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Highlights 
• Cross-Frequency Coupling (CFC) is a key mechanism of brain 

interactions in sleep  

• Different estimates of CFC contribute to a high sleep stage classification 

accuracy 

• Single-Sensor ASSC can open the way of alternative low-cost sleep 

monitoring 
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Abstract: 
Objective: Limitations of the manual scoring of polysomnograms, which include data from 

electroencephalogram (EEG), electrooculogram (EOG), electrocardiogram (ECG) and electromyogram 

(EMG) channels, have long been recognised. Manual staging is resource-intensive and time-consuming  

and considerable efforts have to be spent to ensure inter-rater reliability. There is thus great interest in 

techniques based on signal processing and machine learning for a completely Automatic Sleep Stage 

Classification (ASSC). 

Methods: In this paper, we present a single EEG-sensor ASSC technique based on dynamic 

reconfiguration of different aspects of cross-frequency coupling (CFC) estimated between predefined 

frequency pairs over 5s epoch lengths. The proposed analytic scheme is demonstrated using the 

PhysioNet Sleep European Data Format (EDF) Database using 20 healthy young adults with repeat 

recordings. 

Results: We achieved very high classification sensitivity, specificity and accuracy of 96.2 ± 2.2%, 

94.2 ± 2.3%, and 94.4 ± 2.2% across 20 folds, respectively and high mean F1-score (92%, range 

90–94%) when multi-class Bayes Naive classifier was applied. 

Conclusions: Our method outperformed the accuracy of previous studies on different datasets but also 

on the same database. 

Significance: Single-sensor ASSC makes the whole methodology appropriate for longitudinal 

monitoring using wearable EEG in real world and lab-oriented environments.  
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1. Introduction 
 

Sleep as a basic human function is characterized by continuous alterations in brain, muscle, 

eye, heart and respiratory activity. These multi-dimensional alterations are monitored with 

appropriate equipment in a sleep lab and measured during a full night of sleep. Typically, these 

polysomnographic recordings include the electroencephalogram (EEG), electro-oculogram 

(EOG), electromyogram (EMG) and electrocardiogram (ECG). Physiologically, sleep stages 

can be split into two types: rapid eye movement (REM sleep) and non-rapid eye movement 

(non-REM sleep) (Steriade and McCarley,1990). The latter consists of 4 stages (called N1, N2, 

N3 and N4). The process of assigning to every epoch of polysomnographic recordings a sleep 

stage is called sleep scoring. Sleep staging is a very important step in sleep research and  for 

the clinical interpretation of the polysomnogram (for a review see ; Aboalayon  et al., 2016). 

In clinical daily routine, sleep studies are performed for the diagnosis of pathologies like 

circadian rhythm disorders, epilepsy, sleep apnea, insomnia and hypersomnia (Panossian 

and Avidan ,2009). Sleep scoring is often based on visual inspection of the polysomnographic 

recordings to establish a hypnogram that represent dynamically the different sleep stages. Sleep 

experts usually follow well established rules for manual sleep scoring based on state of the art 

guidelines (Hobson,1969). Rechtschaffen and Kales (1968) introduced rules for the labelling 

of each segment of 30 s as Awake, S1–S4 or REM sleep stage. A more recent sleep manual 

proposed by the American Academy of Sleep Medicine (AASM) in 2007 (Iber et al., 2005), 

combines the non-REM stages S3 and S4 into a single stage of deep sleep (called N3), also 

known as slow-wave sleep (SWS). Both manuals suggest the use of EEG channels, two in the 

R&K (Hobson,1969) manual and three in the AASM manual (Iber et al., 2005), 2 EOG 

electrodes and one EMG electrode. 

Sleep stage scoring is the gold-standard for the analysis of human sleep (Agarwal and 

Gotman,2005). While many sleep labs use the traditional manual sleep stage scoring of the 

neurophysiological recordings to produce the hypnogram, recent years have witnessed a burst 

of proposed  methods for automatic or semi-automatic sleep staging (e.g. Agarwal and 

Gotman,2005 ; Becq  et al., 2005 ; Berthomier  et al., 2007 ; Ma et al., 2011 ; Itil et al., 1969 ; 

Koley and  Dey, 2012 ; Krakovská and  Mezeiová, 2011 ; Larsen and  Walter, 1970 ; 

Schaltenbrand et al., 1996 ; Sheng-Fu et al., 2012 ; Pan et al., 2012 ; Stanus et al., 1987 ; 

Gudmundsson et al., 2005 ; Šušmáková and  Krakovská, 2008 ; Huang et al., 2002). The 

different methods for ASSC generally extracted features from the signals to analyze each 

temporal segment (epoch) and use classification algorithms to detect/predict the sleep stages 
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(Güneş et al., 2010 ; Zoubek et al., 2007 ; Sousa et al., 2015). These features focused on time-

domain analysis (Tsai et al., 2009 ; Gudmundsson et al., 2005 ; Khalighi et al., 2011), 

frequency-domain analysis (Zhovna and Shallom, 2008 ; Yu et al., 2012)  and time-frequency-

domain analysis (Ebrahimi et al., 2008 ; Li et al., 2009). 

Complementarily, complexity and nonlinear measures have been successfully used (Kuo 

and Liang, 2011 ; Phan et al., 2013 ; Fell et al., 1996). In some ASSC systems, an appropriate 

preprocessing step of manipulating the selected features was added prior to the classification 

step. This preprocessing step includes feature selection and/or dimensionality reduction (Koley 

and Dey, 2012 ; Zoubek et al., 2007 ; Sen et al., 2014) . The main scope of this step is to reduce 

the dimension of the estimated features. A wide range of machine learning-based classification 

methods such as Linear Discriminant Analysis (LDA) (Sousa et al., 2015 ; Weiss et al., 2011), 

Artificial Neural Networks (ANN) (Liu et al., 2010 ; Dursun et al., 2012), Support Vector 

Machine (SVM) (Huang et al., 2013 ; Brignol et al., 2012 ; Yu et al., 2012 ; Lainef et al., 2015), 

K-Nearest Neighbor (KNN) (Kuo and Liang, 2011 ; Liu et al., 2010),  Decision Trees (DT) 

(Schaltenbrand et al., 1996 ; Pan et al., 2012)  and SVMs-DT (Lan et al., 2015) have been 

adopted for sleep stage classification. 

The clinical uptake of ASSC systems has been hindered by  low accuracy, sensitivity and 

specificity. The classification accuracies varied among the ASSC methods reported in the 

literature, ranging from 70% to 94%, while the sensitivity and specificity remained lower than 

90%. Some studies on ASSC systems have considered using a single EEG channel but many 

issues remained unsolved like  the high similarity of the EEG characteristics between REM 

and S1 (Lan et al., 2015 ; Krakovská and Mezeiová, 2011 ;Estrada et al., 2004 ), which has 

lowered the overall classification performance. 

Cortical excitability following rhythmic changes produces neuronal oscillations with 

different cell population size and therefore spatial scale (Fries,2005). It is well-known that low-

frequency rhythms are established as a dominant coupling mode in distant neuronal interactions 

and long temporal windows. In the opposite, high-frequency rhythms are established as a 

dominant coupling mode in local neuronal interactions and short temporal windows (von Stein 

and Sarnthein, 2000). The continuous interactions between anatomical substrates/backbone 

and the cortical oscillatory patterns give the brain the flexibility to simultaneously work at 

multiple spatio-temporal scales (Buzsaki and Draguhn, 2004).  

