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A LARGE-SCALE GENOME-WIDE ENRICHMENT ANALYSIS
IDENTIFIES NEW TRAIT-ASSOCIATED GENES, PATHWAYS AND

TISSUES ACROSS 31 HUMAN PHENOTYPES*

BY XIANG ZHU AND MATTHEW STEPHENS

Stanford University and University of Chicago

Genome-wide association studies (GWAS) aim to identify genetic
factors that are associated with complex traits. Standard analyses test
individual genetic variants, one at a time, for association with a trait.
However, variant-level associations are hard to identify (because of small
effects) and can be difficult to interpret biologically. “Enrichment analy-
ses” help address both these problems by focusing on sets of biologically-
related variants. Here we introduce a new model-based enrichment anal-
ysis method that requires only GWAS summary statistics, and has sev-
eral advantages over existing methods. Applying this method to inter-
rogate 3,913 biological pathways and 113 tissue-based gene sets in 31
human phenotypes identifies many previously-unreported enrichments.
These include enrichments of the endochondral ossification pathway for
adult height, the NFAT-dependent transcription pathway for rheuma-
toid arthritis, brain-related genes for coronary artery disease, and liver-
related genes for late-onset Alzheimer’s disease. A key feature of our
method is that inferred enrichments automatically help identify new
trait-associated genes. For example, accounting for enrichment in lipid
transport genes yields strong evidence for association between MTTP
and low-density lipoprotein levels, whereas conventional analyses of the
same data found no significant variants near this gene.

INTRODUCTION

Genome-wide association studies (GWAS) have successfully identified many
genetic variants – typically SNPs – underlying a wide range of complex traits
[1–3]. GWAS are typically analyzed using “single-SNP” association tests, which
assess the marginal correlation between the genotypes of each SNP and the
trait of interest. This approach can work well for identifying common vari-
ants with sufficiently-large effects. However, for complex traits, most variants
have small effects, making them difficult to identify even with large sample
sizes [4]. Further, because many associated variants are non-coding it can be
difficult to identify the biological mechanisms by which they may act.

Enrichment analysis – also referred to as “pathway” [5] or “gene set” [6]
analysis – can help tackle both these problems. Instead of analyzing one
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variant at a time, enrichment analysis assesses groups of related variants.
The idea – borrowed from enrichment analysis of gene expression [7] – is to
identify groups of biologically-related variants that are “enriched” for asso-
ciations with the trait: that is, they contain a higher fraction of associated
variants than would be expected by chance. By pooling information across
many genetic variants this approach has the potential to detect enrichments
even when individual genetic variants fail to reach a stringent significance
threshold [5]. And because the sets of variants to be analyzed are often de-
fined based on existing biological knowledge, an observed enrichment auto-
matically suggests potentially relevant biological processes or mechanisms.

Although the idea of enrichment analysis is simple, there are many ways
to implement it in practice, each with its own advantages and disadvantages.
Here we build on a previous approach [8] that has several attractive features
not shared by most methods. These features include: it accounts for linkage
disequilibrium (LD) among associated SNPs; it assesses SNP sets for enrich-
ment directly, without requiring intermediate steps like imposing a signifi-
cance cut-off or assigning SNP-level associations to specific genes; and it can
re-assess (“prioritize”) variant-level associations in light of inferred enrich-
ments to identify which genetic factors are driving the enrichment.

Despite these advantages, this approach has a major limitation: it requires
individual-level genotypes and phenotypes, which are often difficult or im-
possible to obtain, especially for large GWAS meta analyses combining many
studies. Our major contribution here is to overcome this limitation, and pro-
vide an implementation that requires only GWAS summary statistics (plus
LD estimates from a suitable reference panel). This allows the method to
be applied on a scale that would be otherwise impractical. Here we exploit
this to perform enrichment analyses of 3,913 biological pathways and 113
tissue-based gene sets for 31 human phenotypes. Our results identify many
novel pathways and tissues relevant to these phenotypes, as well as some
that have been previously identified. By prioritizing variants within the en-
riched pathways we identify several trait-associated genes that do not reach
genome-wide significance in conventional analyses of the same data. The re-
sults highlighted here demonstrate the potential for these enrichment anal-
yses to yield novel insights from existing GWAS summary data.

RESULTS

Method overview. Figure 1 provides a schematic overview of the method.
In brief, we combine the enrichment model from [8], with the multiple regres-
sion model for single-SNP association summary statistics from [9], to create
a model-based enrichment method for GWAS summary data. We refer to the
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1. Public Data

1.1 GWAS summary statistics

(β̂j, ŝj) := marginal effect and standard error of SNP j

bβ := (β̂1, . . . , β̂p)ᵀ, bS := diag{(ŝ1, . . . , ŝp)ᵀ}

1.2 External LD estimates

bR := [r̂ij]p×p, r̂ij := LD between SNPs i & j

1.3 Predefined gene sets

aj := 1{SNP j is “near” a gene in the set}

Gene Chr Start End

BRAF 7 140419127 140624564
MAPK1 22 22108789 22221970
MAPK3 16 30125426 30134827

2. Bayesian Model

2.1 Likelihood function

L(β) := Normal
� bβ; bSbRbS−1β, bSbRbS

�

2.2 Prior distribution

βj ∼ πj ·Normal(0, σ2
β) + (1− πj) · δ0

2.3 Baseline model

M0 : log10

�
πj

1− πj

�
= θ0

2.4 Enrichment model

M1 : log10

�
πj

1− πj

�
= θ0 + ajθ

3. Inference

3.1 Enrichment

BF(gene set) := Pr(Data | M1)
Pr(Data | M0)

3.2 Gene prioritization

p(β | Data,M1)↔p(β | Data,M0)
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Fig 1: Schematic overview of RSS, a model-based enrichment analysis
method for GWAS summary statistics. RSS combines three types of public data:
GWAS summary statistics (1.1), external LD estimates (1.2), and predefined SNP
sets (1.3). GWAS summary statistics consist of a univariate effect size estimate (β̂ j)
and corresponding standard error (ŝ j) for each SNP, which are routinely generated
in GWAS. External LD estimates are obtained from an external reference panel with
ancestry matching the population of GWAS cohorts. SNP sets here are derive from
gene sets based on biological pathways or sequencing data. We combine these three
types of data by fitting a Bayesian multiple regression (2.1-2.2) under two mod-
els about the enrichment parameter (θ): the “baseline model” (2.3) that each SNP
has equal chance of being associated with the trait (M0 : θ = 0), and the “enrich-
ment model” (2.4) that SNPs in the SNP set are more often associated with the trait
(M1 : θ > 0). To test enrichment, RSS computes a Bayes factor (BF) comparing these
two models (3.1). RSS also automatically prioritizes SNPs within an enriched set
by comparing the posterior distributions of genetic effects (β) under M0 and M1,
facilitating the discovery of new trait-associated genes (3.2). See Methods and Sup-
plementary Note for additional details.
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method as Regression with Summary Statistics, or RSS.
Specifically RSS requires single-SNP effect estimates and their standard

errors from GWAS, and LD estimates from an external reference panel with
similar ancestry to the GWAS cohort. Then, for any given set of SNPs, RSS
estimates an “enrichment parameter”, θ, which measures the extent to which
SNPs in the set are more often associated with the phenotype. This enrich-
ment parameter is on a log-10 scale, so θ = 2 means that the rate at which
associations occur inside the set is ∼ 100 times higher than the rate of asso-
ciations outside the set, whereas θ = 0 means that these rates are the same.
When estimating θ RSS uses a multiple regression model to account for LD
among SNPs. For example, RSS will (correctly) treat data from several SNPs
that are in perfect LD as effectively a single observation, and not multiple in-
dependent observations. RSS ultimately summarizes the evidence for enrich-
ment by a Bayes factor (BF) comparing the “enrichment model” (M1 : θ > 0)
against the “baseline model” (M0 : θ = 0). RSS also provides posterior dis-
tributions of genetic effects under M0 and M1, and uses them to prioritize
variants within enriched sets.

