[^0]
Running Title: Laupala Genomic Architecture

Key words: speciation, sexual selection, recombination, chromosomal rearrangements, genome, crickets

Corresponding author:

Thomas Blankers, Department of Neurobiology and Behavior, Cornell University, W319 215
Tower rd, 14850, Ithaca, NY, USA. thomasblankers@gmail.com. 1-(607) 2544326

Abstract

Phenotypic evolution and speciation depend on recombination in many ways. Within populations, recombination can promote adaptation by bringing together favorable mutations and decoupling beneficial and deleterious alleles. As populations diverge, cross-over can give rise to maladapted recombinants and impede or reverse diversification. Suppressed recombination due to genomic rearrangements, modifier alleles, and intrinsic chromosomal properties may offer a shield against maladaptive gene flow eroding co-adapted gene complexes. Both theoretical and empirical results support this relationship. However, little is known about this relationship in the context of behavioral isolation, where co-evolving signals and preferences are the major hybridization barrier. Here we examine the genomic architecture of recently diverged, sexually isolated Hawaiian swordtail crickets (Laupala). We assemble a de novo genome and generate three dense linkage maps from interspecies crosses. In line with expectations based on the species' recent divergence and successful interbreeding in the lab, the linkage maps are highly collinear and show no evidence for large-scale chromosomal rearrangements. The maps were then used to anchor the assembly to pseudomolecules and estimate recombination rates across the genome. We tested the hypothesis that loci involved in behavioral isolation (song and preference divergence) are in regions of low interspecific recombination. Contrary to our expectations, a genomic region where a male song QTL co-localizes with a female preference QTL was not associated with particularly low recombination rates. This study provides important novel genomic resources for an emerging evolutionary genetics model system and suggests that trait-preference co-evolution is not necessarily facilitated by locally suppressed recombination.

INTRODUCTION

Speciation is contingent on the accumulation of genomic variation and the formation of barriers that prevent gene flow between populations. Genomes diverge under the influence of selection and drift, while gene flow counteracts this divergence by homogenizing the genome (Felsenstein 1981; Kirkpatrick and Ravigne 2002; Gavrilets 2003). To appreciate the speciation process and the origin of the fascinating diversity of life on earth, we need to understand the interaction between the mechanisms that change allele frequencies and the mechanisms that govern the association of beneficial and deleterious alleles with other alleles. A key process in this interaction is recombination, which creates new allelic combinations during meiosis in sexually reproducing organisms.

Any association between loci that underlie environmental adaptation or between loci underlying co-evolving (sexual) signals and signal responses (i.e. co-adapted gene complexes) will be affected by recombination (Felsenstein 1981). Within populations, recombination can mitigate Hill-Robertson interference by combining locally adaptive alleles from different genomic backgrounds and by decoupling beneficial and deleterious alleles (Hill and Robertson 1966); recombination can also influence the covariance between sexual traits and preference across sexes (Smith and Haigh 1974; Smith 1978; Gillespie 2000; Otto 2009). As such, recombination might increase the efficiency of background selection (purging deleterious alleles), sexual selection (through signal-preference co-evolution), and local adaptation in the earliest stages of speciation (by linking locally adapted alleles; Noor et al. 2001; Rieseberg 2001; Kirkpatrick and Ravigne 2002; Yeaman and Whitlock 2011).

Between divergent populations with some (but incomplete) reproductive isolation, recombination can also counteract population divergence and prevent the closure of a reproductive boundary by
creating combinations of alleles that are favorable in different contexts (Noor et al. 2001; Rieseberg 2001; Coyne and Orr 2004; Ortiz-Barrientos et al. 2016). It is important to realize that interspecific recombination is constrained both by intrinsic properties of the species' genomes that also constrain intraspecific recombination, as well as by the effects from (divergent) selection and alternatively fixed chromosomal rearrangements (Yeaman and Whitlock 2011; Feder et al. 2012). The most intensely studied chromosomal rearrangements suppressing recombination between divergent populations are inversions. Inversions can suppress recombination locally in the genome and, thus, promote reproductive isolation, by trapping genetic incompatibilities in linkage blocks (Noor et al. 2001), acting synergistically with other genes causing isolation (Rieseberg 2001), or by linking locally adaptive alleles (Kirkpatrick and Barton 2006). Other chromosomal rearrangements, such as translocations and transposable elements, can likewise contribute to 'chromosomal speciation' (Rieseberg 2001) as well as to preventing gene flow and furthering genetic divergence among heterospecifics.

Interestingly, there is ubiquitous among-species variation in recombination rates (Wilfert et al. 2007; Smukowski and Noor 2011). In insects, for example, rates vary from $16.1 \mathrm{cM} / \mathrm{Mb}$ (centiMorgans per megabase) in Apis melifera to $0.1 \mathrm{cM} / \mathrm{Mb}$ in the mosquito Armigeres subalbatus (Wilfert et al. 2007). There is also variation across the genome within individuals. For example, 50 -fold differences have been observed within single chromosomes of humans and birds (Myers et al. 2005; Singhal et al. 2015). These patterns of variation underline that the efficacy of selection acting within species may differ across taxa and across genomes of the same species.

A major prediction following from theoretical work is that favorable allele combinations that promote ecological adaptation are more likely to reside in regions of low recombination. Recombination frustrates natural selection by breaking up associations between segregating
alleles that are locally adaptive within the resident population and counteracts divergent selection if there is gene flow between recently diverged populations (Bürger and Akerman 2011; Yeaman and Whitlock 2011; Yeaman 2013). So far, empirical evidence for the prediction that locally adaptive alleles reside in regions of low recombination is not conclusive (Roesti et al. 2013; Burri et al. 2015; Marques et al. 2016). However, a recent study indicated that the interaction between gene flow and divergent selection is a strong predictor for the association between adaptive alleles and regions of low recombination in multiple species of stickleback fish (Samuk et al. 2017).

However, it is unclear how these predictions apply to the evolution of behavioral isolation. Theoretical models of speciation by sexual selection depend on linkage disequilibrium between sexual signaling traits and corresponding preference genes (Fisher 1930; Lande 1981; Kirkpatrick 1982). Linkage disequilibrium between trait and preference genes can come about by assortative mating (Lande 1981; Andersson and Simmons 2006) or by physical linkage (Kirkpatrick and Hall 2004), either through closely linked loci or through pleiotropy (a single gene affecting both signal and preference phenotypes). Here, the role of recombination is more complex: On the one hand, recombination can help consolidate loci brought together by nonrandom mating and as such facilitate linkage disequilibrium between trait and preference (Kirkpatrick and Ravigne 2002). On the other hand, recombination can also tear apart co-adapted trait and preference alleles if genes are exchanged between populations that differ in mating phenotypes. Therefore, recombination between sexually divergent populations in sympatry and parapatry often compromises differentiation in mating phenotypes and hinders speciation (Arnegard et al. 2004; Servedio 2009, 2015; Servedio and Burger 2014). However, there has
been limited empirical insight into the relationship between trait-preference co-evolution and genome-wide variation in recombination rates (see Davey et al. 2017 for a recent exception).

Here, we examine the genomic architecture, specifically structural variation and heterogeneity in interspecific recombination, of four closely related, sexually isolated species of Hawaiian swordtail crickets from the genus Laupala. Laupala is one of the fastest speciating taxa known to date (Mendelson and Shaw 2005). The 38 morphologically cryptic species, each endemic to a single island of the Hawaiian archipelago (Otte 1994; Shaw 2000a) are the product of a recent evolutionary radiation. Evidence suggests that speciation by sexual selection on the acoustic communication system has driven this rapid diversification, as both male mating song and female acoustic preferences have diverged extensively among Laupala species (Otte 1994; Shaw 2000b; Mendelson and Shaw 2002). Sexual trait evolution strongly contributes to the onset and maintenance of reproductive isolation (Mendelson and Shaw 2002; Grace and Shaw 2011). Quantitative variation in one key temporal property of male song (pulse rate) and corresponding female preference strongly covaries across species and across populations within species (Shaw 2000b; Grace and Shaw 2011). Although the mechanisms of trait-preference co-evolution require further study, there is evidence that both are associated with a polygenic basis and that genetic loci controlling quantitative variation in traits and preferences are physically linked in the genome (Shaw and Lesnick 2009; Wiley et al. 2012). Notably, one of the major song quantitative trait loci (QTL; haploid effect size ~ 9\%) co-localizes with the first mapped preference QTL (haploid effect size $\sim 14 \%$). Directional effects of song QTL provide additional evidence that (sexual) selection is driving divergence between species (Shaw et al. 2007).

The species pairs involved in this study, L. kohalensis and L. pruna, and L. paranigra and L. kona, are endemic to the Big Island, the youngest island of the Hawaiian archipelago (Fig 1A,
B). Although these species pairs have apparently diverged in allopatry within the Big Island, past or future migration is likely, given their geographical proximity. Indeed, although allopatric and more closely related to L. kohalensis, L. pruna currently overlaps in distribution with L. paranigra (Fig 1B). The discordance between nuclear and mitochondrial phylogenies (Shaw 2002) and the limited degree of postzygotic isolation between some species pairs further emphasize the possibility of gene flow across natural populations. Together, the biogeography and the genetics of song and preference variation in this system provide a unique opportunity to explore the interaction between interspecific recombination rate variation, co-evolution of mating traits, and speciation.

We first assemble a de novo L. kohalensis draft genome and then obtain thousands of SNP markers for heterogeneously hybrid offspring from three laboratory-generated interspecific crosses. We then generate three dense linkage maps and compare these maps to test the hypothesis that the genomic architectures of young, sexually differentiated species are largely collinear (similar marker order) and have conserved interspecific recombination frequencies (similar marker distances). There is some variation in the level of overall differentiation in the species pairs studied here, but all lineages are young (approximately 0.5 million years or less, Fig 1). It is commonly expected that strong prezygotic isolation can evolve rapidly and largely in the absence of intrinsic postzygotic isolating mechanisms (Coyne and Orr 2004), but explicit comparisons of chromosomal architectures across behaviorally isolated species are rare. We compare the maps visually and use variation in maker order and length (measured in genetic distance, or centi-Morgans [cM]) as indicators of possible chromosomal rearrangements affecting the recombination rates differently in different crosses (Fig 1C). Then, from the large amount of information on linkage across many genomic markers from three hybrid crosses, we
anchor the draft genome assembly to pseudomolecules and estimate the landscape of recombination across the genome. Finally, using an additional map that integrates the amplified fragment length polymorphism (AFLP) markers from previous QTL studies in L. kohalensis and L. paranigra, we approximate the location of known male song QTL, including one co-localizing with a female acoustic preference QTL, on the pseudomolecules. We examine local variation in recombination rates across the genome and in relation to the location of the song and preference QTL to test the hypothesis that song-preference co-evolution is facilitated by suppressed interspecific recombination. This study provides important insight into the role of the genomic architecture during divergence of closely related species separated by premating barriers.

MATERIAL \& METHODS

De novo genome assembly

The Laupala kohalensis draft genome (estimated genome size $\sim 1.9 \mathrm{~Gb}$; Petrov et al. 2000) was sequenced using the Illumina HiSeq 2500 platform. DNA was isolated with the DNeasy Blood \& Tissue Kits (Qiagen Inc., Valencia, CA, USA) from six immature female crickets (c. five months of age) chosen randomly from a laboratory stock population (approximate lab generation=14). Females were chosen to balance DNA content of sex chromosomes to autosomes (female crickets are XX; male crickets are XO). DNA was subsequently pooled for sequencing. Four different libraries were created: a paired-end library with an estimated insert size of 200 bp (sequenced by Cornell Biotechnology Resource Center), a paired-end library with an estimated insert size of 500 bp , and two mate-pair libraries with insert sizes of 2 and 5 Kb (sequenced by Cornell Weill College Genomics Resources Core Facility).

Reads were processed using Fastq-mcf from the Ea-Utils package (Aronesty 2011) with the parameters -q 30 (trim nucleotides from the extremes of the read with qscore below 30) and 150 (discard reads with lengths below 50 bp). Read duplications were removed using PrinSeq (Schmieder and Edwards 2011) and reads were corrected using Musket with the default parameters (Liu et al. 2013).

Reads were assembled using SoapDeNovo2 (Luo et al. 2012). The reads were assembled using different Kmer sizes $(\mathrm{k}=31,39,47,55,63,71,79$ and 87$)$. The 87 -mer assembly produced the best assembly (based on N50/L50, assembly size, and number of scaffolds). Scaffolds and contigs were renamed using an in-house Perl script. Gaps were filled using GapCloser from the SoapDeNovo2 package.

The gene space covered by the assembly was evaluated using three different approaches.
(1) Laupala kohalensis unigenes produced by the Gene Index initiative (Cricket release 2.0: http://compbio.dfci.harvard.edu/cgi-bin/tgi/gimain.pl?gudb=cricket) were mapped using Blat (Kent 2002). Only unigenes mapping with 90% or more of their length were considered; (2) 50 bp paired-end RNA-seq reads from a congeneric species, L. cerasina were mapped using Tophat2 (Kim et al. 2013). Reads were processed using the same methodology described above, but using a minimum length of 30 bp ; (3) using BUSCO (Simão et al. 2015) to search for conserved eukaryotic and arthropod genes.

Samples

We generated three F_{2} interspecies hybrid families to estimate genetic maps. Multiple F_{1} male and sibling females were intercrossed to generate F_{2} mapping populations for the following species crosses: (1) a L. kohalensis female and L. paranigra male ("ParKoh", 178 genotyped F_{2}
hybrid offspring; previously reported in Shaw et al. 2007); (2) a L. kohlanesis female and a L. pruna male ("PruKoh", 193 genotyped F_{2} hybrid offspring); (3) a L. paranigra female and a L. kona male ("KonPar", 263 genotyped F_{2} hybrid offspring). These four species are part of a recently radiated clade showing conspicuous mating song divergence (Mendelson and Shaw 2005). Approximate geographic distributions of the species, phylogenetic relationships and parent collection localities are shown in Fig 1 and in Table S1. Crickets used in crosses were a combination of lab stock and outbred individuals (L. kohalensis [for ParKoh] and L. paranigra [for ParKoh and KonPar] were both lab reared for 3-15 generations; L. kohalensis [for PruKoh], L. pruna and L. kona were wild-caught). All parental and hybrid generations were reared in a temperature-controlled room $\left(20^{\circ} \mathrm{C}\right)$ on Purina cricket chow and provided water ad libitum.

