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Abstract 17 

The estimation of evolutionary rates from ancient DNA sequences can be negatively affected by 18 
among-lineage rate variation and non-random sampling. Using a simulation study, we compared the 19 
performance of three phylogenetic methods for inferring evolutionary rates from time-structured 20 
data sets: root-to-tip regression, least-squares dating, and Bayesian inference. Our results show that 21 
these methods produce reliable estimates when the substitution rate is high, rate variation is low, 22 
and samples of similar ages are not phylogenetically clustered. The interaction of these factors is 23 
particularly important for Bayesian estimation of evolutionary rates. We also inferred rates for time-24 
structured mitogenomic data sets from six vertebrate species. Root-to-tip regression estimated a 25 
different rate from least-squares dating and Bayesian inference for mitogenomes from the horse, 26 
which has high levels of among-lineage rate variation. We recommend using multiple methods of 27 
inference and testing data for temporal signal, among-lineage rate variation, and phylo-temporal 28 
clustering.  29 
 30 

Introduction 31 

Estimating the rate of molecular evolution is a key step in inferring evolutionary timescales and 32 
demographic dynamics from genetic data. Evolutionary rates can be estimated using time-structured 33 
genetic data sets, in which samples have been drawn at distinct points in time. In these cases, the 34 
molecular clock can be calibrated using the ages of ancient DNA sequences (Li et al. 1988; 35 
Rambaut 2000), as estimated by radiometric dating or stratigraphic correlation. Rates inferred from 36 
time-structured DNA data are essential to understanding evolutionary processes on short timescales 37 
(de Bruyn et al. 2011). Here, we examine some critical factors that can negatively affect these 38 
estimates of rates.  39 
 There are several different methods for estimating substitution rates from time-structured 40 
sequence data (Rieux & Balloux 2016). The simplest method is based on linear regression of root-41 
to-tip (RTT) distances, measured in expected substitutions per site, against the ages of the 42 
corresponding sequences (Buonagurio et al. 1986). The slope of the regression line provides an 43 
estimate of the substitution rate. Two key drawbacks of this method are that the regression 44 
necessarily assumes a strict clock and that data points are not phylogenetically independent as some 45 
branches contribute to multiple root-to-tip measurements (Drummond et al. 2003; Rambaut et al. 46 
2016). Least-squares dating (LSD) is another computationally efficient method that can estimate 47 
rates from time-structured data (To et al. 2016). It assumes a strict clock and fits a curve to the data 48 
using a normal approximation of the Langley-Fitch algorithm (Langley & Fitch 1974). This 49 
approximation is somewhat robust to departures from rate homogeneity among lineages. A third 50 
method is Bayesian phylogenetic analysis that can be used for joint estimation of substitution rates 51 
and the tree (Drummond et al. 2002). Bayesian methods can account for phylogenetic uncertainty 52 
and rate variation across branches, allow the error in sequence ages to be taken into account, and 53 
enable the co-estimation of evolutionary and demographic parameters of interest (Drummond et al. 54 
2002). However, Bayesian analyses of time-structured sequence data have typically yielded very 55 
high rate estimates (Ho et al. 2007). Some of the statistical causes of high rates include tree 56 
imbalance (Duchêne et al. 2015a), closely related samples having the same age (Murray et al. 2015; 57 
Duchêne et al. 2015b), and extreme violations of the demographic assumptions (Navascués and 58 
Emerson 2009). The direction of bias is not always the same and depends on the pattern and 59 
magnitude of among-lineage rate variation (Wertheim et al. 2012).  60 
 As a particular form of time-structured data, ancient DNA presents unique analytical 61 
challenges compared to other time-structured data such as pathogen sequences. For instance, 62 
ancient sequences are typically scarce so that most of a data set is composed of contemporaneous 63 
sequences. The age of the root of ancient DNA studies is much older than in studies of pathogens, 64 
meaning that rates are more likely to vary between lineages. In this study, we examine two potential 65 
sources of error in rate estimates from time-structured sequence data: complex patterns of rate 66 
heterogeneity among lineages and sampling schemes in which samples with similar ages are also 67 
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closely related. We investigate these factors in a simulation study and compare rate estimates made 68 
using three different methods from time-structured mitogenomic sequences.  69 

