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1Institut de Biologie (IBENS), École Normale Supérieure, Paris, France

Abstract.—. Understanding the relative influence of various abiotic and biotic variables on
diversification dynamics is a major goal of macroevolutionary studies. Recently,
phylogenetic approaches have been developed that make it possible to estimate the role of
various environmental variables on diversification using time-calibrated species trees,
paleoenvironmental data, and maximum-likelihood techniques. These approaches have
been effectively employed to estimate how speciation and extinction rates vary with key
abiotic variables, such as temperature and sea level, and we can anticipate that they will
be increasingly used in the future. Here we compile a series of biotic and abiotic
paleodatasets that can be used as explanatory variables in these models and use
simulations to assess the statistical properties of the approach when applied to these
paleodatasets. We demonstrate that environment-dependent models perform well in
recovering environment-dependent speciation and extinction parameters, as well as in
correctly identifying the simulated environmental model when speciation is
environment-dependent. We explore how the strength of the environment-dependency, tree
size, missing taxa, and characteristics of the paleoenvironmental curves influence the
performance of the models. Finally, using these models, we infer environment-dependent
diversification in three empirical phylogenies: temperature-dependence in Cetacea,
δ13C-dependence in Ruminantia, and CO2-dependence in Portulacaceae. We illustrate how
to evaluate the relative importance of abiotic and biotic variables in these three clades and
interpret these results in light of macroevolutionary hypotheses for mammals and plants.
Given the important role paleoenvironments are presumed to have played in species
evolution, our statistical assessment of how environment-dependent models behave is
crucial for their utility in macroevolutionary analysis.
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For decades, evolutionary biologists and paleontologists have debated the relative

role of major biotic and abiotic drivers of macroevolutionary dynamics (76; 84). The view

that links biodiversity to abiotic change, which has been apparent to biologists since the

19th century (83; 85) and is generally referred to as the Court Jester hypothesis (3), sees

shifts in diversification as timed with climatic or geologic events. The broad-scale

synchrony between global biodiversity and temperature throughout the Phanerozoic

(72; 49) supports this view. More focused observations, such as the rise of angiosperms

during the early Cretaceous thermal maximum (77; 18), also find support for close ties

between abiotic change and species diversification. The view that links biodiversity shifts

to biotic interactions, on the other hand, as outlined, for example, in Leigh Van Valen‘s

Red Queen hypothesis (80) and Ehrlich and Raven‘s Escape and Radiate hypothesis (24),

suggests that interspecific interactions (e.g., predation, mutualism, and species recognition)

drive species diversification (47). While these various abiotic and biotic factors offer

fundamentally different interpretations of how species evolve over geological time,

evaluating their relative importance in practice is not trivial and has been inhibited by

methodological shortcomings.

Investigations into the drivers of species diversification have been conducted using

fossil specimens and phylogenetic comparative methods. Time-series of fossil specimens

have been used to study speciation and extinction rates through time (70; 73), the timing

and effect of mass extinction events on species richness (67; 25; 15; 46), and correlations

between environmental changes and shifts in biodiversity (8; 28; 35). Fossil studies remain

key to our understanding of macroevolutionary dynamics, but they are hindered by

incomplete sampling (75), clumping of specimens near mass extinction events (39), and

high sensitivity to taxonomic and spatial scale (51; 26). Importantly, fossil studies are

usually restricted to the few lineages for which sufficient fossil information is available (7).

Phylogenetic comparative methods, which tender statistical or probabilistic information
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from species trees, provide an alternative approach to the same type of questions,

applicable to a more diverse set of organisms. They have been used to study patterns of

speciation and extinction in clades (55; 52), as well as how these patterns of diversification

are related to paleoenvironmental drivers (78; 87; 20; 12; 42; 16; 21; 61).

Until recently, phylogenetic approaches for analyzing the role of paleoenvironmental

drivers relied on correlative techniques (20; 78; 87), often assuming that environmental

changes are punctuated events. This has been improved in the last couple of years, with

the development of ‘environment-dependent‘ likelihood-based approaches (19),

implemented in the R package RPANDA (53), that allow testing whether gradual changes

in paleoenvironments had a significant influence on speciation and extinction rates, as well

as quantifying the direction and magnitude of this potential influence.

Environment-dependent models take the form of time-dependent birth-death models (54),

but where the speciation and extinction rates, λ(t) and µ(t), respectively, at a given time,

t, can depend on measured time-variable palaeodata, E(t). In order to test the influence of

the paleoenvironment on diversification, hypotheses are made about the functional form of

the dependency. Two main dependencies have been used: a linear dependency, of the form:

λ(t) = λ0 + αλt (1)

and

µ(t) = µ0 + αµt, (2)

and an exponential dependency of the form

λ(t) = λ0e
αλt (3)

and
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µ(t) = µ0e
αµt (4)

, where λ0, µ0, αλ, and αµ are free parameters. The probability density of observing a set

of branching times in a phylogeny with a specific environmental dependence can then be

computed using the likelihood expressions derived for time-dependent models, adapted to

accommodate a time-dependent environmental variable (54; 19). The significance of the

environmental dependence, its form (e.g. linear or exponential), its sign (positive or

negative), and its strength can thus be assessed using maximum likelihood techniques.

Likelihood-based phylogenetic comparative methods have been essential aids to

uncovering patterns of macroevolutionary change (52), and we can thus anticipate that the

environment-dependent models will be of great use for understanding the relative role of

major biotic and abiotic drivers on deep-time diversity dynamics. These models have

already identified, for example, a positive relationship between speciation rates and global

temperature in ruminants in the Cenozoic (12), an inverse relationship between net

diversification rates and temperature in bird species since the KpG boundary (16), a

positive relationship between extinction rates and sea level in birdwing butterflies (21), and

a positive relationship between speciation rates and Andean uplift in neotropical orchids

(61). However, we can only have a relative confidence in these empirical results, because

the performances of the environment-dependent models have not been formally assessed.

We can be confident that the likelihood expressions are correct, because the

environment-dependent models are straightforward extensions of time-dependent models

that have themselves been thoroughly tested using simulations (54; 31); but this does not

guarantee that parameter estimation on reasonably sized phylogenies is not biased, that

there is enough statistical power in the data to distinguish between alternative

evolutionary scenarios (such as alternative environmental dependences), or that
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environmental dependence is not artifactually inferred when it did not occur. So, for

example, temperature-dependency of birds diversification (16) was inferred on a highly

undersampled phylogeny (∼ 0.02%); even though the likelihoods accommodate missing

taxa, can such results be trusted? Environment-dependent extinction was detected in birds

(16) and birdwing butterflies (21). Can we trust these results given the well-known

difficulty in inferring extinction rates from reconstructed phylogenies (52)? We cannot

answer these questions, or similar questions that will undoubtedly arise in future use of

environment-dependent models, unless the statistical properties of these models are

thoroughly assessed using simulations.

