 

considered to be associated with splice factor variants.  

 

Estimation of mutational signatures and membership of SAVs  
We used pmsignature for estimating the signatures of mutational processes operative in the 

entire cohort and each cancer cohort as described in the previous paper17. Then, the 

extracted mutation signatures were classified into any of COSMIC signatures 

(http://cancer.sanger.ac.uk/cosmic/signatures) using minimum centered cosine similarity. 

Mutation signatures with centered cosine similarities to all the COSMIC signatures < 0.75 

were classified to “other.” The estimates of membership (conditional probabilities attributed to 

each mutation signature) for each variant are provided by the following equation: 

Pr (𝑧!,! = 𝑘| 𝒙!,! = 𝒎) =
Pr 𝑧!,! = 𝑘 Pr 𝒙!,! = 𝒎 𝑧!,! = 𝑘
Pr 𝑧!,! = 𝑘′ Pr 𝒙!,! = 𝒎 𝑧!,! = 𝑘′!!

=
𝑞!,! 𝑓!,!,!!!

𝑞!,!! 𝑓!!,!,!!!!!
, 

where the notation for each variable is described in the previous paper17. Finally, variant-level 

membership estimates were aggregated according to the COSMIC signatures and the 

presence of association with splicing alterations, so that the total numbers of variants and 

SAVs caused by each mutation signature (e.g., tobacco, ultraviolet) were estimated. 

 

Quantification of splicing-related features 
MaxEnt19 and H-bond20 scores were calculated using spliceSites R package. To derive 

lengths and GC contents of exons affected by SAVs and their flanking introns, we extracted 

exonic nucleotides and adjacent upstream and downstream 150 intronic nucleotides. Then, 

we discarded 10 exonic and 20 intronic nucleotides from the exon-intron boundaries since 

they constitute splicing signals with specific nucleotides. Here, we excluded SS-disrupting 

SAVs affecting short exons (≤ 30bp), exons with multiple annotated start and end positions to 

avoid ambiguity. 
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Cell line 
HEK293T cells were obtained from RIKEN Cell Bank. Cell lines were authenticated by the 

provider and routinely tested for mycoplasma infection. 

 

Minigene splicing assay 
For each region on interest, exonic and ~300 bp flanking fragments containing either 

wild-type or variant sequences were synthesized (GeneArt, ThermoFisher Scientific) and 

cloned into the NheI and BamHI sites of the plasmid H492 (a kind gift from Prof. Masafumi 

Matsuo, Kobe University) using In-Fusion HD cloning kit (TaKaRa). Each construct was 

transiently transfected into HEK293T cells using X-tremeGENE 9 DNA Transfection Reagent 

(Roche) in six-well tissue culture plates. Forty-eight hours after transfection, total RNA was 

isolated with RNeasy Mini kit (QIAGEN), and used to synthesize cDNA with ReverTra Ace 

qPCR RT Kit (TOYOBO). Each cDNA was amplified with KOD FX Neo DNA polymerase 

(TOYOBO) using the primers (forward, 5′-ATTACTCGCTCAGAAGCTGTGTTGC-3′, and 

reverse, 5′-AAGTCTCTCACTTAGCAACTGGCAG-3′), which correspond to sequences of 

exons of H492. PCR products were separated by electrophoresis on 2% agarose gel and 

visualized with a UV transilluminator (UVP). To confirm the sequence of each band, the PCR 

products were gel purified and analyzed by Sanger sequencing. 

 

Data analysis 
All analyses were performed in Python 2.7.8 and R 3.3.2 (R Core Team) and most figures 

were generated using the ggplot2 R package. In all box plots, the center line and lower and 

upper hinges correspond to the median, and the first and third quartiles (25 and 75 

percentiles), respectively. The upper and lower whiskers extend from the upper and lower 

hinges to the largest or smallest values no further than 1.5 * IQR from the hinges, 

respectively, where IQR represents inter-quartile range, or distance between the first and 

third quartiles. Sequence logos were drawn via our in-house program 

(https://github.com/friend1ws/ggseqlogo). 

 

Data availability 
The raw sequence data used in this study can be downloaded by registered users from 

https://gdc-portal.nci.nih.gov/. The processed data and scripts for generating figures are 

available from the corresponding author upon reasonable request. 
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Figure legends 
Figure 1: Workflow and evaluation of SAVNet. 

