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 2 

Abstract 26 

Meiotic recombination initiates via DNA double strand breaks (DSBs) generated by SPO11 27 

topoisomerase-like complexes. Recombination frequency varies extensively along eukaryotic 28 

chromosomes, with hotspots controlled by chromatin and DNA sequence. To map meiotic 29 

DSBs throughout a plant genome, we purified and sequenced Arabidopsis SPO11-1-30 

oligonucleotides. DSB hotspots occurred in gene promoters, terminators and introns, driven 31 

by AT-sequence richness, which excludes nucleosomes and allows SPO11-1 access. A 32 

strong positive relationship was observed between SPO11-1 DSBs and final crossover 33 

levels. Euchromatic marks promote recombination in fungi and mammals, and consistently 34 

we observe H3K4me3 enrichment in proximity to DSB hotspots at gene 5'-ends. Repetitive 35 

transposons are thought to be recombination-silenced during meiosis, in order to prevent 36 

non-allelic interactions and genome instability. Unexpectedly, we found strong DSB hotspots 37 

in nucleosome-depleted Helitron/Pogo/Tc1/Mariner DNA transposons, whereas 38 

retrotransposons were coldspots. Hotspot transposons are enriched within gene regulatory 39 

regions and in proximity to immunity genes, suggesting a role as recombination-enhancers. 40 

As transposon mobility in plant genomes is restricted by DNA methylation, we used the met1 41 

DNA methyltransferase mutant to investigate the role of heterochromatin on the DSB 42 

landscape. Epigenetic activation of transposon meiotic DSBs occurred in met1 mutants, 43 

coincident with reduced nucleosome occupancy, gain of transcription and H3K4me3. 44 

Increased met1 SPO11-1 DSBs occurred most strongly within centromeres and Gypsy and 45 

CACTA/EnSpm coldspot transposons. Together, our work reveals complex interactions 46 

between chromatin and meiotic DSBs within genes and transposons, with significance for the 47 

diversity and evolution of plant genomes. 48 

 49 

 50 

 51 
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 3 

Introduction 52 

Sexual eukaryotes reproduce via fusion of haploid gametes, which are produced by the 53 

specialized meiotic cell division. During meiosis a single round of DNA replication is coupled 54 

to two rounds of chromosome segregation. Additionally, during prophase of the first meiotic 55 

division, homologous chromosomes pair and recombine, which can result in reciprocal 56 

crossovers (Kauppi et al. 2004; Villeneuve and Hillers 2001). As a consequence of 57 

recombination and independent chromosome segregation, meiosis has a major effect on 58 

genetic variation within populations and the process of evolutionary adaptation (Barton and 59 

Charlesworth 1998; Hamilton 2002).  60 

 61 

Meiotic recombination initiates via formation of DNA double strand breaks (DSBs), which can 62 

be repaired using a homologous chromosome to produce crossover or non-crossover 63 

products (Kauppi et al. 2004; Baudat et al. 2013; Villeneuve and Hillers 2001; Szostak et al. 64 

1983). Meiotic DSBs are universally generated by SPO11 topoisomerase-like 65 

transesterases, which act as dimers to cleave opposite phosphodiester backbones using 66 

catalytic tyrosine residues (Neale et al. 2005; Keeney and Kleckner 1995; Pan et al. 2011; 67 

Keeney et al. 1997). In plants, SPO11-1 and SPO11-2 interact with MEIOTIC 68 

TOPOISOMERASE VIB (MTOPVIB), which forms a conserved catalytic core complex 69 

(Robert et al. 2016; Vrielynck et al. 2016; Hartung et al. 2007; Grelon et al. 2001). Following 70 

phosphodiester cleavage the SPO11 catalytic tyrosine remains covalently bound to the target 71 

site 5'-end (Neale et al. 2005; Keeney and Kleckner 1995; Pan et al. 2011). Endonucleases, 72 

including Sae2 and Mre11, then generate additional DNA backbone cuts 3' to the DSB site 73 

that together with exonucleases, cause release of SPO11-oligonucleotide complexes (Garcia 74 

et al. 2011; Lam and Keeney 2014; Neale et al. 2005). Purification and sequencing of 75 

SPO11-oligonucleotides, which are typically ~20–40 bases in length, has provided a high-76 
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 4 

resolution method to profile meiotic DSB patterns genome-wide in fungi and mammals (Pan 77 

et al. 2011; Lange et al. 2016; Fowler et al. 2014). 78 

 79 

Meiotic DSB and crossover frequency vary extensively along eukaryotic chromosomes and 80 

typically concentrate in ~1–2 kilobase hotspots (Baudat et al. 2013; Kauppi et al. 2004; Choi 81 

and Henderson 2015). Genetic and epigenetic information make varying contributions to 82 

control of hotspot locations and activities in different eukaryotic lineages (Baudat et al. 2013; 83 

Kauppi et al. 2004; Choi and Henderson 2015). For example, budding yeast DSB hotspots 84 

form predominantly in nucleosome-depleted regions in gene promoters and rarely in exons 85 

and terminators (Pan et al. 2011; Lam and Keeney 2015; Wu and Lichten 1994; Fan and 86 

Petes 1996). Local base composition, higher-order chromosome structure, transcription 87 

factor binding and ATM/ATR kinase signaling have further been shown to modify budding 88 

yeast DSB frequency (Lam and Keeney 2014; de Massy 2013; Cooper et al. 2016; 89 

Székvölgyi et al. 2015).  90 

 91 

In contrast to budding yeast, mouse SPO11-oligonucleotides form at specific C-rich DNA 92 

sequence motifs that are bound by the meiotic protein PRDM9, which possesses a zinc 93 

finger array and a SET domain that catalyzes histone H3K4me3 and H3K36me3 (Lange et al. 94 

2016; Mihola et al. 2009; Parvanov et al. 2010; Myers et al. 2010; Baudat et al. 2010; Grey et 95 

al. 2011; Brick et al. 2012; Grey et al. 2017; Powers et al. 2016). PRDM9-dependent SPO11 96 

hotspots tend to show well-positioned flanking nucleosomes, which acquire H3K4me3 and 97 

H3K36me3 during meiosis (Grey et al. 2017; Baker et al. 2014; Lange et al. 2016; Brick et al. 98 

2012; Powers et al. 2016). However, H3K4me3 levels do not correlate strongly with mouse or 99 

yeast SPO11-oligonucleotide levels, implying a downstream role for this chromatin mark 100 

(Tischfield and Keeney 2012; Lange et al. 2016). For example, budding yeast H3K4me3 is 101 

bound by the Spp1 COMPASS complex subunit, which simultaneously interacts with meiotic 102 
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 5 

chromosome axis protein Mer3 and tethers chromatin loops to repair sites (Sommermeyer et 103 

al. 2013; Borde et al. 2009; Acquaviva et al. 2013). Furthermore, the mouse COMPASS 104 

subunit CXXC1 interacts with both PRDM9 and the IHO1 axis proteins, suggesting a 105 

conserved mechanism of chromatin loop-tethering during DSB repair (Imai et al. 2017). 106 

Plant crossovers are enriched in euchromatin at the chromosome scale, and in proximity to 107 

gene promoters and terminators at the fine scale (Choi et al. 2013; Shilo et al. 2015; 108 

Drouaud et al. 2013; Wijnker et al. 2013; Horton et al. 2012; Hellsten et al. 2013; Fu et al. 109 

2002; Choulet et al. 2014). Crossovers in plant genomes show positive associations with 110 

H3K4me3, histone variant H2A.Z (Choi et al. 2013; Wijnker et al. 2013; Shilo et al. 2015; 111 

Drouaud et al. 2013; Liu et al. 2009), A-rich and CTT/CNN-repeat DNA sequence motifs 112 

(Shilo et al. 2015; Choi et al. 2013; Wijnker et al. 2013), and can be directly suppressed by 113 

acquisition of heterochromatic modifications, such as DNA methylation and H3K9me2 (Yelina 114 

et al. 2015). However, genome-wide meiotic DSB patterns and their relation to chromatin, 115 

DNA sequence and crossover frequency have yet to be reported in a plant genome. 116 