The distinct neuronal oscillations that travel with a dominant frequency rhythm are not 

independent and especially the lower frequencies can modulate the oscillations of higher 

frequency brain rhythms  (Jensen and Colgin, 2007). The interactions between brain rhythms 
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with a different frequency profile is called cross frequency coupling (CFC), which can be 

categorized as  phase synchronization, amplitude co-modulation (correlation of the envelope : 

Bruns and Eckhorn,2004) and phase-amplitude coupling (PAC; Pittman-Polletta et al., 2014 ; 

Dimitriadis et al., 2015,2016a,b). 

 Phase-amplitude coupling (PAC) is believed to be the substrate of neural coding and 

information exchange between micro and macro scales of the neural ensembles of the brain 

(von Stein and Sarnthein, 2000; Jensen and Colgin, 2007; Axmacher et al., 2010; Canolty and 

Knight, 2010). It seems that low-frequency oscillations regulate the information exchange 

between brain areas by modulating the excitability levels of local neural ensembles (von Stein 

and Sarnthein, 2000; Fries, 2005), while their phase affects high-frequency activity also on the 

level of individual neurons and their spiking rates (Canolty and Knight, 2010). PAC facilitates 

interactions between neuronal ensembles with similar phase and quantifies the strength of 

interaction between high-frequency bands with the phase of lower-frequency bands within low-

frequency-dependent temporal windows (Allen et al., 2011). To quantify the PAC between 

brain signals of different frequency profile, we used three basic algorithms: a) the one based 

on iPLV (Dimitriadis et al.,2015,2016), b) the one based on the mean vector length -MVL 

(Canolty et al., 2006) and c) the Modulation Index -MI (Tort et al., 2008). 

 Another type of CFC interactions between brain areas that oscillate on a different 

frequency rhythm is the correlation of the envelope of two brain signals that encapsulates brain 

activity of different spectrum profile (Bruns and Eckhorn,2004). It was found that inter-

frequency coupling and specifically the correlation of the amplitude envelopes between low 

and high-frequency components is established between non-phase coupled patches in awake 

monkeys between areas located within their visual cortex  (Bruns et al., 2001). It seems that 

envelope-to-signal correlation is a complementary type of CFC to PAC and reflects  the 

transmission of temporally modulated brain activity from a source area  to a target area in many 

conditions. Since the mechanism of neuronal exchange of information underlying the nature of 

this CFC metric is basic and the type of coupling in non-linear, this CFC type is of general 

interest for exploring the basic communication mechanisms in many situations. 

The formation of new memories demands the coordination of neural activity across 

widespread brain regions. In both humans and animals, the hippocampus is believed to support 

the formation of new associative or contextually mediated memories (Clemens et al., 2009). 

During the consolidation of new memories on a system-level, mnemonic representations of 

items, thoughts, new faces etc  initially reliant on the hippocampus and after are thought  to 

travel to neocortical sites for more permanent storage. Sleep has this privilege role for 
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facilitating this information transfer (Born and Wilhelm,2012). Mechanistically, consolidation 

processes have been proved to be rely on systematic interactions between the three basic 

neuronal oscillations that characterizing non–rapid eye movement (NREM) sleep, slow-

oscillations, spindles and ripples (Staresina et al.,2015). The hierarchical role of these three 

components was revealed via phase-to-amplitude coupling based on mean vector length 

estimator. A recent study untangled hippocampo-cortical CFC as the basic mechanisms 

mediates memory consolidation during sleep (Maingret et al., 2016). They provided a clear 

link between sharp-wave ripples, δ waves and ripples. Logothetis et al., (2012) demonstrates 

the CFC coupling between hippocampo-cortical areas during a subcortical silence and off-line 

memory consolidation. Amiri et al., (2016) demonstrates an enhanced PAC in deep sleep and 

also in the onset zone of focal epilepsy. 

Based on the aforementioned knowledge regarding CFC brain interactions, the multiplexity 

of brain interactions across different daily and lab-oriented tasks and our knowledge regarding 

sleep functionality in both humans and primates, we aimed on the present study to explore the 

effectiveness of different CFC estimates to the automatic sleep stage classification in normal 

human populations. 

In this paper, we propose a fast and efficient single-sensor ASSC that achieves multi-class 

classification by combining estimation of cross-frequency coupling   with a multi-class 

Bayesian Naïve classifier.  First, we estimated the relative power on predefined frequencies 

extracted via wavelet analysis. Afterward, complementary cross-frequency coupling (CFC) 

estimators were adopted based on: a) phase-to-amplitude coupling (PAC) to quantify how the 

phase of the lower frequency brain rhythms modulates the amplitude of the higher oscillations, 

b) the correlation of the envelopes, c) the modulation index and d) a proposed complex version 

of modulation index.. The whole approach was followed in a temporal segment (epoch) of 5 

secs and within the two EEG bipolar sensors (FPz-Cz & Pz-Oz) and between every possible 

pair of the studying frequency bands. In previous applications PAC has shown promise as a 

biomarker for amnestic mild cognitive impairment subjects (Dimitriadis et al., 2015a), dyslexia 

(Dimitriadis et al., 2016), or mild traumatic brain injury (Antonakakis et al., 2016). We 

extracted the most important features using the infinite feature selection and fed them into a 

multi-class Bayesian Naïve classifier following a 20-fold cross-validation scheme. The whole 

approach was also validated in a second dataset. 

In brief, the proposed ASSC methodology, which is described in more detail below, consists 

of four main steps: (i) estimation of CFC estimates per each cross-frequency pair in temporal 

segments of 5 s length in both EEG channels) and the relative power within each frequency, 
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(ii) feature selection using sequential selection and cross-validation within the training dataset 

and (iii) classification using a multi-class Bayesian Naïve classifier based on the features 

selected in (ii). External-validation of the proposed methodology in a second dataset using the 

features selected from the first one (iv).   

The layout of the paper is as follows. In Section 2, we describe the subject population, the 

experiments that were performed, and the methods used for data pre-processing steps of the 

proposed pipeline and the classification procedure. Results are presented in Section 3, and 

Section 4 is devoted to the discussion.   

 

 

 

2. Materials and Methods 

 

The proposed sleep stage classification approach can be divided in four steps. Fig.1 

demonstrates those four steps which can be summarized as follow: 

1) Signal processing and extraction of wavelet components within the predefined 

frequencies 

2) Estimation of the features based on relative power, different CFC estimators per 

frequency pair 

3) Feature selection and finally 

4) Classification of the sleep stages 

[Figure 1 around here] 

 

 

2.1. Polysomnographic database 

 

The polysomnographic  dataset that we used to present and evaluate the proposed novel 

methodology is a publicly available sleep PSG dataset (Kemp et al., 2000) demonstrated as 

part of the PhysioNet repository (Goldberger et al., 2000) that can be downloaded from (The 

Sleep-EDF Database [Expanded]”, Physionet.org). The brain activity was recorded from two 

electrodes-pairs, the Fpz-Cz and Pz-Oz, instead of the standard C3-A2 and C4-A1. The sleep 

stages were assigned to the following stages/conditions : wake (W), REM (R), non-R stages 

1–4 (N1, N2, N3, N4), movement and not scored. The sleep scoring of each epoch of length 

30s was realized by six experts following the Rechtschaffen and Kales guidelines 

(Hobson,1969). For our study, we removed from further analysis the very small number of 

movement and not scored epochs (not scored epochs were mostly at the beginning or end of 
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each recording). We also keep N3 and N4 as distinct sleep stages. In the whole dataset, we 

detected 61 epochs with movements while only 17 had artifacts due to movements. Across the 

cohort, the maximum number of  movement epochs was 12. 

