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ABSTRACT

Viruses are simultaneously simple and complex. Simple because they have barely around ten types of proteins compared to
tens of thousands of proteins in bacteria. Complex because amino acid mutation rates are very high, challenging host immune
system and drugs. In this work we use the co-evolution of amino acids and the network characteristics that arise out of it to
describe the complexity hidden in the multitude of variations in a viral genome. Using large-scale genomic data, the complexity
in several viruses was compared. Interestingly, the co-evolutionary relations were primarily intra-protein in avian influenza
and inter-protein in HIV-1. The network degree distributions showed two universality classes: a power-law with exponent -1 in
HIV-1 and avian-influenza, random co-evolutionary behavior in human flu and dengue, suggesting the co-evolution as one way
to statistically classify the complexity in viruses. The observed correlation between the network densities and the strengths
on virus Richter scale raises interesting questions on whether it is possible to define the complexity of viruses using their
evolutionary networks.

Introduction
The genome size and complexities in different organisms vary widely. While bacteria have genes encoding several thousand
types of proteins, most viruses have barely around ten types of proteins. This is true for viruses as benign as common flu to the
lethal ones like ebola. Interestingly, as the number of base-pairs encoding these genes varies from hundreds of millions to tens of
thousands, the mutation rate which is the chance of making an error over a generation increases by many orders of magnitude.1, 2

Despite this high rate of mutations or errors in the amino acids of viral proteins, many viruses remain functional and infect the
hosts possibly because many deleterious mutations are compensated by other simultaneous mutations. Continuously evolving
viruses thus become much more unpredictable both for the immune system as well as the drugs developed against them.
Characterizing the evolutionary behavior of viruses will thus be an important step towards understanding the complexity of
viruses. Yet, to date there is no informatics way of describing the complexity of viruses and their evolution.

One way of describing the biological systems-level complexity involved in healthy and diseased cells is by studying interaction
networks. Biological networks can be formed out of transient molecular interactions such as in proteins interacting with
other proteins or from persistent physical interactions such as in neural networks. Metabolic3 and gene regulatory networks,4

protein-protein interaction networks,5, 6 and neural networks are examples of functional cellular networks. Disease networks on
the other hand try to connect genotypes with phenotypes.7, 8 Protein-protein interaction networks have been used to describe
the complexity of the different systems from E. Coli to humans9. Protein interactions became fine grained as the C. elegans
interactomes initially identified and mapped at protein level10, subsequently focused at the domain level.11 Since viruses have
only around ten types of proteins, but high mutation rates, further fine-graining with a focus on amino acid interactions is
statistically more meaningful.12–15 Studying the co-evolutionary relations among the amino acids is an important step towards
describing and eventually deciphering the complexity of the viruses.

Amino acid level co-evolutionary interactions can arise either from structural constraints between proximal amino acids or
because of functional constraints from amino acids at distal sites or other proteins. Several studies focused on amino acid
interaction networks, starting from the three dimensional structural data of the proteins.12, 13, 16 The utility of structure based
methods is limited because of the limited structural information available, as well as because it more likely highlights the
proximal relations. Conversely, using amino acid co-evolutionary couplings from abundant homologous sequence data of
multiple species,17 bioinformatic approaches such as Statistical Coupling Analysis (SCA)18 and Direct Coupling Analysis19

could predict hotspots of proteins, active centers of enzymes, to make de novo three dimensional structure prediction of
proteins20, 21, to identify functionally related clusters of amino acids22 and predict the vulnerability of viruses.23 In studying
viruses where there could be coupled relations between multiple proteins, it is thus useful to explore this functional coupling. In
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this work, we use large-scale complete genome data to build and analyze amino acid co-evolutionary networks. The data is
further analyzed to identify patterns or randomness in this co-evolution in intra- and inter-protein amino acids. The complexity
of the different viral co-evolutions is also compared by studying the robustness of the network to a targeted or random removal
of nodes from the network.