In this paper, we compile four biotic and five abiotic paleodatasets that can

potentially be used as explanatory variables in environment-dependent models and use

simulated trees to evaluate the statistical performance of the corresponding models. We

first focus on temperature-dependent models: we test the ability to recover speciation

rates, extinction rates, and their temperature-dependencies; we also test the ability to

detect temperature-dependent diversification when it occurs and check that such

dependency is not wrongly detected when it does not occur. Next, because a particularly

promising use of these models is to find which environmental variable, among a set, best

explains diversification dynamics, we test the ability to correctly identify the environmental

variable that actually influenced diversification rates and assess whether specific

characteristics of the paleoenvironmental curves influence this ability. Finally, we offer

best-practice guidelines for using the environment-dependent model and implement them

on empirical phylogenies.
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Materials and Methods

Paleodata

We collected paleodata on nine variables that have been associated with macroevolutionary

hypotheses of diversification. These paleodata represent only a subset of the

paleoenvironments that could potentially be used in environment-dependent diversification

models, and are focused primarily on the marine environment. However, most of them are

also relevant to the terrestrial environment; and they cover a wide range of biotic and

abiotic hypotheses with minimal redundancy. Most importantly, they cover a wide range of

resolution and temporal trends; we expect the statistical properties of the

environment-dependent models on these paleodata to provide a good representation of

their statistical properties in general. The paleodata can roughly be classified into three

main categories. (i) Paleoclimatic variables: temperature data (inferred from δ18O

measurements) taken from (89); atmospheric CO2 data taken from (37); benthic δ13C data

taken from (45). Temperature is the canonical indicator of climate change. Atmospheric

CO2 varies as a result of biotic changes, such as the rise of photosynthetic plankton (60),

or tectonic activity, which causes either a reduction in CO2 caused by the subduction of

carbonate-rich ocean crust or the emission of CO2 through volcanic eruptions (5); levels of

atmospheric CO2 are thought to impact, in particular, photosynthetic organisms. δ13C

reflects global changes in organic carbon sequestration and organic isotope fractionation

ratios. In the Cenozoic, δ13C can represent changes in the proportion of C4 and C3 grasses

dominating the planet, and is therefore likely to be crucial to the evolution of grasses and

the herbivores that feed on them; δ13C can also represent increases in 13C-rich marine

species, such as diatoms, which contribute considerably to the overall carbon present in the

planktonic food web (40; 59). (ii) Variables reflecting changes in oceanic composition: silica
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weathering ratio (14) and sea level estimates (50). The silica weathering ratio accounts for

influxes of silicic acid in the ocean, which is needed for silica-precipitating microalgae (e.g.,

diatoms and radiolaria), which are responsible for about a quarter of global primary

production (10). Sea level has several effects on both the terrestrial and the marine biome,

through, for example, different overall land surfaces, different weathering levels, changes in

stoichiometry, and currents. (iii) Variables reflecting interspecific interactions (primarily in

the ocean): we constructed diversity curves for fossil archaeplastida, radiolaria,

foraminifera, and ostracods. Fossil data were compiled from the Neptune Database (44)

and Paleobiology Database (https://paleobiodb.org/) and diversity curves were estimated

at the genus level using shareholder quorum subsampling (1) at two-million-year bins.

These diversity curves are useful for testing hypotheses of direct species interactions, such

as grazing of archaeplastida by herbivores, or indirect interactions, such as competition for

the same feeding resources; they may also be useful, for example, as proxies for global

productivity (archaeplastida, (68)). Additionally, these fossil species were chosen because

they are abundant enough in the fossil record to generate detailed diversity curves.

All paleoenvironmental curves were stored in the R package RPANDA freely

available on CRAN (53). For the purpose of our study, to avoid biases in model selection,

curves were truncated at 52 million years ago (the earliest date of the silica curve) and

values were scaled to between 0 and 1.

Performance of temperature-dependent diversification models

We used simulations to test the statistical properties of the temperature-dependent

diversification models. All our simulations were conducted over the time span of the

environmental curves (i.e., 52 Myrs). We discarded trees with fewer than 50 tips, which

always corresponded to less than 10% of the simulated trees. Throughout, speciation and

extinction rates are in units of events per million years.
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We tested the ability of temperature-dependent models to recover accurate

parameter values. We simulated environment-dependent birth-death trees with speciation

rates, λ, and/or extinction rates, µ, that varied as an exponential function of temperature

T, such that at each given point in time, t, λ(t) = λ0e
αλT (t) or λ(t) = λ0 and

µ(t) = µ0e
αµT (t) or µ(t) = µ0. For trees with a λ-dependency on T (hereafter referred to as

temperature-dependent λ trees), we simulated with λ0 = 0.1, 0.15, 0.2, fixing αλ = 0.02 and

µ0 = 0.01; αλ = −0.5,−0.2, 0.4, 0.8, 1.6 fixing λ0 = 0.1 and µ0 = 0.01; and

µ0 = 0.01, 0.03, 0.06, 0.09 fixing λ0 = 0.1 and αλ = 0.02. We furthermore simulated

temperature-dependent λ trees with a considerably higher µ (µ0 = 0.7) to reflect estimates

of µ inferred from the fossil record (32). To do so, we increased λ too (λ0 = 0.7, αλ = 0.35),

otherwise it was difficult to simulate surviving trees. For trees with a µ-dependency on T

(hereafter referred to as temperature-dependent µ trees), we simulated with

λ0 = 0.2, 0.25, 0.3, fixing µ0 = 0.02 and αµ = 0.02; µ0 = 0.02, 0.06, 0.1, fixing λ0 = 0.3 and

αµ = 0.01; and αµ = −1,−0.6, 0.2, 0.4, fixing λ0 = 0.5 and µ0 = 0.1. Additionally, we

simulated trees with both a λ- and µ-dependency on T, with (1) λ0 = 0.05,

αλ = −0.15, 0.15, µ0 = 0.05, and αµ = 0.1; (2) λ0 = 0.25, αλ = 0.4, µ0 = 0.05, and

αµ = 0.1; (3) λ0 = 0.02, αλ = 0.5, µ0 = 0.05, and αµ = 0.1; (4) λ0 = 0.075, αλ = 0.5,

µ0 = 0.05, and αµ = −0.4,−0.15, 0.35, 0.5. Values were chosen to test the most amount of

variation in the λ and µ dependency, while reliably simulating surviving trees. For each

combination of parameter values, we simulated 5000 trees using the RPANDA function

sim_env_bd, stopping the simulations when the equivalent of 52 Myrs was achieved. The

median tree size (of trees with more than 50 tips) was 280 for trees with a λ-dependency

on T, 435 for trees with a µ-dependency on T, and 812 for trees with both a λ- and

µ-dependency on T. Finally, we fitted the generating model (exponential dependence of λ

or µ on T ) by maximum-likelihood using the RPANDA function fit_env (53) and

recovered parameter estimates for λ0, αλ, µ0, and αµ. The likelihood implemented in this
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function is the one described in (54) and (19); here we conditioned the likelihood on stem

age. Throughout, we used a Nelder-Mead optimization algorithm (56) to fit models with a

dependence of λ on time or temperature and a simulated-annealing optimization algorithm

(6) to fit models with a dependence of µ on time or temperature. This is because for

α > 0.1 in the latter models the Nelder-Mead algorithm did not converge – specifically, the

optimization function could not be computed at the initial parameters for a wide range of

initial parameters.

Because many empirical phylogenies are undersampled, we tested the effect of

undersampling on inferring parameters in temperature-dependent trees. We simulated 1000

temperature-dependent λ trees (λ(t) = 0.2e0.4·T (t)) and constant extinction (µ = 0.05) and

1000 temperature-dependent µ trees (µ(t) = 0.05e0.1·T (t)) and constant speciation (λ = 0.5).

