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Abstract

Asparagine-linked (N -linked) glycosylation is the most common protein
modification in eukaryotes, affecting over two-thirds of the proteome. Gly-
cosylation is also critical to the pharmacokinetic activity and immunogenic-
ity of many therapeutic proteins currently produced in complex eukaryotic
hosts. The discovery of a protein glycosylation pathway in the pathogen
Campylobacter jejuni and its subsequent transfer into laboratory strains
of Escherichia coli has spurred great interest in glycoprotein production
in prokaryotes. However, prokaryotic glycoprotein production has several
drawbacks, including insufficient availability of non-native glycan precur-
sors. To address this limitation, we used a constraint-based model of E.
coli metabolism in combination with heuristic optimization to design gene
knockout strains that overproduced glycan precursors. First, we incorpo-
rated reactions associated with C. jejuni glycan assembly into a genome-
scale model of E. coli metabolism. We then identified gene knockout strains
that coupled optimal growth to glycan synthesis. Simulations suggested that
these growth-coupled glycan overproducing strains had metabolic imbalances
that rerouted flux toward glycan precursor synthesis. We then validated the
model-identified knockout strains experimentally by measuring glycan ex-
pression using a flow cytometric-based assay involving fluorescent labeling of
cell surface-displayed glycans. Overall, this study demonstrates the promis-
ing role that metabolic modeling can play in optimizing the performance of
a next-generation microbial glycosylation platform.
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1. Introduction1

Protein glycosylation is the attachment of glycans (mono-, oligo-, or2

polysaccharide) to specific amino acid residues in proteins, most commonly3

asparagine (N -linked) or serine and threonine (O-linked) residues. Roughly4

three-quarters of eukaryotic proteins and more than half of prokaryotic pro-5

teins are glycosylated [1]. Glycosylation is also vitally important to the6

development of many protein biologics, and has been harnessed for enhanc-7

ing therapeutic properties such as half-life extension [2, 3, 4, 5], antibody-8

mediated cytotoxicity [6, 7], and immunogenicity [8, 9, 10].9

Though once thought to occur only in eukaryotes, protein glycosylation10

has now been discovered in all three domains of life, including bacteria [11].11

The best characterized bacterial N -glycosylation system is that of the human12

pathogen Campylobacter jejuni [12]. The C. jejuni glycan has the form of a13

branched heptasaccharide Glc GalNAc5 Bac, where Glc is glucose, GalNAc is14

N -acetylgalactosamine, and Bac is bacillosamine. This glycan is assembled15

on the lipid carrier undecaprenyl pyrophosphate (Und-PP) on the cytoplas-16

mic face of the inner membrane by an enzymatic pathway encoded by the17

pgl (protein glycosylation) locus (Fig. 1). The fully assembled glycan is18

flipped across the membrane and transferred to asparagine residues in accep-19

tor proteins by the oligosaccharyltransferase (OST) PglB. PglB attaches the20

heptasaccharide to periplasmically-localized proteins containing the consen-21

sus sequence D/E-X-N-Z-S/T, where X and Z are any residue except proline22

[13, 14].23

The functional transfer of this system into E. coli [15] has spurred in-24

terest in recombinant production of glycans and ultimately therapeutic gly-25

coproteins in this genetically tractable bacterial host [16, 17]. Along these26

lines, glycosylation-competent E. coli cells have been used to produce a va-27

riety of periplasmic and extracellular glycoproteins including antibodies [13]28

and conjugate vaccine candidates [18]. The promiscuity of the PglB en-29

zyme towards structurally diverse lipid-linked glycan substrates has been30

exploited to further expand the E. coli platform, enabling the creation of31

glycoproteins bearing different bacterial O-polysaccharide antigens [18, 19]32

and even the eukaryotic trimannosyl core N -glycan produced by a synthetic33

pathway comprised of four yeast glycosyltransferases [20]. However, while34
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PglB can efficiently glycosylate native C. jejuni acceptor proteins with cog-35

nate Glc GalNAc5 Bac glycan in engineered E. coli, glycosylation of non-36

Campylobacter target proteins is often much less efficient [21], especially in37

combination with heterologous glycan structures [20].38

In engineered E. coli, protein glycosylation is affected by the availability39

of lipid carriers, and the availability of nucleotide-activated sugar substrates40

serving as glycan precursors [16, 22]. Hence, a plausible strategy for increas-41

ing glycosylation efficiency is to optimize the levels of these key reaction42

intermediates and their related biosynthetic pathways. Along these lines,43

Wright and coworkers applied genome-scale metabolic engineering techniques44

to improve glycosylation efficiency in E. coli. Using a high-throughput pro-45

teomic screening and probabilistic metabolic network analysis, they showed46

that upregulation of the glyoxylate cycle by overexpression of isocitrate lyase47