Genotyping

DNA was extracted from whole adults using the DNeasy Blood \& Tissue Kits (Qiagen, Valencia, CA, USA). Genotype-by-Sequencing library preparation and sequencing were done in 2014 at the Genomic Diversity Facility at Cornell University following Elshire et al. (2011). The Pst I restriction enzyme was used for sequence digestion and DNA was sequenced on the Illumina HiSeq 2500 platform (Illumina Inc., USA).

Reads were trimmed and demultiplexed using Flexbar (Dodt et al. 2012) and then mapped to the L. kohalensis de novo draft genome using Bowtie2 (Langmead and Salzberg 2012) with default parameters. We then called SNPs using two different pipelines: The Genome Analysis Toolkit (GATK; DePristo et al. 2011; Van der Auwera et al. 2013) and FreeBayes (Garrison and Marth 2012). For GATK we used individual BAM files to generate gVCF files using 'HaplotypeCaller' followed by the joint genotyping step 'GenotypeGVCF'. We then evaluated variation in SNP quality across all genotypes using custom R scripts to determine appropriate settings for hard
filtering based on the following metrics (based on the recommendations for hard filtering section "Understanding and adapting the generic hard-filtering recommendations" at https://software.broadinstitute.org/gatk/ accessed on 28 February 2017): quality-by-depth, Phredscaled P-value using Fisher's Exact Test to detect strand bias, root mean square of the mapping quality of the reads, u-based z-approximation from the Mann-Whitney Rank Sum Test for mapping qualities, u-based z-approximation from the Mann-Whitney Rank Sum Test for the distance from the end of the read for reads with the alternate allele. For FreeBayes we called variants from a merged BAM file using standard filters. After variant calling we filtered the SNPs using 'vcffilter', a Perl library part of the VCFtools package (Danecek et al. 2011) based on the following metrics: quality (>30), depth of coverage (>10), and strand bias for the alternative and reference alleles (SAP and SRP, both >0.0001). Finally, the variant files from the GATK pipeline and the FreeBayes pipeline were filtered to only contain biallelic SNPs with less than 10% missing genotypes using VCFtools.

We retained two final variant sets: a high-confidence set including only SNPs with identical genotype calls between the two variant discovery pipelines and the full set of SNPs which included all variants called using FreeBayes but limited to positions that were shared among the GATK and FreeBayes pipelines.

Linkage mapping

The genotype information from the parental lines was used to assign ancestry to the SNP loci. The parents of the crosses were heterogeneously heterozygous and only ancestry informative loci were retained, i.e. all loci for which one or more of the parents was heterozygous were discarded. We were unable to obtain sequence data from the parents for PruKoh, but used sequence data from a single, non-parental L. pruna female, and three available L. kohalensis females, all from
the same populations as the parents. Ancestry was inferred if all three L. kohalensis individuals were homozygous for one allele and the L. pruna individual was homozygous for the alternative allele. All other loci were discarded. The loci were then further filtered based on genotype similarity and segregation distortion (see below for details).

The linkage maps deriving from the three species crosses were generated independently and by taking a three-step approach, employing both the regression mapping and the maximum likelihood (ML) mapping functions in JoinMap 4.0 (van Ooijen 2006) as well as the three-point error-corrected ML mapping function in MapMaker 3.0 (Lander et al. 1987; Lincoln et al. 1993).

In the first step, we estimated "initial" maps that are relatively low resolution $(5 \mathrm{cM})$ but with high marker order certainty. For initial maps, we first grouped $(3.0 \leq \mathrm{LOD} \leq 5.0)$ and then ordered the high-confidence markers that showed no segregation distortion (markers with χ^{2} square associated P-value for deviation from Mendelian inheritance <0.05 were discarded) and for which no marker had more than 95% similarity in genotypes across individuals compared to other markers (otherwise, one of each pair was excluded). When excluding similar loci, we favored those marker loci shared among the three mapping populations over markers unique to one or two crosses. We then checked for concordance among the three mapping algorithms. In most cases, the maps were highly concordant (in ordering of the markers; with respect to cM among markers, distances differed depending on the algorithm, especially between the regression and ML methods in JoinMap). Discrepancies among the maps produced by the different algorithms for the same cross were resolved by optimizing the likelihood and total length of a given map as well as by using the information in JoinMap's "Genotype Probabilities" and "Plausible Positions".

These initial maps were then filled out using MapMaker with marker loci passing slightly more lenient criteria: markers drawn from the full set of SNPs, with false discovery rate (Benjamini and Hochberg 1995) corrected P value for χ^{2} - square test of deviation from Mendelian inheritance ≤ 0.05 and fewer than 99% of their genotypes in common with other markers loci. First, more informative markers (no missing genotypes, $>2.0 \mathrm{cM}$ distance from other markers) were added satisfying a log-likelihood threshold of 4.0 for the positioning of the marker (i.e., assigned marker position is 10,000 times more likely than any other position in the map). Remaining markers were added at the same threshold, followed by a second round for all markers at a log-likelihood threshold of 3.0. We then used the ripple algorithm on 5-marker windows and explored alternative orders.

In the second step, "comprehensive" maps were obtained in MapMaker by sequentially adding markers from the full set of SNPs that met the more lenient criteria described above to the initial map. Markers were added if they satisfied a log-likelihood threshold of 2.0 for the marker positions, followed by a second round with a log-likelihood threshold of 1.0 . We then used the ripple algorithm again on 5-marker windows and explored alternative orders. Typically, MapMaker successfully juxtaposes SNP markers from the same scaffold. However, in marker dense regions with low recombination rates, the likelihoods of alternative marker orders coalesce. In such regions, when multiple markers from the same genomic scaffold were interspersed by markers from a different scaffold, we repositioned the former markers by forcing them in the map together. If the log-likelihood of the map decreased by more than 3.0 (factor 1000), only one of the markers from that scaffold was used in the map. The comprehensive maps provide a balance between marker density and confidence in marker ordering and spacing.

The third step was to create "dense" maps. We added all remaining markers that were not yet incorporated in step two, first at a log-likelihood threshold of 0.5 , followed by another round at a log-likelihood threshold of 0.1. We then used the ripple command as described above. The dense maps are useful for anchoring of scaffolds and for obtaining the highest possible resolution of variation in recombination rates, but with the caveat that there is some uncertainty in marker order. Uncertainty is expected to be higher towards the centers of the linkage groups where crossing over events between adjacent markers become substantially less frequent (see Results).

Comparative analyses

Based on the recent divergence times and high interbreeding successes, we predict a large degree of collinearity of the linkage maps. We note that interpretations must take into account the nonindependence of the ParKoh and PruKoh/KonPar maps, as only comparing PruKoh and KonPar comprises a fully independent contrast. We first examined whether inversions or other chromosomal rearrangements were common (affecting linkage map lengths and marker orders) or whether maps were generally collinear by comparing among the initial and comprehensive linkage maps visually using map graphs from MapChart (Voorrips 2002). Inverted or transposed markers present in two or all maps can be detected by connecting "homologs" in MapChart (a homolog in this case means a scaffold that is represented in two or more maps). Then, we tested whether linkage maps are generally collinear across the species pairs quantitatively. We used Spearman's rank order correlation (ρ) test to examine the strength of correlation between the order in shared markers (the homologs in MapChart). We calculated ρ and the corresponding P value (the probability of observing the measured or stronger correlation given no true correlation exists) by using the cor.test() function in R (R Development Core Team 2016).

We then tested for genetic incompatibilities among the genomes of the four species, by measuring segregation distortion in sliding, 10 cM windows. Although we filtered out markers with very high levels of segregation distortion (using a 5\% FDR cutoff) to purge markers with potential sequencing errors, groups of distorted markers in a single region of a linkage group represent genomic regions with biased parental allele contributions, suggesting genetic incompatibilities (or, less common, selfish alleles and other active segregation distorters). Because L. kohalensis and L. paranigra are more distantly related to each other (and, thus, allowing more time for genetic incompatibilities to accumulate) than they are to L. pruna and L. kona, respectively (Mendelson and Shaw 2005; see Fig 1.), we expected more regions with significant segregation distortion in the ParKoh map relative to the KonPar and PruKoh maps. We calculated genotype frequency and the negative 10-base logarithm of the P value for the χ^{2} square test of deviation from Mendelian inheritance across the linkage groups in R using the R/qtl package (Broman et al. 2003). Windows with $P<0.01$ were considered to have significant segregation distortion, und thus potentially reflecting genetic incompatibilities.

After establishing that the linkage maps were generally collinear (see Results), we merged the maps and examined patterns of variation in crossing over along the Laupala genome. Maps were consolidated using ALLMAPS (Tang et al. 2015). Then, we calculated species-specific average recombination rates for the linkage groups by dividing the total length of the linkage group (in cM) by the physical length of the pseudomolecule (in million bases, Mb) obtained by merging homologous linkage groups using ALLMAPS. Lastly, to evaluate recombination rate variation along the linkage groups, we fitted smoothing splines (with 10 degrees of freedom, based on the fit of the spline to the observed data) in R to describe the relationship between the consensus physical distance (as per the anchored scaffolds) and the genetic distance specific to each linkage
map. Variation in the recombination rate was then assessed by taking the first derivative (i.e. the rate) of the fitted spline function. The estimated recombination rates are likely to be an overestimate of the true recombination rate, because unplaced/unordered parts of the assembly do not contribute to the physical length of the pseudomolecules but are reflected in the genetic distances obtained from crossing-over events in the recombining hybrids.

To test the hypothesis that linked trait and preference genes reside in low recombination regions, we integrated the AFLP map and song and preference QTL peaks identified in previous work on L. kohalensis and L. paranigra (Shaw and Lesnick 2009) with the current ParKoh SNP map and projected the QTL peaks onto the anchored genome. The SNPs used in the present study were obtained from the same mapping population (same individuals) as in the 2009 AFLP study. Therefore, we combined the high confidence SNPs described above (for the "initial" map) with the AFLP markers reported in (Shaw et al. 2007) that were of the same individuals as the SNP markers used in this study and created a new linkage map using the same stringent criteria as for the "initial" maps described above. We projected this map onto the anchored draft genome based on common markers (scaffolds). We then approximated the physical location of the QTL peaks by looking for SNP markers on scaffolds present in the draft genome flanking AFPL markers underneath the QTL peaks identified in the 2009 study.

DATA ACCESIBILITY

Supplementary files are available on FigShare. See section "supplementary materials" for details. Raw data (vcf files, linkage maps, pseudomolecule agp file), and R-scripts will be deposited on FigShare after final acceptance and are available upon request. The genome assembly and sequencing reads are available on NCBI's GenBank under BioProject number PRJNA392944.

The Genotype-by-sequencing reads will be made available in NCBI's short read archive under BioProject number PRJNA429815

RESULTS

De novo genome assembly

The sequencing of the four libraries yielded 162.5 Gb of raw sequences (Table 1). After read processing, 145.5 Gb was used for the sequence assembly. We compared among assemblies resulting from different Kmer sizes $(k=31,39,47,55,63,71,79$ and 87$)$. Based on the N50/L50 and the total assembly size, the assembly produced with $\mathrm{k}=87$ was retained for the final draft genome. Despite a large number of scaffolds in the final assembly $(149,424)$, the median length of the scaffolds was high and the total length of the assembly covers about 83% of the expected complete genome in Laupala.

Gene space coverage in the assembly was evaluated using the L. kohalensis cricket gene index (Danley et al. 2007) (release 2.0), RNASeq from Laupala cerasina (Blankers et al. 2018), and by performing a BUSCO search using eukaryotic and arthropod specific conserved genes. Respectively 95% and 92% of the Laupala gene index and RNAseq sequences mapped to the current genome. In addition, the BUSCO search indicated very few missing genes in either database (Table 1).

Table 1. Laupala kohalensis sequencing, assembly and gene space evaluation statistics.

Sequencing Statistics	Raw data		Processed data	
Library	Size (Gb)	Coverage $^{\mathbf{a}}$	Size (Gb)	Coverage $^{\mathbf{a}}$
Paired End 0.2 Kb inserts	28.9	15	26.1	14

Paired End 0.5 Kb inserts		63.1		33	59.8		31
Mate Pair 2 Kb inserts		36.2		19	31.8		17
Mate Pair 5 Kb inserts		34.3		18	27.8		14
Total		162.5		85	145.5		76
Assembly Statistics		Contigs			Scaffolds		
Total assembly size (Gb)		1.6			1.6		
Total assembled sequences		219,073			148,874		
Longest sequence length (Kb)		465			4,541		
Average sequence length (Kb)		7.2			10.7		
N90 index ${ }^{\text {b }}$		40,926			3,505		
N90 length (Kb)		7.7			67.7		
N50 index		9,917			756		
N50 length (Kb)		43.6			583		
GC content (\%)		34.9\%			34.9\%		
Gene Space Statistics		Mapping percentage					
Laupala unigenes from the Gene Index		- 95\%					
Laupala RNASeq reads		92\%					
BUSCO database	Complete	Single copy	Duplicated		Fragmented	Missing	Total
Eukaryota_odb9	98.7\%	93.7\%	5.0\%		0.3\%	1.0\%	303
Arthropoda_odb9	99.3\%	96.8\%	2.5\%		0.1\%	0.6\%	1066

${ }^{\text {a }}$ Coverage is based in an estimated genome size of 1.91 Gb (Petrov et al. 2000)
${ }^{\text {b }}$ When ordering all contigs (or scaffolds) by size, the N 50 or N90 index indicates the number of the longest sequences (contigs or scaffolds) that contain 50% or 90%, respectively, of the total assembled sequence. The N50 and N90 length indicate the length of the shortest sequence in the set of the largest contigs (or scaffolds) that contain 50% or 90%, respectively, of all the sequence in the assembly.