Results and Discussion

Data inclusion: Complete genome sequence data were obtained from the NCBI servers. The analysis was performed when
large scale genomic data, from at least 1000 patients, was available. With the current publicly available data, only five viruses
were chosen for analysis: HIV-1, hepatitis B, dengue, avian and human influenza. Our analysis was performed on data sets
from minimum of 1,784 patient data (HIV-1) to about 8,689 (human influenza). However, the availability of such data is
increasing, and in this work we focus on questions that can be posed with such large scale genomic data. Multiple Sequence
Alignment (MSA) of the whole genome data from all patients was performed. Using a consensus sequence as a reference, the
entire MSA was converted into a binary representation, 1 if the amino acid at a given position in a sequence is the same as
that in the consensus sequence, 0 otherwise. Using the Statistical Coupling Analysis protocol,18 weighted co-evolutionary
matrix C that quantifies the relations among the different amino acids was created (Methods section). The data on pairwise
co-evolutionary couplings was represented using a network for better visualization and analysis. The network representation
translates the co-evolutionary information into nodes (amino acids) and network edges (connections between the amino acids)
if the co-evolution matrix element Ci j relating amino acids i and j, is more than a threshold C, Ci j >Cth .

Clustering: Using the complete genome data from different patients, the co-evolution networks for different viruses were
constructed. Clustering of nodes was performed using correlation as a weight (Figure 1) with the goal of observing patterns
which are more general than those seen in pair-wise relations. About 3 to 4 significant clusters can be seen in each of the viruses,
and no significant differences in the number of clusters were found when we performed Principal Component Analysis and used
Cattell’s criterion. However, there is a noticeable difference in the composition of each of the clusters in different viruses. Each
of the clusters in the network of HIV-1 co-evolution network have a mixed representation from multiple proteins, suggesting a
strong evolutionary relation across the genome, while avian influenza clusters are mostly from intra-protein relations. The
inter-protein co-evolutionary relations are much stronger in HIV-1 (Supplementary Tables 1a, 1b) .

Scale-free vs. random networks: The complexity of the networks is analyzed by studying its node-degree distribution, n(k)
- the number of times a node with a certain number of edges k appears in the network.24 Two commonly seen universality
classes in these distributions - power-law and Poissonian, suggesting systematic or random underlying basis, occur in the
amino acid degree distributions as well. In HIV-1, as well as in avian influenza, a power-law n(k) ∼ k−1, while dengue,
human influenza show a Poissonian distribution (Figure 2).24 Consistent with the observation in the clustering, using only the
inter-protein co-evolution from HIV-1 did not change the observed powerlaw. Hepatitis B on the other hand showed a mixed
behavior including both power law and Poissonian behaviors (Figures 4a-4f). We further analyzed the role of the threshold by
varying Cth in the analysis of Hepatits B. As shown in Figure 4, as the Cth increases from 1.0 to 3.0, the power-law component
becomes more pronounced (similar data for other viruses is shown in Supplementary Figures 1 to 4). The data shows a clear
separation of network connections arising from two different origins, an organized network of co-evolution above a certain
threshold and random network connections at lower thresholds of co-evolution. Within this power-law regime a further change
in cutoff did not result in a change in the exponent significantly. The analysis presented so far is the statistical description of
data collected from patients and is averaged over all the years of sample collection. In order to study the temporal evolution
patterns, we performed time analysis on the data set which is most abundant, human influenza. We divided the complete
genome data from human influenza into periods where the number of data sets is similar (∼ 2000 complete genomes each).
A node-distribution analysis shows that over this period, there is no significant change in the co-evolutionary complexity of
viruses (Supplementary Figure 5).