Although enrichment analysis could be applied to any SNP set, here we fo-
cus on SNP sets derived from “gene sets” such as biological pathways. Specif-
ically, for a given gene set, we define a corresponding SNP set as the set of
SNPs within ±100 kb of the transcribed region of any member gene; we refer
to such SNPs as “inside" the gene set. If a gene set plays an important role
in a trait then genetic associations may tend to occur more often near these
genes than expected by chance; our method is designed to detect this signal.

To facilitate large-scale analyses, we designed an efficient, parallel algo-
rithm implementing RSS. Our algorithm exploits variational inference [10],
banded matrix approximation [11] and an expectation-maximization acceler-
ator [12]. Software is available at https://github.com/stephenslab/rss.

Method comparison based on simulations. The novelty of RSS lies in
its use of whole-genome association summary statistics to infer enrichments,
and more importantly, its automatic prioritization of genes in light of the
inferred enrichments. We are not aware of any published method with simi-
lar features. However, there are methods that can learn either enrichments
or gene-level associations from GWAS summary statistics, but not both. We
compared RSS to them through simulations using real genotypes [13].

To benchmark its enrichment component, we compared RSS with a suite
of conventional pathway methods, Pascal [15], and a polygenic approach,
LDSC [14]. We started with simulations without model mis-specification,
where “baseline” and “enrichment” datasets were generated from correspond-
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ing models (M0 and M1). Figure 2a and Supplementary Figure 1 show the
trade-off between false and true enrichment discoveries for each method. All
methods are powerful when the true underlying genetic architecture is poly-
genic, whereas LDSC performs worse when the truth is sparse. In both poly-
genic and sparse scenarios RSS is the most powerful method.

Next, to assess its robustness to mis-specification, we performed three sets
of simulations where either the baseline (M0) or enrichment (M1) model of
RSS were mis-specified. Specifically, we considered scenarios where i) base-
line data contained enrichments of random near-gene SNPs (Fig. 2b, Supple-
mentary Fig. 2); ii) baseline data contained enrichments of random coding
SNPs (Fig. 2c, Supplementary Fig. 3); and iii) enrichment data contained en-
richments of effect sizes (Fig. 2d, Supplementary Fig. 4). The results show
that RSS is highly robust to model mis-specifications, and still consistently
outperforms Pascal and LDSC.

Recent analyses of GWAS summary statistics (e.g. [14]) often focus on the
HapMap Project Phase 3 (HapMap3) SNPs [16], even though summary statis-
tics of the 1000 Genomes Project SNPs [17] are available in many GWAS.
Although not required, we used this “SNP subsetting” strategy in data anal-
yses to reduce computation (Methods). To assess the impact of “SNP subset-
ting”, we simulated data using all 1000 Genome SNPs, applied the enrich-
ment methods to summary statistics of HapMap3 SNPs only, and compared
HapMap3-based results with results of analyzing all 1000 Genome SNPs. For
all methods, analysis with and without “SNP subsetting” produced similar re-
sults (Supplementary Fig. 5). The robustness to “SNP subsetting” is perhaps
unsurprising, since all methods utilize LD information (in different ways) to
capture the effects of potentially excluded causal variants. As above, RSS has
the highest power in this set of simulations.

Finally, to benchmark its prioritization component, we compared RSS with
four gene-based association methods [18–21]. Figure 3 and Supplementary
Figures 6-7 show the power of each method to identify gene-level associations.
RSS substantially outperforms existing methods even in the absence of en-
richments, especially in the polygenic scenario. This is because RSS exploits
a multiple regression framework [9] to learn the genetic architecture from
data of all genes and assesses their effects jointly, whereas other methods im-
plicitly assume a fixed, sparse architecture and only use data of a single gene
to estimate its effect. When datasets contain enrichments, RSS automatically
leverages them, which existing methods ignore, to further improve the power.

In conclusion, RSS outperforms existing methods in both enrichment and
prioritization analysis, and is robust to a wide range of model mis-specification.
To further investigate its real-world benefit, we applied RSS to analyze 31
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complex traits and 4,026 gene sets.

Multiple regression on 1.1 million variants across 31 traits. The
first step of our analysis is multiple regression of 1.1 million HapMap3 com-
mon SNPs for 31 traits, using GWAS summary statistics from 20,883-253,288
European ancestry individuals (Supplementary Table 1; Supplementary Fig.
8). This step essentially estimates, for each trait, a “baseline model” (M0)
against which “enrichment models” (M1) can be compared. The fitted base-
line model captures both the size and abundance (“polygenicity”) of the ge-
netic effects on each trait, effectively providing a two-dimensional summary
of the genetic architecture of each trait (Fig. 4a; Supplementary Fig. 9).

The results emphasize that genetic architecture varies considerably among
phenotypes: estimates of both polygenicity and effect sizes vary by several
orders of magnitude. Height and schizophrenia stand out as being particu-
larly polygenic, showing approximately 10 times as many estimated associ-
ated variants as any other phenotype. Along the other axis, fasting glucose,
fasting insulin and haemoglobin show the highest estimates of effect sizes,
with correspondingly lower estimates for the number of associated variants.
Although not our main focus, these results highlight the potential for mul-
tiple regression models like ours to learn about effect size distributions and
genetic architectures from GWAS summary statistics.

Fitting the baseline model also yields an estimate of effect size for each
SNP. These can be used to identify trait-associated SNPs and loci. Reassur-
ingly, these multiple-SNP results recapitulate many associations detected in
single-SNP analyses of the same data (Supplementary Fig.s 10-12). For sev-
eral traits, these results also identify additional associations (Supplementary
Fig.s 13-14). These additional findings, while potentially interesting, may be
difficult to validate and interpret. Enrichment analysis can help here: if the
additional signals tend to be enriched in a plausible pathway, it may both in-
crease confidence in the statistical results and provide some biological frame-
work to interpret them.

Enrichment analyses of 3,913 pathways across 31 traits. We next
performed enrichment analyses of SNP sets derived from 3,913 expert-curated
pathways, ranging in size from 2 to 500 genes (Supplementary Fig.s 15-16).
For each trait-pathway pair we computed a BF testing the enrichment model,
and estimated the enrichment parameter θ.