(aceA/icl) increased glycosylation efficiency of a prototypic protein by three-48

fold [23]. Further, genome-wide screening of gene overexpression identified49

targets that increased glycoprotein production as well as glycosylation ef-50

ficiency [24]; genes in pathways associated with glycan precursor synthesis51

(UDP-GlcNAc) as well as lipid carrier production (isoprenoid synthesis) were52

identified as bottlenecks. Improved glycosylation efficiency has also been53

achieved by supplementing growth media with GlcNAc [25] or increasing54

the expression of PglB via codon optimization [26]. These studies and oth-55

ers have demonstrated the complex interplay between recombinant protein56

production, glycan synthesis and assembly, and glycosylation efficiency.57

In this study, we addressed one of the challenges facing high-level gly-58

coprotein production in engineered E. coli, namely the availability of gly-59

can precursors, using constraint-based modeling. In particular, we used a60

constraint-based model of E. coli metabolism, in combination with heuris-61

tic optimization, to design gene knockout strains that overproduced glycan62

precursors. First, we incorporated reactions associated with C. jejuni gly-63

can assembly into a genome-scale model of E. coli metabolism. We then64

used a combination of constraint-based modeling and simulated annealing to65

identify gene knockout strains that coupled optimal growth to glycan synthe-66

sis. Simulations suggested that these growth-coupled glycan overproducing67

strains had metabolic imbalances that rerouted flux toward glycan precursor68

synthesis. We then experimentally validated the model-identified metabolic69

designs using a flow cytometric-based assay for quantifying cellular N -glycans70

in E. coli [20]. Consistent with simulations, the best model-predicted changes71

increased glycan production by nearly 3-fold compared with the glycan pro-72
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duction level in wild-type (wt) E. coli cells. Taken together, our results73

reveal the significant impact that metabolic modeling can have on designing74

chassis strains with enhanced N -linked protein glycosyation capabilities.75
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1.1. Results76

Construction of a constraint-based model of N-linked glycosylation in E. coli77

A constraint-based model of N -glycosylation in E. coli was used to iden-78

tify genetic knockouts that coupled glycan biosynthesis with optimal growth.79

We augmented the existing genome-scale E. coli model iAF1260 from Palsson80

and coworkers [27] to include the reactions of the C. jejuni glycosylation path-81

way (Table 1). The adapted network consisted of 2395 reactions, 1271 open82

reading frames, and 1986 metabolites segregated into cytoplasmic, periplas-83

mic, and extracellular compartments. Added reactions included the biochem-84

ical transformations catalyzed by the glycosyltransferases (e.g., PglA, PglC)85

associated with glycan biosynthesis, PglK flippase-mediated translocation of86

the glycan into the periplasm, and PglB-mediated glycan conjugation to an87

acceptor protein (Fig. 1). In addition, we incorporated the transcriptional88

regulatory network of Covert et al., consisting of 101 transcription factors,89

regulating the state of the metabolic genes [28]. This regulatory network90

imparts Boolean constraints on metabolic fluxes based upon the nutrient en-91

vironment. The model code is available for download under an MIT software92

license from the Varnerlab website [29].93

Identification of growth-coupled gene knockout strains94

To identify genetic knockouts that coupled optimal growth to glycan95

biosynthesis, we used heuristic optimization and the constraint-based model96

(see Materials and Methods). Coupling growth to glycan synthesis was de-97

sirable for several reasons. Foremost amongst these, growth-coupled strains98

create stoichiometric imbalances that reroute metabolic flux toward the de-99

sired product as a consequence of growth [30, 31]. Therefore, faster growth100

requires increased glycan formation. Thus, optimizing glycan production101

through adaptive evolution is made trivial by selecting for growth through102

serial passage [31, 32]. Several methods have been developed to estimate103

genetic knockouts using constraint-based models. In this study, we used104

simulated annealing to search over the states of metabolic enzyme and tran-105

scription factor (TF) genes to identify the desired phenotype (Fig. 2). The106

state of each gene was represented as a binary array, where a one indicated107

normal activity, while a zero indicated a genetic knockout or regulatory re-108

pression. Boolean rules informed by nutrient conditions controlled the TF109

genes, which in turn controlled the state of the metabolic genes. Once de-110

fined, the genetic state of the model modified the flux constraints placed on111
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each reaction. For example, the reaction governed by pyruvate dehydroge-112

nase, a multi-component enzyme, relied on the assembly of three enzymes:113

AceE, AceF, and Lpd. This reaction was encoded as:114

Pyruvate + CoA + NAD −→ Acetyl-CoA + CO2 + NADH115

aceE, aceF, lpd116

Thus, if any of the genes aceE, aceF, or lpd was knocked out or transcrip-117

tionally repressed, the flux through this reaction was bound to zero. Gene-118

protein-reaction (GPR) associations from the iAF1260 network were used119

in this study [27]. The simulated annealing algorithm performed a random120

search of genetic knockouts, iteratively applying flux constraints based on121

the genetic state, then performing a flux balance analysis simulation. To122

identify growth-coupled glycan producing strains, we optimized the shadow123

price given by:124

uglycan =
∆vgrowth
∆vglycan

(1)

where ∆vgrowth denotes the change in growth rate for a forced change in gly-125

can flux ∆vglycan, and vglycan denotes the flux representing the fully assembled126