 117 

Despite deep conservation of core meiotic factors, such as SPO11, many aspects of genome 118 

architecture, chromatin and recombination vary between eukaryotes. For example, budding 119 

yeast possesses point centromeres, whereas large, regional centromeres surrounded by 120 

repetitive heterochromatin are more common in other eukaryotes (Bloom 2014; Copenhaver 121 

et al. 1999; Vincenten et al. 2015; Malik and Henikoff 2009). Equally, although transposable 122 

elements are ubiquitous, their diversity and abundance varies between species (Feschotte 123 

and Pritham 2007; Beauregard et al. 2008; McClintock 1956). Transposons are typically 124 

heterochromatic and show RNA polymerase-II suppression, caused by epigenetic 125 

modifications (Slotkin and Martienssen 2007). Repetitive sequences are also frequently 126 

crossover-suppressed during meiosis, in order to limit non-allelic homologous recombination 127 
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 6 

and genome instability (Sasaki et al. 2010). However, evidence exists for specific transposon 128 

families promoting meiotic recombination in plants, fungi and animals (Myers et al. 2005; Shi 129 

et al. 2010; Sasaki et al. 2013; Horton et al. 2012; Yandeau-Nelson et al. 2005). For 130 

example, meiotic gene conversion, although not crossovers, has been observed in maize 131 

centromeric transposons (Shi et al. 2010), which indicates DSB formation and interhomolog 132 

repair. However, the extent to which plant transposons and repetitive sequences initiate 133 

meiotic recombination genome-wide has remained unclear. 134 

 135 

To further explore relationships between recombination and chromatin, in genes versus 136 

repeats, we mapped meiotic DSBs and crossovers throughout the ~135 megabase 137 

Arabidopsis thaliana genome, which contains diverse DNA and RNA transposons 138 

(Supplemental Fig. S1) (Buisine et al. 2008; Quadrana et al. 2016; Stuart et al. 2016; 139 

Kawakatsu et al. 2016; Slotkin and Martienssen 2007). We show that Arabidopsis meiotic 140 

DSB hotspots are concentrated in gene promoters, terminators and introns. We also observe 141 

strong DSB hotspots inside specific families of DNA transposons, which are enriched within 142 

gene regulatory sequences. We show that nucleosome occupancy, driven by AT-sequence 143 

richness, is a major determinant of DSB hotspot strength and location in both genes and 144 

repeated sequences. Using the met1 DNA methylation mutant, we demonstrate coordinate 145 

epigenetic remodeling of transcription, chromatin and recombination. Activation of meiotic 146 

DSBs in met1 occurs most strongly in centromeric heterochromatin and specific Gypsy and 147 

EnSpm/CACTA transposon families. Together, our work reveals both conserved and plant-148 

specific aspects to the meiotic DSB landscape and its relationship to chromatin. 149 

 150 

 151 

 152 

 153 
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 7 

Results 154 

 155 

Purification and sequencing of Arabidopsis SPO11-1-oligonucleotides 156 

In order to map meiotic DSBs throughout the Arabidopsis genome we sought to purify and 157 

sequence SPO11-1-oligonucleotides (Pan et al. 2011; Grelon et al. 2001). We generated a 158 

6×Myc translational fusion at the C-terminus of Arabidopsis SPO11-1, driven by the 159 

endogenous promoter, which fully complements spo11-1 fertility and crossover frequency, 160 

measured using fluorescent recombination reporter lines (Fig. 1A–1B and Supplemental 161 

Table S1) (Berchowitz and Copenhaver 2008; Grelon et al. 2001). To analyze SPO11-1-Myc 162 

during meiosis we performed immunocytology using α-Myc antibodies. SPO11-1-Myc foci 163 

were detected from leptotene until pachytene stage, associated with the meiotic 164 

chromosome axis, which was visualized by co-immunostaining for the ASYNAPTIC1 (ASY1) 165 

HORMA domain protein (Fig. 1C and Supplemental Fig. S2). SPO11-1-Myc foci showed a 166 

comparable number (mean=204.6 foci, n=10) and duration to those reported for its binding 167 

partner MTOPVIB (Fig. 1C and Supplemental Fig. S2) (Vrielynck et al. 2016). No α-Myc 168 

signal was detected above background in wild type meiotic cells, or in SPO11-1-Myc somatic 169 

cells (Fig. 1C). Therefore, SPO11-1-Myc is functional and accumulates on meiotic 170 

chromosomes, coincident with endogenous DSB formation (Vrielynck et al. 2016; Sanchez-171 

Moran et al. 2007). 172 

 173 

Following protein extraction from meiotic-stage floral buds, SPO11-1-Myc was detectable as 174 

a ~54 kDa band using western blotting (Fig. 1D). Oligonucleotides covalently attached to 175 

SPO11-1-Myc can be radioactively 3'-end labeled using terminal transferase (Neale and 176 

Keeney 2009), which revealed 60–70 kDa complexes (Fig. 1E). No signal was observed 177 

when the protocol was repeated without antibody (Fig. 1E). Following proteinase K digestion 178 

of SPO11-1-Myc immunoprecipitates and PAGE separation, we detected radiolabelled  179 
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 8 

Figure 1. Purification and sequencing of Arabidopsis SPO11-1-oligonucleotides. (A) 180 

Inflorescences from wild type (Col), spo11-1 and SPO11-1-Myc spo11-1 plants. (B) 181 

Crossover frequency (cM) measured using fluorescent crossover reporter lines in Col or 182 

SPO11-1-Myc spo11-1, with mean values in red. (C) Nuclei from SPO11-1-Myc or Col pollen 183 

mother cells immunostained for α-Myc (green) or α-ASY1 (red), and stained for DAPI (blue). 184 

Scale bars=10µM. (D) α-Myc western blotting from SPO11-1-Myc or Col extracts, before and 185 

after α-Myc immunoprecipitation (α-Myc-IP). (E) Detection of end-radiolabelled SPO11-1-186 

Myc complexes following immunoprecipitation and SDS polyacrylamide gel electrophoresis 187 

(SDS-PAGE). (F) Detection of purified SPO11-1-oligonucleotides following proteinase K 188 

digestion of immunoprecipitates and polyacrylamide gel electrophoresis (PAGE). A labeled 189 

20 base oligonucleotide (20 nt) was run alongside as a size control. (G) Correlation of 190 

SPO11-1 in adjacent 10 kb windows for wild type libraries RPI1 and RPI3 (Supplementary 191 

Table 2). Blue dotted lines indicate genome average values. The Pearson’s correlation 192 

coefficient (r) is printed above. (H) Histogram showing lengths of uniquely aligning (blue), 193 

multiple-aligning (red) and total (black) SPO11-1 reads.  194 

  195 
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 9 

SPO11-1-oligonucleotides ~35–45 bases in length (Fig. 1F). SPO11-1-oligonucleotides were 196 

gel purified and used to generate sequencing libraries, using a protocol adapted from 197 

budding yeast (Supplemental Fig. S3) (Pan et al. 2011). Three biological replicate wild type 198 

(SPO11-1-Myc spo11-1) libraries were sequenced to high depth (11–28 million mapped 199 

reads), which showed significant correlation (Fig. 1G, Supplemental Fig. S4 and 200 

Supplemental Tables S2–S3). For example, Pearson’s r between replicates was 0.97–0.98 201 

at the 10 kb scale (Supplemental Table S3). The majority (92.2–93.4%) of SPO11-1-202 

oligonucleotide reads (hereafter called SPO11-1) aligned uniquely, and multiple-mapped 203 

reads with equal alignment scores were randomly assigned (Fig. 1H and Supplemental Table 204 

S2). 205 

 206 

Genomic landscapes of SPO11-1-oligonucleotides, crossovers, euchromatin and 207 

heterochromatin 208 

We analyzed SPO11-1 levels in 10 kb windows and plotted DSB frequency throughout the 209 

Arabidopsis genome (Fig. 2A–2C). Consistent with broad-scale patterns of crossover 210 

recombination (Choi et al. 2013; Giraut et al. 2011; Salomé et al. 2012), SPO11-1 is highest 211 

in the euchromatic chromosome arms, lowest in the centromeres (Fig. 2A), and shows a 212 

positive correlation with genes (r=0.777) and a negative correlation with transposon density 213 

(r=-0.816). To compare with epigenetic marks, we performed ChIP-seq for the gene-enriched 214 

histone modification H3K4me3, which was positively correlated with SPO11-1 (r=0.700), 215 

whereas centromere-enriched DNA methylation was negatively correlated (r=-0.831) (Fig. 216 