Since these analyses involve large-scale computations that are subject to
approximation error, we developed some “sanity checks” for confirming en-
richments identified by RSS. Specifically these simple methods confirm that
the z-scores for SNPs inside a putatively-enriched pathway have a different
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Fig 3: Comparison of RSS to other methods for identifying trait-associated
genes from GWAS summary statistics. We used real genotypes [13] to simu-
late individual-level data under two genetic architectures (“Sparse” and “Polygenic”),
with and without enrichment in the target gene set (“Enrichment” and “Baseline”),
and then computed corresponding single-SNP summary statistics. On these sum-
mary data, we compared RSS with four other methods: SimpleM [18], VEGAS [19],
GATES [20] and COMBAT [21]. We applied VEGAS to the full set of SNPs (-sum),
to a specified percentage of the most significant SNPs (-10% and -20%), and to the
single most significant SNP (-max), within ±100 kb of the transcribed region of each
gene. All methods are available in the package COMBAT (URLs). For each simulated
dataset, we defined a gene as “trait-associated” if at lease one SNP within ±100
kb of the transcribed region of this gene had non-zero effect. For each gene in each
dataset, RSS produced the posterior probability that the gene was trait-associated.
whereas the other methods produced association p-values; these statistics were used
to rank the significance of gene-level associations. Each panel displays the trade-off
between false and true gene-level associations for all methods in 100 datasets of a
given simulation scenario, and reports the corresponding AUCs. Simulation details
and additional results are provided in Supplementary Figures 6-7.
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Fig 4: Baseline and enrichment analyses of 31 complex traits. For both pan-
els, traits are colored by categories and labeled by abbreviations. (a) Summary of
inferred effect size distributions of 31 traits based on HapMap3 SNPs. Results are
from fitting the baseline model (M0) to 1.1 million common HapMap3 SNPs for each
trait. We summarize effect size distribution using two numbers: the estimated frac-
tion of trait-associated SNPs (average posterior probability of a HapMap3 SNP being
associated with a trait; shown in x-axis) and the standardized effect size of trait-
associated SNPs (average posterior mean effect size of all HapMap3 SNPs, normal-
ized by the phenotypic standard deviation and the fraction of trait-associated SNPs;
shown in y-axis). See Supplementary Note for details on these two quantities. Each
dot represents a trait, with horizontal and vertical point ranges indicating poste-
rior mean and 95% credible interval for each quantity. Note that some intervals are
too small to be visible due to log-10 scales. See Supplementary Table 2 for numer-
ical values of these intervals. (b) Pairwise sharing of 3,913 pathway enrichments
among 31 traits. For each pair of traits, we estimated the proportion of pathways
that are enriched in both traits, among pathways enriched in at least one of the traits
(Methods). Traits are clustered by hierarchical clustering as implemented in the
package corrplot (URLs). Darker color and larger shape represent higher sharing.
The estimates of sharing are provided in Supplementary Table 3. ALS: amyotrophic
lateral sclerosis [22]. DS: depressive symptoms [23]. LOAD: late-onset Alzheimer’s
disease [24]. NEU: neuroticism [23]. SCZ: schizophrenia [25]. BMI: body mass index
[26]. HEIGHT: adult height [27]. WHR: waist-to-hip ratio [28]. CD: Crohn’s disease
[29]. IBD: inflammatory bowel disease [29]. RA: rheumatoid arthritis [30]. UC: ulcer-
ative colitis [29]. ANM: age at natural menopause [31]. CAD: coronary artery disease
[32]. FG: fasting glucose [33]. FI: fasting insulin [33]. GOUT: Gout [34]. HDL: high-
density lipoprotein [35]. HR: heart rate [36]. LDL: low-density lipoprotein [35]. MI:
myocardial infarction [32]. T2D: type 2 diabetes [37]. TC: total cholesterol [35]. TG:
triglycerides [35]. URATE: serum urate [34]. HB: haemoglobin [38]. MCH: mean cell
HB [38]. MCHC: MCH concentration [38]. MCV: mean cell volume [38]. PCV: packed
cell volume [38]. RBC: red blood cell count [38].
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Phenotype Top enriched pathway Database # of signals log10 BF
(Repository) (# of genes)

Neurological traits
Depressive symptoms Eicosapentaenoate biosynthesis HumanCyc (PC) 2 (12) 36.9
Alzheimer’s disease Golgi associated vesicle biogenesis Reactome (PC) 3 (49) 83.7

Anthropometric traits
Adult height Endochondral ossification WikiPathways (BS) 57 (65) 68.9

Immune-related traits
Crohn’s disease Inflammatory bowel disease KEGG (BS) 24 (61) 25.6
Inflammatory bowel disease Inflammatory bowel disease KEGG (BS) 26 (61) 24.2
Rheumatoid arthritis CaN-regulated NFAT-dependent PID (BS) 11 (45) 10.0

transcription in lymphocytes
Ulcerative colitis Inflammatory bowel disease KEGG (BS) 16 (61) 11.8

Metabolic traits
Age at natural menopause IL-2Rβ in T cell activation BioCarta 2 (37) 866.7
Coronary artery disease p75(NTR)-mediated signaling PID (BS) 4 (55) 16.0
Fasting glucose Hexose transport Reactome (BS) 4 (47) 1,898.4
Gout Osteoblast signaling WikiPathways (BS) 2 (13) 30.6
High-density lipoprotein Statin pathway WikiPathways (BS) 18 (30) 113.9
Low-density lipoprotein Chylomicron-mediated lipid transport Reactome (PC) 11 (17) 65.5
Myocardial infarction Glutathione synthesis and recycling Reactome (PC) 2 (11) 9.6
Total cholesterol Glucose transport Reactome (BS) 2 (41) 833.2
Triglycerides Validated targets of C-MYC PID (BS) 3 (79) 604.9

transcriptional activation
Serum urate Transport of glucose and othersa Reactome (PC) 4 (95) 1,558.1

Hematopoietic traits
Haemoglobin (HB) RNA polymerase I transcription Reactome (BS) 27 (107) 2,641.3
Mean cell HB (MCH) Meiotic synapsis Reactome (PC) 21 (72) 2,334.3
MCH concentration SIRT1 negatively regulates Reactome (PC) 3 (63) 700.8

ribosomal RNA expression
Mean cell volume DNA methylation Reactome (PC) 28 (61) 2,077.3
Packed cell volume RNA polymerase I promoter opening Reactome (PC) 27 (59) 217.5
Red blood cell count GSL biosynthesis (neolacto series) KEGG (PC) 2 (21) 391.2

TABLE 1
Top-ranked pathways for enrichment of genetic associations in complex traits. For
each trait here we report the most enriched pathway (if any) that i) has an enrichment Bayes

factor (BF) greater than 108; ii) has at least 10 and at most 200 member genes; iii) has at
least two member genes with P1 > 0.9 (denoted as “signals”) under the enrichment model;

and iv) passes the visual and likelihood ratio sanity checks (Supplementary Fig. 17). All BFs
reported here are larger than corresponding BFs that SNPs within ±100 kb of transcribed
regions of all genes are enriched (Supplementary Fig. 19). The corresponding background

and enrichment parameter estimates are provided in online results (URLs). P1: the posterior
probability that at least one SNP within ±100 kb of the transcribed region of a given gene

has non-zero effect on the target trait. CaN: calcineurin. NFAT: nuclear factor of activated T
cells. IL-2Rβ: interleukin-2 receptor beta chain. p75(NTR): p75 neurotrophin receptor.

SIRT1: Sirtuin 1. GSL: glycosphingolipid. PC: Pathway Commons [39]. BS: NCBI
BioSystems [40]. a: The full pathway name is “transport of glucose and other sugars, bile

salts and organic acids, metal ions and amine compounds”.
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distribution from those outside the pathway (with more z-scores away from
0) – using both a visual check and a likelihood ratio statistic (Supplementary
Fig. 17). Of note, these methods cannot replace RSS in the present study.
The visual check requires human input, and thus is not suitable for large-
scale analyses like ours. The likelihood ratio does not account for LD, and is
expected to be less powerful (Supplementary Fig. 18).