Collinear linkage maps

We obtained $815,109,126 ; 522,378,849$; and 311,558,401 reads after demultiplexing for ParKoh, KonPar, and PruKoh, respectively. Average sequencing depth \pm standard deviation across all
individuals in the F2 mapping population after filtering, (before and) after marker selection based on segregation distortion and ancestry information for linkage mapping was ($62.4 \mathrm{x} \pm 162.5$) $52.2 x \pm 31.4,(44.3 x \pm 58.5) 38.1 x \pm 23.8$, and $(56.1 x \pm 105.7) 41.8 x \pm 29.3$, respectively.

In the initial maps, 158 (ParKoh), 170 (KonPar), and 138 (PruKoh) markers were grouped into eight linkage groups at a LOD score of 5.0, corresponding to the seven autosomes and one Xchromosome in Laupala. The corresponding marker spacing was $5.14,4.85$, and 7.33 cM . The comprehensive maps contained 526,650 , and 325 markers with an average marker spacing of 1.91, 1.37, and 3.25 cM and on the dense maps we placed 608,823 , and 383 markers with on average $1.69,1.37$, and 3.25 cM . between markers

The recent divergence times and the limited levels of post-zygotic isolation observed in this system led us to hypothesize that the linkage maps would show a high degree of collinearity. The visual comparison of marker positioning showed that the relative locations of shared scaffolds were similar across the linkage maps in both the initial and the comprehensive maps (Fig 2, Fig S1). However, we also observe substantial variation in the total genetic length of homologous linkage groups, indicating recombination rate variation (Fig 2, Fig S1). This variation may in part result from chromosomal rearrangements. However, we can only reliably detect rearrangements in our maps if they are not segregating within species and are fixed for alternative arrangements between L. pruna and L. kohalensis on the one side and L. paranigra and L. kona on the other side. In that specific scenario the inverted marker order is visible when contrasting the PruKoh and KonPar maps, while the ParKoh map would show reduced recombination in that area (Fig 1C). Despite the apparent variation in recombination rates among homologous linkage groups, Spearman's rank correlation of pairwise linkage group comparisons was high (ρ varied between 0.91 and 1.00) and similar to values seen in comparisons of
intraspecific linkage maps (e.g. Poursarebani et al. 2013); the quantitative measure of collinearity was largely consistent across linkage groups and across cross types (Table 2). Finally, merging the maps into a consensus pseudomolecule assembly allowed us to measure the error between individual maps and the merged assembly. Correlations between linkage maps and the pseudomolecule assembly were generally high (>0.95), indicating substantial synteny (Fig S2).

Table 2. Linkage map comparison. Spearman's rank correlation (ρ) is shown for each pairwise comparison of linkage maps across all 8 linkage groups.

	ParKoh \sim KonPar	ParKoh \sim PruKoh	KonPar \sim PruKoh
1	$0.99 \ddagger$	$0.90 \ddagger$	$0.97 \ddagger$
2	$0.99 \ddagger$	$0.96 \ddagger$	$0.93 \ddagger$
3	$1.00 \ddagger$	$0.98 \ddagger$	$0.95 \ddagger$
4	$0.99 \ddagger$	$1.00 \ddagger$	$0.97 \ddagger$
5	$0.97 \ddagger$	$0.98 \ddagger$	$0.95 \ddagger$
6	$0.99 \ddagger$	$0.94 \ddagger$	$0.94 \ddagger$
7	$0.96 \ddagger$	$0.93 \dagger$	$0.91 \ddagger$
X	$0.92 \ddagger$	$0.96 \ddagger$	$0.99 \ddagger$
$P<0.01 ; \dagger P<0.001 ; \ddagger P<0.0001$			

Limited heterogeneity in segregation distortion

We expected genetic incompatibilities to be more likely to occur in the ParKoh cross than in the KonPar and PruKoh cross, because L. kohalensis and L. paranigra are more distantly related than any of the other species pairs (Fig 1). We tested this hypothesis by examining the degree of segregation distortion in markers within 10 cM sliding windows across the linkage maps.

Overall, segregation distortion was limited and average genotype frequencies were close to

Mendelian expectations (Fig 3). However, LG3 showed a bias against L. kohalensis homozygotes in the ParKoh cross but not in any of the other crosses. Additionally, there was significant variation in the frequency of heterozygotes across the linkage groups (linear model Freq[heterozygotes] LG x cross: $\left.R^{2}=0.21, \mathrm{~F}_{20,1547}=20.7, P<0.0001\right)$. Post-hoc Tukey Honest Significant Differences revealed that linkage group 7 had the lowest abundance of heterozygotes overall and within each of the intercrosses and that levels of heterozygosity on LG 7 were similar across the maps (Table S2). Together, these results show that from some LGs and in some crosses, certain genotype combinations were less common than expected, potentially as a result for genetic incompatibilities or meiotic drive.

Variable recombination rates across the genome

We anchored a total of 1054 scaffolds covering 720 million base pairs, a little below half the current genome assembly (see Table S3 for scaffold number, N50, and assembly size per LG and Fig S3 for coverage variation across the linkage groups). This gives us enough power to make inferences about broad-scale recombination rate variation, but not about the existence of smallscale recombination hotspots. Average recombination rates $(\mathrm{cM} / \mathrm{Mb})$ varied from between 0.75 (KonPar) and 0.93 (ParKoh) on the X chromosome to between 3.12 (KonPar) and 4.24 (PruKoh) on LG6 (Table 3). We note that the recombination rate for LG6 might be artificially inflated because of lower assembly quality (expressed as N50) of this LG relative to the other LGs in all linkage maps and in the pseudochromosomes (Table S3). Both including and excluding the sex chromosome, there is a significant linear relationship between chromosome size and genetic length (linear mixed effect model with cross as random variable; With $\mathrm{X}: \beta=0.62, \mathrm{~F}_{1,23}=14.95$, $P=0.0008$; without $\left.\mathrm{X}: \beta=0.69, \mathrm{~F}_{1,20}=29.7, P<0.0001\right)$ and between chromosome size and
broad-scale recombination rate (with $\mathrm{X}: \beta=-34.1, \mathrm{~F}_{1,23}=29.1, P<0.0001$).; without $\mathrm{X}: \beta=-$

$$
\left.24.0, \mathrm{~F}_{1,23}=63.7, P<0.0001\right) .
$$

Table 3. Linkage map summary statistics.

LG	Length (Mb)	ParKoh		KonPar		PruKoh	
		Map length (cM)	Rec. Rate (cM/Mb)	Map length (cM)	Rec. Rate (cM/Mb)	Map length (cM)	Rec. Rate (cM/Mb)
1	117	207	1.77	156	1.33	156	1.33
2	102	167	1.64	128	1.25	205	2.01
3	137	169	1.23	167	1.22	173	1.26
4	90	100	1.11	117	1.30	99	1.10
5	62	91	1.47	84	1.35	103	1.66
6	25	85	3.40	106	4.24	78	3.12
7	53	78	1.47	84	1.58	139	2.62
X	134	124	0.93	101	0.75	114	0.85
Total	720	1021	1.42	943	1.31	1067	1.48

Most linkage groups showed wide regions of strongly reduced recombination rates in the center of the linkage groups (Fig. 4). The general pattern of peripheral peaks in recombination rates juxtaposing large recombination "desserts" was similar among the three intercrosses, but some additional cross-specific peaks in recombination rates were observed on almost all linkage groups (Fig 4).

Trait-preference co-evolution despite high recombination

Contrary to our expectation, the approximate location of the colocalizing song and preference QTL peak from (Shaw and Lesnick 2009) was associated with average recombination rates in the ParKoh and KonPar map and low recombination rates in the PruKoh map (Fig 4; Table S4).

However, most other QTL peaks are located in regions of low recombination (Fig 4; Table S4).

DISCUSSION

The evolutionary trajectory of diverging populations and the likelihood of speciation can be heavily influenced by recombination. Within species, recombination can create favorable combinations of alleles or decouple deleterious from beneficial alleles. Among species, regions with low recombination can provide a genetic shield against introgression of maladaptive loci (Noor et al. 2001; Rieseberg 2001; Butlin 2005; Slatkin 2008; Noor and Bennett 2009; Cutter and Payseur 2013; Ortiz-Barrientos et al. 2016). Understanding recombination is thus critical to understanding adaptation and speciation. Recombination also has important implications for the analysis of genotype-phenotype relationships (Mackay 2001), demographic inference (Li and Durbin 2011), and analyses of genomic variation (Cutter and Payseur 2013; Wolf and Ellegren 2016). However, we still have limited insight into the patterns of recombination rate variation among species and across genomes, in particular for radiations powered largely by behavioral isolation.

Here, we study four species of sexually divergent Hawaiian swordtail crickets and generate the first pseudomolecule-level assembly for Orthoptera and the first published genome assembly for crickets, an important model system in neurobiology, behavioral ecology, and evolutionary genetics (Horch et al. 2017). Below, we discuss how our results provide insight into the potential for structural variation (linkage map collinearity) and genetic incompatibilities to drive reproductive isolation among closely related Laupala species. We also elaborate on the patterns of variation in recombination rates across the genome. We then discuss the surprising finding that colocalizing male song and female preference QTL did not fall in a region with particularly low recombination. This is important because it challenges the hypothesis that co-evolution of traits and preferences is facilitated by locally reduced recombination between recently diverged populations.

Collinearity of Genetic Maps

Based on the recent divergence (Mendelson and Shaw 2005) and strong premating isolation of Laupala species in the absence of conspicuous morphological and ecological differences (Otte 1994; Shaw 1996; Mendelson and Shaw 2005), we expected limited variation in chromosome structure and few signatures of genetic incompatibility between the species. In line with these expectations, we found that linkage groups are collinear across interspecies crosses (Fig 2). This was true both for comparisons of non-independent species pairs (between ParKoh and the other two crosses), as well as for the independent contrast of the PruKoh map versus the KonPar map. We saw some instances where markers occupied regions that may have been translocated or inverted. However, these instances were rare (Fig 2, Fig S1) and recombination rates were similar among homologous linkage groups across the hybrid families (Fig 4). Moreover, quantitative measures of correlation (Spearman's rank correlation among maps, Pearson's correlation coefficient between maps and the pseudomolecule assembly) as well as limited segregation distortion (but see discussion of one exception below) both supported the collinearity hypothesis.

Variation in the organization and structure of chromosomes can contribute to postzygotic reproductive isolation after speciation as well as to the speciation process directly (Noor et al. 2001; Rieseberg 2001). We conclude that at least for the Laupala group that radiated on the Big Island of Hawaii in the last 500,000 years, structural rearrangements have not played a major role in the evolution of reproductive isolation. This is because, similar to two hybridizing Heliconius species (Davey et al. 2017), we observed that chromosome-wide recombination rates are relatively conserved and large chromosomal rearrangements are absent. We hypothesize that for Laupala on the Big Island premating isolation combined with (partial) geographic separation
(i.e. low migration rates) provides a sufficiently strong barrier to gene flow between sister species. Indeed, as has been shown in recent models of the role of inversions in speciation, genomic rearrangements can only invade and spread in diverging populations if levels of gene flow and the contribution of structural variation to isolation (by linking adaptive alleles or incompatibilities) is high relative to the strength of assortative mating (Feder et al. 2014; Dagilis and Kirkpatrick 2016).

We acknowledge that the power to detect rearrangements and changes in recombination rates is limited by the resolution of our maps. The average spacing of markers is between 1.37 and 3.25 cM . Thus, the upper limit of the magnitude of intervals within which we can detect rearrangements is on the order of 10^{5} and $10^{6} \mathrm{bp}$. Due to constraints on the sample size and sequencing strategy, it is thus difficult to attribute subtle variation in marker order and genetic distance between the maps to genomic rearrangements versus mapping errors and sampling variance. Closely related organisms typically show conserved recombination rates within 500 kb intervals; more heterogeneity might be revealed at higher resolution (Stevison et al. 2017).

Genetic incompatibilities

We expected genetic incompatibilities to be more likely between genomes of more distantly related species. Accordingly, we discovered a single region covering approximately half of linkage group 3 with high segregation distortion in ParKoh; we found no such deviations in the other two crosses (Fig 3). Inspection of genotype frequencies indicated that there were fewer individuals than expected that were homozygous for L. kohalensis alleles for loci in this region. In a controlled cross, segregation distortion can be caused by prezygotic effects such as meiotic drive of selfish genetic elements and distorter genes (e.g. like $s d$ in Drosophila melanogaster (Larracuente and Presgraves 2012)), and by postzygotic genetic incompatibilities (Dobzhansky

1937; Muller 1942; Burt and Trivers 2006; Presgraves 2010; Hallmann et al. 2017). Genotypic errors may produce superficially similar patterns but are unlikely to distort segregation over large genomic regions and with consistent bias towards the same genotypes. Although meiotic drive is a possible alternative to genetic incompatibilities, we do not see the same effect in the other cross involving L. paranigra, where selfish genetic elements or segregation distorters ought to have a similar effect. Overall, the large region on linkage group 3 reveals a potential local post-mating barrier to gene flow that could contribute to strengthening existing prezygotic barriers in secondary contact zones or following episodes of migration.

Recombination landscape

Chromosomal rearrangements influence genomic divergence by locally altering recombination rates within and among species. Felsenstein $(1974,1981)$ illuminated the role of intraspecific recombination in purging deleterious alleles and the role of interspecific recombination in decoupling co-adapted alleles. In recent years, the role of recombination and its interaction with divergent selection and adaptation on genomic scales have received considerable attention (e.g. Yeaman and Whitlock 2011; Feder et al. 2012; Samuk et al. 2017) and technological advances are shifting focus towards characterizing the recombination landscape across species (Butlin 2005; Slatkin 2008; Noor and Bennett 2009; Barb et al. 2014; Burri et al. 2015).