We jackknifed the trees (i.e., sampled without replacement) at 10% intervals from

90 − 50% and inferred parameter estimates by fitting a temperature-dependent speciation

model to each set of 1000 trees using the function fit_env,while accounting for

undersampling by specifying the corresponding sampling fraction (54; 19). The median tree

size (of trees with more than 50 tips) of the original temperature-dependent λ trees was

1209 tips and of the original temperature-dependent µ trees was 1119 tips.

We tested the ability to detect temperature-dependent diversification when it occurs

and to not detect it when it does not occur. Many paleoenvironmental curves, despite

fluctuations in their trends, sport a general tendency to increase or decrease over time.

Therefore, in addition to testing the ability to distinguish between temperature-dependent

and null, constant rate models, we tested the ability to distinguish between

temperature-dependent and time-dependent models. We simulated birth-death trees with a

positive and negative exponential dependency of λ on temperature (λ = 0.2e±0.9·T ,

µ(t) = 0.05), with an increasing and decreasing dependency of λ on time (λ = 0.2e±0.2·t,

µ(t) = 0.05), and with constant rates (λ = 0.2, µ = 0.02). Additionally, because
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unaccounted-for background variation in diversification rates across lineages can potentially

lead to biased inferences (64; 54; 66), we tested whether rates that vary among lineages can

be misleadingly interpreted as environmental dependence. We therefore simulated trees

with a 10% probability of a rate-shift in λ at each branching event, with an initial λ0 = 0.2;

at each event where a shift occurred, the new λ was drawn from a normal distribution of

values (with a standard deviation of 0.1) centered on the ancestral value; µ was held

constant at 0.02. For each scenario we simulated 5000 trees; the median tree size (of trees

with more than 50 tips) was 455 tips. Finally, to test whether high relative extinction rates

affect our ability to properly infer temperature-dependence on speciation rates, we

simulated 1000 temperature-dependent λ trees (median tree size of 190 tips) with

λ = 0.75e0.35·T (t) and µ = 0.7. Time-dependent trees were simulated using tess.sim.age

(38) and trees with rate-shifts were simulated with our own code. We fit all three models

(exponential dependency on temperature, exponential dependency on time, and constant

rates) to each tree and compared support using the corrected Akaike Information Criterion

(AICc) (11). Fits of constant and time-dependent models were performed using the fit_bd

function in RPANDA. We then calculated the percentage of each set of trees best fit by

each model (the model with lowest AICc was selected). We likewise simulated birth-death

trees with a fixed λ and a positive and negative exponential dependency of µ on

temperature (λ0 = 0.4, µ0 = 0.1, αµ = ±0.4), an increasing and decreasing dependency of µ

on time (λ0 = 0.5, µ0 = 0.01, αµ = ±0.4), and with no dependency of µ on time (i.e.,

constant λ0 = 0.2, µ0 = 0.01). For each scenario we simulated 5000 trees; the median tree

size (of trees with more than 50 tips) was 358 tips. Here, in addition to fitting the

corresponding models, we also fit models with an exponential dependency of λ on

temperature. This was done to see whether a µ-dependency on temperature left a

detectable signal in λ.

In order to have an idea of the effect of tree size on parameter estimation and the
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ability to recover temperature dependency, we simulated 5000 temperature-dependent λ

trees (λ = 0.2e±0.05·T (t) and µ = 0.05). We fitted the corresponding temperature-dependent

model and recovered parameter estimates for each tree as above. We also fitted the

exponential time-dependent and constant rate models and computed the Akaike weights of

these models on each tree. Finally, we reported the results by tree size bin. This procedure

can potentially introduce a bias, because trees falling in a particular size-bin are trees that,

by chance, even though they share the same simulated parameter values, diversified more

(or less) than others. We did not observe such a bias, however. We similarly tested the

effect of tree size on parameter estimation and model recovery for temperature-dependent

µ trees (µ = 0.2e0.1·T (t)); in these simulations, we varied λ0 across simulations so as to avoid

the bias mentioned above. λ0 values were 0.1, 0.2, 0.3, 0.4, and 0.5.

There will necessarily be a loss of resolution between the actual fluctuations in an

environmental variable over time and the reconstruction of those fluctuations with sampled

data. It is therefore important to understand how sensitive the environment-dependent

model is to the reconstructed fluctuations. To evaluate this, we tested the effect of

discrepancies in resolution between the temperature curve used to simulate trees and the

one used to fit the temperature-dependent model. We simulated pure-birth (µ = 0) trees

with an exponential dependency between λ and temperature, where the smoothing

function for the temperature curve was determined using generalized cross-validation (34).

We simulated 5000 trees with positive temperature-dependency (λ = 0.2e0.05·T (t)) and 5000

trees with negative temperature-dependency (λ = 0.2e−0.05·T (t)). The median tree size (of

trees with more than 50 tips) was 610 tips. We then fitted temperature-dependent models

to the simulated trees, using increasingly smoothed temperature curves. Smoothed curves

are meant to represent degraded environmental data and were obtained by reducing the

number of degrees of freedom (DOFs) applied to the smoothing function. For each tree, we

compared parameter estimates, as well as statistical support in comparison with
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time-dependent models (with exponentially trending λ) obtained when fitting

temperature-dependent models with increasingly smoothed temperature curves.

Performance of model selection on trees simulated with various

environmental dependencies

Generalizing the analyses performed for temperature-dependency, we assessed whether

environmental dependence can be detected on trees simulated with λ dependencies on

specific paleoenvironment curves. Because we did not see any effect of extinction on the

ability to recover the environment-dependent model in the case of

temperature-dependency, we simulated pure-birth trees (µ = 0) with exponential

dependencies between λ and each paleoenvironmental curve X (see Paleodata above). We

simulated trees at various values of αλ (0.15, 0.3,0.45, 0.6, 0.75, 0.9, 1.05, 1.3, 1.6, 1.9, 2.2)

to test how the strength of the simulated dependency influenced the recoverability of the

environmental model. For each value of αλ and for each paleoenvironmental curve we

simulated 1000 trees with a median tree size (for trees with more than 50 tips) of 310 tips.

λ0 was identical across paleoenvironmental curves, but varied between αλ values, in order

to maximize the number of surviving, reasonably sized simulated trees. For each tree, we

fitted the same environment-dependent model that was used to simulate that particular

tree, as well as a constant-rate λ model and a time-dependent λ model, and compared their

statistical support with AICc. We selected the best model as the one with the lowest AICc

support. We also compared the relative support of the models using Akaike weights.

We carried out the same type of analyses to assess whether an environmental

dependence on µ can properly be inferred. We simulated trees with an exponential

dependency between µ and a paleoenvironmental curve X, holding λ constant, for different

values of αµ as above. For each value of αµ and for each paleoenvironmental curve we

simulated 1000 trees; the median tree size (of trees with more than 50 tips) was 320. For
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each tree, we fitted the same environment-dependent model that was used to simulate that

particular tree (µ = µ0e
αµX(t), λ = λ0) as well as a constant-rate birth-death model and a

model with µ exponentially dependent on time and constant λ. We also fitted a model

where the environment influences speciation rather than extinction rates (λ = λ0e
αλX(t),

µ = µ0). We did this under the hypothesis that trees simulated under a µ dependency on a

paleoenvironmental curve could manifest a signature of that dependency in their λ.

