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Abstract 14 
Automated field phenotyping provides continuous and precise measures of adaptation 15 

and performance traits that are key to today’s breeding and agricultural practices. 16 

Besides monitoring morphological changes of crop growth and development, high-17 

resolution and high-frequency of phenotypic measures can empower an accurate 18 

delineation of the genotype to phenotype pathway enabling the assessment of genes 19 

controlling yield potential and environmental adaptation. Here, we present CropQuant, 20 

a cost-effective Internet of Things (IoT) powered phenotyping platform, designed to 21 

be easily used and widely deployed in any environment. To manage and process data 22 

generated by the platform, we developed an automatic in-field control system, high-23 

throughput trait analysis algorithms, and machine-learning based modelling to explore 24 

the dynamics between genotypes, phenotypes and environment. We used the platform 25 

in a 95-day field experiment to generate dynamic developmental profiles of five 26 

wheat genotypes within the single genetic background of Paragon (a UK spring 27 

wheat variety) and demonstrated a successful example of how this technology could 28 

be applied to breeding, crop research and digital agriculture.  29 

 30 

NOTE: The final version of this manuscript provides much more detailed explanation 31 

of the CropQuant technology and novel biological discoveries through applying the 32 

field crop phenotyping technology in two-year wheat field experiments.  33 
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Background 34 
   The great American wheat breeder and Agri-Tech innovator Orville Vogel once 35 

stated that the plant you are looking for is in your plots, but you have to be there when 36 

it is. Four decades after temporary success in ensuring global food security, we are 37 

now facing an even bigger challenge to feed generations to come1. Due to a narrowing 38 

range of available genetic diversity of modern crop germplasm and increasing 39 

fluctuations in weather caused by global climate change2, we rely on exploiting new 40 

sources of variation such as landraces and wild relatives to seek traits with greater 41 

yield potential as well as environmental adaptation3. This process requires robust 42 

measures of adaptive traits from many experimental plots throughout the growing 43 

season. Our work aims to address this challenge through a cost-effective IoT-powered 44 

phenotyping platform, CropQuant, which facilitates continuous monitoring and 45 

accurate measures of crop growth and development in different environments.  46 

 47 

   To increase yield and improve crop adaptation to diverse environments sustainably, 48 

modern genetic and genomics technologies have been employed to enable an efficient 49 

selection of valuable lines with high yield, biotic and abiotic stress tolerance, and 50 

disease resistance3,4. For example, QTL analysis and genome-wide association studies 51 

(GWAS) to examine genetic architecture5, genome sequencing to reveal gene content 52 

and diversity6 and marker-assisted selection (MAS) or genomic selection (GS) to 53 

accumulate favourable alleles7. However, these technical advances are limited by 54 

low-throughput, laborious and inaccurate in-field phenotyping approaches8. This is 55 

why phenotyping is widely recognised as the bottleneck that prevents us from linking 56 

the richness of genomic and genotypic information to important traits, so that they can 57 

be effectively deployed for agriculture.  58 

 59 

   To date, along with the development of remote sensing technologies7 and open 60 

analytics software libraries9, agricultural practitioners such as breeders, growers, 61 

farmers and crop scientists have been employing new approaches to relieve the 62 

bottleneck10. For instance, non-invasive remote sensors and aerial imaging devices 63 

such as unmanned aerial vehicles (UAV) and blimps are being used to study crop 64 

performance and field variability11. Satellite imaging12 and tailored portable devices13 65 

are applied to the prediction of crop growth and yield potential based on canopy 66 

photosynthesis and normalised difference vegetation indices (NDVI). Large-scale 67 

imaging systems equipped with 3D laser scanners and multispectral sensors have been 68 

established to automate plant monitoring for a fixed number of pots or plots either in 69 

greenhouse (e.g. Scanalyzer HTS/3D HT, LemnaTec) or in the field (e.g. LeasyScan, 70 

Phenospex; Field Scanalyzer, LemnaTec)14–16. However, the challenges associated 71 

with these technologies are high costs, small scale, low frequency of measures and 72 

inadequate software analytical tools that can be used by agricultural practitioners to 73 

make sense of complicated phenotypic datasets14,17. From this perspective, our ability 74 

to measure crop growth dynamically and key adaptive traits in large numbers of 75 

experimental plots in different regions is still limited. Hence, there is a pressing need 76 

to develop an affordable and reliable phenotyping platform that can be easily used and 77 

widely adopted in breeding pipelines and by crop research communities worldwide.  78 