Since genic regions may be generally enriched for associations compared
with non-genic regions, we confirmed that top-ranked pathways often showed
stronger evidence for enrichment than did the set containing all genes (Supplementary
Fig. 19). We also created “null” (non-enriched) SNP sets by randomly drawing
near-gene SNPs, and performed enrichment analyses of these “null” sets on
real GWAS summary data. Enrichment signals of these simulated genic sets
are substantially weaker than the actual top-ranked sets (Supplementary
Fig. 20). Further, to check whether observed enrichments could be driven by
other functional annotations (e.g. coding), we computed the correlation be-
tween enrichment BFs and proportions of gene-set SNPs falling into each of
52 functional categories [14]. Among 1,612 trait-category pairs, we did not
observe any strong correlation (median 7.3×10−3; 95% interval [−0.08,0.21];
Supplementary Fig. 21). Together, these results suggest that observed enrich-
ments are unlikely to be artifacts driven by model mis-specification.

For most traits our analyses identify many pathways with strong evidence
for enrichment – for example, at a conservative threshold of BF ≥ 108, 20
traits are enriched in more than 100 pathways per trait (Supplementary Fig.
22). Although the top enriched pathways for a given trait often substantially
overlap (i.e. share many genes), several traits show enrichments with multi-
ple non-overlapping or minimally-overlapping pathways (Supplementary Fig.
23). Table 1 gives examples of top enriched pathways, with full results avail-
able online (URLs).

Our results highlight many previously reported trait-pathway links. For
example, the Hedgehog pathway is enriched for associations with adult height
(BF=1.9 × 1040), consistent with both pathway function [41] and previous
GWAS [27]. Other examples include interleukin-23 mediated signaling with
inflammatory bowel disease (BF=3.1×1023; [42]), T helper cell surface molecules
with rheumatoid arthritis (BF=3.2×108; [30]), statin pathway with levels of
high-density lipoprotein cholesterol (BF=8.4×10113; [43]), and glucose trans-
porters with serum urate (BF=1.2×101,558; [34]).

The results also highlight several pathway enrichments that were not re-
ported in corresponding GWAS publications. For example, the top pathway
for rheumatoid arthritis is calcineurin-regulated nuclear factor of activated T
cells (NFAT)-dependent transcription in lymphocytes (BF=1.1×1010). This re-
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sult adds to the considerable existing evidence linking NFAT-regulated tran-
scription to immune function [44] and bone pathology [45]. Other examples
of novel pathway enrichments include endochondral ossification with adult
height (BF=7.7× 1068; [46]), p75 neurotrophin receptor-mediated signaling
with coronary artery disease (BF=9.6×1015; [47]), and osteoblast signaling
with gout (BF=3.8×1030; [48]).

Overlapping pathway enrichments among related traits. Some path-
ways show enrichment in multiple traits. To gain a global picture of shared
pathway enrichments among traits we estimated the proportions of shared
pathway enrichments for all pairs of traits (Fig. 4b; Methods). Clustering
these pairwise sharing results highlights four main clusters of traits: immune-
related diseases, blood lipids, heart disorders and red blood cell phenotypes.
Blood cholesterol shows strong pairwise sharing with serum urate (0.67),
haemoglobin (0.66) and fasting glucose (0.53), which could be interpreted as
a set of blood elements. Serum urate shows moderate to strong sharing with
rheumatoid arthritis (0.19) and inflammatory bowel diseases (0.38-0.63), pos-
sibly due to the function of urate crystals in immune responses [49] Fur-
ther, Alzheimer’s disease shows moderate sharing with blood lipids (0.17-
0.23), heart diseases (0.15-0.21) and inflammatory bowel diseases (0.10-0.13).
This seems consistent with recent data linking Alzheimer’s disease to lipid
metabolism [50], vascular disorder [51] and immune activation [52]. The bi-
ologically relevant clustering of shared pathway enrichments helps demon-
strate the potential of large-scale GWAS data to highlight similarities among
traits, complementing other approaches such as clustering of shared genetic
effects [53] and co-heritability analyses [54].

Novel trait-associated genes informed by enriched pathways. A
key feature of RSS is that pathway enrichments, once identified, are automat-
ically used to “prioritize” associations at variants near genes in the pathway.
Specifically, RSS gives almost identical estimates of the background param-
eter (θ0) in both baseline and enrichment analyses (Supplementary Fig. 24),
and yields a positive estimate of the enrichment parameter (θ) if the pathway
is identified as enriched (Supplementary Fig. 25). The positive estimate of θ
increases the prior probability of association for SNPs in the pathway, which
in turn increases the posterior probability of association for these SNPs.

This ability to prioritize associations, which is not shared by most enrich-
ment methods, has several important benefits. Most obviously, prioritization
analyses can detect additional genetic associations that may otherwise be
missed. Furthermore, prioritization facilitates the identification of genes in-
fluencing a phenotype in two ways. First, it helps identify genes that may ex-
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plain individual variant associations, which is itself an important and chal-
lenging problem [55]. Second, prioritization helps identify genes that drive
observed pathway enrichments. This can be useful to check whether a path-
way enrichment may actually reflect signal from just a few key genes, and to
understand enrichments of pathways with generic functions.

To illustrate, we performed prioritization analyses on the trait-pathway
pairs showing strongest evidence for enrichment. Following previous Bayesian
GWAS analyses [8, 56], here we evaluated genetic associations at the level of
loci, rather than individual SNPs. Specifically, for each locus we compute P1,
the posterior probability that at least one SNP in the locus is associated with
the trait, under both the baseline and enrichment hypothesis. Differences in
these two P1 estimates reflect the influence of enrichment on the locus.

The results show that prioritization analysis typically increases the in-
ferred number of genetic associations (Supplementary Fig. 26), and uncovers
putative associations that were not previously reported in GWAS. For exam-
ple, enrichment in chylomicron-mediated lipid transport pathway (BF=3.4×
1065; Fig. 5a) informs a strong association between gene MTTP (baseline P1:
0.14; enrichment P1: 0.99) and levels of low-density lipoprotein (LDL) choles-
terol (Fig. 5b). This gene is a strong candidate for harboring associations
with LDL: MTTP encodes microsomal triglyceride transfer protein, which
has been shown to involve in lipoprotein assembly; mutations in MTTP cause
abetalipoproteinemia (OMIM: 200100), a rare disease characterized by per-
manently low levels of apolipoprotein B and LDL cholesterol; and MTTP is
a potential pharmacological target for lowering LDL cholesterol levels [57].
However, no genome-wide significant SNPs near MTTP were reported in
single-SNP analyses of either the same data [35] (Fig. 5c), or more recent
data with larger sample size [58] (Fig. 5d).

Prioritization analysis of the same chylomicron-mediated lipid transport
pathway also yields several additional plausible associations (Fig. 5b). These
include LIPC (baseline P1: 0.02; enrichment P1: 0.96) and LPL (baseline
P1: 0.01; enrichment P1: 0.76). These genes play important roles in lipid
metabolism and both reach genome-wide significance in single-SNP analy-
ses of HDL cholesterol and triglycerides [35] although not for LDL cholesterol
(Supplementary Fig. 27); and a multiple-trait, single-SNP analysis [59] of the
same data also did not detect associations of these genes with LDL.