(a) Workflow for detecting SAVs by SAVNet from matched WES and RNA-seq data. (b) 

Schematics depicting quantification methods of exon skipping and alternative 5′SS or 3′SS 

usage (by split-aligned reads) and intron retention (by junction-spanning reads) and 

examples of somatic variants associated with abnormal splicing. SAVs within authentic SSs 

that disrupt normal splicing (SS disruption) and those outside authentic SSs that create 

alternative SSs (SS creation) were evaluated separately. (c) Evaluation of position-wise 

numbers of SAVs (green) and estimated false positives (brown) between the fifth exonic base 

(−5) and the 15th intronic base (+15) for splicing donor and acceptor sites. Purple points with 

lines show estimated position-wise FDRs. Red dashed lines represent exon-intron 

boundaries. See also Supplementary Fig. 1. 

 
Figure 2: Overview of SAVs identified by SAVNet. 

(a) Number of each type of abnormal splicing events for each SAV type, stratified by (1) 

donor or acceptor, (2) disruption or creation, (3) SNVs or indels, and (4) canonical or 

non-canonical sites. Numbers in parentheses indicate the number of each type of SAV. (b) 

Number of SAVs in each sample of 31 cancer types from the TCGA project. Each point 

corresponds to one sample of a cancer type. (c) Histogram of the number of SAVs according 

to the number of associated abnormal splicing events. See also Supplementary Fig. 2. 

 

Figure 3: Landscape of positional differences of SAVs. 

(a) Number of SNVs disrupting splice donor and acceptor sites (SAV count, upper) and their 

fraction relative to total SNVs (SAV ratio, lower) at each position in the entire cohort. See also 

Supplementary Fig. 3a for indels. (b) In vitro splicing analyses using H492 minigene 

constructs (left) showing exon skipping or intron retention (right) caused by SAVs at positions 

−1, +1, and +5 of NF1 exon 37 or TP53 exon 4 donor sites, respectively. WT, wild-type; Mut, 

mutated. (c) Base substitution patterns of total somatic variants (upper) and SAVs (lower) at 

each exonic and intronic position of splice donor and acceptor sites. Different colors are used 

to display different types of alternative bases. The x-axes represent different reference bases, 

and the y-axes represent the numbers of variants. Fractions of SAVs relative to total somatic 

variants (purple points) with Bayesian confidence intervals (5% to 95% posterior quartiles) 

are also shown. (d) Fraction of estimated SAVs relative to estimated total variants attributed 

to each mutational signature. Red dashed line represents the overall fraction of SAVs relative 

to total variants. See also Supplementary Fig. 3b, c. (e) Scatter plot showing the relationship 
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between SAV and total variant counts in 31 cancer types. A linear regression line (red) is 

fitted to the data points for each cancer, excluding those for COAD, SKCM, and UCEC. The 

truncated mean is used to exclude the samples with extremely large numbers of somatic 

variants. (f) Histogram showing the distribution of newly created alternative SSs (upper) and 

cryptic SSs caused by SS disruption (lower). Red dashed lines and pink shading represent 

exon-intron boundaries and polypyrimidine tract regions (positions +5 through +25), 

respectively. (g) Base substitution patterns of SAVs creating alternative SSs according to the 

distance from the newly created exon-intron boundaries. Colors and axes are the same as in 

(c). See also Supplementary Fig. 3d-g. 

 

Figure 4: Characteristics of SS-disrupting variants generating distinct splicing 

alterations. 

(a) Change in splicing strength (based on MaxEnt scores) triggered by somatic variants at 

authentic splicing donor (left) and acceptor (right) sites according to splicing outcomes. 

“Complex” represents samples showing more than one splicing alteration, and “Normal 

splicing” represents samples lacking the relevant splicing alterations despite the presence of 

somatic variants in genes with detectable expression (fragments per kilobase of exon per 

million fragments mapped (FPKM) ≥ 10). See also Supplementary Fig. 4b-e. (b) Sequence 

motifs of splicing donor sites at which somatic SNVs lead to normal (left) or abnormal splicing 

(right; identified by SAVNet) according to the variant position. See also Supplementary Fig. 4f, 

g. (c) GC contents of exons affected by SAVs, and their franking 5′ and 3′ introns were 

compared among the five splicing groups. See also Supplementary Fig. 5. 

