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Abstract 

Abnormal brain resting-state functional connectivity has been consistently observed in patients affected 

by Schizophrenia (SCZ) using functional MRI and other neuroimaging methods. Graph theoretical 

methods provide a framework to investigate these defective functional interactions and their effects on 

the modular organization of brain connectivity networks. A few studies have shown abnormal 

distribution of connectivity within and between functional modules, an indication of imbalanced 

functional segregation ad integration in SCZ patients. However, no major alterations in the modular 

structure of functional connectivity networks in patients have been reported, and unambiguous 

identification of the neural substrates involved remains elusive. Recently, it has been demonstrated that 

current modularity analysis methods suffer from a fundamental and severe resolution limit, as they fail 

to detect features that are smaller than a scale determined by the size of the entire connectivity network. 

This resolution limit is likely to have hampered the ability to resolve differences between patients and 

controls in previous cross-sectional studies. Here, we apply a novel, resolution limit-free approach to 

study the modular organization of resting state functional connectivity networks in a large cohort of 

SCZ patients, and in matched healthy controls. Leveraging these important methodological advances, 

we find new evidence of substantial fragmentation and reorganization involving primary sensory, 

auditory and visual areas in SCZ patients. Conversely, frontal and prefrontal areas, typically associated 

with higher cognitive functions, appear to be largely unaffected, with changes selectively involving 

language and speech processing areas. Our findings provide support to the hypothesis that cognitive 

dysfunction in SCZ may arise from deficits occurring already at early stages of sensory processing. 

Keywords: Schizophrenia, Asymptotical surprise, functional connectivity, community detection, 

modularity, graph theory, complex networks 
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Introduction 

Schizophrenia has been associated with aberrant functional connectivity as measured by neuroimaging methods 

in a number of studies (Friston & Frith 1995; Liang et al. 2006; Liu et al. 2008; Calhoun et al. 2009; 

Karbasforoushan & Woodward 2012; Garrity et al. 2007). This growing evidence is in keeping with the 

disconnectivity hypothesis of Schizophrenia (Friston & Frith 1995) that posits that the core dysfunction of this 

disease may correspond to alterations of the functional interactions between specialized brain areas (Bullmore et 

al. 1998; Ellison-Wright & Bullmore 2009; Fornito et al. 2009; Kubicki et al. 2005), resulting in defective 

integration of activity in distributed networks and in cognitive disintegration (Tononi & Edelman 2000). Indeed, 

psychotic symptoms akin to those of schizophrenia, including hallucinations and delusions, are also observed in 

certain neurological disorders that involve disruption of corticocortical and corticosubcortical connections (Hyde 

et al. 1992; Su et al. 2015; Bullmore et al. 1998). Understanding the nature of connectivity alterations in SCZ 

patients and their effects on brain functional integration may provide important insights into the etiology of this 

devastating disease, as well as potential diagnostic or prognostic markers. 

To this end, graph theoretical approaches have been proposed as a powerful framework to assess 

topological features of functional connectivity networks (Bassett & Bullmore 2006; Bullmore & Sporns 2009; 

Kaiser 2011; Stam & Reijneveld 2007; Reijneveld et al. 2007), in which nodes correspond to anatomically 

defined brain regions and the edges to interregional correlations. Several alterations in graph-related metrics of 

resting state connectivity have been identified in schizophrenia patients, including reduction in global network 

efficiency (Bassett et al. 2008; Liu et al. 2008; Bullmore & Sporns 2009), small worldness (Anderson Ariana & 

Cohen 2013; Yu et al. 2011; Liu et al. 2008) and rich-club organization of high-connectivity nodes (van den 

Heuvel et al. 2013). 

Recently, graph analyses of resting state brain connectivity networks have been applied to study the 

brain modular organization, i.e. the presence of functionally segregated module, or "communities", within large-
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scale, integrated functional connectivity networks (Salvador et al. 2005; He et al. 2009; Meunier et al. 2009). 

Typically, these methods assess patterns of edges in the graph to identify clusters of nodes that are more densely 

connected, denoting stronger interactions among themselves than with the rest of the system. This mathematical 

formulation embodies the notion of segregation and integration, as the emergence of modules reflects the 

balance between intra- and inter-cluster connections. Hence, community detection methods enable investigation 

of the interplay between functional segregation and integration in the healthy and diseased brain, and provide a 

means to map the brain’s modular organization. Changes in the structure of specific modules in patients may 

highlight specific circuits or neural substrates affected by the disease. Moreover, modularity analyses make it 

possible to identify the brain connector hubs, i.e. the regions that are responsible for the integration of the 

activity of the modules, and to assess the effects of disease on these hubs (Heuvel & Sporns 2013; Crossley et al. 

2014). Indeed, there is growing evidence that abnormalities in nodes characterized by high topological centrality 

and connectivity are implicated in several neuropsychiatric disorders, and that connector hubs may present 

increased vulnerability (Crossley et al. 2014). 

Several studies have investigated the modular structure of resting state functional connectivity networks 

derived from functional MRI in Schizophrenia patients compared to healthy controls (Alexander-Bloch et al. 