Environmental curves differ widely in their shape and characteristics (Fig 3B). In

particular, the biotic curves that we considered here (constructed from fossil data)

appeared coarser than the abiotic ones. To assess whether environmental dependency was

more easily detected for certain types of curves than others, we characterized the curves

based on defining attributes, such as biotic/abiotic, linearity/non linearity, and six further

metrics, two capturing temporal autocorrelation, two capturing global trend, and two

capturing the composition of the data. Next, we assessed the effect, if any, these features

had on the rate of recovery of the models at different values of αλ. To test for linearity, we

tested for the presence of one or two breakpoints in the data using the threshold test (36).

We used two metrics reflecting temporal autocorrelation; first we measured the correlation

between values in the original time-series and a new series that lags behind by some

amount of time, for a series of time lags. We then fit regressions between the various time

lags and the corresponding correlation value. We used the intercept of the regression to

measure short-term autocorrelation, and the slope to measure the rate at which

autocorrelation decreases. A global trend analysis was conducted by fitting a linear model

using generalized least squares to each curve and computing the correlation, slope, and

degrees of freedom for the fitted model. Finally, we estimated the average rate of change of

the curves by calculating the mean over all time periods of the slope between values within

each time period.

Finally, for trees simulated under each paleoenvironmental curve with an
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exponential dependency on λ, we compared fits for models using all the

paleoenvironmental curves. For each set of simulated trees, we calculated the percentage of

trees best fit (i.e., lowest AICc) by each paleoenvironmental model and reported this

percentage as a function of α.

Testing macroevolutionary hypotheses of environment-dependency on

empirical phylogenies

We used time-calibrated molecular trees for Cetacea, Ruminantia, and Portulacaceae. The

Cetacean phylogeny was 98% sampled and constructed from six mitochondrial and nine

nuclear genes in a Bayesian framework; it was time-calibrated using fossil data; and

divergence dates were estimated using a relaxed molecular clock (78). For Ruminantia we

used two different trees: one was constructed using full mitochondrial genomes and 16

fossil calibration points in a Bayesian framework, but was only 65% sampled (9); the other

one was constructed using a supermatrix of 124 previously published trees and was 100%

sampled (12). The two phylogenies differed markedly in their datation; in particular, the

phylogeny of (9) hypothesized significantly more recent crown ages for many families and

for Ruminantia than that of (12). For Portulacaceae, the tree was 40% sampled and

constructed separately using a combined matrix of genomic markers for chloroplast in a

maximum likelihood framework and Bayesian inference; divergence times were estimated

using a relaxed clock calibrated on relevant geological events.(58). We conducted analyses

on Bayesian posterior trees for Cetacea and both Ruminantia trees; we analysed both the

maximum-likelihood and Bayesian tree for Portulacaceae. The above trees were chosen

because diversification in each has previously been associated with an abiotic process

(78; 58; 12).

The nine paleoenvironment models plus a constant-rate birth-death model and

time-dependent model (with and without extinction) were fit to the empirical phylogenies,
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accounting for missing taxa by applying the relevant sampling fraction (54; 19). For each

paleoenvironment model, we tested λ and µ as constant, linear, and exponential functions

of the paleoenvironmental curves, as well as µ = 0. The best-fit model for each phylogeny

was determined by ∆AICc as above, and the corresponding speciation and extinction

parameter estimates were recorded. All palaeoenvironmental curves were tested. While

some variables (temperature and sea level) are directly biologically relevant for the three

clades, other variables (CO2, δ13C, silica, archaeplastida diversity, ostracod diversity) are

directly relevant for some clades but not all, and others still (foraminifera and radiolarian

diversity) are not directly biologically relevant to any of the clades. When environmental

variables were not directly relevant, we still included them as negative controls. We also

note that while significant support for environment-dependent models is typically

interpreted by an effect of the environment on clade dynamics, such support could also

occur if the rise or demise of a given clade impacts the targeted environmental variable

(e.g. silica levels in the ocean are often attributed to the expansion of land plants). Hence,

environmental variables that are biologically relevant for a given clade are those that can

either influence, or be influenced by, that clade.

All clades can potentially be influenced by temperature and sea level changes. For

cetaceans, aside from these two variables, we may expect a dependency on silica levels,

archaeplastida, and ostracods. Indeed, the evolution of cetaceans has been influenced by

diatoms, which are phytoplankton that require silica (48). Archaeplastida include green

algae that can have a negative impact on diatom blooming (41), and thus potentially also

affect cetaceans. Finally, ostracods may also be expected to influence cetacean

diversification, either directly as a food source or indirectly as diatom predators. For

Portulacaceae, biologically relevant variables are CO2, δ13C, silica, and Archaeplastida.

Indeed, reductions in CO2 levels have been linked to radiations of angiosperms during the

Cretaceous and the rise of C4 plants, such as Portulacaceae, during the Miocene (33),

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2017. ; https://doi.org/10.1101/162248doi: bioRxiv preprint 

https://doi.org/10.1101/162248


which is also reflected in global levels of δ13C. Finally, Archaeplastida include land plants

that can engage in mutualistic or competitive interactions with Portulacaceae. For

ruminants, changes in plant life across the globe have been crucial, such that all variables

mentioned for Portulacaceae (CO2, δ13C, silica, and Archaeplastida) are also relevant

through their presumed effect on land plants. Archaeplastida can in addition directly

influence diversification in Ruminantia via change in their feeding regime.

In order to illustrate how one could test the relative importance of abiotic versus

biotic variables, we selected the best supported abiotic and biotic variables and computed

the relative probability of these two models based on their Akaike weights; we also

computed the Akaike weight of each model among the set of all models and summed these

Akaike weights over all the abiotic variables (or biotic variables) to obtain an estimate of

the overall support for abiotic (or biotic) variables. The first approach has the advantage

to not be biased by the total number of variables, or biologically relevant variables, in each

category (abiotic and biotic). However, it measures the relative importance of the two most

supported abiotic and biotic variables rather than the relative importance of abiotic and

biotic variables as a whole. Intermediate approaches could be envisioned where the relative

support for abiotic and biotic variables is computed based on a fixed, homogenized number

of biologically relevant biotic and abiotic variables.

Additionally, for each phylogeny, we assessed the support of the best-fit

paleoenvironmental model with smoothing splines computed with increasingly smaller

DOFs. This was done in order to test at what resolution of the paleoenvironmental curve

support for environment-dependent diversification started to be lost. We compared all fits

using AICc as above.
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Results

Performance of temperature-dependent diversification models

Temperature-dependent models were able to accurately recover simulated parameter

values. Maximum-likelihood estimates of the parameters of the temperature-dependent λ

models were unbiased (Figure 1), even when extinction rates were high (Figure 1D).

Maximum-likelihood estimates of the parameters of the temperature-dependent µ models

were likewise unbiased, but they were more variable (Supplemental Figure 1). When both

λ and µ were exponentially dependent on temperature, parameter recovery remained

reliable (Supplemental Figure 2).