Here, we show that there is limited variation in recombination rates across the maps of three interspecific crosses (Fig 4), but strong heterogeneity in recombination rates across the genome. Genome-wide average interspecific recombination rate varied between 1.3 and $1.5 \mathrm{cM} / \mathrm{Mb}$ (Table 3), similar to intraspecific rates observed in dipterans and substantially lower than social hymenopterans and lepidopterans (Wilfert et al. 2007). We note that our estimates are derived from interspecific maps, which may lead to somewhat lower estimates compared to intraspecific
maps (e.g. Beukeboom et al. 2010), where genetic incompatibilities and rearrangements may reduce rates of crossing over; however, differences between intra and interspecific recombination might be negligible if rearrangements are rare (e.g., Davey et al. 2017). Moreover, we anchored about 50% of the nucleotides in the draft assembly to linkage groups, and there remain many scaffolds not mapped to a genomic position. These 'missing' scaffolds are expected to add to the physical length of the chromosomes more so than to the genetic length of the chromosomes, thus lowering the recombination rate. However, our study emphasized relative patterns of recombination, which should not be affected by our sampling. And while we can only approximate intraspecific recombination rates at this point, we note that recent divergence of the species involved and collinearity of the linkage maps support conservation of recombination landscapes across intraspecific and interspecific comparisons.

Interestingly, for all three species pairs we document high variability in interspecific recombination across genomic regions. We found large regions of low recombination in all three maps, with recombination rates well below $1 \mathrm{cM} / \mathrm{Mb}$ and occasionally approaching zero, flanked by steep inclines reaching rates up to $6 \mathrm{cM} / \mathrm{Mb}$ (Fig 4). This pattern is consistent with earlier findings in plants (Anderson et al. 2003), invertebrates (Rockman and Kruglyak 2009; Niehuis et al. 2010), and vertebrates (Backström et al. 2010; Roesti et al. 2013; Singhal et al. 2015), but differs from observations in, for example, Drosophila (Kulathinal et al. 2008) and humans (Myers et al. 2005), that show heterogeneity in recombination rates, but not necessarily much higher rates on the periphery of the chromosomes. Commonly invoked drivers of local recombination suppression, such as selection against recombination due to negative epistasis or the maintenance of linkage disequilibrium between mutually beneficial alleles (Smukowski and Noor 2011; Stevison et al. 2011; Smukowski Heil et al. 2015; Ortiz-Barrientos et al. 2016), are
not likely to leave chromosome wide signatures. Rather, the observed pattern is more likely attributable to structural properties of chromosomes, such as the location of the centromere and heterochromatin-rich regions (Copenhaver et al. 1999; Haupt et al. 2001). Roesti et al. (2013) observe similar recombination landscapes in stickleback and suggest it might be due to peripheral clustering during meiosis prophase I to facilitate homolog pairing (Harper et al. 2004; Brown et al. 2005). Regardless of the mechanism, the observed genomic architecture will drive substantial heterogeneity in the propensity of favorable and/or maladaptive alleles to come together, break apart, and introgress in heterospecific backgrounds.

Trait-Preference Co-evolution

On way in which recombination heterogeneity may be important in the study system is in facilitating trait-preference co-evolution. If trait and preference genes are coupled through physical linkage (Kirkpatrick and Hall 2004), linkage can be stronger and span wider physical distances in regions with reduced recombination. We hypothesized that recombination facilitates linkage between trait and preference genes in Laupala because a previous study showed that a major song QTL ($\sim 9 \%$ of the parental difference in male song) co-localizes with a preference QTL ($\sim 14 \%$ of parental difference for female preference) in a cross between L. kohalensis and L. paranigra (Shaw and Lesnick 2009). Contrary to our expectation, we show that the co-localizing QTL fall in a region with intermediate to high recombination rates ($>2.0 \mathrm{cM}$) compared to chromosomal averages (typically 1-2 cM). This suggests that reduced recombination over larger physical distances is unlikely to be driving trait-preference co-evolution in this system. Importantly, a high speciation rate and wide-spread divergence in sexual signaling phenotypes suggest a primary role for trait-preference co-evolution in Laupala speciation (Mendelson and Shaw 2005; Shaw et al. 2011). Additionally, although these species have likely diverged in
allopatry (Mendelson and Shaw 2005), some level of interspecific gene exchange is likely given historical biogeography, widespread secondary contact and evidence derived from discordant nuclear and mitochondrial gene trees (Shaw 2002).

How then is linkage disequilibrium between traits and preferences maintained? First, QTL may co-localize due to very tight physical linkage or pleiotropy instead of looser linkage. Under these two mechanisms, a lack of physical space for crossing over to occur rather than low recombination rates maintains linkage disequilibrium. Linkage disequilibrium might also persist in the face of recombination if strong assortative mating results from female mate preference. In this case, genetic correlations between the sexes will evolve, coupling signal and preference independent of their genetic distance (Fisher 1930; Lande 1981). Recent simulation studies showed that the probability with which recombination rate modifiers that link co-adaptive alleles spread in a populations is lower when assortative mating is strong, recombination between loci is low, and selection on the loci themselves is strong (Feder et al. 2014; Dagilis and Kirkpatrick 2016). Third, the current test involves only a single locus and additional tests are required to more robustly examine the relationship between recombination and trait-preference co-evolution. We observed that several known male song QTL on other linkage groups fall in regions of low recombination. Additional female preference QTL covary with these song QTL as well (Wiley et al. 2012) although precise map locations are not yet known.

In summary, we find limited variation in chromosome structure among species, but strong heterogeneity in the recombination landscape across the genome. We present a de novo genome assembly and anchor a substantial part of the L. kohalensis genome to pseudomolecules. Crickets are an important model system for evolutionary and neurobiological research (Horch et al. 2017). but limited genomic resources are available. The first Orthopteran pseudomolecule-level
draft genome and recombination rate map are thus important new contributions to future speciation genomics research. This study further provides important insight into the extent to which structural variation and genetic incompatibilities contribute to isolation among closely related, sexually divergent species. We also shine light on the role of recombination in traitpreference co-evolution and argue that current evidence supports that, at least in Laupala, the evolution of behavioral isolation is not contingent on structural genomic variation and locally reduced recombination.

ACKNOWLEDGEMENTS

We thank Stephen Chenoweth and two anonymous reviewers for helpful comments that strongly improved the quality of this manuscript. We further thank the Shaw lab, in particular Mingzi Xu, as well as Michael Sheehan and other members from Cornell's Neurobiology and Behavior department for input that contributed to the interpretation of the findings. This work was supported by the National Science Foundation (DEB 1241060, IOS 1257682 and IOS 0843528).

REFERENCES

Anderson L. K., Doyle G. G., Brigham B., Carter J., Hooker K. D., et al., 2003 High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165: 849-865.

Andersson M., Simmons L. W., 2006 Sexual selection and mate choice. Trends Ecol. Evol. 21: 296-302.

Arnegard M. E., Kondrashov A. S., Noor M., 2004. Sympatric speciation by sexual selection alone is unlikely. Evolution. 58: 222-237.

Aronesty E., 2011 ea-utils: Command-line tools for processing biological sequencing data.
Durham, NC : Expr. Anal.

Auwera G. A. Van der, Carneiro M. O., Hartl C., Poplin R., Angel G. del, et al., 2013 From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinformatics 43: 1-11.

Backström N., Forstmeier W., Schielzeth H., Mellenius H., Nam K., et al., 2010 The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res. 20: 485-95.

Barb J. G., Bowers J. E., Renaut S., Rey J. I., Knapp S. J., et al., 2014 Chromosomal Evolution and Patterns of Introgression in Helianthus. Genetics 197: 969-979.

Benjamini Y., Hochberg Y., 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57: 289-300.

Beukeboom L. W., Niehuis O., Pannebakker B. A., Koevoets T., Gibson J. D., et al., 2010 A comparison of recombination frequencies in intraspecific versus interspecific mapping populations of Nasonia. Heredity. 104: 302-309.

Blankers T., Oh K. P., Shaw K. L., 2018 The genetic basis of inter-island mating behavior divergence. bioRxiv.

Broman K. W., Wu H., Sen Ś., Churchill G. A., 2003 R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889-890.

Brown P. W., Judis L., Chan E. R., Schwartz S., Seftel A., et al., 2005 Meiotic Synapsis Proceeds from a Limited Number of Subtelomeric Sites in the Human Male. Am. J. Hum.

Genet. 77: 556-566.

Bürger R., Akerman A., 2011 The effects of linkage and gene flow on local adaptation: A twolocus continent-island model. Theor. Popul. Biol. 80: 272-288.

Burri R., Nater A., Kawakami T., Mugal C. F., Olason P. I., et al., 2015 Linked selection and recombination rate variation drive the evolution of the genomic landscape of differentiation across the speciation continuum of Ficedula flycatchers. Genome Res. 25: 1656-1665.

Burt A., Trivers R., 2006 Genes in Conflict: The Biology of Selfish Genetic Elements. Belknap, Cambridge, MA.

Butlin R. K., 2005 Recombination and speciation. Mol. Ecol. 14: 2621-2635.

Copenhaver G. P., Nickel K., Kuromori T., Benito M.-I., Kaul S., et al., 1999 Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286: 2468-2474.

Coyne J. A., Orr H. A., 2004 Speciation. Sinauer, Sunderland, MA.

Cutter A. D., Payseur B. A., 2013 Genomic signatures of selection at linked sites: unifying the disparity among species. Nat. Rev. Genet. 14: 262-274.

Dagilis A. J., Kirkpatrick M., 2016 Prezygotic isolation, mating preferences, and the evolution of chromosomal inversions. Evolution 70: 1465-1472.

Danecek P., Auton A., Abecasis G., Albers C. A., Banks E., et al., 2011 The variant call format and VCFtools. Bioinformatics 27: 2156-2158.

Danley P. D., Mullen S. P., Liu F., Nene V., Quackenbush J., et al., 2007 A cricket Gene Index: a genomic resource for studying neurobiology, speciation, and molecular evolution. BMC Genomics 8: 109.

Davey J. W., Barker S. L., Rastas P. M., Pinharanda A., Martin S. H., et al., 2017 No evidence for maintenance of a sympatric Heliconius species barrier by chromosomal inversions. Evol. Lett. 1: 138-154.

DePristo M. A., Banks E., Poplin R., Garimella K. V, Maguire J. R., et al., 2011 A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43: 491-498.

Dobzhansky T., 1937 Genetics and the Origin of Species. Columbia University Press, New York, NY.

Dodt M., Roehr J. T., Ahmed R., Dieterich C., 2012 FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. Biology. 1: 895-905.

Elshire R. J., Glaubitz J. C., Sun Q., Poland J. A., Kawamoto K., et al., 2011 A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 6.

Feder J. L., Egan S. P., Nosil P., 2012 The genomics of speciation-with-gene-flow. Trends Genet. 28: 342-350.

Feder J. L., Nosil P., Flaxman S. M., 2014 Assessing when chromosomal rearrangements affect the dynamics of speciation: implications from computer simulations. Front. Genet. 5: 295.

Felsenstein J., 1981 Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35: 124-138.

Fisher R. A., 1930 The genetical theory of natural selection. Oxford University Press, New York.

Garrison E., Marth G., 2012 Haplotype-based variant detection from short-read sequencing.
arXiv: 1207.3907.

Gavrilets S., 2003 Perspective: models of speciation: what have we learned in 40 years?
Evolution 57: 2197-2215.

Gillespie J. H., 2000 Genetic drift in an infinite population: the pseudohitchhiking model. Genetics 155: 909-919.

Grace J. L., Shaw K. L., 2011 Coevolution of male mating signal and female preference during early lineage divergence of the Hawaiian cricket, Laupala Cerasina. Evolution 65: 21842196.

Hallmann C. A., Sorg M., Jongejans E., Siepel H., Hofland N., et al., 2017 More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12: 1-21.

Harper L., Golubovskaya I., Cande W. Z., 2004 A bouquet of chromosomes. J. Cell Sci. 117: 4025-4032.

Haupt W., Fischer T. C., Winderl S., Fransz P., Torres-Ruiz R. A., 2001 The centromere1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. Plant J. 27: 285-296.

Hill W. G., Robertson A., 1966 The effect of linkage on limits to artificial selection. Genet. Res. 8: 269-294.

Horch H. W., Mito T., Popadic A., Ohuchi H., Noji S. (Eds.), 2017 The cricket as a model organism. Springer Japan, Tokyo, Japan.

Kent W. J., 2002 BLAT—the BLAST-like alignment tool. Genome Res. 12: 656-664.

Kim D., Pertea G., Trapnell C., Pimentel H., Kelley R., et al., 2013 TopHat2: accurate alignment
of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14: R36.

Kirkpatrick P., 1982 Sexual selection and the evolution of female mate choice. Evolution 36: 112.

Kirkpatrick M., Ravigne V., 2002 Speciation by natural and sexual selection: models and experiments. Am. Nat. 159 supple: S22-S35.

Kirkpatrick M., Hall D. W., 2004 Sexual selection and sex linkage. Evolution. 58: 683-691.

Kirkpatrick M., Barton N., 2006 Chromosome inversions, local adaptation and speciation. Genetics 173: 419-434.

Kulathinal R. J., Bennett S. M., Fitzpatrick C. L., Noor M. A. F., 2008 Fine-scale mapping of recombination rate in Drosophila refines its correlation to diversity and divergence. Proc. Natl. Acad. Sci. 105: 10051-10056.

Lande R., 1981 Models of speciation by sexual selection on polygenic traits. Proc Natl Acad Sci 78: 3721-3725.

Lander E., Green P., Abrahamson J., Barlow A., Daly M., et al., 1987 MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181.

Langmead B., Salzberg S. L., 2012 Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359.

Larracuente A. M., Presgraves D. C., 2012 The Selfish Segregation Distorter Gene Complex of Drosophila melanogaster. Genetics 192: 33-53.

Li H., Durbin R., 2011 Inference of human population history from individual whole-genome sequences. Nature 475: 493-496.

Lincoln S. E., Daly M. J., Lander E. S., 1993 Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual. A Whitehead Inst. Biomed. Res. Tech. Rep.: 78-79.

Liu Y., Schröder J., Schmidt B., 2013 Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 29: 308-315.

Luo R., Liu B., Xie Y., Li Z., Huang W., et al., 2012 SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1: 18.