 70 

Results and Discussion 71 

We simulated the evolution of DNA sequences under 12 different treatments, reflecting common 72 
evolutionary conditions many ancient DNA data sets. These treatments represented combinations of 73 
high (10-7 subs/site/year) and low (10-8 subs/site/year) substitution rates, three levels of among-74 
lineage rate variation (high, medium, and low), and two levels of phylogenetic clustering (high and 75 
low). In general, the three methods of analysis (RTT regression, LSD, and Bayesian inference) 76 
produced more accurate estimates for sequence data produced by simulation using a high rate than 77 
with a low rate (Figure 1). The spread of estimates from each of the six high-rate treatments across 78 
all three methods was relatively narrow in most cases. The Bayesian median estimates were 79 
accurate, with a small spread, for all sequence data that had been produced with a high rate.  80 
 For sequence data simulated with a low rate, the mean estimates generally had a small spread 81 
except when there were high levels of phylogenetic clustering (see below). LSD mildly 82 
underestimated the rate for these data sets. RTT regression produced mean rate estimates with a 83 
greater spread for the data sets that had evolved with a low rate.  84 
 The presence of among-lineage rate variation increased the spread of mean rate estimates 85 
from sequence data that had evolved with a high rate. However, this rate variation did not have a 86 
measurable impact on the rate estimates made using RTT regression and Bayesian inference from 87 
the sequences that had evolved with a low rate.  88 
 Unexpectedly, high levels of phylogenetic clustering of sequences of similar ages were not 89 
associated with systematic over- or underestimation of the rate. Previous studies have shown that 90 
such phylogenetic clustering could obscure the temporal signal as assessed by the date 91 
randomization test (Duchêne et al. 2015b). We found that phylo-temporal clustering did not have 92 
much impact on the rate estimates from data sets that had evolved with a high rate, but tended to 93 
increase the spread of the mean estimates from the slowly evolving sequences. Notably, Bayesian 94 
inference was accurate and precise for data sets that had low levels of phylo-temporal clustering, 95 
regardless of whether they had evolved with a high or low rate. 96 
 The interaction between low rate, high among-lineage rate variation, and high phylo-temporal 97 
clustering is apparent in the Bayesian rate estimates (Figure 2a). This is consistent with the results 98 
of previous studies of these individual factors, including the effects of extreme rate variation among 99 
lineages (Wertheim et al. 2012) and phylo-temporal clustering (Duchêne et al. 2015b; Murray et al. 100 
2015). RTT regression and LSD appear to be more robust to the interaction of these three 101 
unfavourable factors, although it is evident that a low rate, high among-lineage rate variation, and 102 
high phylo-temporal clustering all contribute to estimation error (Figure 1). 103 
 The data sets that yielded erroneous rate estimates when analysed using Bayesian inference 104 
tended to have phylograms (trees with branch lengths proportional to genetic change) with a high 105 
ratio of internal to terminal branch lengths (Figure 2b). These trees are generally shorter than those 106 
with short internal and long terminal branches, such that there is less information from which to 107 
estimate the rate. We found a positive correlation between phylogenetic stemminess and the spread 108 
of median posterior rate estimates.  109 
 We also used the three methods to analyse six time-structured mitogenomic data sets, from 110 
Adélie penguin, brown bear, dog, horse, modern human, and woolly mammoth. All three methods 111 
produced rate estimates that were consistent with one another when the sequences had evolved 112 
according to a strict clock (Figure 3). Rate estimates were largely congruent with one another even 113 
when the data showed evidence of among-lineage rate variation, except for horse mitogenomes for 114 
which the rate estimate from RTT regression fell outside the 95% credibility interval of the 115 
Bayesian estimate.  116 
 117 
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Conclusions 118 

Our study has shown that three common methods of rate estimation from time-structured data 119 
produce robust estimates of substitution rates under most evolutionary conditions. Of the three 120 
methods, RTT regression is useful beyond its role as a ‘sanity check’: it produced rate estimates 121 
similar to those of LSD and Bayesian inference for four of the six mitogenomic data sets and 122 
performed well in our simulation study. RTT regression is also useful in informing model selection 123 
because it can be used to detect clocklike evolution, based on the fit to the data. Least-squares 124 
dating is particularly valuable for analyses of large data sets, for which the computational demands 125 
of a Bayesian phylogenetic analysis would be prohibitive (e.g. Mourad et al. 2015). It is remarkably 126 
robust to violations of the strict clock and can handle data with appreciable levels of among-lineage 127 
rate variation (To et al. 2016).  128 
 Our results also reveal that the three methods respond differently to the potentially 129 
confounding impacts of among-lineage rate variation and phylo-temporal clustering of sequences. 130 
This highlights the value of using all three methods to analyse time-structured sequence data. 131 
Increasing the reliability of rate estimates will lead to a more accurate understanding of 132 
demographic and evolutionary processes on recent timescales.  133 
 134 