Several other examples of putatively novel associations that arise from
our gene prioritization analyses, together with related literature, are sum-
marized in Box 1.
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Fig 5: Enrichment of chylomicron-mediated lipid transport pathway in-
forms a strong association between a member gene MTTP and levels of low-
density lipoprotein (LDL) cholesterol. (a) Distribution of GWAS single-SNP z-
scores from summary data published in 2010 [35], stratified by gene set annotations.
The solid green curve is estimated from z-scores of SNPs within ± 100 kb of the tran-
scribed region of genes in the chylomicron-mediated lipid transport pathway (“in-
side”), and the dashed reddish purple curve is estimated from z-scores of remaining
SNPs (“outside”). This panel serves as a visual sanity check to confirm the observed
enrichment. (b) Estimated posterior probability (P1) that there is at least one asso-
ciated SNP within ± 100 kb of the transcribed region of each pathway-member gene
under the enrichment model (M1) versus estimated P1 under the baseline model
(M0). These gene-level P1 estimates and corresponding SNP-level statistics are pro-
vided in Supplementary Table 4. (c) Regional association plot for MTTP based on
summary data published in 2010 [35]. (d) Regional association plot for MTTP based
on summary data published in 2013 [58].
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Box 1 Select putatively novel associations from prioritization analyses

Adult height and endochondral ossification (65 genes, log10 BF= 68.9)

• HDAC4 (baseline P1: 0.98; enrichment P1: 1.00)
HDAC4 encodes a critical regulator of chondrocyte hypertrophy during skeletogenesis
[60] and osteoclast differentiation [61]. Haploinsufficiency of HDAC4 results in chromo-
some 2q37 deletion syndrome (OMIM: 600430) with highly variable clinical manifesta-
tions including developmental delay and skeletal malformations.

• PTH1R (baseline P1: 0.94; enrichment P1: 1.00)
PTH1R encodes a receptor that regulates skeletal development, bone turnover and min-
eral ion homeostasis [62]. Mutations in PTH1R cause several rare skeletal disorders
(OMIM: 215045, 600002, 156400).

• FGFR1 (baseline P1: 0.67; enrichment P1: 0.97)
FGFR1 encodes a receptor that regulates limb development, bone formation and phos-
phorus metabolism [63]. Mutations in FGFR1 cause several skeletal disorders (OMIM:
101600, 123150, 190440, 166250).

• MMP13 (baseline P1: 0.45; enrichment P1: 0.93)
MMP13 encodes a protein that is required for osteocytic perilacunar remodeling and
bone quality maintenance [64]. Mutations in MMP13 cause a type of metaphyseal
anadysplasia (OMIM: 602111) with reduced stature.

IBD and cytokine-cytokine receptor interaction (253 genes, log10 BF= 21.3)

• TNFRSF14 (a.k.a. HVEM; baseline P1: 0.98; enrichment P1: 1.00)
TNFRSF14 encodes a receptor that functions in signal transduction pathways activat-
ing inflammatory and inhibitory T-cell immune response. TNFRSF14 expression plays
a crucial role in preventing intestinal inflammation [65]. TNFRSF14 is near a GWAS
hit of celiac disease (rs3748816, p = 3.3× 10−9) [66] and two hits of ulcerative colitis
(rs734999, p = 3.3×10−9 [67]; rs10797432, p = 3.0×10−12 [68]).

• FAS (baseline P1: 0.82; enrichment P1: 0.99)
FAS plays many important roles in the immune system [69]. Mutations in FAS cause
autoimmune lymphoproliferative syndrome (OMIM: 601859).

• IL6 (baseline P1: 0.27; enrichment P1: 0.87)
IL6 encodes a cytokine that functions in inflammation and the maturation of B cells, and
has been suggested as a potential therapeutic target in IBD [70].

CAD and p75(NTR)-mediated signaling (55 genes, log10 BF= 16.0)

• FURIN (baseline P1: 0.69; enrichment P1: 0.99)
FURIN encodes the major processing enzyme of a cardiac-specific growth factor, which
plays a critical role in heart development [71]. FURIN is near a GWAS hit (rs2521501
[72]) of both systolic blood pressure (p = 5.2×10−19) and hypertension (p = 1.9×10−15).

• MMP3 (baseline P1: 0.43; enrichment P1: 0.97)
A polymorphism in the promoter region of MMP3 is associated with susceptibility
to coronary heart disease-6 (OMIM: 614466). Inactivating MMP3 in mice increases
atherosclerotic plaque accumulation while reducing aneurysm [73].

HDL and lipid digestion, mobilization and transport (58 genes, log10 BF= 89.8)

• CUBN (baseline P1: 0.24; enrichment P1: 1.00)
CUBN encodes a receptor for intrinsic factor-vitamin B12 complexes (cubilin) that main-
tains blood levels of HDL [74]. Mutations in CUBN cause a form of congenital mega-
loblastic anemia due to vitamin B12 deficiency (OMIM: 261100). CUBN is near a GWAS
hit of total cholesterol (rs10904908, p = 3.0×10−11 [58]).

• ABCG1 (baseline P1: 0.01; enrichment P1: 0.89)
ABCG1 encodes an ATP-binding cassette transporter that plays a critical role in medi-
ating efflux of cellular cholesterol to HDL [75].
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RA and lymphocyte NFAT-dependent transcription (45 genes, log10 BF= 10.0)

• PTGS2 (a.k.a. COX2; baseline P1: 0.74; enrichment P1: 0.98)
PTGS2-specific inhibitors have shown efficacy in reducing joint inflammation in both
mouse models [76] and clinical trials [77]. PTGS2 is near a GWAS hit of Crohn’s disease
(rs10798069, p = 4.3×10−9 [29])

• PPARG (baseline P1: 0.28; enrichment P1: 0.98)
PPARG has important roles in regulating inflammatory and immune responses with
potential applications in treating chronic inflammatory diseases including RA [78, 79].

Enrichment analyses of 113 tissue-based gene sets across 31 traits.
RSS is not restricted to pathways, and can be applied more generally. Here
we use it to assess enrichment among tissue-based gene sets that we define
based on gene expression data. Specifically we use RNA sequencing data from
the Genotype-Tissue Expression project [80] to define sets of the most “rele-
vant” genes in each tissue, based on expression patterns across tissues. The
idea is that enrichment of GWAS signals near genes that are most relevant to
a particular tissue may suggest an important role for that tissue in the trait.

A challenge here is how to define “relevant” genes. For example, are the
highest expressed genes in a tissue the most relevant, even if the genes is
ubiquitously expressed [81]? Or is a gene that is moderately expressed in
that tissue, but less expressed in all other tissues, more relevant? To address
this we considered three complementary methods to define tissue-relevant
genes (Methods). The first method (“highly expressed”, HE) uses the highest
expressed genes in each tissue. The second method (“selectively expressed”,
SE) uses a tissue-selectivity score designed to identify genes that are much
more strongly expressed in that tissue than in other tissues (S. Xi, personal
communication). The third method (“distinctively expressed”, DE) clusters
the tissue samples and identifies genes that are most informative for dis-
tinguishing each cluster from others [82]. This last method yields a list of
“relevant" genes for each cluster, but most clusters are primarily associated
with one tissue, and so we use this to assign genes to tissues. These meth-
ods often yield minimally overlapped gene sets for the same tissue (median
overlap proportion: 4%; Supplementary Fig. 28)

Despite the small number of tissue-based gene sets relative to the pathway
analyses above, this analysis identifies many strong enrichments. The top
enriched tissues vary considerably among traits (Table 2), highlighting the
benefits of analyzing a wide range of tissues. In addition, traits vary in which
strategy for defining gene sets (HE, SE or DE) yields the strongest enrich-
ment results. For example, HE genes in heart show strongest enrichment for
heart rate; SE genes in liver show strongest enrichment for LDL. This high-
lights the benefits of considering multiple annotation strategies, and suggests
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Phenotype Tissue log10 BF Select top driving genes
(Method) (# of genes with enrichment P1 > 0.9)