The adopted open-access dataset consists of 20 healthy subjects ( 10 male / 10 female), aged 

25–34 years. There are two 20-h recordings per subject. EEG recordings were sampled at 100 

Hz while epoch duration is 30 s.  

 

2.2  Feature Extraction 

Both EEG channel recordings were decomposed every 5s with Maximal Overlap Discrete 

Wavelet Tansform (MODWT) wavelet method and Daubechies wavelet filters (dau4). 

The wavelet signals were then mapped to one of the eight predefined frequency ranges. The 

reason why we preferred a wavelet decomposition over predefined bandpass filtering of the 

sleep EEG recordings is to get a more accurate temporal resolution of the well-established 

frequency ranges and to distinguish true from artefactual sleep activity. For that reason, we 

combined EOG and EMG recordings with wavelet time series to remove signals directly linked 

to eye movements and muscle activity. The predefined frequencies were: low-δ {0.1-1.5 Hz}, 

high-δ (K-Complex) {1.6-4 Hz}, θ {4-8 Hz},α1 {8-10  Hz}, α2 {10-13 Hz},β1 (spindle) {14-20 

Hz},β2 {21-30 Hz} and γ1 {31 – 45 Hz}.  

We splitted δ frequency band in order to capture slow wave activity and also to focus 

on well-known frequency profile of K-complex that suppresses  cortical arousal in response to 

any external and second, plays a key role to sleep-based memory consolidation (Cash et al., 

2009). Additionally, β brain rhythm was further splitted into low and high in order to capture 

sleep spindles activity via CFC. Sleep spidles occur during stage 2 sleep and are often follow 

the occurrence of K-Complex. Sleep spindles result from thalamo-cortical interactions and has 

been found: a) to suppress the presence of disruptive external sounds, a correlation has been 

revealed between the brain activity in the thalamus and the subject’s ability to be tranquile 

(Thanh Dang-Vu et al., 2010) and b) to be associated with the integration of new information 

into existing knowledge (Tamminen et al., 2010) as well as directed remembering and 

forgetting ( Saletin  et al., 2011 ; fast sleep spindles). 

We estimated five types of features: 1) the relative signal power for each frequency band in 

the time domain based on the Maximal overlap discrete wavelet transform (MODWT), 2) the 

phase-to-amplitude coupling (PAC) that is estimated between every possible pair of 

frequencies, 3) the correlation coefficient between  the envelopes of the frequency bands as an 

amplitude-amplitude cross-frequency coupling (AAC) estimator, 4) a novel complexed version 
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of the modulation index (CMI) for estimating the phase-to-amplitude coupling between every 

possible pair of frequencies and 5) the original modulation index (MI). All the cross-frequency 

coupling estimators were computed between all possible pairs of the eight predefined 

frequency bands (8*7/2=28 combinations). 

All features were estimated within each epoch of 30 s length and also by adopting a sliding 

non-overlapped window of duration of 5s, which resulted in 6 temporal non-overlapped 

segments per 30 s. The whole analysis leads to the extraction of 120 (8 relative signal power + 

28 Phase-to-amplitude coupling (PAC) + 28 Amplitude-to-Amplitude coupling (AAC) + 28 

Phase-to-Amplitude coupling (CMI) + 28 Phase-to-Amplitude coupling (MI)) total features 

per epoch. All the features were mapped in the [0,1] interval independently for each EEG 

channel. 

 

2.2.1 Relative Signal Power 

EEG recordings of every 5s sub-epoch was decomposed using the Maximal overlap discrete 

wavelet transform (MODWT) wavelet method and Daubechies wavelet filters (dau4). The 

outcome of this process were time series with frequency profile that corresponds to the 

predefined frequency bands. 

We estimated the relative power of each band-pass frequency signal segment in the time-

domain with the following equations: 

)2(

)fr(SP

)fr(SP
)fr(RSP

)1(2)^t,fr(filtered)fr(SP

sfrequencie

1fr

sfrequencie

1fr

T

1t





 



 

 

The first equation quantifies the signal power (SP) of each frequency as the sum of the filtered 

signal squared per sample (1) while equation (2) divides the SP by the sum of the SP from all 

the frequencies which gives the relative signal power (RSP). The whole approach was repeated 

for every epoch, sub-epochs, EEG sensor-pairs and subject. 
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2.2.2 Cross-Frequency Coupling Estimations 

2.2.2.1 Phase-to-Amplitude Coupling Cross-Frequency Coupling (PAC)  

CFC quantifies the strength of interactions between time series of different frequency 

content. It can be estimated both within and also between sensors (Canolty and Knight, 2010; 

Buzsáki, 2010; Buzsáki et al., 2013). CFC can be estimated between power – power, amplitude 

– amplitude and amplitude-phase representations of two time series with different frequency 

content. These representations can be derived by filtering twice one (within) or once two-time 

series (between). The most common type of CFC interaction is phase-to-amplitude coupling 

(PAC) and it is the most common in the literature (Voytec et al., 2010). The PAC algorithm 

for a single EEG sensor is described below.  

Let x(isensor, t), be the EEG time series at the isensor-th recording site, and t=1, 2,.... T the 

sample points. Given a band-passed filtered signal x(isensor,t) , CFC is quantified under the 

notion that  the phase of the lower frequency (LF) oscillations modulate the amplitude of the 

higher frequency (HF) oscillations. The following equations described the complex  

representations of both (LF) zLF(t) and (HF) oscillations zHF(t) produced via the Hilbert 

transform (HT[.]). 

 

)t( i
HF

)t( i
HFHFHF

)t( i
LF

)t( i
LFLFLF

HFHFLFLF e  (t)Ae (t)z(t)]HT[x(t)z  ,e (t)Ae (t)z(t)]HT[x(t)z


  

The next step of the PAC algorithm is the estimation of the envelope of the HF oscillation 

AHF(t) which then is decomposed via the wavelet and we selected the component within the 

frequency range of LF oscillations. Afterward, the resulting time series is again Hilbert 

transformed in order to get its phase time series that described phase dynamics φ'(t) 

 

 

The aforementioned complex equation describes analytically the modulation of the amplitude 

of HF oscillation by the phase of LF oscillation. 

The phase consistency between those two time series can be measured by the original phase 

locking value (PLV) estimator (Lachaux et al., 1999) but also from its imaginary portion of 

PLV. Imaginary part of PLV (iPLV) can be used as an synchronization index that quantifies 

the strength of CFC-PAC coupling. 

PLV is defined as follows: 

     e (t)z'e (t)z' ]  (t)  HT[(t)z'
)( i)(' i

LFHF,
HFLFHF tt

A 

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)3(e*
T
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
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and the iPLV as follows: 

)4(eIm*
T

1
PLVIm

T

1t

))t()t((i HFLF

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The iPLV is an estimator that is less affected compared to PLV from the volume conduction 

effect. Using iPLV for quantifying the strength of CFC interactions is an advantage over 

volume conduction. iPLV is more sensitive to non-zero phase lag and for that reason is more 

resistant to any self-interactions that are directly linked to volume conductions (Nolte et al., 

2004). For further details and applications, an interested reader can read our previous work 

(Dimitriadis et al., 2016; Antonakakis et al., 2016). 