Mackay T. F. C., 2001 The genetic architecture of quantitative traits. Annu. Rev. Genet. 35: 303-339.

Marques D. A., Lucek K., Meier J. I., Mwaiko S., Wagner C. E., et al., 2016 Genomics of Rapid Incipient Speciation in Sympatric Threespine Stickleback. PLoS Genet. 12: 1-34.

Mendelson T. C., Shaw K. L., 2002 Genetic and behavioral components of the cryptic species boundary between Laupala cerasina and L. kohalensis (Orthoptera: Gryllidae). Genetica 116: 301-310.

Mendelson T. C., Shaw K. L., 2005 Rapid speciation in an arthropod. Nature 433: 375-376.

Muller H., 1942 Isolating mechanisms, evolution, and temperature. Biol. Symp. 6: 71-125.

Myers S., Bottolo L., Freeman C., McVean G., Donnelly P., 2005 A Fine-Scale Map of Recombination Rates and Hotspots Across the Human Genome. Science 310: 321-324.

Niehuis O., Gibson J. D., Rosenberg M. S., Pannebakker B. A., Koevoets T., et al., 2010

Recombination and its impact on the genome of the haplodiploid parasitoid wasp Nasonia.
PLoS One 5: e8597.

Noor M. A., Grams K. L., Bertucci L. A., Reiland J., 2001 Chromosomal inversions and the reproductive isolation of species. Proc. Natl. Acad. Sci. 98: 12084-8.

Noor M. A. F., Bennett S. M., 2009 Islands of speciation or mirages in the desert? Examining the role of restricted recombination in maintaining species. Heredity 103: 439-44.

Ooijen J. W. van, 2006 JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations.

Ortiz-Barrientos D., Engelstädter J., Rieseberg L. H., 2016 Recombination rate evolution and the origin of species. Trends Ecol. Evol. 31: 226-236.

Otte D., 1994 The Crickets of Hawaii: Origin, Systematics, and Evolution. Orthoptera Society/Academy of Natural Sciences of Philadelphia, Philadelphia, PA.

Otto S. P., 2009 The evolutionary enigma of sex. Am. Nat. 174: S1--S14.

Petrov D. A., Sangster T. A., Johnston J. S., Hartl D. L., Shaw K. L., 2000 Evidence for DNA loss as a determinant of genome size. Science 287: 1060-1062.

Poursarebani N., Ariyadasa R., Zhou R., Schulte D., Steuernagel B., et al., 2013 Conserved synteny-based anchoring of the barley genome physical map. Funct. Integr. Genomics 13: 339-350.

Presgraves D. C., 2010 Darwin and the Origin of Interspecific Genetic Incompatibilities. Am. Nat. 176: S45-S60.

R Development Core Team R., 2016 R: A Language and Environment for Statistical Computing
(RDC Team, Ed.). R Found. Stat. Comput. 1: 409.

Rieseberg L. H., 2001 Chromosomal rearrangements and speciation. Trends Ecol. Evol. 16: 351357.

Rockman M. V., Kruglyak L., 2009 Recombinational landscape and population genomics of Caenorhabditis elegans. PLoS Genet 5: e1000419.

Roesti M., Moser D., Berner D., 2013 Recombination in the threespine stickleback genome Patterns and consequences. Mol. Ecol. 22: 3014-3027.

Samuk K., Owens G. L., Delmore K. E., Miller S. E., Rennison D. J., et al., 2017 Gene flow and selection interact to promote adaptive divergence in regions of low recombination. Mol. Ecol. 26: 4378-4390.

Schmieder R., Edwards R., 2011 Quality control and preprocessing of metagenomic datasets. Bioinformatics 27: 863-864.

Servedio M. R., 2009 The role of linkage disequilibrium in the evolution of premating isolation. Heredity 102: 51-56.

Servedio M. R., Burger R., 2014 The counterintuitive role of sexual selection in species maintenance and speciation. Proc. Natl. Acad. Sci. 111: 8113-8118.

Servedio M. R., 2015 Geography, assortative mating, and the effects of sexual selection on speciation with gene flow. Evol. Appl. 9: 91-102.

Shaw K. L., 1996 Polygenic Inheritance of a Behavioral Phenotype: Interspecific Genetics of Song in the Hawaiian Cricket Genus Laupala. Evolution 50: 256-266.

Shaw K. L., 2000a Further acoustic diversity in Hawaiian forests: two new species of Hawaiian
cricket (Orthoptera: Gryllidae: Trigonidiinae: Laupala). Zool. J. Linn. Soc. 129: 73-91.

Shaw K. L., 2000b Interspecific genetics of mate recognition: inheritance of female acoustic preference in Hawaiian crickets. Evolution 54: 1303-1312.

Shaw K. L., 2002 Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proc. Natl. Acad. Sci. 99: 16122-16127.

Shaw K. L., Parsons Y. M., Lesnick S. C., 2007 QTL analysis of a rapidly evolving speciation phenotype in the Hawaiian cricket Laupala. Mol. Ecol. 16: 2879-2892.

Shaw K. L., Lesnick S. C., 2009 Genomic linkage of male song and female acoustic preference QTL underlying a rapid species radiation. Proc. Natl. Acad. Sci. 106: 9737-9742.

Shaw K. L., Ellison C. K., Oh K. P., Wiley C., 2011 Pleiotropy, "sexy" traits, and speciation. Behav. Ecol. 22: 1154-1155.

Simão F. A., Waterhouse R. M., Ioannidis P., Kriventseva E. V, Zdobnov E. M., 2015 BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210 .

Singhal S., Leffler E. M., Sannareddy K., Turner I., Venn O., et al., 2015 Stable recombination hotspots in birds. Science 350: 928-932.

Slatkin M., 2008 Linkage disequilibrium-understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 9: 477-485.

Smith J. M., Haigh J., 1974 The hitch-hiking effect of a favourable gene. Genet. Res. 23: 23-35.

Smith J. M., 1978 The Evolution of Sex. Cambridge University Press Cambridge.

Smukowski C. S., Noor M. A. F., 2011 Recombination rate variation in closely related species. Heredity 107: 496-508.

Smukowski Heil C. S., Ellison C., Dubin M., Noor M. A. F., 2015 Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila. Genome Biol. Evol. 7: 2829-42.

Stevison L. S., Hoehn K. B., Noor M. A. F., 2011 Effects of Inversions on Within- and BetweenSpecies Recombination and Divergence. Genome Biol. Evol. 3: 830.

Stevison L. S., Sefick S., Rushton C., Graze R. M., 2017 Recombination rate plasticity: revealing mechanisms by design. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 372: 20160459.

Tang H., Zhang X., Miao C., Zhang J., Ming R., et al., 2015 ALLMAPS: robust scaffold ordering based on multiple maps. Genome Biol. 16: 3 .

Voorrips R. E., 2002 MapChart: software for the graphical presentation of linkage maps and QTLs. J. Hered. 93: 77-78.

Wiley C., Ellison C. K., Shaw K. L., 2012 Widespread genetic linkage of mating signals and preferences in the Hawaiian cricket Laupala. Proc. R. Soc. B Biol. Sci. 279: 1203-1209.

Wilfert L., Gadau J., Schmid-Hempel P., 2007 Variation in genomic recombination rates among animal taxa and the case of social insects. Heredity 98: 189-197.

Wolf J. B. W., Ellegren H., 2016 Making sense of genomic islands of differentiation in light of speciation. Nat. Rev. Gen. 18: 87-100.

Yeaman S., Whitlock M. C., 2011 The genetic architecture of adaptation under migrationselection balance. Evolution 65: 1897-1911.

Yeaman S., 2013 Genomic rearrangements and the evolution of clusters of locally adaptive loci. Proc. Natl. Acad. Sci. 110: E1743--E1751.

FIGURE LEGENDS

Figure 1. Study design. (A) The phylogenetic relationships of studied Laupala species based on a neighbor joining tree generated from genetic distances among the parental lines used in this study. Dashed grey lines connect species pairs that were crossed. (B) Approximate distributions of the studied species on the Big Island of Hawaii. (C) Hypothetical segregation and linkage map construction for five genetic loci $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E in three crosses of fours species. The genetic distance between the loci is 5 centi-Morgan (cM) in each of the four species. Loci $[\mathrm{B}, \mathrm{C}, \mathrm{D}]$ are inverted in the green and black species. When two species that have alternative karyotypes for the inversion are crossed (pair 2), loci in the inversion will not recombine in the first generation hybrid, resulting in reduced genetic (map) length in the second generation hybrid. Other chromosomal rearrangements will have similar effects. Only if two crosses involve homokaryotypic species pairs that have alternative karyotypes can an inversion be detected in a comparison of intercross linkage maps.

Figure 2. Initial linkage maps. Bars represent linkage groups (LG) for ParKoh, KonPar, and PruKoh. Lines within the bars indicate marker positions. The scale on the left measures marker spacing in cM . Blue lines connect markers on the same scaffold between the different maps. The map for ParKoh is shown twice to facilitate comparison across all three maps. See Fig S1 for comprehensive maps.

Figure 3. Segregation distortion. For each of the seven autosomal linkage groups within the three comprehensive linkage maps (from top to bottom: ParKoh, KonPar, PruKoh), a sliding window
of the negative log-transformed P-values for the $\chi 2$-square test for deviation from a 1:2:1 segregation ratio is shown across markers with black lines in the top panels. In the panel below, the trace of the frequency of heterozygote genotypes (blue lines) and homozygote genotypes for both parental alleles (black and red lines, respectively) is shown. For each intercross, dashed grey lines indicate $\mathrm{P}=0.01$ (top panels) or expected allele frequencies based on 1:2:1 inheritance (bottom panels).

Figure 4. Recombination and Marey maps. Gray-scale symbols and lines indicate the relationship between the physical distance (scaffold midposition) in million base pairs on the x -axis and the genetic distance in cM for each of the 8 linkage groups on the left y -axis. Open dots represent the dense ParKoh linkage map, triangles and diamonds that of the KonPar and PruKoh cross, respectively. The corresponding lines (ParKoh: solid, KonPar: dashed, PruKoh: dotted) indicate the fitted smoothing spline (10 degrees of freedom). The red lines (same stroke style) show the first order derivative of the fitted splines and represent the variation in recombination rate (in cM per Mb , on the right y -axis) as a function of physical distance. Grey bars indicate the approximate location of male song rhythm QTL peaks. The yellow star in the LG1 panel highlights the QTL peak that co-localizes with a female preference QTL peak (Shaw \& Lesnick 2009).

SUPPLEMENTARY MATERIAL

Table S1. Geographic locations of sampled populations
Table S2. Segregation distortion (count of heterozygotes per genotype) statistics.
Table S3. Summary statistics for anchored assembly
Table S4. Integrated AFLP and SNP map for the L. kohalensis x L. paranigra cross

Figure S1. Comprehensive linkage maps.
Figure S2. ALLMAPS output
Figure S3. Coverage per cross per linkage group

	$\begin{aligned} & \text {, 2018. The copyright holder for this preprint (which was not } \\ & \text { d. No reuse allowed without permission. } \end{aligned}$			
N		(1)		
	$\begin{aligned} & 5 \\ & \frac{3}{2} \\ & \frac{1}{3} \end{aligned}$			
兑		Ш1\|		$1{ }^{1+1}$
-				
E180	(LG 7	
$\xrightarrow{4}$				
			 	لسعلسلسلسلسلسلسسلسلسلسلسلسلسلسلسلسلسا

Table S1. Geographic locations of sampled populations

Species	Locality Name	Latitude (N)	Longitude (W)
L. kona	Manuka	$19 \operatorname{deg} 12^{\prime}$	$155 \operatorname{deg} 81^{\prime}$
L. paranigra	Kaiwiki	$19 \operatorname{deg} 46^{\prime}$	$155 \operatorname{deg} 10^{\prime}$
L. kohalensis	Pololu Valley	$20 \operatorname{deg} 10^{\prime}$	$155 \operatorname{deg} 46^{\prime}$
L. pruna	Kaiholena	$19 \operatorname{deg} 10^{\prime}$	$155 \operatorname{deg} 35^{\prime}$

Table S2. Segregation distortion (count of heterozygotes per genotype) statistics. post hoc Tukey Honest Significant Differences corresponding to the number of heterozygotes (a) across linkage groups (b) across species, (c) and across species nested in linkage groups

contrast	difference	lower bound	upper bound	P-adjusted
(a)				
$1--3$	0.017921	0.009122	0.026719	$\mathbf{0 . 0 0 0 0}$
$2--3$	0.008175	-0.00072	0.017069	0.0954
$4--3$	-0.00601	-0.01562	0.003601	0.5168
$5--3$	0.008896	-0.00102	0.018812	0.1125
$7--3$	-0.02664	-0.03742	-0.01586	$\mathbf{0 . 0 0 0 0}$
$6--3$	-0.01786	-0.02932	-0.0064	$\mathbf{0 . 0 0 0 1}$
$2--1$	-0.00975	-0.01874	-0.00075	$\mathbf{0 . 0 2 3 7}$
$4--1$	-0.02393	-0.03364	-0.01423	$\mathbf{0 . 0 0 0 0}$
$5--1$	-0.00902	-0.01903	0.000982	0.1086
$7--1$	-0.04456	-0.05543	-0.0337	$\mathbf{0 . 0 0 0 0}$
$6--1$	-0.03578	-0.04732	-0.02425	$\mathbf{0 . 0 0 0 0}$
$4--2$	-0.01419	-0.02398	-0.0044	$\mathbf{0 . 0 0 0 4}$
$5--2$	0.00072	-0.00937	0.01081	1.0000
$7--2$	-0.03482	-0.04576	-0.02388	$\mathbf{0 . 0 0 0 0}$
$6--2$	-0.02604	-0.03764	-0.01443	$\mathbf{0 . 0 0 0 0}$
$5--4$	0.014907	0.004178	0.025637	$\mathbf{0 . 0 0 0 9}$
$7--4$	-0.02063	-0.03216	-0.0091	$\mathbf{0 . 0 0 0 0}$
$6--4$	-0.01185	-0.02402	0.000318	0.0622
$7--5$	-0.03554	-0.04732	-0.02375	$\mathbf{0 . 0 0 0 0}$
$6--5$	-0.02676	-0.03917	-0.01435	$\mathbf{0 . 0 0 0 0}$
$6--7$	0.008781	-0.00433	0.021891	$\mathbf{0 . 4 2 9 5}$
(b)				
konpar-parkoh	-0.0155	-0.02039	-0.01062	$\mathbf{0 . 0 0 0 0}$
prukoh-parkoh	-0.02437	-0.03058	-0.01816	$\mathbf{0 . 0 0 0 0}$
prukoh-konpar	-0.00886	-0.01475	-0.00297	$\mathbf{0}$
(c)				