Complexity Measure: It is difficult to describe complexity, and even more to quantify it with one single measure. The lack of
a simple and precise metric for complexity is a problem both in biology and in network science. For biological complexity
of viruses, here we use the strength on virus Richter scale25 as a measure of their complexity. While it is understood that
the Richter scale indicates mortality from viruses, which includes several factors from how fast the virus mutates to how
poor the public health provisions are, for lack of a better way to compare the strengths of viruses or difficulty of developing
vaccines against them, we use Richter scale. Figure 3 shows a plot between the virus strength and the network characteristic -
network density. Avian influenza data from avian host was not part of this analysis as the Richter scale definition is irrelevant.
Interestingly Figure 3 shows a correlation between the network metric and the biological metric. Clearly this correlation is not

2/8

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2017. ; https://doi.org/10.1101/159541doi: bioRxiv preprint 

https://doi.org/10.1101/159541
http://creativecommons.org/licenses/by-nc-nd/4.0/


conclusive, as they are based on studies of just four viruses. However, it raises the possibility that the complexity of the biology
and the pathogenicity of the virus may be reflected in the amino acid co-evolution networks.

Power law: Random networks (Erdos-Renyi model), small world networks (Watts-Strogatz model26) and self-similar networks
(Barabasi-Albert model27, 28) arising in diverse contexts such as WWW, protein-protein interactions, co-authorship networks,
etc have been well studied. Some of the mechanisms that explain the observed phenomena are preferential attachment model
where newer edges are added to a node depending on its current degree, or based on its pre-defined fitness or a potential for a
degree. The power-law with γ ∼ 1 observed in the co-evolution network is different from the typical power-laws γ varying
from 2 to 3 and is closer to the behavior in co-authorship networks. Unlike a citation network, there is no reason to believe
that the co-evolutionary network evolves with a continuous increase in the number of nodes and edges. Considering amino
acid conservation (φ ) as a surrogate for their fitness, we developed a fitness based model29. The model uses two distributions
derived from the whole genome data: (a) the distribution of the conservation among the amino acids, p(φ) (Supplementary
Figure 6) (b) the co-evolutionary fitness potential of the node η(φ) corresponding to a given conservation of the amino acids.
The latter can be modeled as a gaussian distribution, with minimal co-evolutionary fitness for amino acids with very high and
very low conservation, a peak in between at φm and standard deviation σ . Considering a pair of amino acid nodes i and j,
and two random numbers r1 and r2 drawn from a uniform distribution, edge i — j is created if r1 ∗ r2 ≤ η(φi)∗η(φ j). This
algorithm generates a node-degree distribution with γ ∼ 1 (Supplementary Figure 7). For example, for HIV-1, the conclusion
is relatively invariant for a gaussian with φm = 0.6−0.7 and σ = 0.02−0.07. As the parameters go out of this range, node
degree distribution eventually transforms to a random network model. While the model captures the observed power-law and
poissonian distributions with minimal assumptions, the assumptions need to be related to the evolutionary stages of the viruses
to see if the statistical complexity of viral co-evolution can be related to their biological complexity.

Robustness of networks: The co-evolution networks were checked for their robustness by removing different fractions of
nodes and all the edges connecting to them,30 the spirit being that the critical amino acids or groups of them can be a potential
drug target. The nodes to be removed were chosen either randomly or by picking those with the highest degree, to simulate a
random error or a targeted attack, Figure 5 shows how the effective diameter - a metric of network connectivity - is affected by
the targeted or random removal. Interestingly, random removal has the highest impact on human influenza network, and the
least affected is HIV-1. Further, the impact of targeted removal is highest on HIV-1. The overall characteristics of robustness
can be intuitively expected from the the power-law distribution of nodes. We also used another measure of robustness, which is
the number of clusters it breaks into. The conclusions from these calculations, shown in Figure 5b are the same as from node
removal.