 In the present study, as was already mentioned we used the wavelet signals that 

correspond to the eight frequency bands which means that PAC is estimated for 8*7/2=28 

cross-frequency pairs e.g. δφ - θA ,δφ - α1
Awhere φ and A denote the phase and amplitude of 

each frequency band. Figure 2 demonstrates the pre-processing steps of the PAC estimator 

using a 30s epoch from wake stage of subject 1. 

 

[Figure 2 around here] 

 

2.2.2.2Amplitude-to-Amplitude Cross-Frequency Coupling (AAC) 

 The complex analytic representations of each signal as derived via the MODWT 

approach zF(t) was then Hilbert transformed (HT[.]). 

)t( i
F

)t( i
FFF

FF e (t)Ae (t)z(t)]HT[x(t)z


  

Next, the envelope of the frequency oscillations AF(t) was squared to express the power of the 

signal in the time-domain. Afterward, the correlation coefficient between every pair of the 

derived time series was estimated to express the associations between specific frequency pairs. 

)5()2).^t(A,2).^t(A(corrcoefAAC
21 FF  
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In the present study, as was already mentioned we used the wavelet signals that 

correspond to the eight frequency bands which means that AAC is estimated for 8*7/2=28 

cross-frequency pairs e.g. δA - θA ,δA - α1
Awhere A denote the amplitude of the envelope of 

each frequency band. Figure 3 demonstrates the pre-processing steps of the AAC estimator 

using a 30s epoch from wake stage of subject 1. 

 

[Figure 3 around here] 

 

 

2.2.2.3 A Complex Version of the Modulation Index (CMI) 

 Modulation Index (MI) has been presented as a novel estimator for constructing a 

phase-amplitude plot (comodulogram) that demonstrates the strength of how the phase of a 

low-frequency modulates the amplitude of the high-frequency within a raw signal (Tort et al., 

2010). 

Let’s denote by xraw(t) the raw signal here one of the EEG recordings. The MI is calculated 

for every pair of frequencies creating a phase-amplitude plot. The steps for estimating the 

modulation index are the following: 

1) First, xraw(t) is filtered at the two frequency ranges, the low-frequency fp and the high-

frequency fA. We denote the filtered signals as xfp(t) and xfA(t). 

2) The time series of the phases of xfp(t) [denoted as ϕfp(t)] is obtained from the standard Hilbert 

transform of xfp(t).  

The Hilbert transform is also applied to xfA(t) to extract the time series of the amplitude 

envelope of xfA(t) [denoted as AfA(t)].  

A composite time series is constructed [ϕfp(t), AfA(t)] giving the amplitude of the fA oscillation 

at each phase of the fp rhythm. 

3) Next, the phases ϕfp(t) are binned (here we used 20 bins of the 360o of range 18o) and the 

mean of AfA over each phase bin is calculated. We denote by (j) the mean AfA value at the 

phase bin j. 

4)At the last step, we normalize the mean amplitude  by dividing each bin value by the sum 

over the bins 

)6(

)k(A

)j(A
)j(P

N

1k

f

f

pfA

pfA












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where N denotes the number of phase bins (here N=20s). 

Here, instead of equation 6, we used the following transformation based on the composite 

signal 

)t( i
F

)t( i
FFF

FF e (t)Ae (t)z(t)]HT[x(t)z


  

And is defined by the following equation. 

 

)7(
N

exp))k(A(

CMI 

))k((iN

1k
Af

pf 










 

where we get the product of the mean AfA within each phase bin with the mean ϕfp within each 

phase bin N. 

In the present study, we employed the wavelet signals that correspond to the eight 

frequency bands which means that CMI is estimated each one for 8*7/2=28 cross-frequency 

pairs e.g. δA - θA ,δA - α1
Awhere A denote the amplitude of the envelope of each frequency 

band. Figure 4 demonstrates the pre-processing steps of the CMI estimator using a 30s epoch 

from wake stage of subject 1.  

  [Figure 4 around here] 

 

 

 

2.2.2.4 The Modulation Index (MI) 

 The original defined MI (Tort et al., 2010) was estimated via the equation 6. Figure 4 

demonstrates the pre-processing steps of the MI estimator using a 30s epoch from wake stage 

of subject 1. Equation 4 is calculated based on the amplitude and phase bins presented in 

Fig.4D,E. 

Here, we used the wavelet signals that correspond to the eight frequency bands which 

means that MI is estimated for 8*7/2=28 cross-frequency pairs e.g. δA - θA , δA - α1
Awhere A 

denote the amplitude of the envelope of each frequency band.  

 

2.2.2.5 A graphical Visualization of Cross-Frequency Interactions 

 

For every epoch of 5 sec and for the four cross-frequency coupling estimators, we quantified 

the cross-frequency interactions. The possible pair-wise combinations of the eight brain 

rhythms are 28 while γ1 cannot be a modulator but only a modulated frequency. We visualized 

these 28 cross-frequency interactions using a graphical representation where the nodes denote 

the seven out of eight brain rhythms, the direction of arrows illustrate the direction of the 
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modulation while the color encodes the strength of the coupling. In our example, we adopted 

epoch 1 from N1 of the first subject from the training dataset using phase-to-amplitude 

estimator. It is important to underline that in the present study, we used a single-sensor for the 

estimation of the four cross-frequency interactions and relative power estimates. For every 

epoch of 5 sec and for each of the four CFC estimates, we quantified the pair-wise cross-

frequency interactions among the eight brain rhythms. A complementary visualization scheme 

for the cross-frequency coupling interactions is given in Fig.5 called comodulogram in a 

graphical layout compared to a tabular representation (Dimitriadis et al., 2015a,2016a). 

 

[Figure 5 around here] 

 

2.3 Feature Selection  

 

We ranked the whole set of estimated features using the infinite feature selection method 

introduced in (Deng et al., 2010). We applied the feature selection strategy to the training set 

in every fold of the leave-one out cross-validation scheme (LOOCV ;  see next section) . 

Finally, we selected the features that were consistent selected in the top 40 % across the 20 

folds. For every fold, we got a ranking of the 120 features and finally we selected the number 

of features that were consistently appeared on the top 40% across the 20 folds (see also in 

Fig.1). 

 

 

2.4 Machine learning and classification 

We accessed the generalizability of the whole approach by using 20-fold cross-validation. 

Specifically, in each fold we used the features extracted  from a single subject for testing and 

all other recordings for training. The methodology was tested with both available EEG 

electrodes (Fpz-Cz and Pz-Oz).  Each subject’s recordings were used only once for testing, 

thus obtaining a one-to-one correspondence of cross-validation folds and test subjects. 

We report the scoring performance using the best electrode, which was Fpz-Cz. Group-

averaged confusion matrices are reported to present the average classification performance per 

sleep stage while mean accuracy, sensitivity, specificity and F1-score are also reported. 

We used five different classifiers: a) the k-nearest neighbour, b) the Bayesian Naïve multi-

class classifier (Linear and Kernel), c) the extreme-learning machine (ELM) (Linear, RBF) 

(Huang et al., 2012), d) linear discriminant analysis (LDA) and e) the multi-class support vector 

machines (multi-SVM – libsvm toolbox) (Linear,RBF) (Chang and Lin, 2011). 
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To avoid the effect of imbalanced sleep stage representation and present true performance 

measures (accuracy, sensitivity, specificity, F1 score) and confusion matrices, we randomly 

sampling the sleep stages across each fold such as to get equal representation of each sleep 

stage across sleep stages and subjects. We repeated the 20-fold cross-validation 100 times.  