1:parkoh-3:parkoh	-0.00225	-0.01967	$1.52 \mathrm{E}-02$	1.0000
2:parkoh-3:parkoh	0.008894	-0.00981	$2.76 \mathrm{E}-02$	0.9835
4:parkoh-3:parkoh	-0.02438	-0.0469	$-1.87 \mathrm{E}-03$	0.0178
5:parkoh-3:parkoh	0.003542	-0.01602	$2.31 \mathrm{E}-02$	1.0000
7:parkoh-3:parkoh	-0.05123	-0.07443	-2.80E-02	0.0000
6:parkoh-3:parkoh	-0.03392	-0.05676	-1.11E-02	0.0000
3:konpar-3:parkoh	-0.03299	-0.04963	-1.63E-02	0.0000
1:konpar-3:parkoh	-0.0081	-0.02516	$8.96 \mathrm{E}-03$	0.9839
2:konpar-3:parkoh	-0.01921	-0.03615	-2.27E-03	0.0089
4:konpar-3:parkoh	-0.01981	-0.03754	-2.07E-03	0.0113
5:konpar-3:parkoh	-0.0266	-0.04561	-7.60E-03	0.0001
7:konpar-3:parkoh	-0.05016	-0.06964	-3.07E-02	0.0000
6:konpar-3:parkoh	-0.03407	-0.05469	-1.35E-02	0.0000
3:prukoh-3:parkoh	-0.03762	-0.05901	-1.62E-02	0.0000
1:prukoh-3:parkoh	0.000708	-0.02165	$2.31 \mathrm{E}-02$	1.0000
2:prukoh-3:parkoh	-0.0359	-0.05673	-1.51E-02	0.0000
4:prukoh-3:parkoh	-0.04794	-0.06946	-2.64E-02	0.0000
5:prukoh-3:parkoh	-0.01828	-0.04429	$7.73 \mathrm{E}-03$	0.5987
7:prukoh-3:parkoh	-0.04113	-0.06927	-1.30E-02	0.0000
6:prukoh-3:parkoh	-0.0881	-0.12526	-5.09E-02	0.0000
2:parkoh-1:parkoh	0.011142	-0.00727	$2.96 \mathrm{E}-02$	0.8411
4:parkoh-1:parkoh	-0.02214	-0.04441	$1.39 \mathrm{E}-04$	0.0537
5:parkoh-1:parkoh	0.00579	-0.0135	$2.51 \mathrm{E}-02$	1.0000
7:parkoh-1:parkoh	-0.04899	-0.07195	-2.60E-02	0.0000
6:parkoh-1:parkoh	-0.03167	-0.05428	-9.06E-03	0.0001
3:konpar-1:parkoh	-0.03074	-0.04706	-1.44E-02	0.0000
1:konpar-1:parkoh	-0.00585	-0.02259	$1.09 \mathrm{E}-02$	0.9997
2:konpar-1:parkoh	-0.01696	-0.03359	-3.44E-04	0.0391
4:konpar-1:parkoh	-0.01756	-0.03498	-1.32E-04	0.0457
5:konpar-1:parkoh	-0.02436	-0.04308	-5.64E-03	0.0007
7:konpar-1:parkoh	-0.04791	-0.06712	-2.87E-02	0.0000
6:konpar-1:parkoh	-0.03183	-0.05218	-1.15E-02	0.0000
3:prukoh-1:parkoh	-0.03537	-0.05651	-1.42E-02	0.0000
1:prukoh-1:parkoh	0.002956	-0.01916	$2.51 \mathrm{E}-02$	1.0000
2:prukoh-1:parkoh	-0.03366	-0.05422	-1.31E-02	0.0000
4:prukoh-1:parkoh	-0.04569	-0.06696	-2.44E-02	0.0000
5:prukoh-1:parkoh	-0.01603	-0.04183	$9.77 \mathrm{E}-03$	0.8077
7:prukoh-1:parkoh	-0.03888	-0.06683	-1.09E-02	0.0001
6:prukoh-1:parkoh	-0.08585	-0.12287	-4.88E-02	0.0000
4:parkoh-2:parkoh	-0.03328	-0.05656	-9.99E-03	0.0001
5:parkoh-2:parkoh	-0.00535	-0.0258	$1.51 \mathrm{E}-02$	1.0000

7:parkoh-2:parkoh	-0.06013	-0.08407	$-3.62 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:parkoh-2:parkoh	-0.04281	-0.06642	$-1.92 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
3:konpar-2:parkoh	-0.04188	-0.05956	$-2.42 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
1:konpar-2:parkoh	-0.01699	-0.03506	$1.08 \mathrm{E}-03$	$\mathbf{0 . 0 9 6 5}$
2:konpar-2:parkoh	-0.02811	-0.04606	$-1.02 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
4:konpar-2:parkoh	-0.0287	-0.0474	$-1.00 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
5:konpar-2:parkoh	-0.0355	-0.05541	$-1.56 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
7:konpar-2:parkoh	-0.05905	-0.07942	$-3.87 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:konpar-2:parkoh	-0.04297	-0.06442	$-2.15 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
3:prukoh-2:parkoh	-0.04651	-0.06872	$-2.43 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
1:prukoh-2:parkoh	-0.00819	-0.03132	$1.49 \mathrm{E}-02$	0.9997
2:prukoh-2:parkoh	-0.0448	-0.06645	$-2.31 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
4:prukoh-2:parkoh	-0.05684	-0.07916	$-3.45 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
5:prukoh-2:parkoh	-0.02717	-0.05385	$-4.95 \mathrm{E}-04$	$\mathbf{0 . 0 4 0 2}$
7:prukoh-2:parkoh	-0.05003	-0.07879	$-2.13 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:prukoh-2:parkoh	-0.09699	-0.13463	$-5.94 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
5:parkoh-4:parkoh	0.027926	0.003943	$5.19 \mathrm{E}-02$	$\mathbf{0 . 0 0 5 8}$
7:parkoh-4:parkoh	-0.02685	-0.05388	$1.77 \mathrm{E}-04$	$\mathbf{0 . 0 5 3 9}$
6:parkoh-4:parkoh	-0.00953	-0.03626	$1.72 \mathrm{E}-02$	0.9996
3:konpar-4:parkoh	-0.0086	-0.03027	$1.31 \mathrm{E}-02$	0.9982
1:konpar-4:parkoh	0.016287	-0.0057	$3.83 \mathrm{E}-02$	0.4920
2:konpar-4:parkoh	0.005171	-0.01673	$2.71 \mathrm{E}-02$	1.0000
4:konpar-4:parkoh	0.004578	-0.01794	$2.71 \mathrm{E}-02$	1.0000
5:konpar-4:parkoh	-0.00222	-0.02575	$2.13 \mathrm{E}-02$	1.0000
7:konpar-4:parkoh	-0.02577	-0.04969	$-1.85 \mathrm{E}-03$	$\mathbf{0 . 0 1 9 2}$
6:konpar-4:parkoh	-0.00969	-0.03454	$1.52 \mathrm{E}-02$	0.9986
3:prukoh-4:parkoh	-0.01323	-0.03873	$1.23 \mathrm{E}-02$	0.9584
1:prukoh-4:parkoh	0.025092	-0.00122	$5.14 \mathrm{E}-02$	$\mathbf{0 . 0 8 4}$
2:prukoh-4:parkoh	-0.01152	-0.03654	$1.35 \mathrm{E}-02$	0.9886
4:prukoh-4:parkoh	-0.02356	-0.04916	$2.05 \mathrm{E}-03$	$\mathbf{0 . 1 1 9 0}$
5:prukoh-4:parkoh	0.006104	-0.02337	$3.56 \mathrm{E}-02$	1.0000
7:prukoh-4:parkoh	-0.01675	-0.04812	$1.46 \mathrm{E}-02$	0.9452
6:prukoh-4:parkoh	-0.06372	-0.10339	$-2.40 \mathrm{E}-02$	$\mathbf{0}$
7:parkoh-5:parkoh	-0.05478	-0.0794	$-3.02 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:parkoh-5:parkoh	-0.03746	-0.06175	$-1.32 \mathrm{E}-02$	$\mathbf{0}$
3:konpar-5:parkoh	-0.03653	-0.05511	$-1.79 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
1:konpar-5:parkoh	-0.01164	-0.03059	$7.32 \mathrm{E}-03$	0.8233
2:konpar-5:parkoh	-0.02275	-0.0416	$-3.91 \mathrm{E}-03$	$\mathbf{0 . 0 0 3 1}$
4:konpar-5:parkoh	-0.02335	-0.04291	$-3.79 \mathrm{E}-03$	$\mathbf{0 . 0 0 3 8}$
5:konpar-5:parkoh	-0.03015	-0.05087	$-9.42 \mathrm{E}-03$	$\mathbf{0 . 0 0 0 0}$
7:konpar-5:parkoh	-0.0537	-0.07486	$-3.25 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$

6:konpar-5:parkoh	-0.03761	-0.05982	$-1.54 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
3:prukoh-5:parkoh	-0.04116	-0.0641	$-1.82 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
1:prukoh-5:parkoh	-0.00283	-0.02667	$2.10 \mathrm{E}-02$	1.0000
2:prukoh-5:parkoh	-0.03944	-0.06185	$-1.70 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
4:prukoh-5:parkoh	-0.05148	-0.07454	$-2.84 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
5:prukoh-5:parkoh	-0.02182	-0.04911	$5.47 \mathrm{E}-03$	0.3364
7:prukoh-5:parkoh	-0.04467	-0.074	$-1.53 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:prukoh-5:parkoh	-0.09164	-0.12971	$-5.36 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:parkoh-7:parkoh	0.017315	-0.00999	$4.46 \mathrm{E}-02$	0.7787
3:konpar-7:parkoh	0.018246	-0.00413	$4.06 \mathrm{E}-02$	0.2992
1:konpar-7:parkoh	0.043137	0.020451	$6.58 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
2:konpar-7:parkoh	0.032021	0.009425	$5.46 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 1}$
4:konpar-7:parkoh	0.031428	0.008233	$5.46 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 3}$
5:konpar-7:parkoh	0.02463	0.000448	$4.88 \mathrm{E}-02$	$\mathbf{0 . 0 4 0 2}$
7:konpar-7:parkoh	0.001077	-0.02349	$2.56 \mathrm{E}-02$	1.0000
6:konpar-7:parkoh	0.017161	-0.00831	$4.26 \mathrm{E}-02$	0.6787
3:prukoh-7:parkoh	0.013617	-0.01249	$3.97 \mathrm{E}-02$	0.9562
1:prukoh-7:parkoh	0.051942	0.025044	$7.88 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
2:prukoh-7:parkoh	0.015331	-0.0103	$4.10 \mathrm{E}-02$	0.8547
4:prukoh-7:parkoh	0.003292	-0.02291	$2.95 \mathrm{E}-02$	1.0000
5:prukoh-7:parkoh	0.032954	0.002954	$6.30 \mathrm{E}-02$	$\mathbf{0 . 0 1 4 5}$
7:prukoh-7:parkoh	0.010102	-0.02176	$4.20 \mathrm{E}-02$	0.9999
6:prukoh-7:parkoh	-0.03687	-0.07693	$3.19 \mathrm{E}-03$	0.1187
3:konpar-6:parkoh	0.000931	-0.02108	$2.29 \mathrm{E}-02$	1.0000
1:konpar-6:parkoh	0.025822	0.003496	$4.81 \mathrm{E}-02$	$\mathbf{0 . 0 0 6 5}$
2:konpar-6:parkoh	0.014706	-0.00753	$3.69 \mathrm{E}-02$	0.7117
4:konpar-6:parkoh	0.014113	-0.00873	$3.70 \mathrm{E}-02$	0.8152
5:konpar-6:parkoh	0.007315	-0.01653	$3.12 \mathrm{E}-02$	1.0000
7:konpar-6:parkoh	-0.01624	-0.04047	$7.99 \mathrm{E}-03$	0.6886
6:konpar-6:parkoh	-0.00015	-0.0253	$2.50 \mathrm{E}-02$	1.0000
3:prukoh-6:parkoh	-0.0037	-0.02949	2.21E-02	1.0000
1:prukoh-6:parkoh	0.034627	0.008032	$6.12 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 7}$
2:prukoh-6:parkoh	-0.00198	-0.0273	$2.33 \mathrm{E}-02$	1.0000
4:prukoh-6:parkoh	-0.01402	-0.03992	$1.19 \mathrm{E}-02$	0.9374
5:prukoh-6:parkoh	0.015639	-0.01409	$4.54 \mathrm{E}-02$	0.9525
7:prukoh-6:parkoh	-0.00721	-0.03882	$2.44 \mathrm{E}-02$	1.0000
6:prukoh-6:parkoh	-0.05418	-0.09404	$-1.43 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 3}$
1:konpar-3:konpar	0.024891	0.008963	$4.08 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
2:konpar-3:konpar	0.013775	-0.00202	$2.96 \mathrm{E}-02$	0.1878
4:konpar-3:konpar	0.013182	-0.00346	$2.98 \mathrm{E}-02$	0.3552
5:konpar-3:konpar	0.006384	-0.01161	$2.44 \mathrm{E}-02$	0.9996