Alzheimer’s disease Adrenal gland (SE) 45.6 APOE, APOC1 (2)
Neuroticism Brain (SE) 26.3 LINGO1, KCNC2 (2)
Adult height Nerve tibial (DE) 25.2b PTCH1, SFRP4, FLNB (59)
Crohn’s disease Cluster 1a (DE) 15.4 SMAD3, ZMIZ1, NUPR1 (6)
Inflammatory bowel disease Cluster 1a (DE) 15.8 SMAD3, ZMIZ1, NUPR1 (10)
Ulcerative colitis Heart (HE) 7.0 PLA2G2A, TCAP, ALDOA (4)
Age at natural menopause Brain (DE) 1,053.2 BRSK1, PPP1R1B, NPTXR (6)
Coronary artery disease Brain (DE) 8.5 PSRC1, ZEB2, PTPN11 (3)
Fasting glucose Pancreas (SE) 2,396.8 G6PC2, PDX1, SLC30A8 (5)
Fasting insulin Testis (SE) 866.7 ABHD1, PRR30, C2orf16 (3)
Heart rate Heart (HE) 4.1 MYH6, PLN (5)
High-density lipoprotein Liver (HE) 20.2 APOA1, APOE, MT1G, FTH1 (10)
Low-density lipoprotein Liver (SE) 33.4 ABCG5, LPA, ANGPTL3, HP (13)
Total cholesterol Liver (DE) 56.0 APOA1, APOE, HP (9)
Triglycerides Liver (HE) 93.2 APOA1, APOE, FTH1 (7)
Serum urate Kidney (SE) 210.8b SLC17A1, SLC22A11, PDZK1 (7)
Haemoglobin (HB) Whole blood (DE) 2,078.1 HIST1H1E, HIST1H1C (4)
Mean cell HB Whole blood (DE) 1,363.0 NPRL3, FBXO7, UBXN6 (11)
Mean cell volume Whole blood (DE) 1,019.6b UBXN6, RBM38, NPRL3 (11)
Packed cell volume Heart (HE) 945.4 RPL19, TCAP (2)
Red blood cell count Breast (SE) 141.7 OBP2B, STAC2 (2)

TABLE 2
Top enriched tissue-based gene sets in complex traits. Each tissue-based gene set
contains 100 transcribed genes used in the Genotype-Tissue Expression project. For each

trait we report the most enriched tissue-based gene set (if any) that has a Bayes factor (BF)
greater than 1,000 and has more than two member genes with enrichment P1 > 0.9. All
trait-tissue pairs reported above pass the sanity checks (Supplementary Fig. 17). The

corresponding background and enrichment parameter estimates are provided in online
results (URLs). P1: the posterior probability that at least one SNP within ±100 kb of the

transcribed region of a given gene has non-zero effect on the target trait. HE: highly
expressed. SE: selectively expressed. DE: distinctively expressed. a: Multiple tissues show

partial membership in “Cluster 1”, including ovary, thyroid, spleen, breast and stomach [82].
b: These three BFs are smaller than corresponding BFs that SNPs within ±100 kb of

transcribed regions of all genes are enriched (Supplementary Fig. 19).
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that, unsurprisingly, there is no single answer to the question of which genes
are most “relevant” to a tissue.

For some traits, the top enriched results (Table 2) recapitulate previously
known trait-tissue connections (e.g. lipids and liver, glucose and pancreas),
supporting the potential for our approach to identify trait-relevant tissues.
Further, many traits show enrichments in multiple tissues. For example, as-
sociations in coronary artery disease are strongly enriched in genes related to
both heart (SE, BF = 6.6×107) and brain (DE, BF = 3.5×108). The multiple-
tissue enrichments highlight the potential for our approach to also produce
novel biological insights, which we illustrate through an in-depth analysis of
late-onset Alzheimer’s disease (LOAD).

Tissue-based analysis of LOAD identified three tissues with very strong
evidence for enrichment (BF>1030): liver, brain and adrenal gland. Because of
the well-known connection between gene APOE and LOAD [83], and the fact
that APOE is highly expressed in these three tissues (Supplementary Fig.
29), we hypothesized that APOE and related genes might be driving these
results. To assess this we re-analyzed these strongly enriched gene sets after
removing the entire apolipoproteins (APO) gene family from them. Of the
three tissues, only liver remains (moderately) enriched after excluding APO
genes (Fig. 6), suggesting a possible role for non-APO liver-related genes in
the etiology of LOAD.

To identify additional genes underlying the liver enrichment, we performed
prioritization analysis for non-APO liver-related genes. This highlighted an
association of LOAD with gene TTR (baseline P1: 0.64; enrichment P1: 1.00;
Supplementary Fig. 30). TTR encodes transthyretin, which has been shown
to inhibit LOAD-related protein from forming harmful aggregation and toxi-
city [84, 85]. Indeed, transthyretin is considered a biomarker for LOAD: pa-
tients show reduced transthyretin levels in plasma [86] and cerebrospinal
fluid [87]. Rare variants in TTR have recently been found to be associated
with LOAD [88, 89]. By integrating GWAS with expression data our analysis
identifies association of LOAD with TTR based on common variants.

DISCUSSION

We have presented RSS, a new method for simultaneous enrichment and
prioritization analysis of GWAS summary data, and illustrated its potential
to yield novel insights by extensive analyses involving 31 phenotypes and
4,026 gene sets. We have space to highlight only select findings, and expect
that researchers will find the full results (URLs) to contain further insights.

Enrichment tests, sometimes known as “competitive tests” [5, 6], have sev-
eral advantages over alternative approaches – sometimes known as “self-
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Fig 6: Enrichment analyses of genes related to liver, brain and adrenal
gland for Alzheimer’s disease. Shown are the tissue-based gene sets with the
strongest enrichment signals for Alzheimer’s disease. Each gene set was analyzed
twice: the left panel corresponds to the analysis based on the original gene set; the
right panel corresponds to the analysis where SNPs within ± 100 kb of the tran-
scribed region of any gene in Apolipoproteins (APO) family (URLs) are excluded
from the original gene set. Dashed lines in both panel denote the same Bayes fac-
tor threshold (1,000) used in our tissue-based analysis of all 31 traits (Table 2). HE:
highly expressed. SE: selectively expressed. DE: distinctively expressed.
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contained tests” (e.g. [90, 91]) – that simply test whether a SNP set contains
at least one association. For example, for complex polygenic traits any large
pathway will likely contain at least one association, making self-contained
tests unappealing. Enrichment tests are also more robust to confounding ef-
fects such as population stratification, because confounders that affect the
whole genome will generally not create artifactual enrichments. Indeed, in
this sense enrichment results can be more robust than single-SNP results.
(Nonetheless, most of the summary data analyzed here were corrected for
confounding; see Supplementary Table 5.)

Compared with other enrichment approaches, RSS has several particu-
larly attractive features. First, unlike many methods (e.g. [5, 92, 93]) RSS
uses data from all variants, and not only those that pass some significance
threshold. This increases the potential to identify subtle enrichments even
in GWAS with few significant results. Second, RSS models enrichment di-
rectly as an increased rate of association of variants within a SNP set. This
contrasts with alternative two-stage approaches (e.g. [15, 94, 95]) that first
collapse SNP-level association statistics into gene-level statistics, and then
assesses enrichment at the gene level. Our direct modeling approach has
important advantages, most obviously that it avoids the difficult and error-
prone steps of assigning SNP associations to individual genes, and collapsing
SNP-level associations into gene-level statistics. For example, simply assign-
ing SNP associations to the nearest gene may highlight the “wrong” gene and
miss the “correct” gene [55]. Although our enrichment analyses of gene sets
do involve assessing proximity of SNPs to genes in each gene set, they avoid
uniquely assigning each SNP to a single gene, which is a subtle but important
distinction. Finally, and perhaps most importantly, our model-based enrich-
ment approach leads naturally to prioritization analyses that highlight which
genes in an enriched pathways are most likely to be trait-associated. We know
of only two published methods [8, 96] with similar features, but both require
individual-level data and so could not perform the analyses presented here.