Undersampling did not bias parameter estimates, but affected the uncertainty

around the estimates (Supplemental Figure 3). While the median estimates did not deviate

significantly from the simulated estimates (P < 0.01), the variance increased with

decreasing sampling fraction.

Temperature-dependent speciation models can be correctly distinguished from other

models. Each model – constant, time-dependent, and temperature-dependent λ models –

were overwhelmingly recovered when they were the generating model (≥ 75%, Figure 2),

even when relative extinction was high (Supplemental Figure 4). Trees simulated with a

time-dependency on λ were rarely (∼ 5%) recovered by a temperature-dependent model

and vice versa, which is especially significant given the overall tendency for the

temperature curve to decrease with time. Heterogeneity in speciation rates across lineages

did not lead to a false support for temperature dependency: trees with speciation rate

shifts were recovered by constant-rate models 32% of the time, models with increasing

speciation rate through time 62% of the time, and temperature-dependent models only 6%

of the time. The support for increasing speciation rate models can be explained by the fact
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that lineages that by chance have high speciation rates leave more descendants, such that

the average speciation rate over lineages increases through time. The ability to detect

temperature-dependency on µ when it occurred was considerably lower: ∼ 20% of trees

simulated with a temperature-dependency on µ were accurately recovered by the

generating model (Supplemental Figure 5).

As expected, the ability to recover parameter estimates and the

temperature-dependent model improved with tree size. For temperature-dependent λ

models, median parameter estimates approximated simulated values precisely as soon as

trees had more than 100 tips, and the variance of recovered estimates decreased

considerably with tree size (Supplemental Figure 6). With the αλ values considered in

these simulations (α = ±0.05), the Akaike weight was well above 0.5 for trees with more

than 200 tips, and steadily increased to 0.9 for trees with more than 900 tips

(Supplemental Figure 6). For temperature-dependent µ models, median estimates for αµ

approximated simulated values for trees with more than 400 tips and the range of

estimates decreased considerably for trees with more than 600 tips (Supplemental Figure

7). Median estimates for µ0 were slightly higher than simulated values for all tree sizes,

which is consistent with our previous estimates of µ0 at α ≥ 0.1 (see Supplemental Figure

1). The Akaike weight of the temperature-dependent µ model increased with tree size, but

in agreement with the results above it remained low, below 0.4 even for trees with more

than 800 tips (Supplemental Figure 7).

When fitting models with degraded temperature curves, we found that accurate

parameter estimates could still be properly recovered, unless the environmental data were

very highly degraded (i.e., for a smoothed spline constructed with ≤ 15% of the total

DOFs available in generalized cross-validated model (Supplemental Figure 8). Fitting

models with a degraded temperature curve slightly reduced the ability to distinguish

temperature-dependent models from time-dependent ones, but this ability remained good,
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with < 15% of the phylogenies simulated under a temperature-dependent model with the

most degraded curve (DOFs= 5% of the generalized cross-validated value) finding support

for time-dependent rather than temperature-dependent models (Supplemental Figure 8).

Performance of model selection on trees simulated with various

environmental dependencies

The ability to detect environment-dependence when it exists does not drastically

change with the paleoenvironmental variable considered. For all nine paleoenvironmental

variables, environment-dependent speciation can be detected and distinguished from a

constant rate and time-dependent effect, as soon as the environmental effect is relatively

strong (Figure 3). The ability to distinguish between the simulating

environment-dependent model and a pure-birth or time-dependent model increases roughly

linearly with αλ, from approximately 20% at αλ = 0.15 to 100% at αλ = 2.2. This result is

unlikely to be an effect of tree size, as the median tree size does not vary much across αλ

values (185 ± 36). As αλ increases, so does the support for the simulated environmental

model, as defined by the Akaike weight support for the environment-dependent,

time-dependent, and constant-rate models (Supplemental Figure 9), consistent with

expectations. For αλ > 1, curves for biotic palaeodata, which tend to be coarser than

abiotic curves, show, on average, higher recovery rates, while for αλ < 1, curves for abiotic

palaeodata show, on average, higher recovery rates (Supplemental Figure 10A). There is no

such noticeable effect on Akaike weights, though (Supplemental Figure 9). There is no

apparent effect of linearity, the level of autocorrelation, the direction or magnitude of the

best-fit regression slope, degrees of freedom, or the average rate of change of the

environmental curves on our ability to recover how the corresponding environment affected

speciation (Supplemental Figure 10B-C).
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Environment-dependent extinction is generally not detected, regardless of the

strength of the environmental effect: the ability to recover environment-dependent µ is

< 10% across all αµ values (Supplemental Figure 11). Even when only trees with more

than 400 tips are considered (median tree size = 1183 tips), the ability to recover the

correct model does not exceed 20%. Environment-dependent extinction is more often

detected as an environmental dependence on λ than on µ (Supplemental Figure 11), but

this still happens in less than 20% of the trees.

The ability to distinguish between λ-dependence on different environmental

variables is good as soon as the environmental dependence is strong enough: while a

considerable percentage of trees were recovered by the wrong environment-dependent

model for low αλ (a condition under which the environmental model would likely not be

selected when compared to a time-dependent model (Figure 3), the correct model was

recovered in the majority of trees for αλ > 1 (Figure 4). For several paleoenvironmental

dependencies – specifically, δ13C, sea level, and temperature – the simulating model was

recovered the majority of the time, even at low αλ values. These three environmental

variables were also those that were most often misleadingly detected for trees generated

under other environmental dependencies (Figure 4). As above, the median tree size did not

vary much across αλ values (249 ± 34).

Testing macroevolutionary hypotheses of environment-dependency on

empirical phylogenies

The Cetacean phylogeny was best fit by a pure-birth exponential speciation model with a

positive dependency on temperature across all posterior distributions (λ = 0.097e0.02·T (t) for

the consensus phylogeny) (Figure 5). The probability that the abiotic model is the best, as

calculated by the Akaike weight for the best-fit abiotic model (temperature) when

compared to the best-fit biotic model (ostracod diversity) was 0.72. The sum of Akaike
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weights across abiotic variables was 0.73 ± 0.12 and across biotic variables 0.27 ± 0.15. We

furthermore compared fits of the temperature-dependent λ model with splines smoothed by

a range of DOFs (5 − 190). Using the maximum DOFs (208), as defined by generalized

cross-validation, the temperature-dependent model was significantly better supported than

a time-dependent model (∆AICc = 6.9) and other environmental models (∆AICc > 1.3).