 79 

The IoT-powered phenotyping platform  80 
   Here we describe the CropQuant platform designed to automatically monitor crop 81 

growth and development through low cost in-field terminal workstations. The current 82 
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design of the platform is driven by a number of IoT technologies18, together with our 83 

vision for how to implement advanced Agri-Tech innovations in breeding, agriculture 84 

and crop research.    85 

 86 

 87 
 88 
Figure 1.  The CropQuant IoT platform in onsite and offsite field trials. 89 
(a) CropMonitor, a centralised control system, administers CropQuant terminals and records 90 
online (green) or offline (red) status, operational mode (amber if imaging halts), daily images, 91 
micro-environment (e.g. temperature and humidity), and computational resource. (b) The 92 
hardware design of CropQuant terminals. (c) CropQuant used in offsite field trials, which was 93 
powered by batteries and solar panels. (d) An in-field WIFI system installed for onsite field trials. 94 
(e) The automated IoT platform established for onsite field trials. (f) Real-time crop monitoring 95 
through connecting CropQuant with a mobile device in the field or a computer in an office. (g) A 96 
comprehensive in-field weather station. (h) HPC is used for durable data storage and in-depth trait 97 
analysis.  98 
 99 

 100 

   Figure 1 shows an experimental scale CropQuant platform used in wheat in-field 101 

assessment plots, incorporating networked remote sensors, single-board computers, 102 

in-field wireless communication, and open data exchange solutions. There are 14 103 

terminal workstations jointly operating on the platform, all of which are administered 104 

by a centralised control system called CropMonitor (Fig. 1a and Supplementary 105 

Methods). Using the platform, a number of tasks essential for next generation 106 

phenotyping19 have been accomplished. They are continuous monitoring through high 107 

resolution time-lapse photography, in-field evaluation using dedicated hardware and 108 

software, and efficient data transfer via real-time file sharing and data exchange 109 

servers. To complete these tasks with low-cost hardware and minimal energy 110 

requirement, we have tested a range of single-board computers to conduct the above 111 

in-field computing tasks and chose to use Raspberry Pi 2, Pi camera modules (e.g. 112 

RGB, red/green/blue colour model), and remote sensor boards as the internal 113 

hardware (see Final Publication) due to the scalability and accessibility of the Pi 114 

computer. For the peripheral hardware, we have applied a weatherproof design to 115 

ensure environmental endurance, easy installation and outdoor maintenance (Fig. 1b 116 
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and Final Publication). A hardware list and a construction manual for CropQuant can 117 

be seen in Final Publication.  118 

 119 

   As onsite and offsite field experiments are conducted using diverse infrastructures, 120 

we produced two versions of CropQuant terminal. For offsite field experiments, a 121 

workstation is powered by a replaceable battery with trickle charging from a solar 122 

panel (Fig. 1c). It is self-operating during the growing season. We have implemented 123 

a headless access mode to enable high-speed data transfer and systems control via an 124 

Ethernet connection. For onsite field trials, CropQuant devices are powered by 5V/2A 125 

power supplies and connected to an in-field WIFI network acting as nodes in a mesh 126 

network (Figs. 1d&e, Final Publication). For both versions, we developed an open 127 

software package running on the Linux Debian operating system to enable image 128 

acquisition, image quality control, regular humidity/temperature recording, and 129 

systems interactions (Supplementary Methods and Final Publication).  130 

 131 

   The CropQuant platform facilitates automatic crop phenotyping. Scientists and 132 

agricultural practitioners can access every terminal workstation remotely for real-time 133 

monitoring, either using a mobile device (e.g. a tablet/smartphone) in the field or an 134 

office computer (Fig. 1f and Final Publication). They can inspect not only the whole 135 

field in different regions via CropQuant terminals, but also take control of any 136 

operational workstation to review the performance of crops, initiate new monitoring 137 

sessions, or transfer on-board phenotypic and sensor datasets to external computing 138 

storage. If users are granted administrative access to the platform, they can oversee 139 

the whole platform through CropMonitor, where the status of every terminal node is 140 

constantly updated by the control system, including information such as online and 141 

offline status, operational mode, representative daily images, micro-environment (e.g. 142 

temperature/humidity in a plot region), and computational resource such as CPU and 143 

memory (Supplementary Methods and Final Publication). The architecture of the 144 

control system supports the collation of phenotypic and sensor data for storage, 145 

visualisation, GUI-based systems interactions, and processing on high-performance 146 

computing (HPC) infrastructure (Final Publication).   147 

 148 

   As our long-term research interests lie in efficient gene discovery, crop adaptation, 149 

agronomic characterisation and crop management, we have installed a comprehensive 150 

in-field weather station for our onsite field trials. The station records a range of 151 

meteorological datasets including photosynthetically active solar radiation, rainfall, 152 

temperature, relative humidity and wind speed (Fig. 1g). Phenotypic and climate 153 

datasets are managed and saved in HPC (SGI UV 2000 system equipped with Intel 154 