2010; Alexander-Bloch et al. 2013; van den Heuvel et al. 2010; Fornito et al. 2012; Lo et al. 2015; Lerman-

Sinkoff & Barch 2016; Yu et al. 2012; Liu et al. 2008). Reduction in Modularity, a measure of segregation of 

functional modules within an integrated network, was found in Childhood Onset Schizophrenia (Alexander-

Bloch et al. 2010). However, no strong evidence of group differences in the dispersion and structure of brain 

modules was found in that study (Alexander-Bloch et al. 2010). Reduced Modularity was associated with a 

proportional increase in inter-cluster edges and decrease in intra-cluster edges in patients (Alexander-Bloch et al. 

2012). Lerman-Sinkof et al. (Lerman-Sinkoff & Barch 2016) reported similar modular structures in adult 

schizophrenia patients and healthy subjects under stringent control of potential sources of imaging artifacts, with 

small but significant alterations of node community membership in specific patients networks. Yu et al. (Yu et 

al. 2012) found reduced overall connectivity strength and a larger, even though very limited, number of 
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communities in the patients’ group (6 in SCZ subjects vs 5 in healthy controls). These pioneering investigations 

provide important indications that the strength of division of resting-state functional connectivity networks into 

modules may be altered in patients affected by schizophrenia. However, the partitions per se, i.e. the clustering 

of different brain regions into modules, appear very coarse, comprising only a few, broad modules that are 

similarly distributed in patients and controls. Hence, it remains unclear whether schizophrenia affects specific 

brain functional subsystems, or is just associated with a global alteration in the balance between segregation and 

integration.  

Graph theory as applied to the study of brain networks is still in its infancy, and several methodological 

and conceptual issues that are still open may have affected early studies. An important finding in complex 

network theory is that most community detection methods, like those applied in previous studies in 

Schizophrenia patients, suffer from a resolution limit (Fortunato & Barthélemy 2007), as they cannot resolve 

clusters of nodes that are smaller than a scale determined by the size of the entire network. This limit, first 

demonstrated for Newman’s Modularity, is quite general and affects, to a different extent, all methods that seek 

to identify the community structure of a network through the optimization of a global quality function (Newman 

2006), including Reichardt and Bornholdt’s (Reichardt & Bornholdt 2006), Arenas and Gomez’ (Arenas et al. 

2008), Ronhovde and Nussinov’s (Ronhovde & Nussinov 2010), Rosvall and Bergstrom’s (Rosvall & Bergstrom 

2008; Kawamoto & Rosvall 2015) and others. The introduction of a resolution parameter in the quality function 

has been proposed as a means to improve detection of smaller clusters (Alexander-Bloch et al. 2010; Reichardt 

& Bornholdt 2006). However, this approach introduces a specific scale determined by the choice of parameter 

values (Thomas Yeo et al. 2011; Reichardt & Bornholdt 2006; Ronhovde & Nussinov 2010), enabling detection 

of smaller clusters at the expense of larger ones, which may be unduly subdivided, resulting in partitions with 

relatively uniform cluster size distributions (Lancichinetti & Fortunato 2011). 

We have recently demonstrated (Nicolini & Bifone 2016; Nicolini et al. 2017) that the resolution limit 

severely hampers the ability to resolve the modular organization of human brain connectivity networks, and to 

capture their complex community structure. This pervasive limit is likely to have biased previous studies in 
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clinical populations, and may have prevented detection of differences in the organization of functional 

connectivity in patients and controls at a finer scale. Indeed, even though previous studies in SCZ populations 

systematically report substantial changes in functional connectivity and modularity strength compared to healthy 

controls, differences in the number, size and boundaries of functional modules appear to be modest and 

inconsistent across studies, often dependent on the specific clustering approach that was adopted. The deleterious 

effects of the resolution limit propagate to the evaluation of important topological parameters that depend on the 

network’s community structure. These include the participation coefficient, a parameter that enables the 

identification of highly-connected nodes, or hubs, responsible for the integration and efficient exchange of 

information between modules (Bullmore & Sporns 2009). These limitations have made it difficult to 

unambiguously identify the neurofunctional substrates involved in what is sometimes regarded as a 

disconnectivity syndrome, and to assess different hypothesis on its etiology. Defective functional interactions 

may be widespread and affect overall efficiency of the network (Liu et al. 2008; Bullmore & Sporns 2009; 

Bassett et al. 2008), or involve more specific circuits, including fronto-hippocampal (Meyer-Lindenberg et al. 

2005), fronto-parietal (Garrity et al. 2007), and thalamo-cortical connections (Woodward et al. 2012). On the 

other end of the spectrum, it’s been hypothesized that the complex symptomatology of SCZ may arise from local 

deficits within primary sensory cortices (Daniel C Javitt 2009), and that impairment of higher cognitive 

functions may result from a bottom-up propagation of these deficits. Overcoming the limitations of current 

methods would help discriminate between these different scenarios and assess the relative merits of different 

theories underlying the disconnectivity hypothesis in schizophrenia. 

Recently, we have shown that Surprise, a fitness function rooted in probability theory (Nicolini & 

Bifone 2016), behaves as a resolution-limit free function for community detection. Extension of this method to 

weighted networks, dubbed Asymptotical Surprise, was validated in synthetic and real world networks, revealing 

a heterogeneous modular organization of the human brain, with a wide distribution of clusters spanning multiple 

scales (Nicolini et al. 2017). The improved resolution afforded by Surprise makes it possible to appreciate 

differences in the structures of networks from different groups that are undetectable by resolution limited 
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methods (Nicolini & Bifone 2016), and has led to a refinement of the classification of brain hubs (Nicolini et al. 

2017). 