Materials and Methods 135 

Simulations 136 

We simulated genealogies of 100 tips in BEAST 2 (Bouckaert et al. 2014), under a constant 137 
population size and conditions that resemble ancient DNA studies of Pleistocene vertebrates. In all 138 
cases, the root height was fixed to 500,000 years and half of the tips corresponded to present-day 139 
samples. The ages of the other 50 tips were randomly distributed between the present and 50,000 140 
years ago (i.e. 10% of the age of the root). Trees contained two scenarios of phylo-temporal 141 
clustering, with 100 replicates each: high clustering was simulated by making all present-day 142 
samples form a monophyletic group, whereas low clustering was simulated by only making half of 143 
the present-day samples form a monophyletic group.  144 
 Using the simulated genealogies and the program NELSI (Ho et al. 2015), we simulated the 145 
evolution of nucleotide sequences while varying the mean substitution rate and the degree of 146 
among-lineage rate variation under scenarios resembling time-structured mitogenomic data sets. 147 
Simulations were performed using two substitution rates that cover the range of rates in most 148 
molecular dating studies using ancient DNA: a high rate of 10-7 and low rate of 10-8 subs/site/year. 149 
For each of the two rate schemes, we simulated three scenarios of among-lineage rate variation 150 
under a white-noise model (Lepage et al. 2007), with variance along each branch of 0.1% (low), 1% 151 
(medium), and 10% (high) of the expected number of substitutions. Sequence evolution was 152 
simulated according to the HKY+Γ substitution model using the R package phangorn (Schliep et al. 153 
2011) for each of the 100 tree replicates in the 12 different scenarios. All sequences had lengths of 154 
15,000 nucleotides, to reflect the approximate size of many vertebrate mitogenomes.  155 
 For the 100 data sets in each simulation treatment, we used three methods to estimate the 156 
substitution rate: root-to-tip regression in TempEst 1.5 (Rambaut et al. 2016), least-squares fitting 157 
in LSD 0.3 (To et al. 2016), and Bayesian phylogenetic inference in BEAST 1.8.3 (Drummond et 158 
al. 2012). We performed a regression of root-to-tip distances against sample ages in TempEst for 159 
each data set. Substitution rates were also estimated in LSD, with the ages of the samples used to 160 
inform the least-squares fitting algorithm. We performed Bayesian phylogenetic analysis of each 161 
data set using BEAST. For the substitution rate, we used a continuous-time Markov chain reference 162 
prior (Ferreira & Suchard 2008). 163 
 164 
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Mitochondrial Genomes 165 

We used the three methods to analyse six time-structured mitogenomic data sets (Table S1). To 166 
infer phylograms for TempEst and LSD, we used maximum likelihood in RAxML 8.2.4 167 
(Stamatakis 2014) with the HKY+Γ model of nucleotide substitution. In each case, a rapid 168 
bootstrapping analysis with 100 replicates was followed by a search for the best-scoring tree. 169 
Outgroup sequences were included in order to allow the position of the root to be estimated (see 170 
Table 1), but were pruned from the tree for subsequent analyses of substitution rates.  171 
 For each data set, we checked for temporal structure using a date-randomization test 172 
(Ramsden et al. 2009). In this test, the sample ages are randomly reassigned to the sequences and a 173 
rate is re-estimated. This is repeated several times to generate a set of rate estimates from date-174 
randomized data sets. A data set is considered to have adequate temporal structure if its rate 175 
estimate differs from those obtained from the date-randomized data.   176 

The data used here is available from https://github.com/kjuntong/aDNAratesproject 177 
 178 
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Figure legends 297 
 298 

FIG. 1. Estimates of substitution rates from sequence data produced under 12 different simulation 299 
conditions. Data were analysed using Bayesian inference in BEAST, least-squares dating in LSD, 300 
and root-to-tip regression in TempEst. Numbers on each panel indicate the proportion of estimates 301 
that are above the true simulated rate. Solid horizontal line indicates the true rate. Dashed horizontal 302 
lines indicate half a degree of magnitude above and below the true rate.  303 
 304 
FIG. 2. (a) Precision of Bayesian estimates of substitution rates across 12 simulation conditions, as 305 
measured by the width of the 95% credibility interval of the estimate divided by the rate used for 306 
simulation. One hundred data sets were produced by simulation under distinct evolutionary 307 
conditions and analysed using BEAST. (b) Relationship between phylogenetic stemminess and the 308 
error of rate estimate according to Bayesian inference. Stemminess corresponds to ratio of internal 309 
to terminal branch lengths.  310 
 311 
FIG. 3. Estimates of substitution rates from six time-structured mitogenomic data sets. Bayesian 312 
estimates are indicated by their median and 95% credibility intervals. Main publications from which 313 
the sequence data were obtained: Adelié penguin, Subramanian et al. (2009); brown bear, Miller et 314 
al. (2012); dog, Thalmann et al. (2013); horse, Lippold et al. (2011), Achilli et al. (2012), and 315 
Orlando et al. (2013); modern human, Brotherton et al. (2013); and woolly mammoth, Gilbert et al. 316 
(2008). Details of the data sets are given in Supplementary Table S1.  317 
 318 
 319 