7:konpar-3:konpar	-0.01717	-0.03567	$1.33 \mathrm{E}-03$	$\mathbf{0 . 1 0 9 9}$
6:konpar-3:konpar	-0.00109	-0.02077	$1.86 \mathrm{E}-02$	1.0000
3:prukoh-3:konpar	-0.00463	-0.02513	$1.59 \mathrm{E}-02$	1.0000
1:prukoh-3:konpar	0.033696	0.012189	$5.52 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
2:prukoh-3:konpar	-0.00291	-0.02282	$1.70 \mathrm{E}-02$	1.0000
4:prukoh-3:konpar	-0.01495	-0.03559	$5.68 \mathrm{E}-03$	0.5369
5:prukoh-3:konpar	0.014708	-0.01057	$4.00 \mathrm{E}-02$	0.8830
7:prukoh-3:konpar	-0.00814	-0.03561	$1.93 \mathrm{E}-02$	1.0000
6:prukoh-3:konpar	-0.05511	-0.09177	$-1.85 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
2:konpar-1:konpar	-0.01112	-0.02735	$5.12 \mathrm{E}-03$	0.6496
4:konpar-1:konpar	-0.01171	-0.02877	$5.35 \mathrm{E}-03$	0.6448
5:konpar-1:konpar	-0.01851	-0.03689	$-1.26 \mathrm{E}-04$	$\mathbf{0 . 0 4 6 1}$
7:konpar-1:konpar	-0.04206	-0.06094	$-2.32 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:konpar-1:konpar	-0.02598	-0.04602	$-5.94 \mathrm{E}-03$	$\mathbf{0 . 0 0 0 7}$
3:prukoh-1:konpar	-0.02952	-0.05036	$-8.68 \mathrm{E}-03$	$\mathbf{0 . 0 0 0 1}$
1:prukoh-1:konpar	0.008805	-0.01303	$3.06 \mathrm{E}-02$	0.9978
2:prukoh-1:konpar	-0.02781	-0.04806	$-7.55 \mathrm{E}-03$	$\mathbf{0 . 0 0 0 2}$
4:prukoh-1:konpar	-0.03984	-0.06082	$-1.89 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
5:prukoh-1:konpar	-0.01018	-0.03574	$1.54 \mathrm{E}-02$	0.9982
7:prukoh-1:konpar	-0.03304	-0.06076	$-5.31 \mathrm{E}-03$	$\mathbf{0 . 0 0 3 9}$
6:prukoh-1:konpar	-0.08	-0.11685	$-4.32 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
4:konpar-2:konpar	-0.00059	-0.01753	$1.63 \mathrm{E}-02$	1.0000
5:konpar-2:konpar	-0.00739	-0.02566	$1.09 \mathrm{E}-02$	0.9977
7:konpar-2:konpar	-0.03094	-0.04972	$-1.22 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:konpar-2:konpar	-0.01486	-0.0348	$5.08 \mathrm{E}-03$	0.4790
3:prukoh-2:konpar	-0.0184	-0.03915	$2.34 \mathrm{E}-03$	0.1635
1:prukoh-2:konpar	0.019921	-0.00182	$4.17 \mathrm{E}-02$	0.1233
2:prukoh-2:konpar	-0.01669	-0.03684	$3.46 \mathrm{E}-03$	0.2713
4:prukoh-2:konpar	-0.02873	-0.0496	$-7.85 \mathrm{E}-03$	$\mathbf{0 . 0 0 0 2}$
5:prukoh-2:konpar	0.000933	-0.02454	$2.64 \mathrm{E}-02$	1.0000
7:prukoh-2:konpar	-0.02192	-0.04957	$5.73 \mathrm{E}-03$	0.3532
6:prukoh-2:konpar	-0.06889	-0.10568	$-3.21 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
5:konpar-4:konpar	-0.0068	-0.0258	$1.22 \mathrm{E}-02$	0.9996
7:konpar-4:konpar	-0.03035	-0.04984	$-1.09 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:konpar-4:konpar	-0.01427	-0.03488	$6.35 \mathrm{E}-03$	0.6288
3:prukoh-4:konpar	-0.01781	-0.03921	$3.59 \mathrm{E}-03$	0.2622
1:prukoh-4:konpar	0.020514	-0.00184	$4.29 \mathrm{E}-02$	0.1220
2:prukoh-4:konpar	-0.0161	-0.03692	$4.73 \mathrm{E}-03$	0.4037
4:prukoh-4:konpar	-0.02814	-0.04966	$-6.61 \mathrm{E}-03$	$\mathbf{0 . 0 0 0 6}$
5:prukoh-4:konpar	0.001526	-0.02448	$2.75 \mathrm{E}-02$	1.0000
7:prukoh-4:konpar	-0.02133	-0.04947	$6.81 \mathrm{E}-03$	0.4444

6:prukoh-4:konpar	-0.06829	-0.10546	$-3.11 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
7:konpar-5:konpar	-0.02355	-0.04421	$-2.90 \mathrm{E}-03$	$\mathbf{0 . 0 0 8 1}$
6:konpar-5:konpar	-0.00747	-0.02919	$1.43 \mathrm{E}-02$	0.9998
3:prukoh-5:konpar	-0.01101	-0.03348	$1.15 \mathrm{E}-02$	0.9769
1:prukoh-5:konpar	0.027312	0.00393	$5.07 \mathrm{E}-02$	$\mathbf{0 . 0 0 5 5}$
2:prukoh-5:konpar	-0.0093	-0.03122	$1.26 \mathrm{E}-02$	0.9958
4:prukoh-5:konpar	-0.02134	-0.04392	$1.24 \mathrm{E}-03$	$\mathbf{0 . 0 9 2 2}$
5:prukoh-5:konpar	0.008324	-0.01857	$3.52 \mathrm{E}-02$	1.0000
7:prukoh-5:konpar	-0.01453	-0.04349	$1.44 \mathrm{E}-02$	0.9705
6:prukoh-5:konpar	-0.0615	-0.09928	$-2.37 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:konpar-7:konpar	0.016084	-0.00606	$3.82 \mathrm{E}-02$	0.5321
3:prukoh-7:konpar	0.01254	-0.01033	$3.54 \mathrm{E}-02$	0.9299
1:prukoh-7:konpar	0.050865	0.02709	$7.46 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
2:prukoh-7:konpar	0.014254	-0.00808	$3.66 \mathrm{E}-02$	0.7695
4:prukoh-7:konpar	0.002215	-0.02077	$2.52 \mathrm{E}-02$	1.0000
5:prukoh-7:konpar	0.031877	0.004642	$5.91 \mathrm{E}-02$	$\mathbf{0 . 0 0 5 3}$
7:prukoh-7:konpar	0.009024	-0.02025	$3.83 \mathrm{E}-02$	1.0000
6:prukoh-7:konpar	-0.03794	-0.07598	$8.89 \mathrm{E}-05$	0.0514
3:prukoh-6:konpar	-0.00354	-0.02738	$2.03 \mathrm{E}-02$	1.0000
1:prukoh-6:konpar	0.034781	0.010074	$5.95 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 1}$
2:prukoh-6:konpar	-0.00183	-0.02516	$2.15 \mathrm{E}-02$	1.0000
4:prukoh-6:konpar	-0.01387	-0.03782	$1.01 \mathrm{E}-02$	0.8876
5:prukoh-6:konpar	0.015793	-0.01226	$4.38 \mathrm{E}-02$	0.9112
7:prukoh-6:konpar	-0.00706	-0.0371	$2.30 \mathrm{E}-02$	1.0000
6:prukoh-6:konpar	-0.05403	-0.09265	$-1.54 \mathrm{E}-02$	$\mathbf{0}$
1:prukoh-3:prukoh	0.038325	0.012961	$6.37 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 1}$
2:prukoh-3:prukoh	0.001714	-0.02231	$2.57 \mathrm{E}-02$	1.0000
4:prukoh-3:prukoh	-0.01032	-0.03495	$1.43 \mathrm{E}-02$	0.9964
5:prukoh-3:prukoh	0.019338	-0.0093	$4.80 \mathrm{E}-02$	0.6747
7:prukoh-3:prukoh	-0.00352	-0.0341	$2.71 \mathrm{E}-02$	1.0000
6:prukoh-3:prukoh	-0.05048	-0.08953	$-1.14 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 8}$
2:prukoh-1:prukoh	-0.03661	-0.06149	$-1.17 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
4:prukoh-1:prukoh	-0.04865	-0.07412	$-2.32 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
5:prukoh-1:prukoh	-0.01899	-0.04835	$1.04 \mathrm{E}-02$	0.7487
7:prukoh-1:prukoh	-0.04184	-0.0731	$-1.06 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 4}$
6:prukoh-1:prukoh	-0.08881	-0.12839	$-4.92 \mathrm{E}-02$	$\mathbf{0}$
4:prukoh-2:prukoh	-0.01204	-0.03617	$1.21 \mathrm{E}-02$	0.9722
5:prukoh-2:prukoh	0.017623	-0.01058	$4.58 \mathrm{E}-02$	0.8001
7:prukoh-2:prukoh	-0.00523	-0.03541	$2.50 \mathrm{E}-02$	1.0000
6:prukoh-2:prukoh	-0.0522	-0.09093	$-1.35 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 3}$
5:prukoh-4:prukoh	0.029662	0.000935	$5.84 \mathrm{E}-02$	$\mathbf{0 . 0 3 3 9}$

7:prukoh-4:prukoh	0.006809	-0.02386	$3.75 \mathrm{E}-02$	1.0000
6:prukoh-4:prukoh	-0.04016	-0.07927	$-1.04 \mathrm{E}-03$	$\mathbf{0 . 0 3 6 4}$
7:prukoh-5:prukoh	-0.02285	-0.05682	$1.11 \mathrm{E}-02$	0.6817
6:prukoh-5:prukoh	-0.06982	-0.11157	$-2.81 \mathrm{E}-02$	$\mathbf{0 . 0 0 0 0}$
6:prukoh-7:prukoh	-0.04697	-0.09008	$-3.86 \mathrm{E}-03$	$\mathbf{0 . 0 1 6 4}$

Table S3. Summary statistics for anchored assembly. For each cross and for the combined pseudomolecule assembly the number of scaffolds with at least 2 markers, with at least two markers that are $>0.1 \mathrm{cM}$ apart, the combined size of the anchored scaffolds, the N50, and the average coverage are shown per LG.

LG	\# scaffolds	\# scaffolds >= 2 markers	\# scaffolds >=2 well-spaced markers	Size (bp)	N50 (bp)	coverage
ParKoh						
1	117	21	14	106312036	1301586	52.89792
2	89	8	4	59124686	886001	54.757
3	109	14	12	98715872	1184645	51.15361
4	49	1	1	39589978	1093907	54.17022
5	76	18	16	62735740	1197186	66.5671
6	47	7	6	19057194	730017	57.78891
7	45	6	5	38543039	1485176	60.40972
X	76	4	2	84017840	1519936	29.56227
Sum/median	608	79	60	508096385	1190916	53.41334375
KonPar						
1	128	17	13	103734776	1143465	37.22859
2	132	17	10	95158272	1019600	40.18552
3	143	22	19	134318749	1355019	34.98008
4	109	24	12	110192983	1660236	40.38131
5	84	13	9	67417874	1136159	44.86084
6	64	7	6	23922075	733389	46.43391
7	77	17	13	58701654	1180700	38.07606
X	86	14	3	98541466	1540389	25.64274
Sum/median	823	131	85	691987849	1162083	38.47363125
PruKoh						
1	50	5	3	46785714	1325001	41.55226
2	62	4	3	45819772	1106261	47.8152
3	57	2	2	54629290	1375220	40.13577
4	56	11	5	60827800	2025849	45.12183
5	33	3	2	20743600	725518	51.94363
6	14	0	0	7779385	859092	45.60227
7	27	4	2	17783624	1224531	49.36982
X	84	9	0	82253003	1268875	28.72471

Sum/median	383	38	17	336622188	1246703
Combined					
1	167	43	30	117180395	1089296
2	170	29	17	101876544	816734
3	175	38	33	137279277	1044733
4	118	36	18	89703238	957048
5	102	34	27	62192538	880080
6	80	14	12	25387579	569059
7	88	27	20	52742540	916807
X	154	27	5	133989488	1249941
Sum/median	1054	248	162	720351599	936928

Table S4. Integrated AFLP and SNP map for the L. kohalensis x L. paranigra cross. The highlighted AFLP markers are located under a QTL peak in the Shaw \& Lesnick 2009 study. The highlighted AFLP markers on linkage group 1 are markers where a male song and female preference QTL peak co-localize.

scaffold	locus	LG	position (cM)	AFLP	scaffold midpoint position (bp)
S002761	S002761_729410	1	0	NA	106423286
	as030	1	1.821	PaggcA53	NA
	as074	1	3.282	PggacA54	NA
	ac007	1	6.09	PagacA52B55	NA
	ac013	1	7.301	PcgacA51B51	NA
	ac017	1	8.604	PgcacA07B54	NA
S000817	S000817_120415	1	9.734	NA	114208815
S002077	S002077_311803	1	11.288	NA	109788919
S007909	S007909_155126	1	13.752	NA	104812030
	as087	1	23.642	PgtgcA54	NA
	as081	1	25.658	PgtacA56	NA
	as085 X	1	30.736	PgtgcA3	NA
	as080	1	36.928	PgtacA55	NA
	as023	1	38.868	PaaacA63	NA
S001330	S001330_135948	1	42.507	NA	100949675
S001771	S001771_116507	1	46.906	NA	105601414
S000392	S000392_74030	1	51.737	NA	NA
S001680	S001680_315523	1	52.615	NA	88172650
S000409	S000409 474112	1	53.517	NA	84174036
S001489	S001489_769426	1	56.166	NA	41585373
S004205	S004205 29098	1	57.827	NA	50498860