C. jejuni glycan flipped into the periplasm. The shadow price uglycan was127

calculated for a particular knockout strain by first calculating the optimal128

growth with the glycan flux constrained to zero. A second simulation was129

then performed with a forced incremental change in the glycan flux in order130

to obtain the difference in growth rate. The search algorithm continued until131

uglycan > 0, indicating a growth-coupled phenotype (Supplementary Fig. S1).132

We identified growth-coupled knockout strains with four or fewer knock-133

outs for growth on glucose as the sole source of carbon and energy (Table 2).134

We performed optimization simulations using boundary conditions represent-135

ing minimal medium with a single 6-, 5-, and 3-carbon substrate. A well-136

defined minimal media allowed for precise control over nutrient conditions137

experimentally, and was accurately simulated, particularly for the transcrip-138

tional regulatory network. For each substrate, we performed ten independent139

optimization simulations to identify growth-coupled strains. We considered140

growth-coupled strains with four or fewer knockouts (those most likely to be141

experimentally viable) by restricting the formation of extracellular byprod-142

ucts to acetate. For example, for E. coli glycosylation mutant 2 (EcGM2; E.143

coli iAF1260 ∆sdh ∆gnd ∆pta ∆eutD), the strain with the highest simulated144

glycan yield, the optimal growth rate occurs at a non-zero glycan flux (Fig.145
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S1B). All growth-coupled strains contained a knockout of succinate dehy-146

drogenase (sdh) and truncated pentose phosphate pathway (PPP) flux at ei-147

ther glucose 6-phosphate-1-dehydrogenase (zwf ), 6-phosphogluconolactonase148

(pgl), or 6-phosphogluconate dehydrogenase (gnd).149

Flux analysis of N-glycan production in growth-coupled strains150

Growth-coupled glycan producing strains had increased glycolytic flux,151

and decreased amino acid biosynthesis compared to glycan production in the152

wt strain background (Fig. 3). We compared the normalized flux values for153

EcGM2 with the wt strain. Normalizing all fluxes to glucose uptake rate,154

EcGM2 displayed greater flux through glycolysis by cutting off the PPP via155

knockout of NADPH-producing gnd (Fig. 3A). EcGM2 also had decreased156

synthesis of every amino acid except for glutamine, indicating a source of157

stoichiometric imbalance that may be relieved by synthesis of the glycan158

precursor UDP-GlcNAc. Further, the PEP-pyruvate node acted as a switch159

point in central carbon metabolism (Fig. 3B). Here, PEP and pyruvate, the160

products of glycolysis, enter the TCA cycle through decarboxylation of pyru-161

vate to acetyl-CoA (ACCoA) and carboxylation of PEP to form oxaloacetate162

(OAA) [33]. The latter replenishes TCA cycle intermediates that exited TCA163

for anabolic processes. EcGM2, with a diminished anabolic capacity for cell164

growth, displayed lower flux through PEP carboxylase (ppc). However, as165

the result of high glycolytic flux, EcGM2 had increased flux through pyru-166

vate dehydrogenase (aceEF ), sending carbon into the oxidative branch of167

the TCA cycle. It is known that high glucose uptake rates result in excess168

acetyl-CoA, surpassing the capacity of the TCA cycle. Because of this excess169

flux, wt E. coli grown on glucose commonly displays acetate fermentation,170

even under aerobic conditions [34]. We observed increased acetate secretion171

in EcGM1 simulations, but through a route differing from wild-type cells.172

The knockouts ∆pta and ∆eutD prevented ATP-generating acetate secre-173

tion. Flux was instead routed through the redox-neutral reactions initiated174

by acetaldehyde dehydrogenase (mhpF ). Excess acetyl-CoA was also utilized175

in the pathway generating UDP-GlcNAc. Lastly, EcGM2 displayed a shift176

in cofactor production (Fig. 3C). Higher flux through glycolysis naturally177

led to NADH overproduction. On the other hand, the primary source of178

NADPH shifted from PPP genes zwf and gnd to the membrane transhy-179

drogenase pnt, capable of direct transfer of electrons from NADH to NADP.180

Sauer et al. identified pnt as a major source of NADPH in E. coli (35-45%181

of total) [35]. Thus, pnt is capable of carrying significant flux in vivo. Taken182