2A–2B and Supplemental Table S6) (Yelina et al. 2015). This is consistent with chromatin 217 

playing a major role in shaping the Arabidopsis DSB landscape, at the chromosome scale. 218 

 219 

In order to compare meiotic DSB levels with the frequency of final crossover products, we 220 

used 2,499 crossover events mapped in 363 Col×Ler F2 plants by genotyping-by-sequencing  221 
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 10 

Figure 2. Genomic landscape of SPO11-1 DSBs, crossovers, euchromatin and 222 

heterochromatin. (A) SPO11-1 (black) and DNA methylation (blue) density throughout the 223 

Arabidopsis genome, with centromeres indicated by vertical dotted lines. Horizontal dotted 224 

lines represent mean values. (B) As for (A), but plotting SPO11-1 (black) and H3K4me3 (blue).  225 

(C) As for (A), but plotting SPO11-1 (black) and crossover frequency (red). Crossovers were 226 

identified using genotyping-by-sequencing of Col×Ler F2 plants. X-axis ticks indicate the 227 

positions of NBS-LRR gene homologs. (D) Observed (red dots) crossover overlap per 228 

megabase for SNP intervals, grouped according to SPO11-1 hexiles (1=low SPO11-1, 229 

6=high SPO11-1). Boxplots show the range of predicted crossover overlap values based on 230 

the generalized linear model (GLM) formula:  CO~SPO11+band×(annotation+width). (E) As 231 

for (D), but showing observed and predicted crossover overlaps per megabase, according to 232 

two megabase chromosomal bands. 233 
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 11 

(Fig. 2C–2E and Supplemental Table S4) (Choi et al. 2016; Rowan et al. 2015). Crossovers 247 

were mapped between Col/Ler SNPs to a mean resolution of 970 bp. At the chromosome 248 

scale there was a positive correlation between SPO11-1 and crossover frequency (r=0.593) 249 

(Fig. 2C). However, there was also significant variation in the ratio of SPO11-1 to crossovers 250 

along the chromosome arms (Fig. 2C), which may reflect modification of recombination 251 

downstream of DSB formation, for example by polymorphism, or additional features of 252 

chromosome architecture. We used a logistic model to analyze the likelihood of observing 253 

crossovers relative to other genome features. This revealed a strong positive effect for 254 

SPO11-1 levels (10.87, P=9.36×10-87), with weaker but significant effects for chromosome 255 

position and sequence annotation (Fig. 2D–2E and Supplemental Table S5). Therefore, 256 

overall higher levels of initiating meiotic DSBs associate with higher final crossover levels. 257 

 258 

SPO11-1 DSB hotspots in nucleosome-depleted gene regulatory regions 259 

Budding yeast meiotic DSB hotspots occur in nucleosome-depleted regions within gene 260 

promoters (Pan et al. 2011; Lam and Keeney 2015; Wu and Lichten 1994; Fan and Petes 261 

1996; Nicolas et al. 1989), whereas mammalian PRDM9-dependent DSB hotspots tend to be 262 

located intergenically at specific C-rich sequence motifs (Myers et al. 2008; Brick et al. 2012; 263 

Kong et al. 2010; Lange et al. 2016). Therefore, we analyzed Arabidopsis SPO11-1-264 

oligonucleotides in relation to gene transcriptional start sites (TSSs) and termination sites 265 

(TTS) (Fig. 3A–3B). We also analyzed nucleosome occupancy by performing micrococcal 266 

nuclease digestion of chromatin, followed by sequencing of mononucleosomal DNA (MNase-267 

seq) (Fig. 3A–3B and Supplemental Table S7) (Choi et al. 2016). Similar to budding yeast, 268 

SPO11-1 was highest in Arabidopsis nucleosome-free regions located in gene promoters 269 

(Fig. 3A–3C). Interestingly we also observe strong DSB hotspots in nucleosome-free 270 

terminators, where plant crossover hotspots are also observed (Fig. 3A–3C) (Choi et al. 271 

2013; Wijnker et al. 2013). A further difference is that Arabidopsis genes possess on average  272 
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 12 

Figure 3. SPO11-1 DSB hotspots in gene promoter and terminator nucleosome-free 273 

regions. (A) Heat maps of SPO11-1-oligonucleotides (upper) and nucleosomes (lower) 274 

within gene transcriptional units (between transcriptional start (TSS) and termination (TTS) 275 

sites) and 2 kb flanking regions. Each row represents an individual gene, which have been 276 

ordered by SPO11-1-oligonucleotide normalized coverage values between TSS and TTS. 277 

SPO11-1 and nucleosome values equal to defined quantiles were mapped linearly to a 278 

vector of six colors (dark blue (lowest), blue, light blue, yellow, orange, red (highest)). (B) 279 

Density of SPO11-1-oligonucleotides (black), nucleosome occupancy (MNase-seq, red), or 280 

H3K4me3 (ChIP-seq, blue) in wild type, across gene transcriptional units (TSS to TTS) and in 281 

flanking 2 kb windows. (C) Heat maps as for (A), but showing SPO11-1 ranked by SPO11-1 282 

levels in gene promoters (upper, -500 bp upstream of TSS) or gene terminators (lower, +500 283 

bp downstream of TTS). (D) Heat maps as for (A), but showing nucleosomes ranked by 284 

SPO11-1 levels in gene promoters (upper) or by nucleosomes within TSS–TTS (lower). (E) 285 

Heat maps as for (A), but showing H3K4me3 ranked by SPO11-1 levels in gene promoters 286 

(upper) or by H3K4me3 within TSS–TTS (lower). 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 
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6.7 exons (Cheng et al. 2017), whereas budding yeast genes lack introns (Pan et al. 2011). 298 

We observe that Arabidopsis introns have higher SPO11-1 and lower nucleosomes 299 

compared with exons (Supplemental Fig. S5B–S5D). However, SPO11-1 is overall 300 

suppressed within relatively nucleosome-occupied gene bodies, compared with flanking 301 

nucleosome-depleted promoter and terminator regions (Fig. 3A–3C and Supplemental Fig. 302 

S5A). As expected, H3K4me3 shows prominent enrichment at the +1 nucleosome position, 303 

immediately downstream of TSS, within gene bodies (Fig. 3B) (Zhang et al. 2009). 304 

 305 

To investigate control of DSB levels we ranked genes according to SPO11-1 in 500 bp 306 

windows upstream of gene TSS (promoters), or downstream of TTS (terminators) (Fig. 3C). 307 

Levels of promoter SPO11-1 did not strongly associate with terminator levels, showing that 308 

meiotic DSBs vary independently at opposite ends of genes (Fig. 3C). We used the SPO11-1 309 

promoter ranking to look at associated variation in nucleosome occupancy (MNase) and 310 

H3K4me3 levels. High SPO11-1 promoters strongly associate with lower promoter 311 

nucleosome occupancy, consistent with DNA accessibility being a major determinant of 312 

Arabidopsis DSB levels (Fig. 3D). In contrast, H3K4me3 levels within genes did not show a 313 

strong association with promoter SPO11-1 levels (Fig. 3E). This supports a recombination-314 

promoting role for H3K4me3 downstream of DSB formation, consistent with analysis of mouse 315 

and budding yeast SPO11-oligonucleotides (Tischfield and Keeney 2012; Lange et al. 2016). 316 

 317 

SPO11-1 hotspots and coldspots in transposable elements 318 

To explore meiotic DSB levels within repetitive sequences we selected 29,150 transposable 319 

elements from 10 DNA and RNA families for analysis (Supplemental Fig. S1 and 320 

Supplemental Table S8) (Buisine et al. 2008). Extensive SPO11-1 variation was observed 321 

between transposon families, with high DSB levels in Helitrons, which transpose via rolling-322 

circle replication, and Pogo/Tc1/Mariner and MuDR ‘cut-and-paste’ DNA transposons (Fig. 323 
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4A and Supplemental Table S8) (Kapitonov and Jurka 2001; Slotkin and Martienssen 2007). 324 

In contrast, retrotransposons that replicate via RNA intermediates, including LTR and non-325 