Here, capitalizing on these important methodological advances, we apply Asymptotical Surprise to 

resolve and compare the modular structures of resting state functional connectivity networks in two cohorts of 78 

schizophrenia subjects and 91 controls. In contrast with previous studies, we find profound changes in the resting 

state brain connectivity structure of schizophrenia patients, with a substantial functional reorganization reflecting 

both fragmentation and merging of functional modules. Additionally, we investigate alterations in node-wise 

participation coefficients and the resulting rearrangement of brain integrative regions in patients. The ability to 

resolve these changes at a finer scale than previously possible sheds new light on the functional implications of 

aberrant functional connectivity in Schizophrenia.  

Materials and Methods 

Participants 

MRI data from 78 patients with schizophrenia strict diagnosis (DSM IV) SCZ (64 males, 14 females) and 91 

healthy controls (CON) (65 males, 26 females) were downloaded from the open COBRE database 

({http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html)(Ambite et al. 2015; Wang et al. 2016). Age ranged 

from 18 to 65 years in both groups.  

All subjects in the COBRE were screened and excluded if they had history of neurological disorder, 

history of mental retardation, history of severe head trauma with more than 5 minutes loss of consciousness, 

history of substance abuse or dependence within the last 12 months. Ethical statements are contained in the 

original publication of this dataset (Çetin et al. 2014). Patients were treated with one of the three atypical 

antipsychotics, olanzepine, risperidone or ziprasidone, and had retrospective and prospective clinical stability. 

None of the patients was under mood stabilizing treatment at the time of study. 
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fMRI acquisition and pre-processing 

Images were acquired with a Siemens MIND TRIO 3T scanner equipped for echo-planar imaging (EPI). 

Echo-planar imaging was used for resting state fMRI data collection with (Repetition Time) TR=2s, (Echo 

Time) TE=29ms, matrix size: 64x64, slices=33, voxel size=3x3x4 mm3 (for more details see (Çetin et al. 2014)). 

A total of 150 volumes of functional images were obtained for all subjects except one (this subject was excluded 

from the present study). 

The data were pre-processed using SPM8 (Wellcome Trust Centre for Neuroimaging, London, UK). 

After discarding the four initial volumes, the remaining volumes were slice-timed, head-motion realigned 

(translational displacement and rotation along and around X, Y and Z axes) and normalized to the standard MNI 

EPI template space (voxel-size re-sampled to 3x3x3 mm3). No significant differences were observed in head-

motion realignment parameters between the two groups (see Discussion and Supplementary Information 

sections).  

Adjacency matrices and connectivity parameters 

For each participant, 638 regional mean time series were computed by averaging the voxel time series 

within each of the parcellized areas of the template described in (Crossley et al. 2013). After regressing 

movement parameters, we estimated the connectivity matrix by computing pairwise inter-regional correlation for 

each individual. In order to compute group-level connectivity matrices, individual correlation matrices were 

Fisher-transformed and averaged by group. Several critiques of correlation as a measure of functional 

connectivity have been proposed (Smith et al. 2011), but this definition is the most widely accepted choice, and 

we have adopted it to ensure comparability of our results with previous studies. 

From the adjacency matrix, we extracted the distribution of z-score (corresponding to the weighted 

edges of our network), and we computed nodal and global measures of connectivity. The degree of a node 
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represents the number of connections towards the other nodes. The network density indicates the ratio between 

the connections in the matrix and all possible connection (Albert & Barabási 2002). 

Global efficiency represents the average of the inverse shortest weighted path lengths connecting every 

pair of nodes, and is inversely related to the network characteristic path length (Rubinov & Sporns 2010). The 

weighted global efficiency can be written as: 

𝐸!"#$ =
1

𝑛(𝑛 − 1)
1
𝑑!"!!!!

 

where 𝑑!"! is the weighted shortest-path length between node i and node j of a graph with n nodes.  

Weighted local efficiency quantifies a network’s resistance to failure on a local scale. The definition of weighted 

local efficiency used in this manuscript is the one given by (Rubinov & Sporns 2010). 

Asymptotical Surprise 

The quality function that we chose to determine community structure in this study is Asymptotical 

Surprise (Nicolini et al. 2017), a recently developed approach rooted in information theory that aims to encode 

the relative entropy between the observed intracluster density and its expected value as on the basis of the Erdos-

Renyi null model (Traag et al. 2015). Asymptotical Surprise was recently shown to be quasi-resolution-limit 

free, and to provide improved means to resolve the modular structure of complex networks of brain functional 

connectivity (Nicolini & Bifone 2016; Nicolini et al. 2017). Asymptotical Surprise is defined as: 

𝑆𝑎 = 𝑚
𝑚𝜁

𝑚
log

𝑚𝜁 𝑚
𝑝𝜁 𝑝

+ 1 −
𝑚𝜁

𝑚
log

1 − 𝑚𝜁 𝑚
1 − 𝑝𝜁 𝑝

 

where m is the sum of all edge weights, 𝑚!  is the sum of intracluster edge weights, p is the total number of 

possible links, 𝑝!  is the total sum of possible intracluster links. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 10, 2017. ; https://doi.org/10.1101/161521doi: bioRxiv preprint 

https://doi.org/10.1101/161521


10	
  
	
  

Optimization of Asymptotical Surprise was carried out by means of PACO (PArtitioning Cost 