Xeon cores) for durable data storage and centralised trait analysis (Fig. 1h).   155 

 156 

The high-throughput analysis pipeline   157 
   We configured CropQuant terminals to carry out high-frequency (three times per 158 

hour) and high-resolution (2592x1944 pixels) of measurement to capture phenotypic 159 

plasticity, early expression of traits, and crop-environment interactions (Final 160 

Publication). For example, over 200 GB data have been generated by ten offsite 161 

CropQuant terminals in the 2015 field season, during a 95-day period. To extract 162 

meaningful results from the growth and developmental data effectively, we exploited 163 

some latest open-source analytic libraries such as OpenCV20, Scikit-learn21 and 164 
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Scikit-image22 and developed automated bioimage informatics algorithms that are 165 

embedded in a high-throughput trait analysis pipeline.  166 

 167 

 168 
Figure 2.  The high-throughput analysis pipeline for processing and quantifying crop growth 169 
patterns and adaptive traits.  170 
In step 1, high-quality crop images are chosen by the selection algorithm and stored in both local 171 
and central Git repositories. In step 2, initial reference positions of five monitored plots are 172 
detected by the plot detection algorithm, which also calculates the pixel-metric conversion. In step 173 
3 and 4 of the pipeline, the CropMeasurer algorithm is used for tracking plots of interest based on 174 
the initial reference positions and then conducts in-depth traits analysis to measure the canopy 175 
region and key adaptive traits. In step 5, crop growth patterns in relation to thermal time (degree 176 
day), continuous vegetative greenness (0-255) and the change of the main orientation of given 177 
plots (0o-180o) are quantified and illustrated. 178 
 179 

 180 

   Figure 2 illustrates the analysis pipeline designed for both workstation computers 181 

and HPC. First, to arrange the collected crop images, we have developed a crop image 182 

selection algorithm to choose representative images according to their size, clarity, 183 

imaging dates and genotypes (Fig. 2, Step 1). Only high-quality images were retained 184 

for trait analysis (Final Publication). All datasets, including those low quality images, 185 

were stored in a central repository. Source code of the analysis pipeline was arranged 186 

into source trees and saved in both local and central Git repositories (Supplementary 187 

Methods and Final Publication).   188 

 189 

   Secondly, we have designed a detection algorithm to define reference positions of 190 

plots monitored during the experiment (Fig. 2, Step 2). In the real agricultural and 191 

breeding situations for which CropQuant was designed, strong wind, heavy rainfall, 192 

irrigation and chemical spraying will result some modest camera movements, which 193 

can cause issues when cross-referencing trait measures in a time-lapse image series. 194 

To resolve this issue, the algorithm identifies the initial reference position of a given 195 

plot and then geometrically transforms every image in the series to the same position 196 

for comparison. For instance, the algorithm detects coordinates of white reference 197 

canes (the plot region) and dark markers on a ranging pole (for crop height) using 198 

colour feature selection. Then, it classifies pixels into different groups such as crop 199 
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canopy, wheel tracks, and plot regions based on the machine-learning methods (e.g. 200 

k-means and spectral clustering). Finally, the algorithm establishes a pseudo reference 201 

system that records the plot area, the canopy space, height markers and the pixel-202 

metric conversion (Supplementary Methods and Final Publication).  203 

 204 

   Following Step 2, we incorporated initial reference positions of monitored plots into 205 

the third algorithm called CropMeasurer for in-depth trait analysis. For a given 206 

genotype, CropMeasurer employs an adaptive intensity and gamma equalisation to 207 

adjust colour and contrast to minimise colour distortion caused by variable in-field 208 

lighting (Supplementary Methods). Then, the algorithm tracks geometric differences 209 

between the plot on a given image and the initial plot position. If different, a 210 

geometric transformation method is applied to recalibrate the image, which removes 211 

areas outside the plot area and could generate different sizes of black bars to the top 212 

of the given image (Fig. 2, Step 3). Within a given plot, CropMeasurer calculates the 213 

crop height by detecting the visible part of the ranging pole as well as the canopy 214 

region (Final Publication). Finally, the algorithm locates corner-featured points 215 

within the canopy region (Fig. 2, Step 4), which generates red pseudo points 216 

(Supplementary Methods and Final Publication) to represent the tips of erect 217 

leaves at stem elongation or jointing (the Zadoks scale23, growth stages, GS 32-39), 218 

reflective surfaces of curving leaves and heads between booting and anthesis (GS 41-219 