 

2.5 Second Polysomnographic Database 

The adopted second open-access dataset consists of 77 healthy subjects (36 male age

31.2301.59   / 41 female 6.2153.58  ), aged 26–101 years. There are whole-night 

polysmnographic sleep recordings containing EEG (from Fpz-Cz and Pz-Oz electrode 

locations), EOG (horizontal), submental chin EMG, one from each subjects. EEG recordings 

were sampled at 100 Hz while epoch duration is 30 s.  

 

2.6 Computational time of the proposed ASSC  

 Automatic sleep scoring by a neurologist demands 3-4 hours for a single hypnogram 

(Lainscsek et al., 2013). Our algorithm can estimate the selected features and produce the 

ASSC of a single subject based on the training set on averaged 3.19.8   mins (depending on 

the duration of the sleep recordings) using a multi-core processor and parallelized the 

MATLAB code in a MATLAB environment. We estimated the computational time on the 

second dataset which was 5.12.9  . 

 

3. Results 

 

3.1 Discriminative Features of Sleep Stages 

In the following tables, we demonstrated the selected features from the pool of four 

complementary cross-frequency estimators (Table 1-4) adopted here and the relative power 

estimates (Table 5). We underlined with a ‘tick’ in Tables 1-5, the selected features which were 

36 out of 120. Using a criterion of consistency of features on the top 40% (0.4*120=48 features) 

across the 20-folds, we finally selected 36 features from the first training set. The same set of 

features was used for an external validation of the whole approach to the second dataset. 

Fig.6  illustrates the comodulograms of the four CFC estimators adopted in the present study 

averaged across epochs at each sleep stage from a single-subject. On the x-axis are the 

frequencies of the modulator while on the y-axis the frequencies of the modulated brain rhythm. 

Clearly, one can detect the differentiation of the strength of the coupling across sleep stages for 
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PAC (Fig.6A), AAC (Fig.6B) and CMI (Fig.6C) compared to MI (Fig.6D) which mostly 

detected modulations between low,high δ and θ brain rhythms. PAC coupling was elevated 

between low, high δ and the rest of frequency subcomponents in deep sleep compared to 

NREM and W. 

Fig.7 illustrates the RP of each frequency subcomponent at each sleep stages and the wake 

period from a single-subject (same as in Fig.6) after averaging across all epochs from a single-

scan. It is obvious that low-δ {0.1-1.5 Hz}, high-δ (K-Complex) {1.6-4 Hz} and θ {4-8 Hz} 

demonstrated significant differences between the sleep stages and the wake period. 

 

Table 1. Selected features from PAC-CFC estimator 

γ1 ✓  ✓      

β2   ✓      

β1 ✓ ✓ ✓  ✓    

α2    ✓     

α1 ✓ ✓       

θ ✓ ✓       

high-δ ✓        

low-δ         

 low-δ high-δ θ α1 α2 β1 β2 γ1 

 

Table 2. Selected features from AAC-CFC estimator 

γ1       ✓  

β2     ✓ ✓   

β1         

α2    ✓     

α1   ✓      

θ ✓ ✓       

high-δ ✓        

low-δ         

 low-δ high-δ θ α1 α2 β1 β2 γ1 
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Table 3. Selected features from CMI-CFC estimator 

γ1    ✓ ✓    

β2  ✓   ✓    

β1 ✓  ✓  ✓    

α2   ✓      

α1   ✓      

θ         

high-δ         

low-δ         

 low-δ high-δ θ α1 α2 β1 β2 γ1 

 

 

 

Table 4. Selected features from MI-CFC estimator 

γ1         

β2         

β1         

α2         

α1         

θ ✓ ✓       

high-δ ✓        

low-δ         

 low-δ high-δ θ α1 α2 β1 β2 γ1 

 

 

 

Table 5. Selected features from RP. 

 low-δ high-δ θ α1 α2 β1 β2 γ1 

RP ✓ ✓ ✓      

 

[Figure 6,7 around here] 
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3.2 Sleep State Classification Performance 

 

We achieved very high classification accuracy, sensitivity and specificity of 96.2 ± 2.2%, 

94.2 ± 2.3%, and 94.4 ± 2.2% respectively across the 20 folds. Complementary, mean F1-

score was also high (92%, range 90–94%). The aforementioned results were succeeded with 

the application of multi-class Bayes Naive classifier (with kernel). All our measures were first 

averaged across folds at each repetition and then we estimated the mean and standard deviation 

across 100 repetitions of the 20-fold. 

The best results were achieved with the Fpz-Cz sensor. Table 6 demonstrates the averaged 

confusion matrix across the 20 folds.  Diagonal elements referred to the matching in % between 

experts and our algorithm while off-diagonal elements illustrate the % of mismatch. The most 

correctly classified sleep stage was the N4 following by N3, W, N2, R and lastly the N1. Most 

misclassifications of N1 were happened in R and W stage , for N2 in N3 and R, for N3 in R 

and W, for N4 in N3, for R in NI and N3 and for W in N4 and R. 

 

 

 

Table 6. Averaged Confusion Matrix Across the 20 Folds based on the best performance 

Fpz-Cz channel (%). 

 N1 

(Algorithm) 

N2 

(Algorithm) 

N3 

(Algorithm) 

N4 

(Algorithm) 

R 

(Algorithm) 

W 

(Algorithm) 

N1 (Expert) 94.1 

(4.9) 

   0.6 

(0.03) 

 

N2 (Expert)  94.7 

(4.1) 

    

N3 (Expert) 0.03 

(0.02) 

2.8 

(0.03) 
98.8 

(3.8) 

0.09 

(0.03) 

5.1 

(0.06) 

 

N4 (Expert)    99.2 

(3.7) 

 3.7 

(0.06) 

R (Expert) 3.2 

(0.03) 

3.1 

(0.05) 

0.07 

(0.02) 

 94.6 

(4.1) 

0.8 

(0.02) 

W (Expert) 3.5 

(0.04) 

 0.06 

(0.02) 

  95.9 

(4.7) 

 

 

All our measures (F1 score, accuracy, sensitivity, specificity) that evaluated the robustness 

of the proposed scheme for the automatic sleep stage scoring based on a single-sensor are 

superior to previous attempts on the same dataset (Berthomier et al., 2007 ; Liang et al., 2012 

; Tsinalis et al., 2016). Complementarily, our methodology worked independently for N3 and 

N4 without merging them into a single stage. 
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Figure 8 illustrates the manually scored hypnogram of a subject versus the proposed single-

sensor automatic sleep stage classification. 

 

[Figure 8 around here] 

 

 

3.3 Automatic Sleep Stage Claassification Performance (ASSC) in an External Dataset 

 

We achieved very high classification accuracy, sensitivity and specificity also for the second 

external dataset. Specifically, we achieved 95.1 ± 2.9%, 94.1 ± 3.1%, and 94.0 ± 2.9% 

respectively across the subjects of the second dataset. Complementary, mean F1-score was 

also high (91%, range 89–92%). The aforementioned results were succeeded with the 

application of multi-class Bayes Naive classifier (with kernel) and using as a training set the 

features extracted from the first dataset. All our measures were averaged across subjects. 