 

Figure 5: Entire spectrum of SAVs across cancer types. 

(a) Left, landscape of SAVs in frequently altered genes (total number ≥ 10) across cancer 

types. The point size indicates the number of affected samples. Genes are sorted by the total 

number of SAVs in all cancer types, and known cancer-related genes25 are shown in red. 

Right, relative frequencies of variant types and splicing outcomes of SAVs. For SAVs causing 

multiple splicing alterations, splicing outcomes with the largest number of supporting reads 

are selected. (b) The fractions of SAVs affecting oncogenes or TSGs (based on ref. 1) 

relative to total SAVs according to splicing outcomes were compared with other types of 

somatic variants (silent, missense, and nonsense). See also Supplementary Fig. 6. (c) The 

number of SAVs affecting oncogenes or TSGs (based on ref. 1). (d) Box plots showing 

changes in normalized (z-scored) mRNA expression (FPKM) for each splicing outcome, as 

compared to other types of somatic variants. 
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Figure 6: Genes frequently affected by SAVs in human cancers. 

(a) Distribution of SAVs and their resultant splicing outcomes for TP53 (upper left), PIK3R1 

(upper right), GATA3 (lower left), and CDKN2A (lower right). SS-disrupting and SS-creating 

SAVs are aggregated according to the authentic and alternative SSs, respectively. The 

number in circles or triangles represents the number of SS-disrupting and SS-creating SAVs 

for each SS, respectively. See also Supplementary Fig. 7a. (b) Fraction of the most frequent 

relative to total associated splicing outcomes for each SS-level SAV hotspot (found in ≥8 

samples). The most frequent splicing outcome is noted in parentheses for each SS. The 

same color indicates the identical SAVs in terms of position and substitution or indel patterns. 

See also Supplementary Fig. 7b.  
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Supplementary figure legends 
Supplementary Figure 1: Evaluation of the performance of SAVNet. 

(a) An illustration of a simulation study on the effect of the number of potentially associated 

splicing alterations on the performance of SAV detection. The numbers of splicing-supporting 

reads are generated by Poisson distribution with parameters of 3 or 0.3 when splicing 

alterations are actually associated (true) or not associated (false) with a somatic variant, 

respectively. Here, we assume an all-or-nothing situation: either all possible splicing 

alterations or none are associated with a somatic variant. For each group, 100 trials with 20 

samples were performed. (b) Box plots showing the logarithm of the Bayes factor for each 

number of true (red) and false (gray) variant-splicing associations. Also, the sensitivity (the 

fraction of trials where the logarithm of the Bayes factor was greater than 3.0 and the default 

threshold used in this study) is shown in purple points with lines for the true association group. 

As the number of associated splicing alterations increases, the sensitivity improves 

dramatically. On the other hand, the logarithm of the Bayes factor for the false association 

group does not reach the threshold irrespective of the number of associated splicing 

alterations, indicating the high specificity of SAVNet. (c) FDR for each cancer type estimated 

by permutation of combinations of WES and RNA-seq data when the threshold of the 

logarithm of the Bayes factor was set to 3.0. For ESCA and STAD, the thresholds were 

adjusted so that their FDRs were maintained below 0.05. (d, e) Venn diagrams showing the 

overlap of SAVs detected by the current (SAVNet) and previous (ratio-based splicing 

analysis) studies10. SAVs at positions analyzed by both studies (−1, +1, and +2 of donor and 

acceptor sites) were evaluated for all genes (d) and candidate cancer-related genes25 (e). 

 

Supplementary Figure 2: Examples of SAVs associated with multiple (≥ 5) splicing 

alterations. 

Different colors indicate different types of splicing alterations. The solid and dashed lines 

represent in-frame and frameshift alterations, respectively. The number at each line 

represents the count of supporting reads. 

 

Supplementary Figure 3: Positional distribution and underlying mutational processes 

of SAVs. 