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2017. ; https://doi.org/10.1101/160853doi: bioRxiv preprint 

https://doi.org/10.1101/160853
http://creativecommons.org/licenses/by-nc-nd/4.0/


together, these results suggested the model identified strains that promoted183

glycan precursor synthesis, primarily UDP-GlcNAc, by creating a combina-184

tion of metabolite and redox imbalance.185

Experimental validation of N-glycan-producing knockout strains186

Glycan production was measured in the mutant strains to validate the187

model predictions (Fig. 4). Gene knockout strains were constructed using188

the Keio collection of single gene knockouts E. coli BW25113 [36] as donor189

strains for P1vir phage transduction. Mutants were constructed containing190

single, double, and triple knockouts that appeared in growth-coupled strains191

identified by the constraint-based model. We also performed simulations of192

each single gene knockout to determine genes that prevented glycan synthe-193

sis; galU, a key enzyme in the synthesis of glycan precursor UDP-glucose,194

was the only non-lethal knockout that prevented glycan synthesis. Knock-195

out strains were transformed with a plasmid constitutively expressing the196

C. jejuni pgl locus. To quantify glycan production, we took advantage of197

crosstalk between the glycosylation pathway and native lipopolysaccharide198

(LPS) synthesis in E. coli [37]. Specifically, after the glycan is flipped into199

the periplasm, it can be transferred to lipid A-core by the WaaL O-antigen200

ligase and shuttled to the outer membrane by LPS pathway enzymes, where201

it is displayed on the cell surface [16]. Labeling of these surface-displayed202

N -glycans with fluorescently-tagged lectins can then be used to quantify the203

amount of glycan displayed on the cell surface as a measure of glycan produc-204

tion [20]. Here, we labeled C. jejuni glycans for detection by flow cytometry205

with fluorophore-conjugated soybean agglutinin (SBA), a lectin specific to206

terminal galactose and GalNAc residues. Prior to labeling, knockout strains207

were grown in glucose minimal media and harvested during the exponential208

growth phase, to most closely satisfy the pseudo-steady-state assumption of209

model predictions.210

A common feature of the predicted mutant strains was the deletion of211

pentose phosphate pathway genes zwf/pgl/gnd in combination with ∆sdh.212

Analysis of the metabolic flux distribution in these mutants suggested the213

reducing state of the cell as well as the carbon flux was reprogrammed to214

support enhanced glycan biosynthesis. While hypothetical knockouts such215

as ∆sdh ∆(zwf/pgl/gnd) ∆pta ∆eutD were predicted to have higher glycan216

yield, in this study we experimentally evaluated only the simplest growth-217

coupled double knockout family, namely EcGM1. The EcGM1 family had218

the largest predicted growth rate, was more experimentally tractable than219
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the triple and quad knockouts, and was an unambiguous test of the reduc-220

ing power hypothesis without the complication of the additional deletions.221

Thus, while the EcGM2 and EcGM3 families could potentially give higher222

glycan flux, the EcGM1 family gave the clearest evaluation of the influence223

of the pentose phosphate pathway deletions. As predicted, single pentose224

phosphate knockouts ∆zwf, ∆pgl, and ∆gnd displayed greater fluorescence225

than wt cells, with ∆gnd being the most significant. However, when these226

deletions were combined with ∆sdh only the ∆sdhC ∆gnd combination led227

to increased glycan biosynthesis compared to wt cells. The single ∆gnd mu-228

tant increased glycan production by nearly 3-fold compared to the wt strain229

background, while the ∆sdhC ∆gnd combination led to a nearly 2.5-fold230

increase over the wt strain. Lastly, we tested the non-lethal deletions that231

were predicted to remove glycan biosynthesis; the ∆galU mutant showed232

no glycan production, thereby validating the model simulations. Taken to-233

gether, constraint-based simulations predicted pentose phosphate pathway234

deletions in combination ∆sdh (and potentially other genes) could improve235

glycan production by altering the redox state of the cell. We tested this hy-236

pothesis in the simplest possible experimental model, ∆sdh ∆(zwf/pgl/gnd).237

Of the model predicted changes, only ∆gnd alone and ∆sdhC ∆gnd signifi-238

cantly increased glycan biosynthesis beyond the wt strain background. This239

suggested the model identified a potential axis for the improvement of glycan240

production, but results from the experimental system suggested this axis was241

likely more complicated as only the ∆gnd and ∆sdhC ∆gnd mutants gave a242

positive response.243
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Discussion244