69), and corner-featured points on wheat spikes during senescence (GS 71-95).  220 

 221 

   In addition to crop growth patterns in relation to thermal time (degree day, oCd), we 222 

have also included other dynamic measures of a number of traits in the pipeline (Fig. 223 

2, Step 5). For example, vegetative greenness is calculated through separating the 224 

green channel in RGB images within plots of interest (Supplementary Methods). 225 

The output (0-255) has been used to assess green biomass and stay-green (prolonged 226 

green leaf area duration through delayed leaf senescence). Morphological traits such 227 

as the main orientation of a given plot (0o-180o) are quantified based on an optimised 228 

edge detection method, which computes the alignment of crop stems for assessing 229 

stem rigidity and lodging risk (Supplementary Methods and Final Publication).  230 

 231 

Monitoring NILs of wheat using CropQuant 232 
   The radically different nature of environments where wheat is grown provides a 233 

unique opportunity to study the genetic diversity of wheat in connection with yield 234 

and stress tolerance through phenotypic differences24. Hence, we have chosen Near-235 

isogenic lines (NILs) of wheat from our genetic stocks25 to test the platform. Between 236 

May and August 2015, we monitored five NILs: Late-DTEM, days to ear emergence 237 

with Ppd-1 loss of function (lof); Early-DTEM, Ppd-D1a photoperiod insensitivity; 238 

Short, Rht-D1b semi dwarfing; Stay-Green, a stay green induced mutant; and, 239 

Paragon wild type (WT). All NILs are in the genetic background of Paragon (a UK 240 

spring wheat variety) and were constantly monitored over a 95-day period 241 

(Supplementary Methods and Final Publication). Figure 3a illustrates dynamic 242 

developmental profiles of the five lines generated by CropQuant, together with 243 

environmental factors recorded during the period. Based on the developmental data, 244 

we computed daily relative growth rates (RGR) at different growth stages (Fig. 3b) 245 

and applied machine-learning based modelling to explore the dynamics between 246 

genotype, phenotype and environmental factors (Figs. 3c-e).   247 

 248 
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 249 
Figure 3. Monitoring wheat performance using the CropQuant platform and exploring the 250 
dynamics between genotype, phenotype and environment. 251 
(a) Five NILs of wheat (Late-DTEM, Early-DTEM; Short, Stay-Green, and Paragon WT) and 252 
their performance in relation to environmental factors such as wind and rainfall, together with 253 
accumulated thermal time. Six growth stages of Paragon WT are used as reference. (b) RGR 254 
(growth % of the previous day) is used to present the daily growth rate of five NILs at different 255 
stages. (c,d) Both RGR and canopy height are responses of the correlation models that explore 256 
wheat growth and environmental factors, including thermal time, solar radiation, rainfall and the 257 
duration of growth stages, which are statistically significant using Pearson correlation (p<0.01). (e) 258 
A global wheat growth model comparing CropQuant growth measures. (f) A growth stages 259 
predictive model in comparison to manual phenotyping recording.  260 
 261 

 262 

   To measure the rate and sensitivity of wheat growth dynamically in relation to the 263 

environment, we used Paragon WT as the reference and highlight six key growth 264 

stages (GS32-95, Fig. 3a), from stem elongation or jointing (GS 32-39) to ripening 265 

(GS 91-95), the five growth curves generally followed a sigmoid curve. At the 266 

beginning of the crop monitoring, Ppd-D1a NIL was already at the end of the jointing 267 

stage (GS37-39) and hence was the first line reaching a maximum height. Ppd-1 lof 268 

was the last to stop increasing in height. The heights of five NILs were very similar in 269 

the middle of June (highlighted by a red dash circle), which has verified what we had 270 

manually observed in the field as all the NILs were at different growth stages.  271 

 272 

   By cross-referencing five development profiles (based on growth stages, instead of 273 

calendar days), we notice that, although Ppd-D1a NIL and Rht-D1b were recorded at 274 

similar maximum heights (83.4cm and 80.6cm), the latter had a gentle-mannered 275 

growth pattern. It suggests that this line could be suitable for crop management as 276 

farmers and growers would have more time to decide whether to apply fertiliser and 277 

irrigation to assist the growth or to use chemical control to prevent rapid height 278 

increase13. Ppd-1 lof’s growth stages had been shifted back and thus had more time to 279 

develop. As a result, this line became the tallest in the trial. Although all five lines 280 

experienced some degree of height reduction due to a significant storm on 24th July 281 