LTR families, were SPO11-1 coldspots (Fig. 4A and Supplemental Table S8) (Beauregard et 326 

al. 2008). As observed for genes (Fig. 3), variation in transposon family SPO11-1 negatively 327 

correlated with nucleosome occupancy (r=-0.96) (Fig. 4B and Supplemental Table S8). We 328 

divided transposons into six groups (hexiles) after ranking by within element SPO11-1 levels 329 

(Figure 4C; hexile 1=highest, hexile 6=lowest). This grouping showed strong correlations 330 

between higher SPO11-1 and reduced transposon lengths (r=-0.80), lower nucleosome 331 

occupancy (r=-0.94), greater DNA (r=0.95) and fewer RNA transposons (r=-0.95) (Fig. 4C 332 

and Supplemental Tables S8-S9). At the chromosome scale, high SPO11-1 transposons 333 

(e.g. Helitrons and Pogo/Tc1/Mariner) show elevated density in the chromosome arms and 334 

pericentromeres, whereas low SPO11-1 transposons (e.g. Gypsy LTR) are centromere-335 

enriched (Fig. 4D). Differences in DSB activity between transposon families are also evident 336 

locally, for example comparing a nucleosome-dense retroelement coldspot ATCOPIA4 with 337 

an adjacent cluster of nucleosome-depleted Helitron hotspots (Fig. 4E–4F). Many DSB 338 

hotspot DNA transposons are short, non-autonomous fragments, although high SPO11-1 339 

was also observed within full length Helitron and Lemi1 Pogo transposons (Supplemental 340 

Fig. S6A–S6D) (Feschotte and Mouchès 2000; Kapitonov and Jurka 2001). Hence, despite 341 

the expectation that transposons would be suppressed for meiotic DSBs, we observe that 342 

specific families of repetitive elements are nucleosome-depleted SPO11-1 hotspots.  343 

 344 

Nucleosomes, DNA sequence and SPO11-1 within genes and transposons 345 

To further investigate spatial relationships between meiotic DSBs, chromatin and DNA 346 

sequence, we analyzed 4 kb windows around gene TSS and TTS, or transposon start and 347 

end coordinates, each according to SPO11-1 hexile groups (Fig. 5A–5B and Tables S9–348 

S11). Again, a strong negative relationship between SPO11-1 and nucleosome occupancy  349 
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 15 

Figure 4. Meiotic recombination and chromatin variation between Arabidopsis 350 

transposons. (A) Pie chart showing Arabidopsis transposon families, with slice size 351 

proportional to physical length, and color-coded according to SPO11-1 levels. The color 352 

equivalent to the genome-wide mean value is inset. (B) As for (A), but showing nucleosome 353 

occupancy (MNase-seq). (C) Box plots showing SPO11-1 and nucleosome occupancy, 354 

according to transposon SPO11-1 hexile groups, with horizontal lines indicating the genome 355 

average value. Inset pie charts show the proportion of DNA (red) and RNA (blue) 356 

transposons for each SPO11-1 hexile. (D) Density of transposons through the Arabidopsis 357 

genome according to SPO11-1 hexile (red=highest SPO11-1, blue=lowest SPO11-1). X-axis 358 

ticks indicate NBS-LRR gene homologs. Plotted beneath are SPO11-1 (red) versus 359 

Helitron/Pogo/Tc1/Mariner class DNA transposons (blue), or Gypsy RNA transposons (blue). 360 

(E)–(F) Close-ups of chromosomal regions showing SPO11-1 (red), nucleosomes (blue) and 361 

H3K4me3 (grey) density, relative to gene (dark blue) and transposon (light blue) annotation 362 

shown beneath. Note in (F), the presence of a DEFENSIN gene At5g60553 associated with 363 

a Helitron ATREP11 hotspot. 364 

 365 
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was observed in both genes and transposons (Fig. 5A–5B and Supplemental Tables S9–375 

S11). In the high SPO11-1 regions, we also observe quantitative enrichment of AT-rich 376 

sequence motifs that have previously been associated with high crossovers (Fig. 5A–5B and 377 

Supplemental Tables S6–S8) (Horton et al. 2012; Choi et al. 2013; Shilo et al. 2015; Wijnker 378 

et al. 2013). As AT-sequence richness is known to exclude nucleosomes (Segal and Widom 379 

2009), we propose that these motifs cause higher SPO11-1 accessibility via this effect, 380 

leading to higher DSB formation and crossover frequency (Fig. 5A–5B).  381 

 382 

We also note that high SPO11-1 genes and transposons show close proximity to one 383 

another (Fig. 5A–5B). Helitron transposons are known to insert into AT dinucleotides 384 

(Kapitonov and Jurka 2001), and Lemi1 Pogo transposons insert into TA dinucleotides 385 

(Guermonprez et al. 2008). Therefore, transposon integration site preference likely 386 

contributes to DNA element enrichment in AT-rich gene promoters and terminators, where 387 

they further contribute to nucleosome exclusion and high meiotic DSB levels (Fig. 5A–5B). 388 

High recombination rates may also provide an explanation for the tendency of DSB hotspot 389 

transposons to be shorter (Supplemental Tables S8–S9), due to promotion of non-390 

homologous recombination and sequence rearrangement (Sasaki et al. 2010). Together, 391 

these findings reveal intimate connections between DNA sequence, chromatin and 392 

recombination around Arabidopsis genes and transposons. 393 

 394 

Meiotic DSB hotspot transposons are enriched in proximity to immunity genes 395 

To investigate genes associated with high DSB levels, we tested for enrichment of Gene 396 

Ontology (GO) terms, following ranking by promoter SPO11-1 levels (Fig. 3C). This revealed 397 

a strong association with biotic defense GO terms (Supplemental Table S12), which was 398 

driven by high recombination DEFENSIN genes (Supplemental Fig. S6E–S6F). DEFENSINS 399 

encode small cysteine-rich peptides with roles in antimicrobial defense and pollen-pistil  400 
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Figure 5. Nucleosomes, AT-sequence motifs and SPO11-1 DSBs within genes and 401 

transposons. (A) Density of SPO11-1, nucleosomes, AT-motifs (Choi et al. 2013), and TE 402 

start coordinates in 4 kb windows around gene transcriptional start sites (TSSs) or 403 

termination sites (TTSs), or the same number of random (Random) positions. Genes are 404 

grouped according to SPO11-1 promoter or terminator hexiles (red=highest, blue=lowest). 405 

(B) As for (A) but analyzing transposon SPO11-1 hexiles, and showing gene TSS proximity. 406 

(C) Close-ups of chromosomal regions showing SPO11-1 (red), nucleosomes (blue) and 407 

H3K4me3 (grey), relative to gene (dark blue) and transposon (light blue) annotations. The 408 

WRR4 TIR-NBS-LRR resistance gene is highlighted which contains transposon hotspots 409 

within its introns. (D) As for (C), with the RPP4 TIR-NBS-LRR resistance gene highlighted, 410 

which contains intronic hotspot transposons.  411 
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interactions (Silverstein et al. 2005). Further association of recombination hotspots and 426 

immunity genes is evident at the chromosome scale, where high SPO11-1 transposons show 427 

elevated density within the nucleotide binding site-leucine rich repeat (NBS-LRR) immune 428 

gene clusters on the right arms of chromosomes 1 and 5 (Fig. 4D) (Choi et al. 2016), and 73 429 

of 197 NBS-LRR genes are within 500 base pairs of DSB hotspot transposons 430 

(Supplemental Table S13). For example, the NBS-LRR crossover hotspots RAC1 and HRG1 431 

are flanked by Helitron and MuDR hotspot transposons, respectively (Supplemental Fig. 432 

S6G–S6H and Supplemental Table S13) (Choi et al. 2016). Further examples include the 433 

RPP4 and WRR4 oomycete resistance genes, which contain strong ATREP Helitron DSB 434 

hotspots within their introns (Fig. 5C–5D and Supplemental Table S13) (van der Biezen et al. 435 

2002; Borhan et al. 2008). As Arabidopsis NBS-LRR genes are sites of natural structural 436 

diversity and DNA methylation polymorphism in populations (Kawakatsu et al. 2016; 437 