In this study we adapted a genome-scale model of E. coli metabolism for245

the simulation of heterologous synthesis of N -glycans. We applied heuristic246

optimization in combination with flux balance analysis to identify genetic247

knockouts that coupled C. jejuni glycan synthesis to growth. Simulations248

identified growth-coupled strains for minimal media growth on glucose as249

the sole source of carbon and energy. Flux analysis of these strains revealed250

two modes of flux redistribution that promoted glycan synthesis. For growth251

on glucose, simulations showed that maintaining high glycolytic flux and252

producing excess glutamine for the amination of glycan precursor sugars led253

to a growth-coupled phenotype. Simulations also identified the PPP as a254

primary target, suggesting the manipulation of the NADH/NADPH ratio in-255

fluenced glycan synthesis. We validated model predictions by measuring cell256

surface-displayed N -glycans in E. coli mutants. In all growth conditions,257

the ∆gnd mutant outperformed the wt strain in glycan synthesis. Over-258

all, our model-guided strategy showed promise toward rationally designing a259

microbial glycosylation platform.260

We used simulated annealing and flux balance analysis to search for261

metabolic and regulatory gene knockouts that produced a growth coupled262

phenotype. Several constraint-based methods have been developed previ-263

ously to identify gene knockouts that coupled production to growth e.g.,264

[30, 38, 39]. Most of these methods rely on an OptKnock-like approach,265

whereby a bi-level mixed integer optimization problem is solved to identify266

the optimal set of gene knockouts. This class of method guarantees identifica-267

tion of the global optimum; however, it suffers from a few limitations. First,268

search time for OptKnock-like algorithms scales exponentially with system269

size and number of gene knockouts, making them unable to handle very large270

metabolic networks. Second, only linear engineering objectives (e.g., target271

production flux) can be searched over. In contrast, heuristic optimization is272

an effective approach for searching large networks while simultaneously con-273

sidering non-linear objective functions. Though identification of the global274

optimum is not guaranteed with these methods, desirable sub-optimal solu-275

tions can be found quickly [38, 40]. Also, heuristic optimization can search276

efficiently for gene knockouts rather than reaction knockouts. This is an277

important distinction because the mapping of genes to reactions is not nec-278

essarily one to one. Thus, experimentally, many reactions may be difficult279

to knock out because they may be catalyzed by the products of many genes.280
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Here, we used simulated annealing in combination with flux balance analysis281

to maximize the shadow price of growth with respect to glycan flux using a282

genome scale metabolic reconstruction. The approach identified PPP knock-283

outs that altered the NADH/NADPH balance, and increased glycolytic flux284

leading to enhanced glycan production. Surprisingly, these knockouts were285

not in the same section of the metabolism compared with previous litera-286

ture studies. However, this may be expected, as we searched for growth287

coupled solutions and did not simply increase glycan formation. These so-288

lutions, while more difficult to obtain, offer a significant future advantage;289

namely, optimization of glycan production could be improved by selecting290

for increased growth through serial passage.291

Many aspects of glycoprotein production in E. coli are amenable to in-292

vestigation and engineering by metabolic modeling. This study focused on293

increasing the availability of glycan precursor metabolites through model-294

guided metabolic network manipulations. Other approaches in bacteria have295

focused on optimizing expression of glycosylation pathway enzymes and iden-296

tification of metabolic reaction targets through proteomic and genome en-297

gineering [23, 26, 24]. Despite these efforts, improving glycosylation effi-298

ciency in E. coli remains a significant challenge. To address this challenge,299

a more comprehensive mathematical description of the cell, one that couples300

metabolism with gene expression and metabolic demand, may be required301

to precisely model glycosylation in E. coli. Our approach does not explic-302

itly consider the metabolic burden associated with heterologous expression303

of glycosylation pathway enzymes nor the expression of the acceptor glyco-304

protein. Also, flux balance analysis lacks a description of enzyme kinetics305

and metabolite concentrations. Predicting phenotypic changes to genetic306

perturbations is a primary challenge in model-guided metabolic engineering307

[41]. It has been shown that single knockouts in the central metabolism of308

E. coli do little to change the relative flux distribution in the organism [42].309

E. coli robustly controls metabolic flux using allosteric, transcriptional and310

post-transcriptional regulatory, and post-translational modification systems311

[43, 44]. Thus, glycoprotein production in E. coli is a unique challenge in312

that it requires optimization of two opposing cellular processes. Recombi-313

nant protein production of a desired glycoprotein along with glycosylation314

pathway enzymes requires energy from catabolic processes. On the other315

hand, glycan precursor synthesis requires conservation of available sugars316

and anabolic processes. The addition of regulatory systems and an explicit317

description of gene expression to a stoichiometric model may be an effective318
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strategy for optimizing these opposing processes. Other strategies that may319

be helpful for optimization of this system include the enhancement of glycan320

precursor pathways, such as hexosamine synthesis, as well as the removal of321

competing pathways.322
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Materials and Methods323