The time-dependent model only showed a comparable fit to the tree when the temperature

curve was smoothed with DOFs below 10. This suggests that diversification in Cetaceans is

best supported by the global trend in the temperature curve, although the decrease in

AICc support with reduced DOFs is evidence that diversification is also supported by

specific fluctuations within the temperature curve. The Ruminantia phylogeny of (9) was

best fit by a pure-birth exponential speciation model with a positive dependency on δ13C

across all posterior distributions (λ = 0.175e0.7·δ13C for the consensus phylogeny) with an

Akaike weight for that model (δ13C) when compared to the best-fit biotic model (ostracod

diversity) of 0.94 (Figure 6A). The sum of akaike weights across abiotic variables was

0.79 ± 0.06 and across biotic variables 0.11 ± 0.06. The Ruminantia supertree of (12),

however, was best supported by a constant-rate birth-death model

(λ = 0.11, µ = 1.20e− 7) (Supplemental Figure 12). The analysis by (12) separated dietary

groups and found maximum support for a model with a linear dependency of temperature

on λ; in our analysis (which did not separate dietary groups), a model with linear

dependency on temperature found considerably poorer support than the constant-rate

model (∆AICc = 142.329). Portulacaceae was best fit by a pure-birth exponential λ model

with a negative dependency on CO2 for both the maximum-likelihood and Bayesian

phylogeny (λ = 2.98e−0.44·CO2 for the maximum-likelihood phylogeny) (Figure 6B), with an

Akaike weight for that model (CO2) when compared to the best-fit biotic model

(foraminifera diversity) of 0.82. The sum of Akaike weights across abiotic variables was

0.75 ± 0.04 and across biotic variables 0.25 ± 0.04. When the curves of the best-fit models
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for Ruminantia (using the phylogeny of (9)) and Portulacaceae were smoothed with

increasingly fewer DOFs and refit to the data, there was little effect on the computed AICc

for Ruminantia, but a steep increase in AICc values for Portulacaceae at DOFs below 90%,

and then again at DOFs below 80% of total DOFs, suggesting that diversification in

Ruminantia is supported by the general trend of the δ13C curve, whereas in Portulacaceae

it is supported by both the general trend and minor fluctuations of the CO2 curve. For

both phylogenies, AICc support for the best-fit environment-dependent model became

poorer than for a time-dependent model only when the DOFs dropped to 2, which

effectively made the environment-dependent models equivalent to time-dependent models.
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Discussion

The history of Earth has been marked by shifting land masses, volcanic eruptions,

and continuous global atmospheric change, as well as a widespread and often dramatic

turnover and dispersal of life. There is general recognition that changes to biodiversity over

geological time are driven by the environment (26) and species interactions (81). The

proportional contribution of various abiotic and biotic drivers within individual clades and

across the tree of life, however, is still debated (30). This is due, in part, to the challenges

of estimating the effects of these abiotic and biotic factors on clade diversification. We have

tested a phylogenetic approach to address these challenges under a model-based framework

that allows us to directly relate speciation and extinction rates in a clade to biotic and

abiotic factors in the paleoenvironment. Applying this modeling framework to empirical

phylogenies, we identify specific environmental variables that likely played a major role in

shaping the evolution of the corresponding clades.

Our simulation results point to three aspects of the use of environment-dependent

models that should be considered. Firstly, we show that speciation and extinction

parameter estimates do not systematically deviate from true values as undersampling

increases (as long as undersampling is accounted for when fitting the models), although the

variability of estimates certainly does. Secondly, we find that the accuracy of model

selection depends strongly on the strength of the environmental dependence measured by

the αλ parameter (effect size) and tree size. Finally, we find notable differences in the

ability to recover environmental dependency across distinct paleoenvironmental curves. In

particular, in the set of paleoenvironmental curves that we considered, recovering the

proper environmental dependence under strong dependence was easier for the biotic

variables and temperature in comparison with the other abiotic variables. We could not,

however, characterize which features of the time-series data influence its recovery rate. A
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thorough understanding of how differences in the shape of the paleoenvironmental curves

influence our ability to make inferences will require simulating environmental curves with

distinct and controlled characteristics.

It has been noted before that, although possible in theory, inferring extinction rates

from molecular phylogenies is difficult in practice (see (64; 52; 4; 65)). Inferring the

environmental dependence of extinction rates is, not surprisingly, also difficult. Specifically,

we find that inferring extinction parameters is very variable for small trees (< 200 tips)

and that accurately distinguishing µ-dependent environmental models from constant-rate

or time-dependent models can be unreliable.

The strengths and limits of the environmental models identified here suggest some

guidelines for best practice. First, parameter estimates for environment-dependent

speciation models start to be accurate for trees with more than 100 tips (although this

number, of course, also depends on effect size and the nature of the curve). Second, all

results related to environmental dependence in extinction should be treated with care,

especially for trees with fewer than 400 tips. Second, environment-dependencies that may

not seem biologically relevant can be useful negative controls or used to detect potential

hidden variables. In our analyses, we did not find strong support for any biologically

irrelevant variable, which gives us confidence in the dependencies for which we did find

strong support. Third, if a user is interested in analyzing the effect of an environmental

variable not considered here, we recommend that s/he directly analyses the statistical

properties of the environment-dependent model applied to that particular variable using

simulations. Finally, when testing environmental dependencies in speciation rates, inferred

αλ values for the best and second-best fitting models can be consulted; if there is a high

false discovery rate for the best-fit model at the αλ value inferred for the second-best-fit

model (see Figure 4), then the result should be interpreted cautiously.

A recent work that used the temperature-dependent model (19) to infer

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2017. ; https://doi.org/10.1101/162248doi: bioRxiv preprint 

https://doi.org/10.1101/162248


diversification in modern birds found rates of speciation and extinction to be negatively

dependent on temperature (16). We can assess how robust this result is in light of our

simulation analyses. The temperature curve was smoothed with ∼ 25% of the DOFs

inferred by generalized cross-validation. Given our observation that the

temperature-dependent model is robust to smoothing, we expect this smoothed curve to be

sufficient to generate accurate parameter estimates. The tree has 230 tips, which is

sufficient for accurately inferring parameter values for λ, but not necessarily for µ. The

result that extinction is temperature-dependent, therefore, should be interpreted with

caution. The tree is severely undersampled, with a sampling fraction of ∼ 0.02%, which

might produce estimates for both speciation and extinction considerably deviated from

their true values. Finally, the temperature-dependent model-fitting was conducted on only

one tree (the maximum clade credibility tree), which is not ideal. Dating discrepancies can

be sources of potential discordance between results, which is something we account for in

the Cetacean and (both) Ruminantia phylogenies by analyzing posteriorly sampled trees.

In agreement with previous macroevolutionary (19; 48) and macroecological (86)

work, we find that diversification in Cetaceans was positively associated with temperature.

The best-fit model is a pure-birth model with exponential dependence of λ on temperature.

We show in addition that temperature-dependence is better supported than dependence on

other paleoenvironmental variables. It has been suggested that Plio-Pleistocene

fluctuations in oceanic temperatures created ecological opportunities for allopatric

speciation in delphinids (78) and this may be why we find diversification in Cetaceans to

be dependent on temperature. Notably, the inferred αλ value for the second-best-fit model,

ostracod diversity, is 0.27 and, at this αλ value, temperature shows a relatively high false

discovery rate (around 40%). Therefore, the temperature-dependent result should be

interpreted cautiously. The support we find for a positive dependency of ostracod diversity

on diversification in Cetaceans (λ = 0.089 ∗ e0.193∗ostracoddiversity) suggests that the role of
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ostracods as a food source may have positively affected Cetacean speciation.

In Ruminantia, the results depended on the phylogeny we used, which is not

surprising given the markedly different datations hypothesized by these two phylogenies.

With the phylogeny of (9), we found diversification to be best supported by a pure-birth

exponential speciation model with a positive dependency on δ13C. This substantiates a

major role for C4 grasses, which became dominant during the Miocene and have been

hypothesized to have spurred diversification in ruminant mammals (12). The δ13C data we

used were collected from marine samples rather than from terrestrial samples (e.g., bovid

tooth enamel), and so are not a direct measurement of the relative abundance of C4 and C3

grasses. However, there are notable similarities in these data, particularly during the

Neogene (13). For the Ruminantia supertree of (12), we find support for a constant-rate

birth-deal model rather than any environment-dependent model, which is contrary to what

was found in (12). This may be because that study conducted separate analyses on

different dietary groups.