2015, Paragon WT presented a much lower lodging risk, as it maintained its height 282 
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during ripening (GS91-95). To verify the above observation, we have scored 283 

manually the heading dates and canopy height on the same plots and obtained a strong 284 

correlation (with correlation coefficient of 0.985, see Final Publication). 285 

   286 

   Moving beyond descriptive phenotypic research, we incorporated genotype (G), 287 

phenotype (P) and environmental (E) datasets into machine-learning based modelling 288 

to explore the dynamics between GxE. First, to understand which environmental 289 

factors were strongly correlated with the growth of the five NILs at every key growth 290 

stage, we computed daily RGR of the lines and associated the growth rate according 291 

with their growth stages. The scatter chart (Fig. 3b) shows the growth vigour of the 292 

five genotypes, active from jointing to flowering (GS32-69) and inactive after GS71 293 

(grain-filling). After that, we calculated Pearson correlation coefficient and the p-294 

value based on growth traits such as normalised RGR (nesting three-day rates to 295 

reduce noise) and canopy height at four key stages (i.e. jointing, booting, heading and 296 

flowering). Through this, we have identified six environmental factors that were 297 

significantly correlated with growth traits (p < 0.01) out of 14 (Final Publication). 298 

They are: normalised degree day, solar radiation, rainfall, normalised temperature, 299 

light duration, and growth stage duration. Two heat maps (Figs. 3c and 3d) were 300 

produced to present the relationship between the identified environmental factors and 301 

two growth traits (RGR and canopy height) in relation to four key growth stages 302 

(GS32-69). As growth traits did not change excessively after anthesis (GS71-95), 303 

hence we did not include the later stages in the correlation analysis (Supplementary 304 

Methods and Final Publication).   305 

 306 

   Finally, using the six identified environmental factors and growth traits measured 307 

during the growing season, we explored a set of linear regression models to establish 308 

a global predictive model to forecast the growth and development of wheat in the 309 

genetic background of Paragon, when interacting with the environment. Figure 3e 310 

shows how the model forecasts the overall Paragon growth data (GT, mean squared 311 

error: 20.1512, correlation: 0.9991, Supplementary Methods). The model uses the 312 

six environmental factors at six stages (GS32-95) as the input to obtain estimates of 313 

the relative growth rates 𝑦𝑡  for every given genotype (Final Publication). The 314 

formula 𝑦𝑡 =  𝑋𝑡
𝑇 ∗  𝛽𝑠 + 𝑐  was used for prediction, where 𝑋𝑡

𝑇  is the environmental 315 

data at a time point t, 𝛽 is the model parameters for growth stage S, and c is a constant 316 

offset. We used ordinary least squares to determine the coefficients of the model. We 317 

also applied the model to predict the growth of the five NILs and compared the 318 

estimated growth with the recorded data generated by CropQuant (Supplementary 319 

Methods and Final Publication).  320 

 321 

   On the basis of the first predictive model, we produced a second model to forecast 322 

the timing and duration of key growth stages (GS32-95) to link the crop growth 323 

prediction with real-world agricultural practices. So, farmers, growers and breeders 324 

can make sound decisions based on the difference between the predicted growth curve 325 

and the actual growth pattern measured by CropQuant (Final Publication). This 326 

approach could also assist agricultural practitioners in terms of line selection, fertiliser 327 

application, irrigation and harvesting to secure yield production. Figure 3f illustrates 328 

the performance of the second model. It has employed a set of support vector 329 

machines (SVM) with radial basis function kernels to classify the timing and duration 330 

of key growth stages (Supplementary Methods and Final Publication). We tested 331 
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the model by comparing the predicted growth stages with the true data measured by 332 

crop physiologists (Final Publication).  333 

 334 

Discussion 335 
   The CropQuant platform in combination with networked remote sensing, IoT in 336 

agriculture control systems, advanced bioimage informatics, and machine-learning 337 

based modelling is capable of relieving a major bottleneck in breeding, crop science 338 

and agriculture. The platform enables a future of easy-to-use field phenotyping in 339 

which real-time crop growth and development is now quantifiable. We made a viable 340 

model for IoT in agriculture, which can stretch the imagination of the Agri-Tech 341 

industry to seek cost-effective ways to increase the efficiency and accuracy for 342 

various agricultural practices. With more field trial data feeding into our GxE models 343 

from different regions around the world, we will improve our software solutions and 344 

models, so that we can assist agriculture professionals in making sensible decisions in 345 

their practices. To empower ease of use and wide adoption, we are continuously 346 

improving CropQuant hardware and software to promote our vision in Agri-Tech 347 

innovation, including mobility (easy to install and use), capability (real-time in-field 348 

analysis), affordability (competitive costs) and durability (long-lasting in the field 349 

conditions).  350 

 351 

Methods  352 
Methods and any associated references are available in the online version of the paper.  353 