Quadrana et al. 2016; Stuart et al. 2016), we propose that gene-proximal DNA transposons 438 

may act as meiotic recombination enhancers, contributing to the high levels of genetic and 439 

epigenetic variation observed at these loci. 440 

 441 

Epigenetic remodeling of SPO11-1 DSBs, chromatin and transcription in met1 DNA 442 

methylation mutants 443 

Heterochromatic marks, such as DNA methylation, play critical roles in transcriptionally 444 

silencing transposable elements and thereby limiting their proliferation within eukaryotic 445 

genomes (Slotkin and Martienssen 2007). To directly investigate the role of heterochromatin 446 

on transposon recombination, chromatin and transcription, we compared SPO11-1, 447 

nucleosomes, H3K4me3 and RNA expression genome-wide in wild type and met1. MET1 448 

encodes the major CG sequence context maintenance DNA methyltransferase in 449 

Arabidopsis (Stroud et al. 2013; Saze et al. 2003; Kankel et al. 2003). In met1 mutants 450 

cytological decondensation of heterochromatin occurs, together with elevated transposon 451 
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transcription and mobility (Mathieu et al. 2007; Saze et al. 2003; Kato et al. 2003). We 452 

therefore sought to test whether related changes in heterochromatic meiotic DSBs occur in 453 

met1. For all experiments we used the null met1-3 allele, which was isolated in a Columbia 454 

background (Saze et al. 2003).  455 

 456 

At the chromosome-scale met1-3 shows pronounced loss of CG DNA methylation within the 457 

centromeric regions (Stroud et al. 2013). We observe that this is mirrored by an increased 458 

centromeric SPO11-1 differential between met1 and wild type (ΔSPO11-1) (Fig. 6A). The 459 

met1 ΔSPO11-1 differential also strongly negatively correlates with the met1 nucleosome 460 

differential (r=-0.879), and positively with the met1 H3K4me3 differential (P=0.837) (Fig. 6A). 461 

This shows that loss of CG DNA methylation causes broad-scale gain of both meiotic 462 

SPO11-1 DSBs and euchromatic chromatin states (reduced nucleosome occupancy and 463 

increased H3K4me3) within the met1 centromeric regions. Regions showing high met1 464 

ΔSPO11-1 differential also strongly correlate with the densities of Gypsy (r=0.913) and 465 

EnSpm/CACTA (r=0.892) transposons, which are SPO11-1 coldspots in wild type (Figs. 4A 466 

and 6A). 467 

 468 

To analyze changes in recombination at the fine-scale, we compared SPO11-1 levels within 469 

transposons between wild type and met1 (Fig. 6B). 12,224 transposons (41.9%) showed net 470 

gain of SPO11-1 in met1 (Fig. 6B). These recombination-activated transposons also show 471 

significantly reduced nucleosome occupancy, elevated H3K4me3 and increased transcription 472 

in met1 (ANOVA all P=<2.50×10-6) (Fig. 6B). This is consistent with the trends observed at 473 

chromosome scale, and demonstrate that loss of CG methylation causes transposons to gain 474 

euchromatic features and increase meiotic recombination initiation. These trends are also 475 

evident at specific transposable elements. For example, the ATENSPM9 and ATENSPM10 476 

EnSpm/CACTA and ATGP3 Gypsy transposons show coordinate activation of transcription  477 
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Figure 6. Coordinate epigenetic remodeling of chromatin, transcription and meiotic 478 

DSBs in met1 DNA methylation mutants. (A) Differential (Δ) signal of SPO11-1 (red), 479 

nucleosomes (blue) and H3K4me3 (black) in met1 compared with wild type (Col), throughout 480 

the Arabidopsis genome. Horizontal dotted lines indicate zero differential. Centromeres are 481 

indicated by vertical dotted lines. The lower plot shows ΔSPO11-1 (red) compared with 482 

Gypsy (black) and EnSpm/CACTA (blue) transposon densities. (B) SPO11-1, nucleosomes, 483 

H3K4me3 or RNAseq data in Col (blue) versus met1 (red), analyzed in 4 kb windows around 484 

the start and end of those transposons with positive ΔSPO11-1 values (n=12,224), or the 485 

same number of random positions. The mean width of TEs analyzed is indicated by the 486 

vertical dotted lines.  487 

 488 
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and meiotic DSBs in met1, in addition to showing reduced nucleosome occupancy and gain 502 

of H3K4me3 (Fig. 7A).  503 

 504 

To further analyze the interaction of chromatin structure and meiotic DSBs, we identified 505 

74,401 highly positioned nucleosomes in wild type from our MNase-seq data. Of these 506 

positions 30,276 showed reduced nucleosome occupancy in met1 (Fig. 7B). These 507 

nucleosome positions show high CG methylation in wild type, with peak mCG levels 508 

immediately flanking the central nucleosomal peak (Fig. 7C). In met1, CG methylation is lost 509 

at these positions, which is coincident with significantly reduced nucleosome occupancy and 510 

increased SPO11-1 DSBs (ANOVA all P=<2.2×10-16) (Fig. 7B). Taken together, this 511 

demonstrates coordinate remodeling of chromatin, histone modifications, transcription and 512 

meiotic recombination, caused by loss of CG DNA methylation in met1. Epigenetic 513 

remodeling of met1 recombination is evident at the scale of chromosomes, transposons and 514 

individual nucleosomes. 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 
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Figure 7. Fine-scale epigenetic remodeling of met1 transposon chromatin, 527 

transcription and recombination. (A) Close-up of chromosomal regions showing SPO11-1, 528 

nucleosomes, H3K4me3 and RNAseq data, relative to gene (dark blue) and transposon (light 529 

blue) annotation, for Col (blue) and met1 (red). (B) Plots analyzing SPO11-1 (red) and 530 

nucleosomes (blue) in Col and met1 for highly positioned nucleosomes that are differentially 531 

occupied in met1 (n=30,267), or the same number of random positions. (C) As for (B), but 532 

analyzing CG DNA methylation (blue) in wild type and met1. 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 8, 2017. ; https://doi.org/10.1101/160911doi: bioRxiv preprint 

https://doi.org/10.1101/160911


 23 

Discussion 553 

The Arabidopsis meiotic DSB landscape shows both conserved and plant-specific features, 554 

compared with SPO11-oligonucleotide maps generated in fungal and mammalian species 555 

(Pan et al. 2011; Lange et al. 2016; Fowler et al. 2014). Consistent with the absence of 556 

PRDM9 in plants and fungi, Arabidopsis hotspots are more similar to those observed in 557 

budding yeast promoters, which are driven by nucleosome occupancy (Pan et al. 2011; Lam 558 

and Keeney 2015; Wu and Lichten 1994; Fan and Petes 1996). However, Arabidopsis also 559 

shows SPO11-1 hotspots within nucleosome-depleted gene terminators and introns, 560 

indicating that varying gene architectures can influence meiotic DSB patterns between 561 

species. Interestingly, avian crossover hotspots are also observed at both gene promoters 562 

and terminators (Singhal et al. 2015), meaning that recombination hotspots located at gene 563 

3'-ends may be widely conserved.  564 

 565 

Consistent with analysis of yeast and mouse SPO11-oligonucleotides, we do not observe a 566 

strong relationship between H3K4me3 and DSB levels (Tischfield and Keeney 2012; Lange et 567 

al. 2016). However, as this modification correlates positively with plant crossover frequency 568 

(Choi et al. 2013; Liu et al. 2009; Shilo et al. 2015), it is likely that H3K4me3 plays a 569 

recombination-promoting role downstream of DSB formation, potentially via tethering repair 570 

sites to the chromosome axis, as in budding yeast and mammals (Sommermeyer et al. 2013; 571 

Borde et al. 2009; Acquaviva et al. 2013; Imai et al. 2017). No evidence for PRDM9-like 572 

proteins exist in plants, which acts to direct recombination hotspots to specific sequence 573 

motifs in mammals (Lange et al. 2016; Mihola et al. 2009; Parvanov et al. 2010; Myers et al. 574 

2010; Baudat et al. 2010; Grey et al. 2011; Brick et al. 2012; Grey et al. 2017). However, we 575 

observe a strong influence of AT-sequence richness on SPO11-1 levels. As AT-richness 576 

excludes nucleosomes (Segal and Widom 2009), we propose that these motifs allow 577 
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increased SPO11-1 access to DNA, and this underlies their association with elevated 578 

crossover frequency (Shilo et al. 2015; Choi et al. 2013; Wijnker et al. 2013). 579 