Our analysis of Portulacaceae, which was best fit by a pure-birth model with a

negative exponential dependency on CO2, adds statistical evidence to the often described

macroevolutionary relationship between CO2 levels and angiosperm diversification.

Previous work has shown that angiosperm diversity in the Cretaceous was negatively

correlated with atmospheric CO2 (23). The reason for this negative correlation, however, is

debated: some argue that so-called “CO2 starvation” drove radiations in angiosperms as

they competed and searched for new niches (79; 69); others that diversification in

angiosperms caused a decline in CO2 through the geological weathering of calcium and

silica (43; 82). Our result cannot resolve this conflict, but does extend the previously

observed negative relationship into the Cenozoic for an angiosperm family, and furthermore

quantifies the effect of CO2 levels on that family‘s diversification. We can be confident that

the CO2 model is not a false positive, as CO2 is rarely selected when it is not the
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generating model (Figure 4). In particular, when the second-best-fit model (foraminifera

diversity) is the generating model, there is a zero or near-zero selection for the CO2 model,

even at much lower αλ values than the one estimated here (4.47) for the dependency to

foraminifera (Figure 4).

For all three phylogenies, we estimated the support of all biotic and abiotic models,

regardless of whether they were biologically relevant or not. In the three clades, we found a

strong support for the best abiotic model when compared to the best biotic one, as well as

a stronger support for the all abiotic variables combined compared to all biotic variables

combined. This result may be biologically true, in which case it emphasizes the overarching

importance of the global abiotic environment on species diversification in vastly different

organisms. It may instead reflect the lack of relevant biotic variables we tested.

We note that the absence of extinction inferred in Cetacea and Ruminantia is not

realistic, and is inconsistent with what we know from the fossil record (63; 12). Accounting

for heterogeneity in diversification rates across these groups could help in recovering more

meaningful extinction rate estimates (54). This could be done by applying the same type

of tree partitioning that was used by (54), while fitting temperature-dependent models.

Even though extinction seems to be poorly estimated in Cetacea and Ruminantia, this

does not affect the confidence we can have in our inference of the dependency of speciation

rates to environmental changes: our simulations suggest that high levels of extinction do

not affect the ability to properly infer environment-dependent speciation, and that

environment-dependent extinction is not mistakenly interpreted as environment-dependent

speciation.

There are many potential extensions of the environment-dependent models

presented here. First, paleoenvironmental variables not included in this work could be

considered, such as planetary albedo or the origination rate of marine guilds. Second,

models accounting for the simultaneous effect of several paleoenvironmental variables as
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well as their interaction may provide more resolution on how various abiotic and/or biotic

factors combine to influence species diversification. While fitting such models is already

possible with the current implementation (any kind of dependence of speciation and

extinction rates with environmental variables can be imputed, including dependencies on

several environmental variables and their interactions), one would need to test the

performance of such models using simulations before trusting the associated empirical

results. Implementing the potential influence of hidden variables as well as a variable

selection procedure would also be important directions for future work.

The way we have accounted for effects of the biotic environment is by considering

interclade biotic interactions (e.g., the effect of ostracod diversity through time). However,

there is a wide range of intraclade processes that are thought to influence diversification

dynamics. For example, speciation may slow down as ecological opportunity recedes and

interspecific competition intensifies following an adaptive radiation, resulting in a

diversity-dependent effect (62; 27). Alternatively, speciation may accelerate if intra-clade

species interactions (such as competition) promote reproductive isolation through

phenotypic divergence (71; 2). Future forms of the environment-dependent model,

therefore, could be developed to additively or synergistically account for intraclade and

interclade effects. Similar models were recently developed for analyzing fossils (46; 29).

Models directly incorporating intraclade effects on phenotypic divergence have also started

to be developed (57; 22). Accommodating such factors in environment-dependent models

would be useful for evaluating the relative effect of the environment, intra- and interclade

species interactions, as well as their combined effect, on clade diversification.

We can also imagine adapting the model to analyse population genetic models on

genealogical trees. Here, the environment-dependent model could be used to analyse how

demographics (birth and death rates) have varied with time-dependent environmental

variables (e.g., the rate of influx of immigrants in a region, the density of air pollution in a

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2017. ; https://doi.org/10.1101/162248doi: bioRxiv preprint 

https://doi.org/10.1101/162248


city). In traditional population genetic models, population structure is measured as a

function of gene flow (88). Changes in gene flow can be the result of recent increases in

population size or rates of dispersal; and so the factors that promote or limit gene flow

cannot be easily inferred (74). The environment-dependent model, adapted to analyse the

effects of, for example, habitat range contraction, environmental disturbance, or precipitous

geographic isolation on birth and death rates within a population may therefore help

resolve the contribution of those factors to changes in the population. As above, one would

need to test the performance of such models using simulations before trusting the

associated empirical results.

The phylogenetic comparative toolbox is being extended to better account for the

effect of environmental changes. Similar to its use here, where we have shown the effect of

different environmental variables on diversification in clades, we have seen a growing body

of work relating, for example, decreases in temperature to accelerations in diversification in

birds (16), increases in sea level to increased extinction in butterflies (21), and even

orogeny to Andean plant diversification (61). Models of phenotypic evolution accounting

for environmental variations have similarly been developed recently, and have found

decreases in temperature to drive increases in the rate of body mass evolution in birds and

mammals (17). Future analyses with these two types of models should allow us to better

understand whether diversification and phenotypic evolution respond similarly (or

differently) to past climatic changes, as well as the link between environmental variations,

phenotypic divergence, and diversification.

Environment-dependent diversification models provide a statistical forum for testing

a range of macroevolutionary hypotheses on species trees, implemented in user-friendly

software. They provide a means for identifying which paleoenvironmental variable has

most impacted diversification in a clade and how specifically that variable has impacted

diversification. We have analyzed the statistical behavior of and provided guidelines for an
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environment-dependent model of species diversification. We think this will help researchers

test fundamental macroevolutionary hypotheses on the effects of various abiotic and biotic