Although previous studies have noted potential benefits of integrating gene
expression with GWAS data, our enrichment analyses of expression-based
gene sets are different from, and complementary to, this previous work. For
example, many studies have used expression quantitative trait loci (eQTL)
data to help inform GWAS results (e.g. [97–104]). In contrast we bypass the
issue of detecting (tissue-specific) eQTLs by focusing only on differences in
gene expression levels among tissues. And, unlike methods that attempt to
(indirectly) relate expression levels to phenotype (e.g. [105, 106]), our ap-
proach focuses firmly on genotype-phenotype associations. Nonetheless, as
our results from different tissue-based annotations demonstrate, it can be ex-
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tremely beneficial to consider multiple approaches, and we view these meth-
ods as complimentary rather than competing.

Like any method, RSS also has limitations that need to be considered when
interpreting results. For example, annotating variants as being “inside a gene
set” based on proximity to a relevant gene, while often effective, can occa-
sionally give misleading results. We saw an example of this when our method
identified an enrichment of SE genes in testis with both total cholesterol and
triglycerides. Further prioritization analysis revealed that this enrichment
was driven by a single gene, C2orf16 which is a) uniquely expressed in testis,
and b) physically close (53 kb) to another gene, GCKR, that is strongly as-
sociated with lipid traits (Supplementary Fig. 31). This highlights the need
for careful examination of results, and also the utility of our prioritization
analyses. Generally we view enrichments that are driven by a single gene
as less reliable and useful than enrichments driven by multiple genes; in-
deed, enrichments driven by a single gene seem better represented as a gene
association than as a gene set enrichment. Other problems that can affect
enrichment methods (not only ours) include: a) an enrichment signal in one
pathway can be caused by overlap with another pathway that is genuinely
involved in the phenotype; and b) for some traits (e.g. height), genetic as-
sociations may be strongly enriched near all genes, which will cause many
pathways to appear enriched.

Other limitations of RSS stem from its use of variational inference for
approximate Bayesian calculations. Although these methods are computa-
tionally convenient in large datasets, and often produce reliable results (e.g.
[8, 10, 107–115]), they also have features to be aware of. One feature is that
when multiple SNPs in strong LD are associated with a trait, the variational
approximation tends to select one of them and ignore the others. This feature
will not greatly affect enrichment inference provided that SNPs that are in
strong LD tend to have the same annotation (because then it will not mat-
ter which SNP is selected). And this holds for the gene-based annotations in
the present study. However, it would not hold for “finer-scale” annotations
(e.g. appearance in a DNase peak), and so in that setting the use of the varia-
tional approximation may need more care. More generally the accuracy of the
variational approximation can be difficult to assess, especially since the un-
derlying coordinate ascent algorithm only guarantees convergence to a local
optimum. This said, the main alternative for making Bayesian calculations,
Markov chain Monte Carlo, can experience similar difficulties.

Finally, the present study examines a single annotation (e.g. one gene set)
at a time. Extending RSS to jointly analyze multiple annotations like [14]
could further increase power to detect novel associations, and help distin-
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guish between competing correlated annotations (e.g. overlapping pathways)
when explaining observed enrichments.

URLs. Software, https://github.com/stephenslab/rss; Demonstration
of software, http://stephenslab.github.io/rss/Example-5; Full results,
https://xiangzhu.github.io/rss-gsea/; APO gene family: http://www.
genenames.org/cgi-bin/genefamilies/set/405; Pascal, https://www2.
unil.ch/cbg/index.php?title=Pascal; LDSC, https://github.com/bulik/
ldsc; COMBAT, https://cran.r-project.org/web/packages/COMBAT; corrplot,
https://cran.r-project.org/web/packages/corrplot.
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METHODS

GWAS summary statistics, LD estimates and SNP annotations. We
analyze GWAS summary statistics of 31 traits, in particular, the estimated
single-SNP effect and standard error for each SNP. Following [14], we use
the same set of HapMap3 SNPs [16] for all 31 traits, even though some traits
have summary statistics available on all 1000 Genomes SNPs [17]. We use
this “SNP subsetting” strategy to reduce computation, since the computa-
tional complexity of RSS (per iteration) is linear with the total number of
SNPs (Supplementary Notes).
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Among the HapMap3 SNPs, we also exclude SNPs on sex chromosomes,
SNPs with minor allele frequency less than 1%, SNPs in the major histo-
compatibility complex region, and SNPs measured on custom arrays (e.g.
Metabochip, Immunochip) from analyses. The final set of analyzed variants
consists of 1.1 million SNPs (Supplementary Table 1, Supplementary Fig. 8).

Since GWAS summary statistics used here were all generated from Euro-
pean ancestry cohorts, we use haplotypes of individuals with European an-
cestry from the 1000 Genomes Project, Phase 3 [17] to estimate LD [11].

To create SNP-level annotations for a given gene set, we use a distance-
based approach from previous enrichment analyses [8, 94]. Specifically, we
annotate each SNP as being “inside” a gene set if it is within ± 100 kb of the
transcribed region of a gene in the gene set. The relatively broad region is
chosen to capture signals from nearby regulatory variants, since the majority
of GWAS hits are non-coding.

Biological pathways and genes. Biological pathway definitions are
retrieved from nine databases (BioCarta, BioCyc, HumanCyc, KEGG, miR-
TarBase, PANTHER, PID, Reactome, WikiPathways) that are archived by
four repositories: Pathway Commons (version 7) [39], NCBI Biosystems [40],
PANTHER (version 3.3) [116] and BioCarta (used in [8]). Gene definitions
are based on Homo sapiens reference genome GRCh37. Both pathway and
gene data were downloaded on August 24, 2015. We use the same protocol
described in [8] to compile a list of 3,913 pathways that contains 2-500 au-
tosomal protein-coding genes for the present study. We summarize pathway
and gene information in Supplementary Figures 15-16.

Tissue-based gene sets derived from transcriptome. Complex traits
are often affected by multiple tissues, and it is not obvious a priori what
the most relevant tissues are for the trait. Hence, it is necessary to examine
a comprehensive set of tissues. The breadth of tissues in Genotype-Tissue
Expression (GTEx) project [80] provides such an opportunity.

Here we use RNA sequencing data to create 113 tissue-based gene sets.
Due to the complex nature of extracting tissue relevance from sequencing
data, we consider three different methods to derive tissue-based gene sets.

The first method (“highly expressed”) ranks the mean Reads Per Kilobase
per Million mapped reads (RPKM) of all genes based on data of a given tis-
sue, and then selects the top 100 genes with the largest mean RPKM values
to represent the target tissue. We downloaded gene lists of 44 tissues with
sample sizes greater than 70 from the GTEx Portal on November 21, 2016.

The second method (“selectively expressed”) computes a tissue-selectivity
score in a given tissue for each gene, which is essentially the average log ratio
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of expressions in the target tissue over other tissues, and then uses the top
100 genes with the largest tissue-selectivity scores to represent the target
tissue. We obtained gene lists of 49 tissues from S. Xi on February 13, 2017.