 580 

Several additional differences are notable between the budding yeast and Arabidopsis 581 

genomes when comparing their DSB landscapes. First is the possession of point versus 582 

regional centromeres (Bloom 2014; Copenhaver et al. 1999; Vincenten et al. 2015), and that 583 

Arabidopsis contains a larger and more diverse transposon complement (Buisine et al. 2008; 584 

Quadrana et al. 2016; Stuart et al. 2016). Arabidopsis transposons are enriched in 585 

pericentromeric heterochromatin and are transcriptionally silenced by DNA methylation 586 

(Saze et al. 2003; Kato et al. 2003), which is a chromatin modification not present in budding 587 

or fission yeast. Using the met1 mutant we show that loss of maintenance of CG DNA 588 

methylation causes coordinated gain of euchromatic marks, transcription and SPO11-1 589 

DSBs within Arabidopsis centromeric regions. Gain of meiotic DSBs in met1 was greatest in 590 

coldspot transposons, including the EnSpm/CACTA and Gypsy families. Hence, DNA 591 

methylation simultaneously silences transcription and initiation of meiotic recombination in 592 

specific families of Arabidopsis transposons. This finding is reminiscent of increased SPO11-593 

DSBs detected in specific retrotransposon classes in mouse dnmt3l DNA methylation 594 

mutants (Zamudio et al. 2015), indicating that epigenetic silencing of transposon 595 

recombination is a conserved feature of plant and mammalian genomes.  596 

 597 

Despite the expectation that transposons would be recombination-suppressed, in order to 598 

avoid genome instability (Sasaki et al. 2010), we show that specific Arabidopsis DNA 599 

transposons contain strong meiotic DSB hotspots. These DNA transposons are AT-rich and 600 

nucleosome-depleted in wild type and frequently occur in close proximity to genes. As 601 

Helitrons and Pogo/Tc1/Mariner transposons display TA and AT dinucleotide insertion site 602 

preferences (Guermonprez et al. 2008; Kapitonov and Jurka 2001), this likely contributes to 603 
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their enrichment in AT-rich gene regulatory regions, where they may further contribute to 604 

nucleosome exclusion and enhanced SPO11-1 DSB levels. Higher meiotic recombination 605 

initiation may also be responsible for DSB hotspot transposons tending to occur as shorter, 606 

non-autonomous fragments. For example, insertions, deletions and rearrangements can 607 

result from non-allelic recombination between repeated loci (Sasaki et al. 2010). Together, 608 

these data reveal unexpected diversity in the chromatin and recombination landscapes 609 

between Arabidopsis transposable element families. As plant genomes vary greatly in the 610 

abundance and chromosomal distributions of specific transposon families (Buisine et al. 611 

2008; Choulet et al. 2014; Guermonprez et al. 2008; Kapitonov and Jurka 2001; Quadrana et 612 

al. 2016; Stuart et al. 2016; Liu et al. 2009), repetitive elements may contribute to diversity of 613 

meiotic recombination patterns between species.  614 

 615 

A role for transposons modifying transcription in proximity to genes is well established, 616 

consistent with Barbara McClintock’s ‘Controlling Elements’ concept (Slotkin and 617 

Martienssen 2007; McClintock 1956). Here we demonstrate that transposons also shape the 618 

meiotic DSB and chromatin landscape, within Arabidopsis gene regulatory regions. We 619 

propose that nucleosome-depleted SPO11-1 hotspot transposons may provide an adaptive 620 

function within plant genomes, by acting as recombination-enhancers. This may be 621 

particularly important at the diverse NBS-LRR resistance gene family, which participate in 622 

host-pathogen coevolution (Jones and Dangl 2006). Interestingly, these immune loci are also 623 

known regions of high genetic and epigenetic divergence between Arabidopsis populations 624 

(Alonso-Blanco et al. 2016; Kawakatsu et al. 2016). We propose that hotspot transposons 625 

directly contribute to this diversity by recruiting SPO11-1-dependent DSBs during meiosis. 626 

Together, our work reveals novel mechanisms whereby mobile genetic elements can 627 

influence meiotic recombination, chromatin, diversity and adaptation in their host genomes. 628 

 629 
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Methods 630 

 631 

Generation of Arabidopsis SPO11-1-Myc spo11-1 lines 632 

Six c-Myc (6xMyc) epitopes were translationally fused to a genomic clone of the SPO11-1 633 

gene in the pPZP211 binary vector, which was transformed into wild type Arabidopsis (Col-0) 634 

using Agrobacterium tumefaciens strain GV3101, via floral dipping. SPO11-1-Myc 635 

transformants were crossed with spo11-1-3 (SALK_146172) heterozygotes to perform fertility 636 

complementation tests(Hartung et al. 2007). 637 

 638 

Recombination measurements using fluorescent seed and pollen 639 

Crossover measurements using fluorescent seed or pollen were carried out as 640 

described(Ziolkowski et al. 2015; Yelina et al. 2013). 641 

 642 

Immunocytological analysis 643 

Chromosome spreads of Arabidopsis pollen mother cells and immunostaining of ASY1 and 644 

SPO11-1-Myc were performed using fresh buds, as described(Armstrong et al. 2002). The 645 

following antibodies were used: α-ASY1(Armstrong et al. 2002), (rabbit, 1/500 dilution), α-646 

Myc (9E10, Santa Cruz Biotechnology) (mouse, 1/50 dilution). Microscopy was conducted 647 

using a DeltaVision Personal DV microscope (Applied precision/GE Healthcare) equipped 648 

with a CDD Coolsnap HQ2 camera (Photometrics). Image capture and analysis was 649 

performed using SoftWoRx software version 5.5 (Applied precision/GE Healthcare). 650 

 651 

Immunoprecipitation of SPO11-1-oligonucleotide complexes 652 

Approximately 30 grams of SPO11-1-Myc spo11-1-3 floral buds were ground to a fine 653 

powder in liquid nitrogen and resuspended in 4 volumes of lysis buffer (25 mM HEPES-654 

NaOH pH 7.9, 5 mM EDTA, 1.2% SDS, 1 mM PMSF, 2 mM DTT, 1×Roche Complete 655 
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Protease Inhibitor Cocktail). The lysis solution was boiled for 20 minutes, followed by rapid 656 

chilling on ice. Centrifugation at 4,000g for 20 min at 4°C was performed twice and the final 657 

supernatant diluted 4-fold by adding 10 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% Triton-X 100. 658 

100 µg of c-Myc Antibody (9E10, sc-40, Santa Cruz) were added to the diluted extract (~160 659 

ml) in 15 ml tubes and incubated for 8 hours at 4°C with rotation. 1.6 ml of 50% Protein G-660 

Sepharose slurry (71-7083-00, GE Healthcare) was added and incubated overnight at 4°C 661 

with rotation. A mock control (no antibody) was performed to validate immunoprecipitation 662 

efficiency and specificity at small scale, using western blotting with mouse monoclonal c-Myc 663 

antibodies (9E10, sc-40, Santa Cruz) or c-Myc Antibody HRP conjugates (sc-40 HRP, Santa 664 

Cruz). Following immunoprecipitation, protein G beads were collected by centrifugation at 665 

500g for 1 minute and washed five times with wash buffer (1% Triton X-100, 15 mM Tris-HCl, 666 

pH 8.0, 150 mM NaCl, 1 mM EDTA). Immunocomplexes were eluted from the Protein G 667 

beads by incubation at 70°C for 15 minutes in 2 volumes of elution buffer (100 mM Tris-Cl, 1 668 

mM CaCl2, 10 mM EDTA, 0.5 % SDS). 20 µg/ml of proteinase K was added to the beads and 669 

incubated at 50°C for 4 hours with occasional mixing. An equal volume of phenol/chloroform 670 

was added to beads, vortexed and centrifuged at 16,000g for 10 minutes. The supernatant 671 

was transferred to a fresh 1.5 ml tube and phenol/chloroform extraction was repeated. 672 

SPO11-1-oligonucleotides were precipitated using 0.1 volume of 3 M sodium acetate pH 5.2, 673 

7.5 µg of glycoblue (Ambion AM9515) and an equal volume of isopropanol, followed by 674 

incubation at -80°C for 2 hours. SPO11-1-oligonucleotides were collected by centrifugation at 675 