Conclusions
By using a network representation of amino acid co-evolution we have seen two different characteristics in the large scale
complete genome data - clustering with mostly intra-protein or inter-protein couplings and node degrees which have a structured
power-law or random origins. When genomic data from more viruses will be available, it will be interesting to see if these two
different measures of statistical complexity of genomes can be used to classify viruses into different categories, with a possible
mapping to their biological or pathogenic complexity. Further it will be interesting to see if the inter-protein or intra-protein
couplings are related to the host adaptation (HIV-1) or the host being a neutral carrier (avian influenza) and how such patterns
evolve with time as the viruses adapt from being pandemics to epidemics.

Methods
Undirected co-evolution networks: The chance of co-evolution Ci j between a pair of amino acids i and j is calculated
by averaging the columns i and j of the boolean sequences using either an unweighted or weighted protocol follow-
ing the Statistical Coupling Analysis protocol.22 Unweighted and normalized co-evolution is defined as Cunweighted

i j =

(〈xix j〉s−〈xi〉s〈x j〉s)/
(√
〈x2

i 〉s−〈xi〉2s
√
〈x2

j〉s−〈x j〉2s
)

, where xi is the ith column in the boolean sequence and 〈〉s de-

notes the average over sequences. Weighted co-evolution is defined as Cweighted
i j = φiφ j |〈xix j〉s−〈xi〉s〈x j〉s|, where φi =

ln((〈xi〉s(1−qai))/(qai(1−〈xs
i 〉s))), and qai is the probability with which the amino acid ai at position i in the consensus

sequence occurs among all proteins. background probability of the most frequent amino acid ai at position i frequency of occurs
among all proteins. One could work with either Cunweighted

i j or Cweighted
i j , and in the present work on networks we use Cweighted

i j .
If the chosen Ci j exceeds a chosen cutoff c, we consider an undirected network link i — j to be present. The sensitivity of
the analysis to c is discussed in the article. The analysis reported in the article is based on Cweighted

i j . However, changing the
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Cunweighted
i j the power-law distribution in HIV-1 was still around 1, changed from 0.91 to 1.37. Thus, we believe the general

conclusions do not change with the weighting.
Data Availability: The datasets generated and analysed during the current study are available from the corresponding author
on request.
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Figure 1. Co-evolutionary network from complete genome analysis of different viruses: (a) HIV-1, (b) avian influenza and (c)
Hepatitis B (d) Dengue (e) Human influenza. The networks are generated using co-evolution strength as a weight. The side bar
indicates the different types of proteins found in these viruses, as well as the coloring notation used. The networks show three
to four major clusters. While in HIV-1, each cluster has a mixed representation from all the proteins, avian influenza clusters
are mainly from intraprotein co-evolutionary relations. Network representations were generated using Cytoscape31
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Figure 2. Node degree distribution from the complete genome data in different viruses showing a range of behavior from a
pure power-law (HIV-1 and avian influenza ) to a pure-random network behavior (dengue and human influenza). A cutoff
Cth = 0.85 was used as a threshold for establishing network edge connections. The effect of changing the cutoff is discussed
separately.
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Figure 4. Node degree distribution sensitivity was studied in Hepatitis-B network by changing the cut-off value used for
defining edge connectivity between the nodes. At a very low cut-off there is a mixed behaviour in the node degree distribution,
with both power-law as well as a random component. As the cutoff is increased, the random component is selectively removed,
while preserving the power-law component. This suggests a clear separation of network connections from random and
systematic origins. By choosing a threshold value, one can filter and study just the systematic component.
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y-axis by 300 and 200 units for clarity of representation. Network diameter was calculated following the procedure in Ref.32
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Methods

Undirected co-evolution networks: The chance of co-evolution Cij between a pair of amino acids i and j

is calculated by averaging the columns i and j of the boolean sequences using either an unweighted or weighted

protocol following the Statistical Coupling Analysis protocol. Unweighted and normalized co-evolution is defined

as Cunweighted
ij = (〈xixj〉s − 〈xi〉s〈xj〉s) /

(√
〈x2i 〉s − 〈xi〉2s

√
〈x2j 〉s − 〈xj〉2s

)
, where xi is the ith column in the

boolean sequence and 〈〉s denotes the average over sequences. Weighted co-evolution is defined as Cweighted
ij =