S000949	S000949_205067	1	58.259	NA		42520204
S008139	S008139 68543	1	58.542	NA	NA	
S000696	S000696_137337	1	58.549	NA	NA	
S002946	S002946_738803	1	58.707	NA		67349798
C120306	C120306 385	1	58.847	NA	NA	
S006572	S006572 95801	1	58.928	NA		46181571
S001914	S001914_404347	1	59.118	NA		66160290
S009296	S009296_110864	1	59.329	NA		65039174
S000663	S000663_611964	1	59.641	NA		53947499
S004747	S004747_292840	1	59.784	NA		49933664
S000671	S000671_1033505	1	61.079	NA	NA	
S001489	S001489_639186	1	61.694	NA		41585373
S004313	S004313_69835	1	61.699	NA		40812282
S002548	S002548_423714	1	62.493	NA		45749393
S000105	S000105_348801	1	63.591	NA		36945493
S004771	S004771_628132	1	64.917	NA		31081394
S004771	S004771_1175996	1	65.21	NA		31081394
S002151	S002151_1377807	1	66.292	NA		22870317
	as034	1	68.191	PatgcA52	NA	
	as012	1	70.107	PccacA55	NA	
	ac014	2	0	PgaacA10B60	NA	
S001206	S001206_1546586	2	2.303	NA		1821533
S000518	S000518_766492	2	6.245	NA		6192438
	as077	2	26.628	PgggcA52	NA	
S003191	S003191_528616	2	31.612	NA		16874625
S001838	S001838_6021	2	42.989	NA		23233385
S000416	S000416_552586	2	47.133	NA		24694735
S004218	S004218_23553	2	51.627	NA		31927917
S001550	S001550_214202	2	52.41	NA		33996652
S003798	S003798_463488	2	53.5	NA		36725738
S002376	S002376_431585	2	54.951	NA		38303813
	as052	2	57.787	PcggcA53	NA	
S005289	S005289_526503	2	58.474	NA		45049140
S000230	S000230_200879	2	58.756	NA		46073354
S002156	S002156_413885	2	61.643	NA		90147661
S003079	S003079_192141	2	61.705	NA		56392065
S004728	S004728_52289	2	61.99	NA		77439224
S001050	S001050_43796	2	62.025	NA		71210412
S001881	S001881_642832	2	62.193	NA		60129008
S003118	S003118_235274	2	62.379	NA		56724422
S003735	S003735_82587	2	62.896	NA	NA	

	ac006	2	63.793	PacacA56B69	NA	
	as040_x	2	64.823	PcagcA08	NA	
S003067	S003067_20757	2	67.28	NA		80842581
S000199	S000199_193260	2	74.457	NA		83353553
S001797	S001797_1827615	2	75.671	NA		85052994
S001855	S001855_342231	2	82.018	NA		89412353
S004792	S004792_152639	2	85.245	NA	NA	
S001901	S001901_315332	2	87.985	NA		94264609
S001602	S001602_266912	2	109.791	NA		99970919
S000793	S000793_627068	2	116.258	NA	NA	
	as115	3	0	PttacA54	NA	
	as083	3	3.848	PgtacA58	NA	
S001338	S001338_29965	3	5.698	NA		168668
	as037	3	9.753	PcaacA57	NA	
S000075	S000075_156551	3	11.248	NA		1642392
S002528	S002528_794391	3	19.911	NA		18001031
S009989	S009989_70944	3	21.779	NA		6045815
S002528	S002528_794393	3	23.255	NA		18001031
S005403	S005403_7134	3	27.914	NA		18662141
	ac009 a	3	48.316	PaggcA07B19	NA	
	as063	3	49.481	PgaacA60	NA	
	as064	3	51.877	PgaacA61	NA	
	as025	3	53.754	PaagcA57	NA	
S000558	S000558_1959639	3	59.995	NA		40534699
S000558	S000558_1232157	3	60.337	NA		40534699
	as088	3	63.867	PgtgcA55	NA	
	as069	3	64.465	PgcacA51	NA	
	ad100.as079	3	65.149	NA	NA	
S004777	S004777_221108	3	66.442	NA		36430961
S000558	S000558_748836	3	66.865	NA		40534699
S007419	S007419_788393	3	67.162	NA		42061284
S002934	S002934_242739	3	68.016	NA		56760880
S003072	S003072_393178	3	68.244	NA		63064570
S001785	S001785 133632	3	68.301	NA		60906412
S000726	S000726_1782089	3	68.399	NA		48678466
S000529	S000529_530363	3	68.572	NA		72186930
	as108_a	3	68.59	PtgacA03	NA	
S002665	S002665_282741	3	68.951	NA	NA	
S005483	S005483_46807	3	69.079	NA		62650842
S013086	S013086_40139	3	69.12	NA	NA	
S002194	S002194_96231	3	69.157	NA		66669112

S006750	S006750_274965	3	69.245	NA	NA	
S004654	S004654_237626	3	69.303	NA	NA	
S002002	S002002_376411	3	69.412	NA		44975632
S003472	S003472_9538	3	70.555	NA		82404642
S002613	S002613_31096	3	71.526	NA	NA	
S001060	S001060_728231	3	72.259	NA		89191537
S002297	S002297_775779	3	72.322	NA		91133138
S001060	S001060_1929755	3	72.461	NA		89191537
S006865	S006865_338439	3	72.867	NA		101275163
	as101	3	73.62	PtcgcA09	NA	
S001265	S001265 211884	3	74.555	NA		106649134
S000385	S000385_1480834	3	75.848	NA		108764126
S001106	S001106_481878	3	82.071	NA		114989880
	as114_ax	3	86.713	PttacA02	NA	
S001275	S001275_1127865	3	88.98	NA		122746700
S002311	S002311_254807	3	89.321	NA		123571440
	as076 a	4	0	PgggcA01	NA	
	as073 a	4	1.753	PggacA01	NA	
S005844	S005844_224400	4	18.591	NA		4097279
	as117_a	4	41.053	PttacA06	NA	
	as099	4	41.551	PtcacA54	NA	
S001783	S001783_279356	4	43.04	NA		63112104
S000590	S000590_1997032	4	43.249	NA		29331168
S014891	S014891_36875	4	43.589	NA	NA	
S003206	S003206_599818	4	43.711	NA	NA	
S000836	S000836_228275	4	43.801	NA	NA	
S000679	S000679_623688	4	43.895	NA		57825201
	as075 a	4	44.445	PggacA13	NA	
S002196	S002196_584574	4	44.674	NA		42514727
S001005	S001005_1065597	4	44.857	NA		39878575
S003635	S003635_7993	4	45.443	NA		63978342
S009873	S009873_154713	4	49.074	NA		71866807
S002058	S002058_706797	4	49.408	NA		72523035
S000455	S000455_692625	4	52.283	NA		73544308
	as029 a	4	61.5	PagacA5	NA	
S001486	S001486_61579	4	64.17	NA		77623428
	as028 x ${ }^{\text {a }}$	4	65.829	PagacA1	NA	
S001279	S001279_277406	4	67.269	NA		78135382
S001608	S001608_399358	4	83.462	NA		89198891
	as021	5	0	PaaacA54	NA	
S005326	S005326_57790	5	1.807	NA		466530

	ac016	5	2.394	PgagcA56B62	NA	
	ac011	5	4.24	PcagcA52B53	NA	
	ac015	5	5.865	PgaacA62B66	NA	
	as116 a	5	7.016	PttacA05	NA	
S002190	S002190_273188	5	13.671	NA		3452268
	as100	5	15.717	PtcgcA54	NA	
S000809	S000809_365747	5	19.221	NA		6005121
	as066 a	5	21.423	PgagcA08	NA	
	as027 a	5	25.245	PacacA06	NA	
	ad082.as062	5	26.337	NA	NA	
	as045	5	27.055	PccacA53	NA	
S004462	S004462 54127	5	28.207	NA		13078451
S005610	S005610_84211	5	28.338	NA		13179099
S000366	S000366 42046	5	28.803	NA		17964325
S000745	S000745_339612	5	30.425	NA		21039003
S002565	S002565_116928	5	33.166	NA		22902902
S004683	S004683 48328	5	34.768	NA		24389284
S006506	S006506_7146	5	35.301	NA		27839633
S005519	S005519_111372	5	37.975	NA		32385211
S000305	S000305 70577	5	40.26	NA		33073185
S000979	S000979_164421	5	41.485	NA		35633669
S005459	S005459 70152	5	42.698	NA		37847956
S000180	S000180_656202	5	44.503	NA		40272446
S021890	S021890_296	5	45.368	NA		42534517
	as068	5	46.655	PgagcA51	NA	
S005334	S005334_732385	5	48.033	NA		43080568
S005064	S005064_175253	5	49.954	NA		45035858
	as091	5	52.052	PtaacA51	NA	
S003838	S003838_738497	5	54.849	NA		46738481
S001560	S001560_398299	5	59.376	NA		50508185
S004681	S004681_23198	5	61.431	NA		53592894
	as057	5	62.937	PctacA55	NA	
	as058	5	63.812	PctacA56	NA	
	as059	5	65.211	PctacA57	NA	
	as043	5	71.183	PcagcA51	NA	
	as118 x	5	72.676	PttacA13	NA	
	as041	5	73.969	PcagcA56	NA	
S007270	S007270 308120	5	76.332	NA		58235091
S002503	S002503_741242	5	77.495	NA		58956874
	as110	6	0	PtggcA52	NA	
	as047 x	6	1.51	PcgacA02	NA	

\(\left.\begin{array}{|l|l|r|r|l|r|}\hline S001034 \& S001034_78522 \& 6 \& 2.72 \& NA \& 24400658

\hline S022584 \& S022584_1139 \& 6 \& 5.895 \& NA \& 23964288

\hline \& as105 \& 6 \& 6.664 \& PtgacA58 \& NA

\hline S005236 \& S005236_14409 \& 6 \& 7.404 \& NA \& 16442306

\hline S001507 \& S001507_262717 \& 6 \& 8.078 \& NA \& 13978219

\hline S002799 \& S002799_37080 \& 6 \& 10.159 \& NA \& 22063251

\hline \& ac003 \& 6 \& 11.251 \& PagcA61B63 \& NA

\hline \& ac019 \& 13.745 \& PtgacA57B60 \& NA \&

\hline \& S001904 \& S001904_134885 \& 6 \& 15.337 \& NA\end{array}\right]\)| 16620760 |
| :--- |
| |
| as109 |
| as039 |

S000766	S000766_827724	X	30.52	NA		11869181
S000360	S000360_70566	X	32.459	NA		17072014
S003455	S003455_1122569	X	35.526	NA		19186595
S004887	S004887_81621	X	42.013	NA	NA	
	xs024_x	X	43.011	PcggcA10	NA	
S000604	S000604_43741	X	43.459	NA	NA	
S000648	S000648_2315784	X	44.883	NA		34819414
S000219	S000219 2024096	X	45.729	NA		26925418
S000777	S000777_1339236	X	46.733	NA		30344332
S000777	S000777_461461	X	46.887	NA		30344332
S000648	S000648 2255296	X	47.453	NA		34819414
S001873	S001873_641123	X	49.384	NA		36757980
	xd016_x	X	49.672	PatgcB02	NA	
S001241	S001241_171252	X	53.266	NA		44632865
S003053	S003053_264327	X	55.937	NA		56937852
S000327	S000327_278424	X	56.293	NA		55828014
S000470	S000470_76715	X	56.911	NA		59714238
	xd008_x	X	57.404	PgggcB22	NA	
S003307	S003307_279141	X	57.747	NA		63486064
S001912	S001912_587919	X	58.069	NA		62108629
S000965	S000965_1228070	X	59.663	NA		73444967
S000808	S000808_1583160	X	59.672	NA		69248171
S006304	S006304_697561	X	59.908	NA	NA	
S013985	S013985_11114	X	60.241	NA		82920002
	xd020	X	63.263	PcggcB53	NA	
S007907	S007907_144642	X	64.648	NA		94604867
	xs011	X	67.511	PaaacA60	NA	
S001930	S001930_1745657	X	68.641	NA		88122926
S001930	S001930_2410442	X	69.247	NA		88122926
S004832	S004832_609791	X	70.344	NA		91521965
S001247	S001247_68215	X	71.108	NA		92776928
	xs012	X	75.227	PaagcA53	NA	
S000238	S000238_1169086	X	90.242	NA		113789231
S003071	S003071_613045	X	95.05	NA		116953618
S002737	S002737_694631	X	117.43	NA	NA	
S000176	S000176_35913	X	126.585	NA		132559092
S001187	S001187_211572	X	130.879	NA		127829472
S003230	S003230_1425064	X	131.437	NA		129558233
S002008	S002008_1089204	X	131.468	NA		126707516

ParKoh KonPar PruKoh ParKoh
LG 2

10.1101/160952; this version posted March 12, 2018. The copyright holder for this preprint (which was not

Figure S1.Comprehensive linkage maps. Bars represent linkage groups (LG) for ParKoh, KonPar, and PruKoh. Lines within the bars indicate marker positions. The scale on the left gives marker position in cM . Blue lines connect markers on the same scaffold between the different maps (homologous markers). The map for ParKoh is shown twice to facilitate comparisons across all three maps.

Figure S2. ALLMAPS output. For each of the linkage groups (chr) the relative order with respect to the shared map (i.e. the pseudomolecule assembly) is shown as well as Spearman's rho (ρ) for the strength of correlation between marker orders.
bioRxiv preprint doi: https://doi.org/10.1101/160952; this version posted March 12 2018. The copyright holder for this preprint (which was not 20certified by peerreview) is the author/funder. All rights reserfeal. No reuse allowed without permission.

$$
\begin{aligned}
& -1 \\
& -2 \\
& -3 \\
& -4 \\
& -5 \\
& -6 \\
& -7 \\
& -x
\end{aligned}
$$

KonPar

PruKoh

Figure S3. Coverage per cross per linkage group. For each of the three linkage maps (ParKoh, KonPar, PruKoh) the variation in coverage across the 8 linkage groups is shown. Coverage is calculated as the average (across individuals) read count per marker (points). Solid lines show $10-\mathrm{cM}$ non-sliding window averages.

[^0]: Thomas Blankers ${ }^{1}$, Kevin P. Oh ${ }^{1}$, Aureliano Bombarely ${ }^{2}$, Kerry L. Shaw ${ }^{1}$
 ${ }^{1}$ Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
 ${ }^{2}$ Department of Horticulture, Virginia Tech, Blacksburg, VA, USA