16,000g for 45 minutes at 4°C. After two 80% ethanol rinses the pellet was air-dried and 676 

resuspended in 30µl of distilled water. 40µl of 2×formamide loading buffer (80% deionized 677 

formamide, 10 mM EDTA, pH 8.0, 0.5 mg/ml xylene cyanol FF, 10% saturated bromophenol 678 

blue) were added, mixed and incubated at 70°C for 5 minutes. SPO11-1-oligonucleotides 679 

and a 20 bp ladder were separated using a 10% TBE-Urea gel (Invitrogen EC6875BOX) and 680 

stained by SYBR® Gold Nucleic Acid Gel Stain (Molecular Probes S-11494) for 3 minutes 681 
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with gentle shaking. The gel region corresponding to 35–50 nt was excised, macerated and 682 

soaked in 10 mM Tris (pH 8.0) overnight at 37°C with rotation. The gel fragments were 683 

removed by SpinX-centrifuge tube filters (Costar 8163) and the eluate was transferred to 684 

fresh 1.5 ml tubes. 0.3 volume of 9 M ammonium acetate, 7.5 µg of glycoblue and 2.5 685 

volumes of 100% ethanol were added, mixed and incubated at -80°C for 2 hours. The size-686 

selected SPO11-1-oligonucleotides were centrifuged at 16,000g for 45 minutes as above, 687 

rinsed twice by 80% ethanol, air-dried and dissolved in 40 µl of distilled water.  688 

 689 

For end-labelling experiments an aliquot (50 µl) of Protein G beads reserved from the 690 

immunoprecipitation was washed twice with 1×terminal deoxynucleotidyl transferase (TdT) 691 

buffer (50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, pH 7.9), 692 

and incubated with 15 units of TdT (M0315L, NEB), 50 µCi [α-32P]-dCTP triphosphate 693 

(5,000 Ci/mmol) and 5 µl of 10×TdT buffer, in a total volume of 50 µl, for 30 minutes at 37°C. 694 

The beads were washed three times with wash buffer. SPO11-1-oligonucleotide complexes 695 

were eluted by boiling for 3 minutes in 50 µl of 2×Laemmli buffer and separated using a 10% 696 

SDS-PAGE gel. The gel was vacuum-dried and radioactivity was detected by exposing to a 697 

phosphoimager screen. 698 

 699 

SPO11-1-oligonucleotide library construction 700 

Approximately 1 pmol of purified SPO11-1-oligonucleotides were used for GTP tailing at their 701 

3′-ends. Conditions were used such that between 3 and 5 GMP residues were added per 702 

oligonucleotide. A 40 µl reaction was used containing 1×TdT buffer (50 mM potassium 703 

acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, pH 7.9), 20 units of TdT (M0315L, 704 

NEB), and 2 mM GTP at 37°C for 6 hours. TdT was inactivated by incubating at 75°C for 10 705 

minutes. The G-tailed oligonucleotides were precipitated by incubating with 2.5 volumes of 706 

100% ethanol and 0.3 volumes of 9 M ammonium acetate at -80°C for 2 hours, followed by 707 
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centrifugation at 16,000g for 45 minutes, washing twice with 80% ethanol, air-drying and 708 

resuspension in 20 µl of distilled water. G-tailed SPO11-1-oligonucleotides were ligated to a 709 

double-stranded DNA adapter in a 40 µl reaction of 1×T4 RNA ligase 2 buffer (50 mM Tris-710 

HCl pH 7.5, 2 mM MgCl2, 1 mM DTT, 400 µM ATP), 10 pmol double-stranded 3′ adapter (3’-711 

adapter: top strand, 5′-pTGGAATTCTCGGGTGCCAAGGddC-3′, bottom strand, 5′-712 

AGCCTTGGCACCCGAGAATTCCACCC-3′) (Supplementary Table 14) and 20 units of T4 713 

RNA ligase 2 (dsRNA ligase) (M0239L, NEB) overnight at room temperature. To synthesize 714 

complementary strands of SPO11-1-oligonucleotides, 30 µM dNTP and 10 units of Klenow 715 

polymerase (NEB) were added to the ligation reaction, incubated at 25°C for 15 minutes, 716 

followed by 70°C for 10 minutes. 0.3 volumes of 9 M ammonium acetate, 5 µg of glycoblue 717 

and 2.5 volumes of 100% ethanol were added, and DNA precipitated at -80°C for 2 hours, 718 

followed by centrifugation at 16,000g. The pellet was washed twice with 80% ethanol, air-719 

dried and re-dissolved in 20 µl of water. 30 µl of formamide loading buffer was added, mixed 720 

and incubated at 70°C for 5 minutes. The denatured products were separated by 721 

electrophoresis using a 10% TBE-Urea gel, and the gel region between 60–80 nt (equivalent 722 

to 32–52 nt SPO11-1-oligonucleotides with (rG)3-5 tails and a ligated 23 nucleotide adapter) 723 

was excised, macerated and rotated overnight at 37°C overnight in 400 µl of 10 mM Tris-724 

HCl, pH 8.0. The buffer containing dissolved SPO11-1-oligonucleotides was centrifuged 725 

through SpinX-centrifuge tube filters. 0.3 volumes of 9 M ammonium acetate, 10 µg of 726 

glycoblue, and 2.5 volumes of 100% ethanol were added and DNA was precipitated at -80°C 727 

for 2 hours, followed by centrifugation at 16,000g for 45 minutes. The pellet was washed 728 

twice with 70% ethanol and air-dried. The 3′-ends of gel-purified denatured DNA strands 729 

were tailed with GTP by dissolving the dried pellet in a 40 µl tailing reaction containing 1×TnT 730 

buffer, 30 units of TdT, and 50 µM GTP, then incubating at 37°C for 6 hours and at 70°C for 731 

10 minutes. The G-tailed products were precipitated with 0.3 volumes of 9 M ammonium 732 

acetate, 10 µg of glycoblue, and 2.5 volumes of 100% ethanol at -80°C for 2 hours, followed 733 
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by centrifugation at 16,000g for 45 minutes. After washing with 70% ethanol twice, the air-734 

dried pellet was dissolved in 20 µl of distilled water and incubated in 40 µl of 1×T4 RNA 735 

ligase 2 buffer, 10 pmol double-stranded DNA adapter (5′ adapter: top strand, 5′-736 

pATCGTCGGACTGTAGAACTCTGAAddC-3′. bottom strand, 5′-737 

AGTTCAGAGTTCTACAGTCCGACGATCCC-3′) (Supplementary Table 14) and 30 units of 738 

T4 RNA ligase2 at room temperature overnight. Finally 30 µM dNTP and 10 units of Klenow 739 

polymerase were added and incubated at 25˚C for 15 minutes, followed by 70˚C for 10 740 

minutes. 741 

 742 

A test PCR was performed using a total reaction volume of 20 µl with 1/50 of the final Klenow 743 

reaction, 1×FailSafe™ PCR 2×PreMix E (FSP995E, Epicentre), 1µl of Pfu Ultra II Fusion HS 744 

DNA Polymerase (Catalog #600672, Agilent) and 1 µM primers RP1 and RPI1. The reaction 745 

mixture was divided into two tubes, and PCR performed at 94°C for 20 seconds, followed by 746 

20 cycles of {94°C for 10 seconds; 60°C for 30 seconds; 72°C for 15 seconds}. 5 µl of the 747 

PCR products were separated using a 10% TBE gel (EC6275BOX, Invitrogen) with a PCR 748 

20 bp low ladder (P1598, Sigma-Aldrich) and stained with SYBR gold to determine the size 749 

and quantity of PCR products. PCRs were then scaled up to a total volume of 400 µl. This 750 

mixture was divided into 10 µl aliquots, denatured at 94°C for 10 seconds and amplified for 751 