factors on species diversification.
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Figure 1: (A) Recovered parameter estimates for trees simulated with an exponential de-
pendency of λ on temperature. Simulations with (A) varying λ0 and constant αλ and µ0, (B)
varying αλ and constant λ0 and µ0, and (C,D) varying µ0 and constant λ0 and αλ. Dashed
red lines mark the simulated parameter value.
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Figure 2: The ability to correctly recover trees simulated under a constant-rate model,
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of λ on temperature models. Each column shows the percentage of trees simulated under the
model specified on the x-axis that finds support for each model as specified in the legend.
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environment-dependency model versus an exponential time-dependent model and constant
rate model. (B) Scaled paleoenvironmental curves. Colors in (A) and (B) correspond.
Dashed lines correspond to biotic variables.
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Figure 5: Environment-dependency in Cetaceans. (A) AICc support for different
environment-dependent models, a constant-rate birth-death model, and an exponential time-
dependent model (without extinction) on a distribution of 100 posteriorly sampled probabili-
ties of the Cetacean phylogeny. Colors and line type correspond to Figure 3. (A, inset) AICc
support for temperature-dependent models fitted with smoothed splines defined by varying
DOFs. AICc value for the time-dependent model is shown (dashed line). (B) The consensus
Cetacean phylogeny and λ over time inferred from the temperature-dependent model (on
the consensus tree).
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Figure 6: Diversification dynamics in (top) Ruminantia and (bottom) Portulacaceae.
(A) AICc support for different environment-dependent models, a constant-rate birth-
death model, and an exponential time-dependent model (without extinction). (A,
inset) AICc support for the best supported model fitted with smoothed splines de-
fined by varying DOFs. (B) λ over time inferred by the best fit model in (A). (B,
inset) λ as a function of the environment for the best fit model, where λ is shown
as a function of a non-scaled environmental curve. (C) Consensus phylogeny and (D)
representative organisms: (top to bottom) Okapia johnstoni, Cephalophus silvicultor,
Gazella gazella, Ovis aries, Kobus leche, Bos taurus, Talinum paniculatum, Portulaca
molokiniensis, Pereskia sacharosa, Alluaudia ascendens, Montiopsis andicola. The fig-
ures are available here (top to bottom): https://www.flickr.com/photos/dkeats/5269538538/sizes/z/,

https://www.flickr.com/photos/7326810@N08/1332824505,https://www.flickr.com/photos/93882360@N07/12801059065,https://commons.wikimedia.org/wiki/User:AnemoneProjectors,http://www.naturfakta.no/dyr/?id=1809,https://www.flickr.com/photos/computerhotline/6001137799/,https://commons.wikimedia.org/wiki/File:Talinum fruticosum1.JPG,https://commons.wikimedia.org/wiki/File:Starr 061213-
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south-america/tags/argentina.
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Supplemental Figure 1: Recovered parameter estimates for trees simulated with a con-
stant λ and an exponential dependency of µ on temperature. Simulations with: (A) varying
λ0, constant µ0, and constant αµ; (B) constant λ0, varying µ0, and constant αµ; and (C)
constant λ0, constant µ0, and varying αµ. Dashed red lines mark the simulated parameter
value.
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Supplemental Figure 2: Recovered parameter estimates for trees simulated with an ex-
ponential dependency of λ and µ on temperature. Dashed red lines mark the simulated
parameter value.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2017. ; https://doi.org/10.1101/162248doi: bioRxiv preprint 

https://doi.org/10.1101/162248


0.00

0.05

0.10

0.15

0.20

0

0.2

0.4

0.6

0.8

0.45

0.55

λ
0

α
λ

-1.0

0.0

1.0

0.5
λ
0

-0.3

0.1

0.4

0.7

1.0

α
μ

90% 80% 70% 60% 50%

μ
0

0.00

0.10

0.20

0.30

μ
0

90% 80% 70% 60% 50%

Sampling fraction

A B
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Supplemental Figure 4: Akaike weights for constant-rate models, time-dependent models,
and temperature-dependent models across all temperature-dependent λ trees simulated with
a high extinction rate (λ = 0.75e0.35t, µ = 0.7).
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Supplemental Figure 5: The ability to correctly recover trees simulated under constant-
rate (λ = 0.2, µ = 0.01), positive and negative dependence of µ on time (λ0 = 0.5, µ0 = 0.01,
αµ = ±0.4), and positive and negative dependence of µ on temperature (λ0 = 0.4, µ0 = 0.1,
αµ = ±0.4). In addition to the simulating models, trees were fit with models with an
exponential dependency of λ on temperature. Each column shows the percentage of trees
simulated under the described models that find support.
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Supplemental Figure 6: Parameter estimates for trees simulated with a positive (left)
and negative (right) exponential dependency of λ on temperature by fitting the temperature-
dependent model. Parameter estimates are shown for trees with different species richness.
Simulated parameters are marked by dashed red lines. Akaike weights are shown for trees
fitted with constant-rate models (light grey), time-dependent models (medium grey), and
temperature-dependent models (dark grey). Weights are averaged across all trees within
each species richness bracket.
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Supplemental Figure 7: Parameter estimates for (A) λ0, (B) µ0, (C) αµ for trees simulated
with a positive exponential dependency of µ on temperature by fitting the temperature-
dependent model. Parameter estimates are shown for trees with different species richness.
Simulated parameters are marked by dashed red lines. (C, inset) A magnified plot of αµ
estimates. (D) Akaike weights averaged over all trees for each species richness cohort for
models fitted with a constant-rate model (light grey), time-dependent model (medium grey),
and model with µ dependent on temperature (dark grey).
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Supplemental Figure 8: Model selection and parameter estimation in temperature-
dependent trees under various spline smoothings in the fitted model. (A) Plots of tempera-
ture curve splines smoothed by different degrees of freedom. The time-series of temperature
data are shown in grey dots and the smoothed curves in black lines. (B,C) Parameter esti-
mates for trees simulated with an exponential dependency of speciation on temperature (B,
λ = 0.2e0.05·T (t); C, λ = 0.3e−0.05·T (t)) with temperature curves determined using generalized
cross-validation (degrees of freedom=208), where the fitted temperature-dependent models
have temperature curve splines smoothed by different degrees of freedom. Simulated param-
eters are marked by dashed red lines. (D) The percentage of temperature-dependent trees,
simulated with a temperature curve determined using generalized cross-validation, best sup-
ported by models fit with temperature curve splines smoothed by different degrees of freedom
versus constant-rate models and time-dependent models with an exponential dependence on
speciation.
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Supplemental Figure 9: Mean of the Akaike weights for constant-rate models (light
grey), time-dependent models (medium grey), and environment-dependent models (dark
grey) across all environment-dependent λ trees with the same αλ (see Figure 3).
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Supplemental Figure 10: Effect of different characteristics on the rate of recovery of
environmental curves. The ability to correctly recover the simulated model at different
values of αλ for (A) abiotic and biotic variables (see Figure 3) and (B) linear and non-linear
environmental curves. (C) Barplots for the slope and intercept for regression models fit to
autocorrelation functions for multiple lag-times for each environmental curve; the correlation,
slope, and degrees of freedom estimated for generalized least squares (GLS) linear fits to
each environmental curve; and the average rate of change of each environmental variable
with respect to time. Bars are colored according to panel A.
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Supplemental Figure 11: Rate of recovery for trees simulated with an exponential depen-
dency of µ on different paleoenvironments, X, (µ = µ0e

αµX(t)) for varying values of αµ and
constant λ. (Top) Simulated trees fitted with models with an exponential dependency of
µ on the paleoenvironment and a constant λ. (Bottom) Simulated trees fitted with models
with an exponential dependency of λ on the paleoenvironment and a constant µ. Colors
correspond to Figure 3.
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Supplemental Figure 12: Environment-dependency in Ruminantia computed from the
Ruminantia supertree (12). (A) AICc support for different environment-dependent mod-
els, a constant-rate birth-death model, and an exponential time-dependent model (without
extinction) on a distribution of 5000 posteriorly sampled probabilities of the Ruminantia
supertree. All environment-dependent models have an exponential dependency on the envi-
ronmental variable. Colors and line type correspond to Figure 3.
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