Table 7 demonstrates the averaged confusion matrix across the 77 subjects.  Diagonal 

elements demonstrate the matching in % between expert and our algorithm while off-diagonal 

elements illustrate the % of mismatch. The most correctly classified sleep stage was the N4 

following by N3,W ,N2, R and lastly the N1. Most misclassifications of N1 were happened in 

R and W stage , for N2 in N3 and R, for N3 in R and W, for N4 in N3, for R in NI and N3 and 

for W in N4 and R. 

 

 

Table 7. Averaged Confusion Matrix Across the 77 subjects based on the best 

performance Fpz-Cz channel (%). 

 N1 

(Algorithm) 

N2 

(Algorithm) 

N3 

(Algorithm) 

N4 

(Algorithm) 

R 

(Algorithm) 

W 

(Algorithm) 

N1 (Expert) 94.5 

(4.9) 

   1.1 

(0.05) 

 

N2 (Expert)  94.2 

(4.1) 

    

N3 (Expert) 0.03 

(0.04) 

2.9 

(0.05) 
97.6 

(3.8) 

3.4 

(0.04) 

5.3 

(0.07) 

 

N4 (Expert)    96.8 

(3.7) 

 3.5 

(0.07) 

R (Expert) 3.0 

(0.05) 

3.2 

(0.04) 

2.1 

(0.02) 

 94.1 

(4.1) 

1.7 

(0.05) 

W (Expert) 3.6 

(0.04) 

 1.8 

(0.02) 

  95.1 

(4.7) 
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3.4 Relative Signal Power Changes during Sleep 

 

Based on our results of relative signal power changes across the sleep stages (Fig.8), low-

δ {0.1-1.5 Hz} is elevated during deep sleep starting from N1 to N4. Signal power of high-δ 

(K-Complex) is higher in N1 and N2 and is decreased till REM. Complementary, the signal 

power of θ {4-8 Hz} is higher in REM which is an indicator of the activity of the brain during 

REM stage. We didn’t detect significant relative power changes in β1 frequency across the 

sleep stages and especially in N2 linked to sleep spindles maybe because of the long epoch of 

5 sec. 

 

3.5 Cross-Frequency Coupling Changes during Sleep 

 

 By combining Tables 1- 4 with Fig.7, we revealed important tendencies of increased or 

decreased patterns of CFC with the four adopted estimators during the progression to deep 

sleep. For PAC estimator, we have detected higher values for N3-N4 sleep stages especially 

for slower brain rhythms (low-δ {0.1-1.5 Hz}, high-δ {1.6-4 Hz}, θ) while during REM, higher 

values were detected between θ- γ1 , α1-α2 and α2- β1. For AAC estimator, the coupling for 

frequency pairs low-δ - high-δ, low-δ – θ and high-δ– θ is elevated during N3-N4, θ- α1 is 

higher in N3 stage, α1- α2 and α2- β2 are higher in N4 while β2- γ1 is higher in REM. 

Complementary, β1- β2 interactions were higher in N1 , decreased in N2 and preserved stable 

during N3-N4 and REM. The complex version of MI (CMI) works better with θ and α2 brain 

rhythms that further complements PAC estimates. Specifically,  we observed higher values for 

low-δ- β1 and high-δ- β2 in N3 stage  while  θ- α1 increased during deep sleep starting from N2 

up to N4. On the opposite,  θ- α2 is higher in N2 and is decreased till N4.  θ- β1 demonstrates 

higher values for N3 and further decreased in N4 and REM stages. α1- γ1 demonstrates higher 

values in N1-N2 and then decreased till REM .α2- β1 ,α2- β2  and α2- γ1 increased during the first 

three sleep stages reaching the maximum in N3 and then further decreased till REM. Finally, 

the MI contributes to the multiparametric classifier with three features. low-δ- high-δ 

demonstrates high values in the N1-N2-N3 sleep stages and further reduced till the REM sleep. 

low-δ- θ increased from N1 to N2 and then reduced progressively till REM sleep. Finally, high-

δ- θ is one of the detectable cross-frequency couplings in N1-N2 with MI with very low values 

in N3 and higher values in REM. 
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4 Discussion 

In the present study, we demonstrated the feasibility of a novel single-sensor automatic sleep 

stage classification (ASSC) algorithm based on different aspects of cross-frequency coupling 

estimates. We achieved a very high classification sensitivity, specificity and accuracy of 90.3 

± 2.1%, 94.2 ± 2.3%, and 94.4 ± 2.2% across 20 folds, respectively with high mean F1-score 

(92%, range 90–94%) when multi-class Bayes Naive classifier (with kernel). Our results 

revealed that Fpz-Cz sensor is the most appropriate for ASSC succeeding better performance 

compared to Pz-Oz. Complementary, we replicated our excellent results in an external second 

open sleep database of 77 subjects. Specifically, we achieved very high classification accuracy, 

sensitivity and specificity namely 95.1 ± 2.9%, 94.1 ± 3.1%, and 94.0 ± 2.9% respectively 

across the subjects of the second dataset. Additionally, mean F1-score was also high (91%, 

range 89–92%). 

The whole methodology and the novelty of the proposed scheme can be summarized as follow: 

• We analysed EEG recordings at every 5 s instead of 30 s epochs (which is the epoch 

length for the expert scoring) 

• We kept N3 and N4 as single sleep stages without attempting to merge them (Tsinalis 

et al., 2016) 

• We adopted MODWT to simultaneously decompose the EEG recordings into true 

activity assigned to one of the basic frequency ranges and also to denoise the EEG 

recordings from eye-movements and muscle activity 

• We adopted apart from relative signal power, four different connectivity estimators 

(three phase-to-amplitude: PAC,MI,CMI and one  amplitude-to-amplitude: AAC) 

• We used a dataset where all the subjects (expect one) had more than one recording 

• Cross-validation scheme was designed such as to: 

a) To access the generalisability of the method by adopting a 20-fold where at each 

fold only the recording from a single subject were used for training while each 

subjects’s recording were used only once for testing 

b) Avoid imbalanced sleep stages distribution on the training set. For that purpose, we 

repeated the 20-fold CV, 100 times by randomly sampling the class labels across 

sleep stages and subjects such as to keep their representation equal. 

• Our results outperformed previous comparable studies on the same dataset (Berthomier 

et al., 2007 ; Liang et al., 2012 ; Tsinalis et al., 2016)  
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• We also replicated the proposed ASSC method based on CFC features in a second sleep 

dataset 

• We demonstrated for the first the effectiveness of different cross-frequency coupling 

estimates to the improvement of CFC and also a better understanding of the multiplexity 

of the human brain in sleep 

Our methodology presents a single-sensor automatic sleep stage classification based on 

cross-frequency coupling estimates that succeeded a very high classification performance. CFC 

outperformed trivial features derived from sleep recordings supporting further the notion of 

CFC for the sleep stage classification. A previous study attempted to demonstrate the positive 

effect of CFC on ASSC succeeding an overall accuracy of 75 % with four sleep stages (Sanders 

et al., 2014). A more recent study explored the phase-to-amplitude coupling in deep sleep and 

in epileptic patients where they observed elevated PAC (Amiril et al., 2015). 