Flux balance analysis and heuristic optimization.324

Reactions encoding C. jejuni glycan formation (Table 1) were added to
the genome-scale metabolic model of E. coli iAF1260 [27]. The combined
model was then used to determine growth coupled gene knockouts that im-
proved glycan production flux. Metabolic fluxes were estimated using flux
balance analysis. Flux balance analysis requires two assumptions. First,
the cell was assumed to operate at a pseudo-steady-state, where the rate of
production of every intracellular metabolite was equal to its consumption.
Second, the cell has evolved to operate optimally to achieve a cellular objec-
tive. Though many objectives have been proposed, we use the most common,
namely growth rate (i.e., biomass formation) maximization [45]. The deter-
mination of a flux distribution satisfying these assumptions was formulated
as a linear optimization problem:

max
v

(
vgrowth = cTv

)
Subject to : S v = 0

αi ≤ vi ≤ βi

where v is the steady-state flux vector and αi and βi are the lower and up-325

per limits for the individual flux values, respectively. The quantity, vgrowth,326

denotes the specific growth rate where c is a vector containing the stoichio-327

metric contribution of each metabolic species to biomass. The stoichiometric328

matrix S encodes all biochemical reaction connectivity considered in the329

model. Each row of S describes a metabolite, while each column describes330

a particular reaction. The (i, j) element of S, denoted by σij, describes how331

species i participates in reaction j. If σij > 0, species i is produced by re-332

action j. Conversely, if σij < 0, then species i is consumed by reaction j.333

Lastly, if σij = 0, then species i is not involved in reaction j. The maximum334

substrate and oxygen uptake rates were set at 10 mmol/gDW/hr. Boundary335

conditions were set to allow for the unrestricted formation of acetate. All336

genes found to be essential for growth on Luria-Bertani (LB) medium were337

excluded from the search [36].338

We used the FastPros algorithm developed by Ohno et al., in combination339

with a shadow price objective, to estimate genetic knockouts [46]. Simulated340

annealing identified growth-coupled genetic knockouts with improved glycan341

production [47]. Prior to optimization, we removed all genes associated with342
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dead end reactions, since knocking those out would have no effect on the343

network. Also, we removed duplicate genes, i.e., those that produced iden-344

tical effects when knocked out. Finally, we removed genes whose knockout345

resulted in zero growth. We searched over both metabolic and regulatory346

genes; metabolic and transcriptional regulatory genes were represented by a347

binary array where 1 indicated the gene was expressed, and 0 zero indicated348

it was removed from the network (or transcriptionally repressed). A random349

initial gene knockout array was generated. We allowed for a maximum of 20350

knockouts during the search. New knockout arrays were generated through351

crossover and mutation operators that randomly introduced new knockouts352

[38]. At each iteration, the fitness (shadow price) of an individual was com-353

puted using flux balance analysis. When an individual with a higher fitness354

was encountered (greater shadow price), that individual was accepted. How-355

ever, when an individual with a lower fitness was encountered, we accepted356

this individual with a probability given by a Boltzmann factor:357

P(accept) = e−∆uglycan/T (2)

where ∆uglycan denotes the change in shadow price between the current and358

previous solution, and the temperature T denotes the computational anneal-359

ing temperature which decreased with the search iteration. The annealing360

temperature T decreased exponentially such that Tk+1 = αTk, where k de-361

notes the iteration index and α denotes the cooling rate defined as [40]:362

α = exp

(
log Tf − log To
Nmax/Nα

)
(3)

The term Nmax denotes the maximum allowable number of objective func-363

tion evaluations (Nmax = 10, 000), and Nα denotes the number of objective364

function evaluations performed at each distinct temperature value (Nα = 1).365

The initial temperature To was defined as To = −∆uglycan,o

log 0.5
, while the final366

temperature Tf was given by Tf = −∆uglycan,f

log 0.5
. Lastly, ∆uglycan,o denotes367

the difference in shadow price corresponding to an acceptance probability368

of worse solutions of 50% at the beginning of the search, and ∆uglycan,f is369

the shadow price difference giving a 50% probability of accepting a worse370

solution by the end of the search. These values were approximated using the371

typical shadow price values of random knockout arrays: ∆uglycan,o = 0.005,372

∆uglycan,f = 0.0005.373
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Though we sought to maximize glycan flux, we also wanted to identify374