φiφj |〈xixj〉s − 〈xi〉s〈xj〉s|, where φi = ln ((〈xi〉s(1− qai)) / (qai(1− 〈xsi 〉s))), and qai is the probability with

which the amino acid ai at position i in the consensus sequence occurs among all proteins. One could work

with either Cunweighted
ij or Cweighted

ij , and in the present work on networks we use Cweighted
ij . If the chosen Cij

exceeds a chosen cutoff c, we consider an undirected network link i — j to be present. The sensitivity of the

analysis to c is discussed in the article. The analysis reported in the article is based on Cweighted
ij . However,

changing the Cunweighted
ij the power-law distribution in HIV-1 was still around 1, changed from 0.96 to 1.35.

Thus, we believe the general conclusions do not change with the weighting.
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Protein GAG POL VIF VPR TAT REV VPU ENV NEF
(Num of amino acids) (500) (1003) (192) (96) (100) (116) (82) (856) (205)

GAG 343 735 287 105 178 248 130 847 277
POL 530 398 141 241 319 174 1112 400
VIF 93 66 79 126 60 432 143
VPR 6 31 43 16 137 50
TAT 25 99 37 297 89
REV 65 55 410 126
VPU 16 208 66
ENV 714 462
NEF 126

Supplementary Table 1a. Table showing the number of inter-protein and intra-protein amino acid co-
evolutionary couplings from HIV-1 data, with a Cth = 0.85

Protein NP PB2 HA M1 M2 NA NS1 NEP PA PB1-F2 PB1
(No. of amino acids) (498) (759) (566) (252) (97) (469) (230) (121) (716) (90) (757)

NP 49 101 219 210 99 77 291 59 137 156 150
PB2 56 304 185 78 134 267 49 145 127 130
HA 20000 900 192 5362 852 106 184 377 242
M1 171 172 233 570 94 296 268 252
M2 38 33 233 29 130 103 116
NA 12005 352 48 30 93 92
NS1 2832 1436 400 352 376
NEP 187 53 66 56
PA 153 168 197

PB1-F2 637 211
PB1 86

Supplementary Table 1b. Table showing the number of inter-protein and intra-protein amino acid co-
evolutionary couplings from avian influenza data, with a Cth = 0.85
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Supplementary Figure 1. Variation in node distribution of HIV-1 co-evolution network as the cutoff Cth is
changed.
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Supplementary Figure 2. Variation in node distribution of human influenza co-evolution network as the
cutoff Cth is changed.
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Supplementary Figure 3. Variation in node distribution of avian influenza co-evolution network as the cutoff
Cth is changed.
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Supplementary Figure 4. Variation in node distribution of dengue co-evolution network as the cutoff Cth is
changed.
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Supplementary Figure 5. Variation of the node degree distribution over years in the human influenza.
Human influenza data was abundant, so we sorted it according to the year of incidence, and made 4 groups of
about 2000 patients each. No noticeable trend in the node degree distribution was observed in the data between
2002-2016.

5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 13, 2017. ; https://doi.org/10.1101/159541doi: bioRxiv preprint 

https://doi.org/10.1101/159541
http://creativecommons.org/licenses/by-nc-nd/4.0/


10
0

10
1

10
2

10
3

10
4

0 1005025 75

Conservation (%)

N
u

m
b

e
r 

o
f 

a
m

in
o

 a
ci

d
s

HIV-1 

avian in!uenza 

hepatitis B

dengue 

human in!uenza 

Supplementary Figure 6. Distribution of the conservation of amino acids in different viruses.
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Supplementary Figure 7. Model network generated using the amino acid conservation distribution from
HIV-1, and η(φ) with parameters φm = 0.05 and σ = 0.7
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