Supplementary figure legends 320 

 321 
 322 
FIG. S1. Diagrammatic representations of the different treatments investigated in our simulation 323 
study. Simulations of sequence evolution were performed using (a) two different substitution rates; 324 
(b) three levels of among-lineage rate variation; and (c) two levels of phylo-temporal clustering.  325 
 326 
 327 
FIG. S2. Pairwise comparisons of rate estimates from root-to-tip regression in TempEst, least-328 
square dating in LSD, and Bayesian inference in BEAST. The better the points fit along the solid 329 
linear lines, the more congruent one method is with the other. Dashed lines indicate a line of best fit 330 
for the estimates. The two distinct clouds of points within each panel represent the high rate and 331 
low rate estimates. Proportional difference and bias were calculated as in Duchêne et al. (2016). 332 
Proportional difference is the difference in the estimates between two methods, divided by the rate 333 
of the first rate estimate ((e1 – e2) / e1). Bias is the proportion of data sets for which the estimate 334 
along the x-axis is greater than that along the y-axis.  335 
 336 
 337 
FIG. S3. Relationships between phylogenetic stemminess and estimation error for 12 simulation 338 
treatments across three methods: (a) root-to-tip regression in TempEst, (b) least-squares dating in 339 
LSD, and (c) Bayesian inference in BEAST. Solid dark lines indicate true simulated rates. Dashed 340 
lines indicate half a degree of magnitude above or below true rates. Light grey lines indicates lines 341 
of best fit for the estimates. 342 
 343 
 344 
  345 
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Supplementary Tables 346 

Table S1. Six time-structured mitogenomic data sets analysed in this study.  347 
 348 

Species Scientific name Tips 
Length 

(nt) 

Age range 

(years) 
Outgroup 

Main 

sourcesa 

Adelie 

penguin 

Pygoscelis 

adeliae 
20 14,198 0–44,000 

Pygoscelis 

antarctica 
1 

Brown/polar 

bear 

Ursus arctos & 

U. maritimus 
32 14,609 0–122,500 

Ursus 

americanus 
2 

Dog Canis familiaris 138 14,596 0–36,000 Canis latrans 3 

Horse Equus caballus 167 14,910 0–42,577 Equus asinus 4–6 

Modern 

human 

Homo sapiens 

64 14,889 0–7,141 

Homo 

neanderthalens

is 

7 

Woolly 

mammoth 

Mammuthus 

primigenius 
65 14,951 

12,210–

46,455 

Elephas 

maximus 
8 

 349 
a Main publications from which the sequence data were obtained: (1) Subramanian et al. (2009); (2) 350 
Miller et al. (2012); (3) Thalmann et al. (2013); (4) Lippold et al. (2011); (5) Achilli et al. (2012); 351 
(6) Orlando et al. (2013); (7) Brotherton et al. (2013); (8) Gilbert et al. (2008).  352 
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Table S2. Estimates of substitution rates for six time-structured mitogenomic data sets.  353 
 354 

Species 

Rate estimate (subs/site/year) 

Root-to-tip 
regressiona 

Least-squares 
datingb Bayesian inferencec 

Adelie penguin 3.54 × 10-8 4.10 × 10-8 3.37 × 10-8 (1.16 — 5.86 × 10-8) 

Brown/polar bear 2.72 × 10-8 2.65 × 10-8 2.28 × 10-8 (1.5 — 3.22 × 10-8) 

Dog 1.01 × 10-7 8.60 × 10-8 9.32 × 10-8 (7.4 × 10-8 — 1.11 × 10-7) 

Horse 5.58 × 10-9 2.26 × 10-8 3.01 × 10-8 (2.07 — 4.02 × 10-8) 

Modern human 2.6 × 10-8 2.1 × 10-8 2.51 × 10-8 (1.62 — 3.35 × 10-8) 

Woolly mammoth n/a 9.59 × 10-8 1.43 × 10-8 (8.74 × 10-9 — 2.07 × 10-8) 

 355 
a Root-to-tip regression estimates obtained using TempEst (Rambaut et al. 2016); b Least-squares 356 

dating estimates obtained using LSD 0.3 (To et al. 2016); c Bayesian inference estimates 357 
obtained using BEAST 1.8.3 (Drummond et al. 2012): median values are provided with 95% 358 
credibility intervals detailed within brackets.  359 
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