Brain rhythms can interact between each others with different mechanisms like phase-to-

phase, phase-to-amplitude (PAC) and amplitude-to-amplitude envelope correlation (see Figure 

2 in Buszaki et al., 2012). An important mechanism that exists in a typical scenario when two 

oscillators with the same or different frequency within the same or different anatomical brain 

area are entrained each other is phase-to-phase coupling. This is a mechanism that mainly can 

be estimated between a  pair of sensors and not within a sensor (Dimitriadis et al.,2015b). A 

less temporally less precise, but nevertheless important, brain interaction between oscillators 

of similar or different frequency is expressed by the temporal covariation of their 

amplitude/power, known as amplitude/power comodulation or amplitude-amplitude/power-

power coupling (correlation of the envelope : Bruns and Eckhorn,2004). 

The third basic mechanism for brain interactions is called frequency phase-to-amplitude 

(CPAC or PAC ; Pittman-Polletta et al., 2014 ; Dimitriadis et al., 2015a, 2016 a,b) coupling of 

nested oscillations. One reason why slow oscillations couple faster brain rhythms in multiple 

brain areas is explained with the conduction velocities of cortical neurons. Slower oscillators 

compared to faster activate more neurons in a larger volume (von Stein and Sarnthein, 2000) 

and are associated with larger membrane potential changes since in longer temporal windows, 

a large portion of spikes of many more upstream neurons can be integrated (Hasenstaub et al., 

2005 ; Quilichini et al., 2010).  

PAC has been reported between every pair of brain rhythms in interactive circuits in the 

mammalian cortex  from low oscillations as 0.025 Hz up to fast as 500 Hz (Sirota et al., 2003). 
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For example, the occurrence of hippocampal “ripples” (40 to 200 Hz) is coupled to dendritic 

layer sharp waves and phase-modulated by sleep spindles (12 to 16 Hz). In turn, the spindle-

modulated sharp wave-ripple complex is phase-coupled to neocortical slow oscillations (0.5 to 

1.5 Hz) (Sterlade et al., 1993 ; von Stein and Sarnthein, 2000 ; Sirota and Buzsaki, 2005; 

Isomura et al., 2006 ; Ji and Wilson,2007;Peyrache,2011) and all these rhythms are modulated 

by the ultraslow (0.1 Hz) oscillation (Sirota et al., 2003). Finally, the hierarchy of brain 

oscillators is formed by the CFC interactions that further support the interaction of multiple 

brain rhythms across spatial and temporal scales (Buzsaki et al., 2012). Here, using a single 

EEG sensor, we have detected higher values for N3-N4 sleep stages especially for slower brain 

rhythms (low-δ {0.1-1.5 Hz}, high-δ {1.6-4 Hz}, θ) while during REM stage, higher values 

were detected between θ- γ1 , α1-α2 and α2- β1. 

The formation of new memories demands the coordination of neural activity across 

widespread brain regions. In both humans and animals, the hippocampus is believed to support 

the formation of new associative or contextually mediated memories (Clemens et al., 2009). 

During the consolidation of new memories on a system-level, mnemonic representations of 

items  initially reliant on the hippocampus and after are thought  to travel to neocortical sites 

for more permanent storage. Sleep has this privilege role for facilitating this information 

transfer (Born and Wilhelm,2012). Mechanistically, consolidation processes have been proved 

to be rely on systematic interactions between the three basic neuronal oscillations that 

characterizing non–rapid eye movement (NREM) sleep: slow-oscillations, spindles and ripples 

(Staresina et al.,2015). Staresina et al., (2015) used direct intracranial EEG recordings from 

human epilepsy patients during natural sleep to test the assumption that slow-oscillations, 

spindles and ripples are functionally coupled with the hippocampal activity. They demonstrated 

a PAC between 0.5–1.25 Hz (slow-oscillation range) and 12–16 Hz (spindle range), 

respectively using EEG modality and CZ sensor. In addition, they demonstrated a hippocampal 

PAC during NREM sleep stages providing also a link between EEG-CZ recordings with 

hippocampal estimates from epileptic patients. The hierarchical role of these three sleep 

components (slow-oscillations, spindles and ripples) was revealed via phase-to-amplitude 

coupling based on mean vector length estimator.  

In the present study, we revealed multiple cross-frequency interactions between slow, 

medium frequencies and low γ activity in NREM sleep with every cross-frequency coupling 

estimator. Our results further support that CFC during NREM sleep are significant attributes 

of sleep and the overall memory consolidation. The β1- β2 interactions revealed with AAC 
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should be further explored in direct link with their functionality in the consolidation of 

memories.  

A recent study untangled hippocampo-cortical CFC as the basic mechanisms mediates 

memory consolidation during sleep (Maingret et al., 2016). They provided a clear functional 

link between sharp-wave ripples, delta waves and ripples. Logothetis et al., (2012) 

demonstrates the CFC-PAC coupling between hippocampo-cortical areas during a subcortical 

silence and off-line memory consolidation while Amiri et al., (2016) demonstrates an enhanced 

PAC in deep sleep and also in the onset zone of focal epilepsy. 

In the present study, we demonstrated for the first time the effectiveness of different aspects 

of CFC namely, PAC and amplitude-to-amplitude envelope correlation to automatically 

classify sleep stages (Tables 1-4 and Fig.6). Additionally, we analysed sleep data under CFC 

for the first time in healthy populations further proved that CFC interactions exist during sleep 

showing and that were altered during the transition between sleep stages. We succeeded high 

classification accuracy in two datasets (training and testing dataset) using the activity recorded 

from a single EEG sensor. In the second study, we achieved lower mean classification accuracy 

across sleep stages compared to the first one and especially in N4 and R sleep stages (Table 6 

vs Table 7). One possible explanation on these findings could be the amplitude differences of 

slow oscillations between gender and across the lifespan (Mourtazaev et al., 1995). It is well-

known that aging affects the neurophysiological generation of slow-wave oscillations (Leirer 

et al., 2011). 

Here, we selected the relative power of low-δ {0.1-1.5 Hz}, high-δ (K-Complex) {1.6-4 Hz} 

and θ {4-8 Hz} as complementary features to the CFC estimates for a better classification of 

the sleep stages (Table 5 and Fig.7). δ waves were defined within the range of 1-4 Hz 

(Walker,1990). Compared to the others brain waves, δ waves have the highest amplitude while 

recent studies described slower (<0.1 Hz) oscillations (Hiltunen et al., 2014). Both sleep stages 

3 and 4 are dominated by δ waves with higher representation in sleep stage 4 (Iber et al., 2007). 

In addition, δ waves are often associated with another EEG phenomenon, the K-complex (high- 

δ : {1.6-4 Hz}). K-Complexes have been demonstrated to precede δ waves in slow wave sleep 

(De Gennaro et al., 2000). Both K-complex and  δ wave activity in sleep stage 2 generate both 

slow-wave (~0.8 Hz) and δ (1.6–4.0 Hz) oscillations. However, their topographical distribution 

is different while the δ power of the K-complexes is higher (Happe et al., 2002). Additionally, 

δ waves can be further classified according to the location where they mostly detected into : 

frontal (FIRDA), temporal (TIRDA), and occipital (OIRDA) intermittent δ activity 

(Brigo,2011).During sleep, θ activity appears as the prominent EEG activity in REM sleep 
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while θ activity serves as  the background activity of both spindles and K-complexes during 

sleep stage 2 (Rodenbeck et al., 2006). 