16 cycles of {94°C for 10 seconds; 60°C for 30 seconds; 72°C for 15 seconds}. PCR 752 

products were pooled and precipitated using 0.3 volumes of 9 M ammonium acetate, 7.5 µg 753 

of glycoblue and 2.5 volumes of 100% ethanol. The PCR products were separated by 754 

electrophoresis using a 10% TBE gel, and the gel area corresponding to 160–180 bp was 755 

excised, macerated and soaked in 400 µl of 10 mM Tris, pH 8.0 at 37˚C overnight, with 756 

mixing. The eluate was spun through a SpinX-centrifuge tube filter and DNA was precipitated 757 

using 0.3 volume of 9 M ammonium acetate, 7.5 µg of glycoblue and 2.5 volumes of 100% 758 
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ethanol. The air-dried DNA pellet was dissolved in 30 µl of 10 mM Tris, pH 8.0. Sequencing 759 

was performed using an Illumina NextSeq instrument.  760 

 761 

MNase and H3K4me3 chromatin immunoprecipitation sequencing 762 

Micrococcal nuclease digestion and sequencing library construction were performed as 763 

reported(Choi et al. 2016). For ChIP two grams of unopened floral buds were ground in liquid 764 

nitrogen. Nuclei were isolated and in vitro cross-linked in nuclear isolation crosslinking buffer 765 

(60 mM Hepes pH 8.0, 1 M sucrose, 5 mM KCl, 5 mM MgCl2, 5 mM EDTA, 0.6% Triton X-766 

100, 0.4 mM PMSF, 1 ug pepstatin, 1×protein inhibitor cocktails, 1% formaldehyde) at room 767 

temperature for 25 minutes. Glycine was added to a final concentration of 125 mM and 768 

incubated for 25 minutes at room temperature with rotation. Cross-linked bud lysate was 769 

filtered through one layer of Miracloth and centrifuged at 2,000g at 4°C for 20 minutes. The 770 

pellet was resuspended in extraction buffer (0.25 M sucrose, 10 mM Tris-HCl pH 8.0, 10 mM 771 

MgCl2, 1% Triton X-100, 1 mM EDTA, 5 mM β-mercaptoethanol, 0.1 mM PMSF, 772 

1×proteinase inhibitor cocktails) and centrifuged at 2,000g at 4°C for 15 minutes. The nuclei 773 

pellet was rinsed with 1 ml of TNE buffer (10 mM Tris-HCl pH 8.0, 10 mM NaCl, 1 mM EDTA, 774 

1×proteinase inhibitor cocktails), resuspended and then centrifuging at 2,000g at 4°C for 5 775 

minutes. Cross-linked chromatin was digested with 0.05 units of mirococcal nuclease 776 

(MNase, NEB M0247S) in reaction buffer (10 mM Tris-HCl, pH 8.0, 10 mM NaCl, 1 mM 777 

EDTA, 4 mM CaCl2) at 37°C for 15 minutes with vortexing. The reaction was stopped by 778 

adding EDTA to a final concentration of 20 mM, vortexing and placing on ice for 10 minutes. 779 

One volume of 10 mM Tris-pH 8, 0.2% SDS, 2% Triton X-100, 0.2% sodium deoxycholate, 780 

1×proteinase inhibitor cocktails was added and rotated for 2 hours at 4°C. The reactions 781 

were centrifuged at 14,000g in a microfuge for 5 minutes at 4°C. The supernatant was used 782 

for immunoprecipitation overnight at 4°C using Dynabeads Protein G that were pre-bound to 783 

5 µg H3K4me3 antibody (AbCam ab8580). The chromatin immunocomplexes were washed, 784 
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eluted and reverse-crosslinked. The immunoprecipitates were further purified by 785 

phenol/chlorophorm/isoamyl alcohol (24:24:1) extraction, followed by ethanol precipitation 786 

and 2% agarose gel separation and gel extraction of ~145–150 bp DNA. Approximately 10 787 

ng of ChIP-purified DNA was used to generate a library using the TruSeq Prep Kit v2 788 

(Illumina). Libraries were subjected to paired-end sequenced using an Illumina NextSeq 789 

instrument.  790 

 791 

RNA-sequencing 792 

Five µg of total RNA from unopened flower buds were extracted using Trizol reagent. To 793 

perform rRNA depletion we used the Ribo-Zero magnetic kit (MRZPL116). Fifty ng of rRNA-794 

depleted RNA were used for RNA-seq library construction using the ScriptSeq v2 RNA-seq 795 

Library Preparation Kit (SSV21124). The library was amplified using 12 PCR cycles and 796 

indexed using ScriptSeq Index PCR Primers (RSBC10948) and FailSafeTM PCR Enzyme 797 

Mix (FSE51100). Sequencing was performed on a HiSeq instrument. RNA-seq data were 798 

analyzed using RSem. 799 

 800 

Bioinformatics analysis of SPO11-1-oligonucleotides, ChIP-seq and MNase-seq data 801 

For SPO11-1-oligonucleotide data FASTQ files were trimmed for 3′-adapter sequences using 802 

the FASTX-Toolkit function fastx_clipper (http://hannonlab.cshl.edu/fastx_toolkit/). For the 803 

wild type libraries RPI1 and RPI3 5 bp were trimmed from the read 5′-ends, while for other 804 

libraries 10 bp were cropped, due to longer adapter sequences. Trimmed reads were aligned 805 

to the TAIR10 reference sequence using bowtie2 with the following settings: --very-sensitive 806 

-p 4 -k 10. Aligned reads were filtered to have 2 or fewer mismatches. Reads with the SAM 807 

optional field “XS:i” were dropped to obtain unique alignments. Reads with multiple valid 808 

alignments were filtered for MAPQ scores of 10 or higher, and the highest value alignment 809 

kept. In the event that a read had multiple alignments with equal MAPQ scores, one was 810 
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randomly chosen. Unique and multiply aligning reads were then deduplicated using 811 

SAMtools. BAM files for uniquely and multiply aligning reads were combined. For MNase-seq 812 

and ChIP-seq data paired-end FASTQ files were directly aligned to the TAIR10 reference 813 

sequence using bowtie2 with the following settings --very-sensitive --no-discordant --no-814 

mixed -p 4 -k 10. To obtain uniquely aligning reads, reads with the SAM optional field “XS:i” 815 

and MAPQ scores of less than 42 were dropped. To ensure reads were kept in proper pairs, 816 

a Python script was applied. Reads with multiple valid alignments were filtered for those with 817 

MAPQ scores of 10 or higher and the highest value alignments kept. Multiply aligning reads 818 

were treated as for SPO11-1-oligonucleotides. Unique and multiply aligning reads were then 819 

deduplicated using SAMtools, combined and used for downstream analysis. Coverage 820 

values from these reads were calculated using Rsamtools and normalized by the sum of 821 

coverage per library. Analysis of these data in relation to features including TAIR10 822 

representative gene TSS and TTS and transposons(Buisine et al. 2008), was performed as 823 

previously described (Choi et al. 2013). For hexile analysis normalized values of SPO11-1-824 

oligonucleotides were calculated in windows -500 bp upstream of TSS for promoters or +500 825 

bp downstream of TTS for terminators. These regions were also measured for nucleosome 826 

occupancy and AT-rich motif matches. These were compared with H3K4me3 and CTT motif 827 

matches in the 500 bp downstream of TSS and upstream of TTS. To test the extent of 828 

SPO11-1-oligonucleotide hexile overlap with crossovers, we used a set of 2,499 crossovers 829 

mapped using genotyping-by-sequencing in Col×Ler F2 individuals(Choi et al. 2016; Yelina et 830 

al. 2015). SPO11-1 levels were calculated within each SNP interval used to detect 831 

crossovers. Intervals were also classified according to their overlap with genomic annotation 832 

and position along chromosomes in 2 megabase bands. Data were modeled with the glm 833 

function in R, using the binomial family and a logistic link function. 834 

 835 

 836 
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Data Access 837 

The FASTQ files associated with the genomic datasets described here have been uploaded 838 

to the ArrayExpress repositories, and can be accessed using the provided usernames and 839 

passwords.  840 

SPO11-1-oligonucleotides: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5041/  841 

Username: Reviewer_E-MTAB-5041 Password: MKE8bvew  842 

Nucleosome MNase-seq: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5042/ 843 

Username: Reviewer_E-MTAB-5042 Password: 4c0zvhju  844 

H3K4me3 ChIP-seq: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5048/  845 

Username: Reviewer_E-MTAB-5048 Password: 4c0zvhju   846 

RNA-seq: https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-5417/  847 

Username: Reviewer_E-MTAB-5417 Password: 2rX8I48v 848 
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