Optimization), an iterative agglomerative algorithm built on a variation of the Kruskal algorithm for minimum 

spanning trees (Nicolini & Bifone 2016; Nicolini et al. 2017). We have recently shown that maximization of 

Asymptotical Surprise enables detection of heterogeneously distributed communities (Nicolini et al. 2017), thus 

making it possible to resolve differences in the modular organization of different networks representing 

functional connectivity in different subjects or experimental groups (Nicolini & Bifone 2016). A MATLAB 

toolbox including binary and weighted versions of Surprise optimization is available upon request at 

http://forms.iit.it/view.php?id=68447. PACO is a non-deterministic heuristic, like many other methods used to 

maximize quality functions for community detection. This means that multiple runs of PACO on the same graph 

may yield slightly different resulting partitions. In this study, we used 1000 runs and picked the partition with the 

highest value of Asymptotical Surprise. As shown in (Nicolini et al. 2017), Asymptotical Surprise does not 

suffer from degeneracy of nearly optimal solutions, and is characterized by a sharply distinct global optimum. 

Hence, there is no need to determine a consensus solution over an ensemble of different nearly optimal partitions 

with similarly large values of the fitness function; here, the solutions with the highest value of Asymptotical 

Surprise was selected. 

Percolation Analysis 

In weighted networks, sparsification procedures are often applied to remove the weakest edges, which 

are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically 

and computationally more tractable. To this end, we used a percolation analysis approach. This method, 

grounded in statistical physics, was first demonstrated in brain networks by Gallos et al. (Gallos et al. 2012), and 

previously applied to study phase transitions of connected subgraphs in random networks (Callaway et al. 2000; 

Goerdt 2001). In brief, percolation analysis measures the size of the largest connected component of the network 

upon iterative removal of the weakest edges and enables data-driven determination of the optimal sparsification 

threshold that preserves network structure and connectedness while removing potentially spurious correlations. 
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In the Erdos-Renyi random graph, the size of the largest connected component shows a sharp transition 

at some threshold value (Callaway et al. 2000). Contrarily, brain networks exhibit multiple percolation 

thresholds, revealing a hierarchy of clusters (Gallos et al. 2012). Based on these observations, we have recently 

demonstrated that a threshold just above fragmentation of the largest connected component strikes the optimal 

balance between removal of noise-induced spurious correlations and discarding of information that may be 

contained in the weaker links (Bordier et al. 2017)(Nicolini et al. 2017). Specifically, the percolation threshold 

maximizes information that can be extracted about the network’s modular organization, simultaneously 

maximizing sensitivity and specificity in the assignment of nodes to different modules, as shown in synthetic 

networks endowed with a ground-truth community structure (Bordier et al. 2017) and in human resting state 

functional connectivity networks (Nicolini et al. 2017). Thresholding by percolation analysis has been previously 

applied in human (Gallos et al. 2012) and animal (Bardella et al. 2016) functional connectivity studies. 

Percolation analysis was performed independently in the two groups prior to community detection by 

Asymptotical Surprise maximization. This is an important conceptual step, as it overcomes a conundrum in the 

comparison between groups characterized by different connectivity strengths. In many previous studies, 

thresholds were determined by fixing the same edge densities in the connectivity graphs of the groups to be 

compared. However, constant edge density may bias group comparisons when the experimental groups exhibit 

intrinsic differences in connectivity strength, like in the present case. Imposing equal densities for graphs 

describing connectivity in patients and controls may lead to the inclusion of a greater number of potentially 

spurious links in the group with weaker connectivity, and to the exclusion of important links in the group with 

stronger connectivity. A higher proportion of spurious connection results in a more random network topology, 

and intergroup differences may just reflect different levels of noise, rather than genuine topological differences 

(Heuvel & Fornito 2014). Identification of optimal thresholds that maximize information about the modular 

organization of each group enables unbiased comparison of the two community structures. It should be noted 

that modules are defined in terms of node membership and do not dependent on the total density of edges, but 

rather on the balance between inwards and outwards edges. 
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Group level comparison 

After community detection by Asymptotical Surprise in the two populations (SCZ and CON), we 

computed the similarity between the extracted modular partitions in terms of normalized mutual information 

(NMI) (Danon et al. 2005), and used an approach proposed by Alexander-Bloch et al. (2012) to test for statistical 

differences. This method is based on the idea that if variance in the community structure data is reliably 

explained by group membership, then the mean NMI between all possible pairs of participants within an 

experimental group should be higher than the mean NMI of pairs of participants from random groups. As the 

underlying distribution of group mean NMI is unknown, a null-distribution is generated through a permutation 

method between the two experimental groups (10000 permutations). 

Participation coefficient 

To complete the investigation at the node level, we considered the alteration in node role between the 

two populations based on the differences in modular organization revealed by Asymptotical Surprise. To this 

end, we adopted Guimera’ and Amaral classification scheme (Guimerà & Amaral 2005) , whereby nodes are 

classified by their within-community degree z (a measure of how well connected a node is to other nodes in the 

same community) and their participation coefficient P, a parameter that reflects the extent to which a node is 

connected to nodes in other modules. P can be written as: 

𝑃! = 1 −
𝑘!"
𝑘!

!!!

!!!