experimentally viable strains. Thus, during an optimization search, we set375

a lower bound on the biomass reaction flux equal to 10% of the wild-type376

simulated growth rate. Strains that could not meet this constraint were377

ignored. The knockout search was terminated once a positive shadow price378

was found. After the optimization, we processed growth-coupled knockout379

strains by iteratively knocking in each knockout gene to estimate knockouts380

that did not affect the phenotype. In this way we identified the smallest381

number of gene knockouts that produced enhanced glycan flux at optimal382

growth. Each optimization run required approximately six hours on a single383

CPU Apple workstation (Apple, Cupertino, CA, USA; OS X v10.10). All384

model and optimization code is available in the MATLAB (The Mathworks,385

Natick MA) programming language, and free to download under an MIT386

software license from Varnerlab.org [29].387

Bacterial strains and media388

For surface-labeled glycan fluorescence measurements, we used the E. coli389

strain BW25113 as our wild-type case [36]. BW25113 was used as the parent390

strain to construct all gene knockout strains. Plasmid pCP20 was used to ex-391

cise KmR cassette [48]. Minimal media consisted of 33.9 g/L Na2HPO4, 15.0392

g/L KH2PO4, 5.0 g/L NH4Cl, and 2.5 g/L NaCl. Media was supplemented393

with 0.4% glucose. Growth medium was supplemented by appropriate an-394

tibiotic at: 100 µg/mL ampicillin (Amp), 25 µg/mL chloramphenicol, and395

50 µg/mL kanamycin (Kan). Growth was monitored by measuring optical396

density at 600 nm (OD600).397

Flow cytometry398

BW25113-based knockout strains were transformed with plasmid pACY-399

Cpgl, constitutively expressed by the C. jejuni pgl locus. Cultures were400

inoculated from frozen stock in LB and grew for 3-6 hours. Cells were sub-401

cultured 1:100 in minimal media overnight and then transferred to fresh402

minimal media to an OD600 of 0.1. 300 µL cells were harvested during ex-403

ponential growth phase (OD600 ≈ 0.6). Cells were washed with PBS then404

incubated in the dark for 15 minutes at 37◦C. Cells were resuspended in 5405

µg/mL SBA-Alexa Fluor 488 (Invitrogen) and 500 µL PBS and analyzed406

using a FACSCalibur (Becton Dickinson). Geometric mean fluorescence was407

determined from 100,000 events.408
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Figure 1: Glycosylation pathway in C. jejuni and E. coli. Glycan assembly, facilitated by
pgl locus enzymes, takes place on a lipid carrier, undecaprenyl pyrophosphate (Und-PP),
from cytoplasmic pools of nucleotide-activated sugars N-acetylglucosamine (GlcNAc), N-
acetylgalactosamine (GalNAc), and glucose (Glc). The glycan is then flipped onto the
periplasmic side of the inner membrane, where it is transferred to an asparagine residue
on a glycoprotein acceptor motif.
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Figure 2: Heuristic optimization approach used to identify strains coupling growth to
glycan production. The chromosome is defined as two separate binary arrays, one defining
the state of metabolic enzyme expression and another defining the state of transcriptional
regulator activation. Gene repression and knockouts are designated by zeros. Nutrient
conditions define the boundary constraints within the stoichiometric model which in turn
affect the state of the metabolic enzyme chromosome. Gene repression and knockouts
determine the constraints placed on fluxes in the stoichiometric model. Nutrients are
mapped to the state of transcriptional regulators and genes are mapped to the state
of flux constraints using Boolean rules as defined in [27, 28]. Flux balance analysis is
used to maximize growth rate under the constraints imposed by the mutant strain and
transcriptional regulation and the fitness objective is calculated. Here, we use shadow
price; the strain is accepted or rejected based on the change in fitness and a Boltzmann
criterion. New mutant strains are randomly generated from accepted ones. The search
continues until a positive shadow price is achieved.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2017. ; https://doi.org/10.1101/160853doi: bioRxiv preprint 

https://doi.org/10.1101/160853
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