 354 

Note: Supplementary information is available in the final published version of the 355 

paper.  356 
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Supplementary Methods 424 
 425 

Five wheat NILs used in the field trial represent a range of genetic variation all with 426 

the genetic background of the UK elite spring wheat ‘Paragon’. The development of 427 

the Late-DTEM: Par (Norstar + Gamma 319c) 3c-11, Ppd-1 loss of function (lof) 428 

lines is described previously26. The development of the Early-DTEM NILs: Par 429 

(GS100 2A+CS2B+Son64 2D)-T10 B10 -3b16 and Ppd-D1a photoperiod insensitive 430 

has also been published27. The novel line Stay-Green is line 2316b selected on the 431 

basis of stay green phenotype from a population of 7000 Paragon EMS mutants 432 

carried through single seed descent up to M6 developed under the Wheat Genetic 433 

Improvement Network of the UK Department of Food and Rural Affairs (Defra). The 434 

semi-dwarf NILs (short) were produced by marker assisted backcrossing (to BC6) 435 

using Rht-B1 and Rht-D1 KASP markers (LGC). which is available online from 436 

http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB. The sources of Rht-D1b and 437 

Rht-B1b were the UK winter wheat varieties ‘Alchemy’ and ‘Robigus’ respectively. 438 

The five wheat lines were sown in single 1 m2 plots in autumn 2014 at Church Farm, 439 

Norfolk UK, and grown according to standard agronomic practice. The manual score 440 

of the date for ear emergence (DTEM) was done when 50% of the plot showed 50% 441 

emergence of the ear from the flag leaf. The manual measurement of plant height was 442 

done from the ear tip to ground level. 443 

 444 

The CropQuant hardware contains many components. The centre one of the design 445 

is a Raspberry Pi 2 or Pi 3 single-board computer (we are also testing Intel® Edison 446 

in the new version of CropQuant). Based on a mobile ARM processor, the Raspberry 447 

Pi computer features on-board external connections in the form of USB and Ethernet 448 

to allow expansion using additional peripherals as well as an array of digital GPIO 449 

pins to interface with. The crop growth image acquisition was performed using a 5MP 450 

RGB or NoIR (No Infrared, for night vision) camera module connected via a CSI port 451 

on the Pi mother board. Digital temperature and humidity sensors are connected via 452 

manufacturer supplied circuits to the GPIO pins of the Pi for interactive control. The 453 

sensors themselves are mounted separate from the circuits, externally on the 454 

CropQuant’s housing, wired through the base of the device and sheltered by a smaller, 455 

open housing unit. The external mounting allows for accurate sensing of ambient air 456 

conditions while sheltering the electronics from direct water damage. The CropQuant 457 

terminal is housed within a weatherproof (IP66 rated) plastic container, sealed around 458 

all openings allowing operation in the field conditions. Physical connection to the 459 

system for data transfer via USB or Ethernet and power (12/5V DC) is facilitated by 460 

water-resistant couplers designed to be sealed against the rain and air moisture.  461 

 462 

The CropQuant software package runs on Linux-based operating system Debian. It 463 

contains two servers, NetATalk and VNC sever, to facilitate in-field data transfer and 464 

remote systems control, which allows users to connect to every CropQuant terminal 465 

through a wireless (using a tablet or a smartphone) or a wired connection (using a 466 

laptop). To enable real-time systems interactions, a GUI-based imaging program has 467 

been developed and added into the software package to control the RGB or NoIR 468 

camera module for time-lapse crop monitoring. The program can automatically detect 469 

the IP address of a given CropQuant terminal to associate the terminal with its 470 

specific experiment ID of the field trial. After that, the program requests users to 471 

specify information such as genotype, biological replicates and imaging duration via a 472 
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GUI dialog box, where users can initiate the image acquisition. The program can 473 

automatically adjust white balance, exposure mode and shutter speed in relation to 474 

variable in-field lighting conditions using the picamera package, a pure Python 475 

interface to the Raspberry Pi camera hardware. Both image resolution and imaging 476 

frequency (three times per hour in our field trials) can be changed if users want to 477 

modify their experimental settings. The program also conducts the initial quality 478 

control and data backup after every image is captured. The GUI-based imaging script 479 

is freely available for download at (see final publication). 480 

 481 

   Besides the image acquisition, the software package also contains functions such as 482 

synchronising with the central server twice within an hour to upload sensor data and 483 