 

where 𝑘!" is the number of links of node i to nodes in module c, and 𝑘! is the total degree of node i. To assess 

statistical differences, we computed the P index of each node for each subjects and ran a t-test between groups, 

Bonferroni corrected. Node-wise statistical significance was parametrically mapped on the MRI template. 
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Results 

Weaker connectivity in SCZ patients 

To examine the difference in functional connectivity between the two populations, and to relate this 

study to previous ones, we compared group-averaged pairwise correlations. Fig.1A. shows the edge-weight 

distribution for the two groups. We observed a significant shift in the average z-score value of the matrix 

between the patient and the control. Fig.1B. shows the distribution of node degree, a node-wise parameter that 

measures the number of edges incident to each node. A significant decrease of average node-degree was 

observed for the SCZ groups (green line) compared to the CON group (black line), with degree values of 

25.73±13.04 and 53.83±40.35 respectively. Additionally, we computed the global efficiency coefficient Eglob, 

related to the inverse average path length connecting any two nodes, a measure of how efficiently information is 

exchanged across the network. Eglob was strongly reduced in the SCZ group, with a value of 0.23 versus 0.32 for 

the control group, a further indication of reduced network integration in the patient. 

Altogether, these analyses show widespread alterations in functional connectivity in the Schizophrenia 

group, entirely consistent with previous reports (Liu et al. 2008; Alexander-bloch et al. 2010; Alexander-Bloch 

et al. 2013; van den Heuvel et al. 2010; Fornito et al. 2012; Lo et al. 2015; Lerman-Sinkoff & Barch 2016; Yu et 

al. 2012). Interestingly, though, local efficiency, defined as the efficiency of a node’s local network of nearest 

neighbors when the node is removed, was similar or even higher in the schizophrenia group 0.6±0.09 in controls; 

0.68±0.09 in patients). Fig.1C. shows local efficiency for each node, with green and black lines denoting patients 

and controls, respectively (t-test p-value= 0.103). The graph displays only minor differences between the two 

populations, thus suggesting that network tolerance to node faults is generally preserved in patients compared to 

controls even if overall functional connectivity is substantially weaker (Lynall et al. 2010). This has been 

observed in previous studies, and pointed to as a potential evolutionary advantage that may justify persistence of 

schizophrenia-related genes in the general population (Lynall et al. 2010). 
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In summary, all graph-related parameters measured in this study appear consistent with those reported in 

the literature for smaller groups or specific sub-populations of patients (e.g. childhood onset schizophrenics), 

thus corroborating the idea that the present data-set has global and node-wise functional connectivity features 

that are comparable to those of previous studies. In the following, we investigate the effects of these scale-

dependent differences on the modular organization of functional connectivity in schizophrenia patients vs 

controls using our novel community detection approach. 

Fragmentation of primary sensory areas, but not prefrontal regions, in SCZ patients 

In order to determine the optimal modular partitions for our experimental groups, we applied maximization of 

Asymptotical Surprise by PACO, a resolution-limit free method that we have recently demonstrated in healthy 

volunteers (Nicolini et al. 2017). Prior to community detection, the group level adjacency matrices were 

sparsified using a percolation analysis approach to remove weaker edges and reduce the effects of noise, thus 

maximizing information about the network’s modular structure (Alexander-Bloch et al. 2010; Nicolini et al. 

2017; Gallos et al. 2012; Bardella et al. 2016). Fig.2 shows the group-level adjacency matrices, with the node 

indexes rearranged by module membership, for the control and schizophrenia groups. Disjoint clusters of nodes, 

or modules, are delineated by red lines. We found 44 communities in the control group, with module sizes 

ranging between 141 and 1 nodes.  

The optimal partition of the patients’ group comprised 39 communities, and showed a less heterogeneous size 

distribution (ranging between 73 and 1 nodes). The statistical significance of the difference in community 

structure was assessed using a recently proposed permutation approach based on Normalized Mutual 

Information (Alexander-Bloch et al. 2012), resulting in a p-value= 0.009 (1000 permutations, false discovery 

rate corrected). The smaller number of modules in the schizophrenia group may appear somewhat 

counterintuitive, in the light of overall weaker functional connectivity strength in this group. However, while 

some of the larger modules appear to break up into smaller modules in patients, the tail of the distribution of 

community sizes is fatter in the schizophrenia group, thus indicating aggregation and reorganization of smaller 
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modules. The overlaps between modules in the optimal partitions for the two groups are shown and discussed in 

the Supplementary Information section (Fig.S1). 

 

Fig.3 shows the distribution of functional modules in the two groups overlaid on an anatomical template. 

Note that the colors denoting the communities were chosen independently in the two groups to maximize 

contrast between adjacent modules. Differences in the modular structures of functional connectivity in the two 

groups are apparent, and involve complex reorganization of nodal membership across modules. To facilitate 

visual inspection and interpretation of differences between the two groups, we show some communities of the 

control group individually, and the overlapping communities in the patients’group (Fig. 4, 5and 6).  

The main differences in modular organization between the two groups involve the sensorimotor, visual 

and auditory cortices. The controls’ large occipital module (Community 1, Fig. 4A) is split in the patients’ 

group, with primary visual cortex standing as an independent community together with the caudal part of the 

inferior temporal gyrus. The more dorsal part of the occipital community includes a portion of the superior 

parietal lobule in healthy controls, but not in SCZ patients, where the boundary of this community lies in the 

vicinity of the parieto-occipital fissure. The large central module in the healthy controls’ group (Community 2, 

Fig.4B) comprises somatosensory, sensorimotor cortices and temporal auditory cortices, consistent with previous 

findings in healthy volunteers (Nicolini et al. 2017). In schizophrenia patients, this module breaks up 

dorsoventrally into four different clusters of nodes. 