Various CFC-PAC estimates and AAC have been employed here to estimate the alternative 

CFC mechanisms of brain’s communication between different frequencies. Fig.6 illustrates the 

comodulograms of the four CFC estimators adopted in the present study averaged across 

epochs at each sleep stage from a single-subject. Clearly, one can detect the differentiation of 

the strength of the coupling across sleep stages for PAC (Fig.6A), AAC (Fig.6B) and CMI 

(Fig.6C) compared to MI (Fig.6D) which mostly detected modulations between low,high δ and 

θ brain rhythms. PAC coupling was elevated between low,high δ and the rest of frequency 

subcomponents in deep sleep compared to NREM and W. Our observations are direct linked 

with the notion that many frequencies are modulated by the ultraslow (0.1 Hz) oscillation 

during sleep (Sirota et al., 2003) affected by different sleep stages (Staresina et 

al.,2015).Enhanced PAC during deep sleep was also observed in epileptic patients (Arimi et 

al., 2016). 

Our main goal was to further enhance the efforts of succeeding ASSC with a high accuracy 

from a single-sensor. It is also significant to study simultaneously intra and inter-frequency 

interactions including phase-to-phase between multi EEG sensors in order for a better 

understanding of the mechanism and interactions occurred during sleep. It is important to 

mention here that our results were externally validated with a second big dataset which makes 

the whole analysis stronger and unbiased from the subjective sleep scoring based on which we 

trained our classifiers in the first dataset.Our next goal is to use an open database and to extend 

present and also our previous work where we explored intra-frequency interactions between 

multiple EEG sensors during the five sleep stages (Dimitriadis et al., 2009). 

Apart from the studying of CFC interactions within a single-sensor, the whole analysis based 

on a healthy population. For that reason, our next goal is to explore brain connectivity during 

sleep stages using more EEG sensors and all the possible intra and inter-frequency coupling 

modes. For that reason, we will work on ISRUC database (multi-channels ; Sirvan et al., 2016) 

which provides a large dataset with healthy individuals and also sleep recordings from non-

healthy individuals.  

To the best of our knowledge, our method achieved the best performance in the literature 

when classification is done across all five sleep stages and wake (six class) condition 

simultaneously using a single channel of EEG. This is different from adopting a one versus all 

classification strategy where the classification performance is over-estimated. Our results 

outperformed also studies that they used more than one channel (EOG,EEG,EMG) to extract 
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features for the accurate sleep scoring. Our next goal is to test our algorithm on low-cost 

commercial EEG sensors (ear-EEG; Looney et al., 2016) and on recordings from home 

environments and to further explore CFC patterns in sleep disorders. 
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Figure Captions 

 

Figure 1. The outline of the methodology. 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 7, 2017. ; https://doi.org/10.1101/160655doi: bioRxiv preprint 

https://doi.org/10.1101/160655
http://creativecommons.org/licenses/by-nc/4.0/


35 
 

 

Figure 2. The algorithmic steps for PAC estimation. Using the first epoch EEG signal from 

Fpz-Cz sensor of subject 1 during wake condition (A), from the P300 of an able subject (subject 

6), we demonstrated the phase-to-amplitude coupling between θ and β1 rhythm. Firstly, the raw 

time series was band-pass filtered using a zero-phase order filter into (B) low-frequency θ (4–

8 Hz) component where its envelope (Hilbert transform) is extracted and into (C) a high-

frequency β1 (13–20 Hz) component where via Hilbert transform its phase dynamics is 

estimated. (D) We then estimated both the amplitude and also the instantaneous phase of the 

band-passed β1 (13–20 Hz) component and we filtered the amplitude of this time series within 

the θ frequency range   (4–8 Hz). This algorithmic step will give us the θ modulation within 

the lower β amplitude. (E) Afterward, we Hilbert transformed both the θ-filtered signal and the 

θ-filtered within the lower-β amplitude extracting the related phase dynamics and finally their 

phase consistency with iPLV. The phase differences of those two phase time series which is 

illustrated in (F), will be the input in the iPLV estimator in order to quantify the strength of 

PAC coupling between θ and β1 rhythm and how the phase of the lower frequency component 

modulates the amplitude of the high amplitude 
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Figure 3. The algorithmic steps for AAC estimation. Using the first epoch EEG signal from 

Fpz-Cz sensor of subject 1 during wake condition (A), we demonstrate the detection of 

coupling between θ and β1 rhythm. To estimate θ-β1 AAC, the raw signal was band-pass filtered 

into both (B) a high-frequency β1 (13–20 Hz) component where its instantaneous phase is 

extracted and a (C) low-frequency θ (4–8 Hz) component where its envelope is extracted as 

well as. (D) We then presented the envelopes of the band-passed θ (4–8 Hz) and β1 (13–20 Hz) 

into a common plot. (E) Finally, we estimated the point-wise squared time series of the 

envelopes to get the power time series. The AAC is estimated on these power time series using 

correlation coefficient. 
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Figure 4– The algorithmic steps for CMI estimation. Using the first epoch EEG signal from 

Fpz-Cz sensor of subject 1 during wake condition (A), we demonstrate the detection of 

coupling between θ and β1 rhythm. To estimate θ-β1 CMI, the raw signal was band-pass filtered 

into a (B) low-frequency θ (4–8 Hz) component where its phase is extracted and into (C) a 

high-frequency β1 (13–20 Hz) component where its envelope is extracted. (D) The mean 

amplitude of the high-frequency was estimated within each (E) phase bin extracted from the 

phase of the low-frequency. The CMI is estimated on based on the average complex valued of 

mean amplitude and mean phase within each bin. Here, we used 20 phase bins. 
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Figure 5. A graphical representation of the PAC-couplings for the first epoch of N1 sleep stage 

of subject 1 in the first dataset. Nodes represent the modulating brain rhythms, the arrows are 

directed to the modulated frequencies while the color refers to the strength of PAC. At each 

epoch of 5 sec and for each of the four cross-frequency coupling estimates, all possible pair-

wise frequency interactions were estimated as they are demonstrated with the graphical 

representation. 
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Fig.6. Illustration of the comodulograms of the four CFC estimators adopted in the present 

study averaged across epochs at each sleep stage from a single-subject. On the x-axis are the 

frequencies of the modulator while on the y-axis the frequencies of the modulated brain rhythm. 

(NREM1-4 : N1, N2, N3,N4, R:REM,W:WAKE ; Frequencies 1-8: 1:low-δ {0.1-1.5 Hz}, 

2:high-δ (K-Complex) {1.6-4 Hz}, 3:θ {4-8 Hz},4:α1 {8-10  Hz}, 5:α2 {10-13 Hz},6:β1 

(spindle) {14-20 Hz},7:β2 {21-30 Hz} and 8:γ1 {31 – 45 Hz}). 
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Fig.7. Illustration of the relative power (RP) averaged across epochs at each sleep stage from 

a single-subject. On the x-axis are presented in six blocks the RP of eight frequency bands. 

(NREM1-4 : N1, N2,N3,N4, R:REM,W:WAKE ; Frequencies 1-8: 1:low-δ {0.1-1.5 Hz}, 

2:high-δ (K-Complex) {1.6-4 Hz}, 3:θ {4-8 Hz},4:α1 {8-10  Hz}, 5:α2 {10-13 Hz},6:β1 

(spindle) {14-20 Hz},7:β2 {21-30 Hz} and 8:γ1 {31 – 45 Hz}). 
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Figure 8. Manual scoring versus automatic sleep stage scoring. 

On the top, we illustrated the original manually scored hypnogram while in the bottom the 

estimated hypnogram using the proposed algorithm for the second night of subject 1. 
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