CropQuant hardware information (see CropMonitor). Representative daily images are 484 

routinely selected and transferred to the central server during the night, which 485 

provides a daily snapshot of the monitored crops. Relying on the crontab scheduling 486 

system, we can monitor the performance of the software package and resume it 487 

automatically in cases of software interruption or power disruption. The SD card 488 

image running on the current version of CropQuant workstations can be downloaded 489 

via (see final publication).  490 

 491 

CropMonitor is the next-generation IoT control system developed to oversee the 492 

field trial. It is performed using a central web server, logging updates received from 493 

individual clients, CropQuant terminals. A Python application on each workstation is 494 

run at regular intervals, scheduled by the native Unix Cron system. The application 495 

queries the terminal to determine workstation status information such as uptime, 496 

network addresses and storage usage. Sensor data and more variable system data such 497 

as CPU temperature and processor/memory usage is sampled at a higher frequency 498 

and a mean average of the readings is recorded during the query. Once the application 499 

has collected all necessary data it is encoded into a JSON data object and transmitted 500 

over HTTP to the central server which stores the data in an SQL database running on 501 

HPC. CropQuant status is displayed and automatically updated using a web-based 502 

interface, determining whether each node is online by the time of their last update. 503 

The web interface provides information, including the location of every CropQuant in 504 

the field (a field map needs to be uploaded to the central server), graphs of collected 505 

terminal/sensor data, and facilitates SSH and VNC linking to all active nodes. The 506 

CropMonitor system provides a centralised real-time monitoring system to administer 507 

the network of in-field workstations and collate collected data for visualisation, batch 508 

processing and annotation. 509 

 510 

The image selection algorithm is designed to perform speedy assessment of large 511 

image datasets captured in field trials by comparing images to a number of fixed 512 

criteria. The Python-based algorithm can be executed either on a normal computer or 513 

HPC. All images which meet the analysis standards will be collated. In turn, each 514 

image is quantified by brightness, shadow percentage and sharpness, allowing all 515 

images which perform above a set of thresholds to be retained for further traits 516 

analysis. To determine the brightness of an image, the median value of pixel intensity 517 

is taken by transforming the image into HSV colour space. If the median intensity 518 

value is lower than a set threshold, the image is culled and not used from this point 519 

forward. The image clarity is determined by applying a Sobel edge detection28 to the 520 

image. The detectable edges are calculated and then correlated with sharpness and 521 

exposure range of the image. The result of the clarity detection is also compared to a 522 
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set threshold, which will disqualify images if they are out of focus or unclear with ill-523 

defined edges. The final image test is of the percentage shadow within the visible area. 524 

Dark pixels found in an image with an illumination value of below 20% are either too 525 

dark for feature extraction or containing too much shadow in the monitored plots. 526 

Once all comparisons have been passed, selected images are included in a result 527 

folder with a CSV file recording image metadata for further high-throughput image 528 

analysis. The iPython notebook of the image selection algorithm is freely available at 529 

(see final publication). 530 

 531 

The plot detection algorithm detects initial reference positions of monitored plots. 532 

The algorithm identifies the coordinates of white reference canes (the plot region) and 533 

dark height markers on a ranging pole using colour-based feature selection on the 534 

basis of HSV (hue, saturation and value) and Lab non-linear colour space. It also 535 

classifies pixels into different groups such as sky, soil between plots, crop canopy, 536 

shadow, and plot regions using unsupervised machine-learning techniques such as K-537 

Means29 and spectral clustering30. After detecting initial reference objects in the 538 

image, the algorithm establishes a pseudo 3D reference system that records the 2D 539 

coordinates of the plot area, the canopy region, and height markers through a range of 540 

feature selection approaches. The pixel-metric conversion is also computed based on 541 

height markers on the ranging pole. The iPython notebook of the crop plot detection 542 

algorithm is freely available at (see final publication). 543 

 544 

The CropMeasurer algorithm employs an adaptive intensity and dynamic gamma 545 

equalisation31 to adjust colour and contrast to minimise colour distortion caused by 546 

diverse in-field lighting. Then, the algorithm tracks geometric differences between the 547 

plot on a given image and the initial position. If different, a geometric transformation 548 

method32 will be applied to recalibrate the image, which removes areas outside the 549 

plot area and could generate different sizes of black bars to the top of the given image. 550 

Within a plot, CropMeasurer tracks the crop height by detecting the visible part of the 551 

ranging pole and defines the canopy region through a combined adaptive thresholding 552 

and local Otsu threshold methods33. Finally, the algorithm applies Harris and Shi-553 

Tomasi corner detection methods34 to locate corner-featured points within the canopy 554 

region. Red pseudo points are generated to represent the tips of erect leaves, reflective 555 

surfaces of curving leaves, heads and the corner points on ears. The main orientation 556 

of a given plot is quantified based on an optimised Canny edge detection method35, 557 

which computes the alignment of crop stems. The iPython notebook of the image 558 

selection algorithm is freely available for download at (see final publication). 559 