Conversely, the local modular structure of prefrontal areas is consistent between the two groups, with 

similar size and anatomical distribution of node membership (Fig. 5). However, long-distance connectivity 

between prefrontal and parietal regions is reduced in SCZ patients (Fig.5A), resulting in a separation of the 

Lateral Parietal Cortices from the Default Mode Network. Between-group differences in frontal lobe 

organization pertain particularly the language regions, with the Broca area forming an independent community 

in patients (Fig. 6A).  
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Substantial fragmentation and reorganization is also observed in the modular structure of the temporal 

cortex. In controls, we find well-delineated modules comprising the middle temporal gyrus and the inferior 

temporal gyrus, while the superior temporal gyrus is part of larger community that includes somatomotosensory 

cortices. In patients, the superior temporal gyrus is separated from the larger somatosensory community, and is 

split into two modules, anterior and posterior, respectively. The middle temporal gyrus (Community 7 Fig.6B) is 

split rostrocaudally into 4 different communities that include parts of the superior and inferior gyri. The inferior 

gyrus consists of two modules. The anterior module includes part of the middle temporal gyrus, while the 

posterior one extends to the primary visual cortex. Interestingly, the angular gyrus and the supramarginal gyrus 

appear as separate modules in healthy controls, but in patients these areas are merged into a single community 

including the temporoparietal junction (see Fig.6C).  

In summary, Asymptotical Surprise reveals substantial alterations of the modular structure of functional 

connectivity in SCZ patients, with fragmentation of sensory and sensorimotor areas, and reorganization of 

language related areas. Conversely, prefrontal areas show similar local organization in patients and controls. 

Significantly increased centrality of sensory areas in SCZ patients 

Fig.7 shows statistically significant differences in participation coefficient, a measure of diversity in 

intermodular connections of individual nodes. Nodes characterized by high participation coefficients have many 

links pointing to different modules, and are thought to play an integrative role. Nodes with most links pointing to 

other nodes within the same community are dubbed provincial hubs, and contribute to defining functional 

segregation of their communities.  

Significantly larger participation coefficients are observed in sensorimotor, visual and auditory areas of 

SCZ patients. Lower participation coefficients in patients are observed in frontal and parietal regions, with the 

most prominent decrease in the temporal primary auditory cortex. Substantial differences are also observed in 

functional connectivity of areas related with language generation and processing. The anterior part of the Broca 

area (BA 45), which receives afferent projections from the PFC, shows a decrease in participation coefficient, 
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while the posterior part (BA 44), which has more structural connections with sensory cortices and inferior 

parietal cortices, shows an increase in PC and appears as a prominent connector hub only in the SCZ group. 

Connector hubs for the two experimental groups are displayed in the Supplementary Information section 

(Fig.S2). 

Discussion 

One of the main conclusions of this paper is the selective fragmentation of specific functional connectivity 

modules in schizophrenic patients. This effect was not detected in previous studies, where weaker modularity in 

SCZ patients was not associated with major disruption or reorganization of the modular structure per se. The 

present study leverages an important methodological development that makes it possible to overcome limitations 

that may have affected previous investigations. Indeed, it has been recognized that community detection 

approaches based on the optimization of a global fitness function suffer from a fundamental resolution limit, 

(Fortunato&Barthelemy 2007). We have recently demonstrated that this limit can prevent detection of important 

details in the structure and organization of resting state functional connectivity networks, thus hampering 

detection of differences in community structures of different experimental groups (Nicolini et al. 2016). The 

finer resolution afforded by Asymptotical Surprise (Nicolini et al. 2017) enables finer grained analysis of resting 

state brain networks, and provides improved means to assess differences in patient-control studies. Importantly, 

this new method has been thoroughly validated in synthetic networks endowed with ground-truth modular 

structures and in functional connectivity networks from healthy subjects (Nicolini et al. 2017), demonstrating 

superior sensitivity to smaller modules compared to other popular methods, like Newman’s Modularity and 

InfoMap. Importantly, specificity of Asymptotical Surprise was shown to be in line with or superior to that of 

resolution-limited methods even in the presence of noise and intersubject variability (Nicolini et al. 2017). 

Break-up of functional connectivity modules of SCZ patients was most prominent in primary sensory, auditory 

and visual areas. Alterations in sensory experience and processing have been documented for a long time 

(Bleuler 1950; McGhie & Chapman 1961; Chang & Lenzenweger 2005; Dworkin 1994), but studies in 
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schizophrenia have traditionally focused on deficits in higher-order processes such as working memory and 

executive function. It has been also suggested that bottom-up deficits in cognitive processing may be driven by 

impairments in basic perceptual processes that localize to primary sensory brain regions (Daniel C. Javitt 2009; 

Daniel C Javitt 2009). The major reorganization of functional connectivity in sensory areas hereby reported is in 

keeping with the idea that disorders in schizophrenia may occur already at the level of early sensory processing.  

Dysfunction in auditory sensory processing has been consistently observed in schizophrenia with the 

auditory mismatch negativity (MMN) test (Javitt, Daniel C.; Sweet 2015), and has been related with altered 

intrinsic and extrinsic connectivity in the Superior Temporal Gyrus (Garrido et al. 2008). Moreover, deficits in 

sensorimotor gating as measured by the Pre Pulse Inhibition test have been widely documented (Braff & Geyer 

1990). Consistent with these observations, our results highlight fragmentation in the organization of the auditory 

cortex module, resulting in abnormal connectivity within and between early auditory processing areas. 