0.2

0.4

0.6

0.8

1

Ala

Amino Acids Cofactors

N
or

m
al

iz
ed

 P
ro

du
ct

io
n 

Fl
ux

N
or

m
al

iz
ed

 P
ro

du
ct

io
n 

Fl
ux

Arg Asn Asp Cys Gln

αKG

Glu

NADPH
0.67
0.46

1.00
1.00 0.53

0.00
0.00
0.01

0.16
0.17 0.06

0.01

0.06
0.01NH4

NADP
ACCoA

CoA

UTP

Gln F6P

Wild-type

Glycolysis and PPP PEP and Pyruvate

Δsdh Δgnd Δpta ΔeutD

GAM6P

UDP-GlcNAc

Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

G6PG1P

A

B C

6PGL

F6P

Glcxt

0.47
0.99

PEP

NADP NADPH

PTS

zwfpgm

pgi

PEP

2PG
1.50
1.64 0.23

0.16

0.20
0.44

PYR

eno

pykAF

PYR

OAA
CO2

CO2

NADPH
ppc

0.99
1.30

ACCoA
NAD NADH
CoA

aceEF

ATP
NH4

ADP

NAD + NADPH

NADH + NADP

0.00
0.78

1.06 zwf
gnd pnt

0.00

0

1

2

3

4

5

6

7

8

ATP NADH NADPH

Figure 3: Comparison of fluxes between the wild-type case and glycan-producing strain
of type EcGM3 as calculated by flux balance analysis. (A) Fluxes through key nodes
of metabolism. Top fluxes correspond to the wild-type case, bottom fluxes are for strain
EcGM3. Fluxes are normalized by the glucose uptake rate. (B) Total flux into each amino
acid, normalized to glucose uptake rate. Inset shows fluxes associated with glutamate and
glutamine synthesis along with the pathway to glycan precursor UDP-GlcNAc. The dotted
arrow represents a lumped pathway of multiple enzymes leading to the glycan precursor.
(C) Total flux into selected cofactors, normalized to glucose uptake rate. Inset shows
the primary modes of NADPH production in each strain. Abbreviations: Pentose phos-
phate pathway, PPP; Extracellular glucose, Glcxt; Glucose-6-phosphate, G6P; Fructose
6-phosphate, F6P; 6-phospho D-glucono-1,5-lactone, 6PGL; Glucose 1-phosphate, G1P;
Glycerate 2-phosphate, 2PG; Phosphoenolpyruvate, PEP; Pyruvate, PYR; Oxaloacetate,
OAA; Acetyl-CoA, ACCoA; 2-Oxoglutarate, αKG; Glucosamine 6-phosphate, GAMP6P;
UDP-N-acetyl-D-glucosamine, UDP-GlcNAc.
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Figure 4: Geometric mean fluorescence, normalized to the wild-type value, from gene
knockout strains appearing in growth-coupled strains identified by the constraint-based
model. † indicates a strain predicted to eliminate glycan flux. Stars indicate statistically
significant increases in fluorescences according to a t-test (p < 0.05). Error bars indicate
the standard deviation of at least three replicates.
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Table 1: Reactions added to the E. coli model iAF1260 [27] for biosynthesis of C. jejuni
glycan. Species localized to the periplasm are denoted by (p), all others are cytoplas-
mic. Abbreviations: UDP-N-Acetyl-D-Glucosamine, UDP-GlcNAc; UDP-N-Acetyl-D-
Galactosamine, UDP-GalNAc; UDP-2-acetamido-2,6-dideoxy-α-D-xylo-4-hexulose, Keto-
Bac; L-Glutamate, Glu; UDP-N-Acetylbacillosamine, AminoBac; α-ketoglutarate, αKG;
Acetyl-CoA, ACCoA; UDP-N,N’-diacetylbacillosamine, uBac; Coenzyme A, CoA; Un-
decaprenyl phosphate, Udcpp; C. jejuni glycan intermediates, UdcCjGlycan1, UdcCjGly-
can6; Uridine monophosphate, UMP; Uridine diphosphate, UDP; UDP-Glucose, UDP-Glc;
Lipid-linked C. jejuni glycan, UdcCjGlycan; Acceptor protein, AcceptorProt; GlycoProt,
Glycoprotein; Undecaprenyl diphosphate, Udcpdp.

Gene Enzyme Reaction Reference

gne UDP-GlcNAc epimerase UDP-GlcNAc → UDP-GalNAc [49]
pglF UDP-GlcNAc dehydratase UDP-GlcNAc → KetoBac + H2O [50]
pglE Aminotransferase KetoBac + Glu ↔ AminoBac + αKG [50]
pglD Acetyltransferase AminoBac + ACCoA → uBac + CoA + H+ [51]
pglC Bacillosamine transferase Udcpp + uBac → UdcCjGlycan1 + UMP [52]
pglAHJ GalNAc transferases UdcCjGlycan1 + 5*UDP-GalNAc → UdcCjGlycan6 + 5*UDP + 5*H+ [53]
pglI Glucosyl transferase UdcCjGlycan6 + UDP-Glc → UdcCjGlycan + UDP + H+ [54]
pglK ATP-driven flippase UdcCjGlycan + ATP + H2O → UdcCjGlycan(p) + ADP + H+ + Pi [54]
pglB Oligosyltransferase UdcCjGlycan(p) + AcceptorProt(p) → GlycoProt + Udcpdp(p) [55]
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Table 2: Growth-coupled strains producing C. jejuni glycan identified by flux balance
analysis and heuristic optimization using single carbon substrate. Knockouts listing mul-
tiple genes indicate that knockout of any one of those genes produces the same phenotype
in the model. Abbreviations: D-Glucose, Glc; E. coli glycosylating mutant, EcGM

Growth rate Glycan flux Yield
Strain Substrate Genotype (/hr) (mmol/gDW/hr) (mmol/gDW)

EcGM1 Glucose ∆sdh ∆(zwf/pgl/gnd) 0.65 0.012 0.018

EcGM2 Glucose ∆sdh ∆(zwf/pgl/gnd) ∆pta ∆eutD 0.53 0.098 0.185
EcGM3 Glucose ∆sdh ∆(zwf/pgl/gnd) ∆pykAF ∆mdh 0.64 0.016 0.025
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Figure S1: Representative simulated annealing simulation results identifying a growth-
coupled strain of type EcGM2. (A) Shadow price and FBA-maximized growth rate versus
iteration number for the identification of strain ∆sdh∆gnd∆pta∆eutD. (B) Production
envelopes of the strains (S1-S3) at the iteration points indicated in A. The simulation was
terminated once a positive shadow price is found, visualized by the slope of the production
envelope. The red dot indicates the optimal operating point of maximal growth rate for
the growth-coupled strain.
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