 560 

Data interpolation and analysis have been used to handle minor data loss during the 561 

field experiments. Four days’ data gap (at the end of May 2015) has been recorded on 562 

a number of offsite CropQuant workstations, which was caused by SD card crash due 563 

to short-term power failure. We therefore used cubic spline interpolation method36 to 564 

fill the gap in the phenotypic datasets.  565 

 566 

The GxPxE interaction model explores the interactions between the recorded crop 567 

growth of five wheat genotypes and a number of environmental factors. Correlations 568 

are performed for each environmental factor grouped over three days with the 569 

recorded growth data. The reason to group environmental factors into nested three-570 

day periods is to remove outliers and smooth the input data. The correlations are 571 

determined for each growth stage for five genotypes. The analysis is performed on the 572 
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grouped data as particular stages (e.g. booting and heading) contain few recorded 573 

growth data due to the short duration of both stages were present during the growth. 574 

To obtain he dynamic between relative growth rates (RGR) and environmental factors, 575 

we used the formula (𝑒𝑅𝐺𝑅)−1 to transfer negative correlation values, as the RGR 576 

series is a decreasing sequence in relation to the increasing nature of growth stages. 577 

 578 

   Based on significant environmental factors, a set of linear regression models32 have 579 

been explored and a single linear regression model is selected to estimate RGR of five 580 

genotypes in relation to given in-field environment conditions. Environmental factors 581 

with insignificant correlations (where p > 0.01, with respect to the height over the 582 

entire time-series) are removed from the analysis as they provide little predictive 583 

power. Ordinary least squares are used to derive the model coefficients and all the 584 

stages are included as features. The RGR data is normalised to present percentage 585 

changes in height between two consecutive days. To predict the canopy height for a 586 

given genotype, environment data at each growth stage is input to the global model. 587 

To derive the height of the plant over time, successive applications ℎ𝑡 =  ℎ𝑡−𝑙(1 +588 

𝑦𝑡) are applied, where ℎ𝑡 is taken from the above equation, ℎ𝑡−𝑙 is the height of the 589 

plant at the previous time-point, and ℎ0 is equal to the initial height.  590 

 591 

   The performance of the model is verified by estimating the growth of all five NILs, 592 

including the overall paragon growth data (GT). The estimation is displayed with 593 

respect to the true canopy height datasets. The mean squared error recorded for G2 594 

(genotype two, Late-DTEM), G3 (genotype three, Early-DTEM) and G4 (genotype 595 

four, Stay-Green) shows that the estimated height is close to the true growth curves. 596 

However, the error is much larger for G1 (genotype one, Paragon WT) and G5 597 

(genotype five Short). This is due to the majority of crop growth happens during the 598 

early stages (GS32-GS59), estimation deviation during these initial stages could affect 599 

the overall height results. As the global predictive model might not be sensitive 600 

towards specific genotypes, we are still seeking a better approach to incorporate all 601 

genotypes with a similar genetic background into the prediction. The iPython 602 

notebook of the GxPxE interaction model can be downloaded at (see final 603 

publication). 604 

 605 

The growth stage predictive model is based on the GxPxE model described before. 606 

The model is produced to explore how to predict growth stages of different wheat 607 

genotypes on the basis of real growth traits and environment data. It employs support 608 

vector machines (SVM)34 with radial basis function kernels to classify growth stages, 609 

as SVMs are popular machine learning techniques for classification. The performance 610 

of the model is tested by overall paragon wheat growth data (GT) and Paragon WT 611 

(G1), as GT performs well in the GxPxE interaction model whereas G1 performs 612 

poorly. The prediction in comparison with the manually recorded growth stages 613 

suggests a successful prediction of the timing and duration of stem elongation and 614 

jointing (GS32-39) through heading (GS51-59) and flowering (GS61-69) through 615 

Ripening (GS91-95). However, the transition from heading to flowering has 616 

introduced an error, the transition has been predicted three days earlier. The main 617 

reason for this error is due to the short duration of booting (GS41-49) and heading 618 

(GS51-59). All genotypes used for training cannot sufficiently differentiate the two 619 

stages. For this matter, we are planning to add more training datasets from other 620 

varieties such as Watkins and Chinese Spring wheat in other field trials. As the model 621 

can be used to classify growth stages with real in-field data, we have made the model 622 
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freely available for other crop research groups to verity as well as jointly improve. 623 

The iPython notebook of the growth stage model can be downloaded at (see final 624 

publication). 625 

 626 

All supplementary movies mentioned in the manuscript can be freely downloaded at 627 

(see final publication) 628 
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