(a) Number of splicing-associated indels disrupting splice donor and acceptor sites (upper) 

and their fraction relative to total indels (lower) at canonical or non-canonical sites. (b) 

Visualization of mutational patterns for five representative mutation signatures identified by 

pmsignature software17. These patterns are defined by substitution type, strand bias, and 
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sequence context of 2 bp within the substituted bases, as described in ref. 17. (c) Fraction of 

estimated SAVs relative to estimated total variants attributed to each mutational signature in 

each cancer type. Red dashed lines represent the overall fraction of SAVs relative to total 

variants for each cancer. (d) Two typical examples of SS-creating SAVs (through formations 

of GT and YAG motifs, respectively) are displayed. (e) The effects of SAVs on splicing 

strength (based on MaxEnt or H-bond scores) for authentic or alternative SSs were assessed. 

For SS-disrupting SAVs, the difference in splicing strength between alternative and 

unsubstituted authentic SSs (WT) was compared with that between alternative and 

substituted authentic SSs (Mut). For SS-creating SAVs, the difference between unsubstituted 

alternative and authentic SSs (WT) was compared with that between substituted alternative 

and authentic SSs (Mut). (f, g) Box plots showing the differences of MaxEnt scores for 

alternative 5′SSs and 3′SSs (f) and H-bond scores for alternative 5′SSs (g). 

 

Supplementary Figure 4: Genomic features of SSs affected by SS-disrupting SAVs 

based on their splicing outcomes. 

(a) Schematics depicting the classification methods for somatic variants affecting authentic 

SSs by their splicing outcomes. (b, c) Changes in MaxEnt scores by somatic variants were 

compared between normal and abnormal splicing groups according to the substituted 

position of donor (b) or acceptor (c) sites. “Normal splicing” represents samples lacking the 

relevant splicing alterations in the presence of somatic variants. (d) Change in H-bond scores 

triggered by somatic variants at authentic splicing donor sites according to splicing outcomes. 

(e) Changes in H-bond scores by somatic variants were compared between normal and 

abnormal splicing groups according to the substituted position of donor sites. (f) Sequence 

motifs of splicing acceptor sites at which somatic SNVs lead to normal (left) or abnormal 

splicing (right; identified by SAVNet) according to the variant position. (g) Sequence motifs of 

splicing donor sites at which somatic SNVs lead to normal splicing, exon skipping, alternative 

5′SS, intron retention, or complex abnormalities. Categories whose number of SAVs is less 

than 25 are not displayed. 

 

Supplementary Figure 5: The exon-intron architecture affected by SS-disrupting SAVs 

based on their splicing outcomes. 

(a) Lengths of exons affected by SAVs, and their 5′ and 3′ introns were compared among the 

five splicing groups. (b) MaxEnt scores (before substitution) at authentic splicing donor (left) 

and acceptor (right) sites according to splicing outcomes. (c) H-bond scores (before 

substitution) at authentic splicing donor sites according to splicing outcomes. (d-f) Matrices of 
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the significance of differences in GC content (d), length (e) of exons affected by SAVs and 

their 5′ and 3′ introns, and splicing strength (based on MaxEnt or H-bond scores) of affected 

SSs (f) among the splicing groups. The significant differences were quantified by the negative 

logarithm of the P-value of one-sided Wilcoxon rank-sum tests whose alternative hypotheses 

are that either the splicing pattern 1 is less (blue) or greater (red) than splicing pattern 2. The 

smaller P-value between the two alternative hypotheses is shown. 

 

Supplementary Figure 6: Enrichment of SAVs in cancer-related genes. 

(a) The fraction of SAVs affecting cancer-related genes relative to total SAVs according to 

splicing outcomes were compared with other types of somatic variants (silent, missense, and 

nonsense). These cancer-related gene sets are derived from three publications (refs. 1, 25, 

and 26) and the Cancer Gene Census database (CGC, as of Feb. 2017). (b) The fraction of 

somatic variants affecting oncogenes or TSGs (ref. 1) for each type of abnormal splicing was 

compared with that of silent variants. The bar plot shows the logarithm of P-values calculated 

using a binomial test. 

 

Supplementary Figure 7: Genes frequently affected by SAVs in human cancers. 

(a) Distribution of SAVs and their resultant splicing outcomes for NF1 (upper), RB1 (middle), 

MET (lower left), and MIEN1 (lower right). SS-disrupting SAVs are aggregated according to 

the authentic SSs. The number in circles represents the number of SAVs for each SS. (b) 

Schematics depicting methods to quantify the fraction of the most frequent relative to total 

associated splicing outcomes for each SS-level SAV hotspot. The number at each line 

represents the count of supporting reads. 
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