The third method (“distinctively expressed”) summarizes 53 tissues as 20
biologically-distinct clusters using admixture models, computes a cluster-distinctiveness
score in a given cluster for each gene, and then uses the top 100 genes with
the largest cluster-distinctiveness scores to represent the target cluster [82].
We extracted gene lists of 20 clusters from [82] on May 19, 2016.

Bayesian statistical models. Consider a GWAS with n unrelated indi-
viduals typed on p SNPs. For each SNP j, we denote its estimated single-SNP
effect size and standard error as β̂ j and ŝ j respectively. To model {β̂ j, ŝ j}, we
use the Regression with Summary Statistics (RSS) likelihood [9]:

(1) L(β) :=N (β̂; ŜR̂Ŝ−1β, ŜR̂Ŝ)

where β̂ := (β̂1, . . . , β̂p)ᵀ, Ŝ := diag(ŝ), ŝ := (ŝ1, . . . , ŝp)ᵀ, R̂ is the LD matrix es-
timated from an external reference panel with ancestry matching the GWAS
cohort, β := (β1, . . . ,βp)ᵀ are the true effects of each SNP on phenotype, and
N denotes the multivariate normal distribution.

To model enrichment of genetic associations within a given gene set, we
borrow the idea from [8] and [56], to specify the following prior on β:

β j ∼ π jN (0,σ2
β)+ (1−π j)δ0,(2)

σ2
β = h ·

(∑p
j=1π jn−1 ŝ−2

j

)−1
,(3)

π j = (1+10−(θ0+a jθ))−1,(4)

where δ0 denotes point mass at zero, θ0 reflects the background proportion
of trait-associated SNPs, θ reflects the increase in probability, on the log10-
odds scale, that a SNP inside the gene set has non-zero effect, h approximates
the proportion of phenotypic variation explained by genotypes of all available
SNPs, and a j indicates whether SNP j is inside the gene set. Following [8],
we place independent uniform grid priors on the hyper-parameters {θ0,θ,h}
(Supplementary Tables 6-7). (If one had specific information about hyper-
parameters in a given application then this could be incorporated here.)

Posterior computation. We combine the likelihood function and prior
distribution above to perform Bayesian inference. The posterior computation
procedures largely follow those developed in [10]. First, for each set of hyper-
parameters {θ0,θ,h} from a predefined grid, we approximate the (conditional)
posterior of β using a variational Bayes algorithm. Next, we approximate
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the posterior of {θ0,θ,h} by a discrete distribution on the predefined grid,
using the variational lower bounds from the first step to compute the discrete
probabilities. Finally, we integrate out the conditional posterior of β over the
posterior of {θ0,θ,h} to obtain the full posterior of β.

Following [8], we set random initialization as a default for the variational
Bayes algorithm. Specifically, we randomly select an initialization, and then
use this same initial value for all variational approximations over the grid of
{θ0,θ,h}. This simple approach was used in all simulations and data analyses
for the present study, and yielded satisfying results in most cases.

To facilitate large-scale analyses, we employ several computational tricks.
First, we use squared iterative methods [12] to accelerate the fixed point it-
erations in the variational approximation. Second, we exploit the banded LD
matrix [11] to parallelize the algorithm. Third, we use a simplification in [8]
that scales the enrichment analysis to thousands of gene sets by reusing ex-
pensive genome-wide calculations. See Supplementary Note for details.

For one trait, the total computational cost of our analyses is determined by
the number of whole-genome SNPs, the number of gene sets and the grid size
for hyper-parameters, all of which can vary considerably among studies. It is
thus hard to make general statements about computational time. However,
to give a specific example, we finished baseline and enrichment analyses of
1.1 million HapMap3 SNPs and 3,913 pathways for LDL within 36 hours in
a standard computer cluster (48 nodes, 12-16 CPUs per node).

All computations in the present study were performed on a Linux system
with multiple (4-22) Intel E5-2670 2.6GHz, Intel E5-2680 2.4GHz or AMD
Opteron 6386 SE processors.

Assess gene set enrichment. To assess whether a gene set is enriched
for genetic associations with a target trait, we evaluate a Bayes factor (BF):

(5) BF := p(β̂|Ŝ, R̂,a,θ > 0)

p(β̂|Ŝ, R̂,a,θ = 0)
,

where a := (a1, . . . ,ap)ᵀ and a j indicates whether SNP j is inside the gene
set. The observed data are BF times more likely under the enrichment model
(θ > 0) than under the baseline model (θ = 0), and so the larger the BF, the
stronger evidence for gene set enrichment. See Supplementary Note for de-
tails of computing enrichment BF.

Detect association between a locus and a trait. To identify trait-
associated loci, we consider two statistics derived from the posterior distri-
bution of β. The first statistic is P1, the posterior probability that at least 1
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SNP in the locus is associated with the trait:

(6) P1 := 1−Pr(β j = 0, ∀ j ∈ locus|D),

where D is a shorthand for the input data including GWAS summary statis-
tics, LD estimates and SNP annotations (if applicable). The second statistic
is ENS, the posterior expected number of associated SNPs in the locus:

(7) ENS :=∑
j∈locusPr(β j 6= 0|D).

See Supplementary Note for details of computing P1 and ENS.

Estimate pairwise sharing of pathway enrichments. To capture the
“sharing” of enrichments between two traits, we define π= (π00,π01,π10,π11):

(8) πab :=Pr(z1 j = a, z2 j = b), a ∈ {0,1}, b ∈ {0,1},

where zi j equals one if pathway j is enriched in trait i and zero otherwise.
Assuming independence among pathways and phenotypes, we estimate π by

(9) π̂ := argmax
π

∏
j(π00 +π01BF2 j +π10BF1 j +π11BF1 jBF2 j),

where BFi j is the enrichment BF for trait i and pathway j. We solve this
optimization problem using an expectation-maximization algorithm imple-
mented in the package ashr [117]. Finally, the conditional probability that a
pathway is enriched in a pair of traits given that it is enriched in at least one
trait, as plotted in Figure 4b, is estimated as π̂11/(1− π̂00).

Connection with enrichment analysis of individual-level data. RSS
has close connection with the method developed for individual-level data [8].
Under certain conditions [9], we can show that these two methods are mathe-
matically equivalent, in the sense that they have the same fix point iteration
scheme and lower bound in variational approximations. See Supplementary
Note for proofs. In addition to their theoretical connections, we also empir-
ically compared two methods through simulations, and observed similar in-
ferential results (Supplementary Fig. 32).

Code and data availability. Links to source codes and full results of
the present study are provided in URLs. Links to GWAS summary statis-
tics are provided in Supplementary Note. HapMap3 SNP list: https://data.
broadinstitute.org/alkesgroup/LDSCORE/w_hm3.snplist.bz2. 1000 Genomes
Phase 3 data: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502.
Pathway Commons: http://www.pathwaycommons.org/archives/PC2/v7. NCBI
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Biosystems: ftp://ftp.ncbi.nih.gov/pub/biosystems. PANTHER: ftp:
//ftp.pantherdb.org/pathway. BioCarta: https://github.com/pcarbo/bmapathway/
tree/master/data. GTEx Portal: https://www.gtexportal.org/home/. “Dis-
tinctively expressed” genes [82]: http://stephenslab.github.io/count-clustering.
ashr: https://cran.r-project.org/web/packages/ashr.
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