Perceptual deficits have also been documented in the visual system of schizophrenia patients (Butler et 

al. 2001; Braus et al. 2002). Specifically, alterations have been reported in the magnocellular visual pathway, 

resulting in deficits in processes such as perceptual closure, object recognition, and reading (Doniger et al. 

2002). On the other hand, ERP studies suggest that the ventral stream processing is preserved and that impaired 

magnocellular dorsal stream schizophrenia may lead to secondary dysregulation of ventral stream object 

recognition processing (Doniger et al. 2002). Our data provide evidence of the reorganization of functional 

connectivity between the primary visual cortex and the ventral and dorsal pathways, with stronger connectivity 

in the ventral stream, leading to merging of primary visual and inferior temporal cortices into a single module, 

and separation from the dorsal and dorso-parietal visual cortices. 

Although most reports focus on the visual and auditory systems, deficits in other sensory systems have 

also been documented in schizophrenics, including reduced sensitivity to stimulus features (Javitt et al. 1999), 

impaired 2-point discrimination (Chang & Lenzenweger 2005) and abnormal pain thresholds (Dworkin 1994). 

This appears consistent with the breakdown of the sensorimotor module reported in the present study. 
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The effects of abnormal connectivity organization in primary sensory cortices in patients are also 

apparent in the anatomical distribution of the participation coefficient. This index reflects the balance of within- 

and between- module connectivity, with higher values denoting regions that project mostly to other modules, and 

thus play an integrative role within the overall connectivity network. In the healthy brain, high participation is 

typically found in heteromodal association cortices. By contrast, primary sensory cortices tend to have lower 

topological centrality (Fornito et al. 2015). In our analyses, we find that sensorimotor and primary visual cortices 

show a significant increase in participation coefficient in SCZ patients compared to controls. Hence, these 

regions play an abnormally central role in the network topological integration. Conversely, frontal and parietal 

cortices, including heteromodal and associative cortices show significantly reduced participation coefficient in 

patients compared to healthy controls. Interestingly, the primary auditory cortex is also characterized by reduced 

variety of intermodular connectivity, unlike other primary sensory cortices, and substantial alterations in its 

connectivity with language processing areas (see below).  

It is noteworthy that the overall reduction in connectivity strength observed in patients does not result in 

unspecific breakdown of functional modules into smaller, more fragmented structures across the whole brain. 

Indeed, the number of modules in the two groups is comparable, despite the much weaker connectivity strength 

of the patients’ group. Fragmentation is observed in primary sensory areas, but not in other areas, like the frontal 

ones. Altogether, we report a reorganization of the connectivity modular structure in SCZ patients, with district 

specific effects. This is consistent with the idea that the modular structure of a network is determined by the 

balance between inward and outward links of individual communities, rather than by the average total 

distribution of edge weights. 

Particularly interesting is the reorganization of areas involved in the processing of language. The larger 

participation coefficient of the Broca area in SCZ subjects causes this area to play the role of connector hub in 

this population, while parietal heteromodal cortices have a largely reduced integrative role in this population. 

The Angular Gyrus, a cross-modal hub where converging multisensory information is combined and integrated, 

plays the role of connector hub in healthy subjects, but not in patients, where it forms a tight community with the 
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Supramarginal Gyrus, a region involved in language perception and processing. Finally, significantly higher 

values of the participation coefficient are observed in the Heschl gyrus of SCZ patients, an area that has been 

shown to be overactive during hallucinatory states (Dierks et al. 1999). Hence, we speculate that the abnormal 

connectivity between language and multisensory integrative areas may be related with the insurgence of auditory 

hallucinations (“hearing voices”), a hallmark of Schizophrenia. 

We note that the groups of subjects included in the study, all selected on the basis of a strict (DSM-IV) 

Schizophrenia diagnosis, present a wide age distribution at the time of MRI scan. To assess the potential effects 

of age, we have re-binned the subjects into three subgroups, including subjects up to 25, 35 or over 35 years, 

respectively. The modular structures for these three subgroups of patients, reported in Fig.S3 in the 

Supplementary Information, show similar fragmentation and reorganization of sensory cortices, thus indicating 

that the effects hereby reported are not driven by a restricted age-group of subjects. Moreover, patients in this 

study are likely to have taken medications, with different histories of pharmacological treatments. Hence, we 

cannot exclude that differences with respect to the control group may be related with pharmacological treatment, 

particularly in subjects with long-term exposure to antipsychotic drugs. To mitigate this risk, we have subdivided 

the patients for whom treatment information is available in different groups based on the difference from time of 

first treatment and time of MRI study. Specifically, we have taken patients who had the resting state fMRI scan 

the same year of first treatment (18 subjects), within the year after (35 subjects), or after 5 years. The results are 

shown in Fig.S4 of the Supplementary Information section. Despite some differences, possibly related with the 

limited and different number of subjects included in each subgroup, the same general features, including 

fragmentation of sensory areas, are consistently observed in all subgroups. Altogether, subgroup analysis 

suggests that the reorganization of functional connectivity hereby reported is not driven by factors like duration 

of pharmacological treatment. Finally, it has been suggested that increased head motion may affect resting state 

functional connectivity as measured by functional MRI in certain populations of psychiatric patients, like 

Autistic Spectrum Disorder subjects. Means and standard deviations of motion parameters extracted with SPM 

for each subject included in this study are shown in the Supplementary Information section (fig. S5). Analysis of 
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motion parameters did not show any significant difference between groups (z translation: p=0.265; y translation: 

p=0.525; x translation: p=0.2446; x rotation: p=0.245; y rotation: p=0.652; z rotation: p=0.194), consistent with 

the fact that patients included in this study were not under acute psychosis. Additionally, it should be noted that 

fragmentation of modular organization in patients is not widespread throughout the brain, but only observed in 

specific districts, like the primary sensory cortices, while other modules are almost identical to those of the 

controls. Hence, it is unlikely that inter-group differences in modular structure be dominated by the effects of 

differential head motion.  

In summary, this study demonstrates previously unreported fragmentation of the modular structure of functional 

connectivity of primary sensory cortices in SCZ patients. Conversely, prefrontal cortices exhibit normal local 

organization, despite overall weaker connectivity in SCZ patients. This is interesting, as these areas are thought 

to be involved in higher cognitive processes, which are profoundly affected by schizophrenia. Our findings 

support the theory that aberrant connectivity in primary sensory processing may induce deficits that reverberate 

to higher cognitive functions through a bottom-up process (Daniel C Javitt 2009). Moreover, we report a 

substantial reorganization of language and speech areas, with an abnormal association of the Supramarginal 

Gyrus with heteromodal cortices, and an increase in the centrality of the Broca area at the level of network 

topology.  

Conclusion 

In conclusion, we have applied a novel graph theoretical approach, dubbed Asymptotical Surprise, to study the 

structure of brain functional connectivity networks in a large cohort of Schizophrenia patients. Global and node-

wise connectivity parameters showed an overall reduction in connectivity in patients compared to healthy 

controls, in line with previous studies. The improved resolution afforded by our method revealed substantial 

reorganization of the modular structure of functional connectivity in patients, with a fragmentation of visual, 

auditory and sensorimotor cortices. Conversely, prefrontal cortices exhibit normal local organization, despite 

overall weaker connectivity in SCZ patients. This was perhaps unexpected, as these areas are thought to be 
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involved in higher cognitive processes, which are profoundly affected by schizophrenia. Our findings support the 

theory that aberrant connectivity in primary sensory processing may induce deficits that reverberate to higher 

cognitive functions through a bottom-up process. The reorganization of auditory and language modules, and the 

merger with multimodal association cortices is particularly interesting in the light of the auditory hallucinations 

often experienced by SCZ patients. Significant changes were observed in the participation coefficient of sensory, 

visual, and in primary auditory cortices, including the Heschl gyrus, a region critically implicated in auditory 

hallucinations. This evidence indicates that these regions play a different role in the integration of the network of 

functional connectivity in the patient’s brain. Previous studies using resolution-limited methods may have failed 

to detect the abnormal organization of functional connectivity at the scale reported here due to intrinsic 

methodological limitations. The present approach may provide a novel and powerful tool to study alterations in 

the brain functional organization in other neuropsychiatric conditions that are thought to be associated with 

aberrant connectivity. 
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Figures: 

 

Figure 1. A. Z-value distribution of the adjacency matrices for the two experimental groups; a left shift 
in the distribution for the SCZ group indicates overall weaker connectivity. B. Degree of each node for 
the patients’ and control groups (in green and black, respectively). C. Local efficiency value by nodes 
(same color scheme as in B). The nodes of the left and on the right hemisphere (LH and RH) are 
respectively on the right and on the left side of the circle. 

 

 
Figure 2. Region-by-region correlation matrices sorted by module membership obtained by 
Asymptotical Surprise for the two populations. Modules are demarcated by a red line. The number of 
modules is 44 and 39 for the control and patient group, respectively. 
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Figure 3. Functional connectivity modules obtained by Asymptotical Surprise overlaid on an 
anatomical template for: A. healthy controls; B. schizophrenia patients; colors were assigned 
independently in the two groups to maximize contrast between adjacent modules. 

 

 
Figure 4. Community 1 and 2 (A and B, corresponding to visual and sensorimotor modules, 
respectively) of the control group (left), and overlapping communities in the patient group (right). 
These modules are substantially fragmented and reorganized in the SCZ group compared to healthy 
controls. 
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Figure 5. Community 3, 6 and 11 (A,B and C, corresponding to prefrontal and frontal modules) of the 
control group (left), and overlapping communities in the patient group (right). Local modular structure 
appears consistent between the two groups, with reduction in long-range fronto-parietal connectivity is 
observed in Community 3. 
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Figure 6. A: Community 4 of the control group and overlapping communities in the patient group 
(right). The Broca Area breaks apart in patients and forms an independent community with increased 
centrality (see also Fig. 6). B: Control’s community 7, corresponding to the medial temporal gyrus, is 
fragmented rostrocaudally in SCZ patients. C: the supramarginal and angular gyrus represent separate 
communities in controls, and merge into the same module (community 14) in the patient’s group. 
 

 
Figure 7. Anatomical distribution of statistically significant node-wise between-group differences in 
Participation Coefficient, Bonferroni corrected. A. Nodes with higher participation coefficient in SCZ 
than in CON; B. Nodes with lower participation coefficient in SCZ than in CON. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 10, 2017. ; https://doi.org/10.1101/161521doi: bioRxiv preprint 

https://doi.org/10.1101/161521

