
 1 

Reward learning over weeks versus minutes increases 
the neural representation of value in the human brain 

 
 

Abbreviated title: Long-term reward learning 

 
 

G. Elliott Wimmer1,2, Jamie K. Li2, Krzysztof J. Gorgolewski2, and Russell A. Poldrack2 

 

 
1 Max Planck University College London Centre for Computational Psychiatry and 

Ageing Research and the Wellcome Centre for Human Neuroimaging, University 

College London, London, UK 
2 Department of Psychology, Stanford University, 450 Serra Mall, Stanford, CA, 94305 

 

 

 
 

 

 

Corresponding author: 
G. Elliott Wimmer 
Max Planck UCL Centre for Computational  
Psychiatry and Ageing 
Wellcome Centre for Human NeuroImaging 
10-12 Russell Square 
University College London 
e.wimmer@ucl.ac.uk 
 
 
Acknowledgments 
 
The authors thank Patrick Bissett, Ross Blair, and Oscar Esteban. Research was 
supported by NIH R01AG041653 [RP], a research fellowship from the Deutsche 
Forschungsgemeinschaft [GEW] and a pilot seed grant from the Stanford Center for 
Cognitive and Neurobiological Imaging [GEW].   

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 
Over the past few decades, neuroscience research has illuminated the neural 

mechanisms supporting learning from reward feedback. Learning paradigms are 

increasingly being extended to study mood and psychiatric disorders as well as 

addiction. However, one potentially critical characteristic that this research ignores is the 

effect of time on learning: human feedback learning paradigms are usually conducted in 

a single rapidly paced session, while learning experiences in ecologically relevant 

circumstances and in animal research are almost always separated by longer periods of 

time. In our experiments, we examined reward learning in short condensed sessions 

distributed across weeks vs. learning completed in a single “massed” session in male 

and female participants. As expected, we found that after equal amounts of training, 

accuracy was matched between the spaced and massed conditions. However, in a 3-

week follow-up, we found that participants exhibited significantly greater memory for the 

value of spaced-trained stimuli. Supporting a role for short-term memory in massed 

learning, we found a significant positive correlation between initial learning and working 

memory capacity. Neurally, we found that patterns of activity in the medial temporal lobe 

and prefrontal cortex showed stronger discrimination of spaced- vs. massed-trained 

reward values. Further, patterns in the striatum discriminated between spaced- and 

massed-trained stimuli overall. Our results indicate that single-session learning tasks 

engage partially distinct learning mechanisms from spaced sessions of training. Our 

studies begin to address a large gap in our knowledge of human learning from 

reinforcement, with potential implications for our understanding of mood disorders and 

addiction.  
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Significance statement 
Humans and animals learn to associate predictive value with stimuli and actions, and 

these values then guide future behavior. Such reinforcement-based learning often 

happens over long time periods, in contrast to most studies of reward-based learning in 

humans. In experiments that tested the effect of spacing on learning, we found that 

associations learned in a single massed session were correlated with short-term 

memory and significantly decayed over time, while associations learned in short 

massed sessions over weeks were well-maintained. Additionally, patterns of activity in 

the medial temporal lobe and prefrontal cortex discriminated the values of stimuli 

learned over weeks but not minutes. These results highlight the importance of studying 

learning over time, with potential applications to drug addiction and psychiatry.  
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Introduction   
When making a choice between an apple and a banana, our decision often relies on 

values shaped by countless previous experiences. By learning from the outcomes of 

these repeated experiences, we can make efficient and adaptive choices in the future. 

Over the past few decades, neuroscience research has revealed the neural 

mechanisms supporting this kind of learning from reward feedback, demonstrating a 

critical role for the striatum and the midbrain dopamine system (Houk et al., 1995; 

Schultz et al., 1997; Dolan and Dayan, 2013; Steinberg et al., 2013). However, research 

in humans has tended to focus on two different timescales: short-term learning from 

reward feedback across minutes, for example, in “bandit” or probabilistic selection tasks 

(Frank et al., 2004; Daw et al., 2006), or choices based on well-learned values, for 

example, over snack foods (Plassmann et al., 2007). There has been remarkably little 

research in humans that examines how value associations are maintained or acquired 

beyond a single session (Herbener, 2009; Tricomi et al., 2009; Grogan et al., 2017; de 

Wit et al., in press), even though our preferences are often shaped across multiple 

days, months, or years of experience.  

Recently, researchers have begun to use learning tasks in combination with 

reinforcement learning models to investigate behavioral dysfunctions in mood and 

psychiatric disorders as well as addiction in the growing area of “computational 

psychiatry” (Maia and Frank, 2011; Schultz, 2011; Montague et al., 2012; Whitton et al., 

2015; Moutoussis et al., 2016). This translational work on human reward-based learning 

builds on research in animals where circuit functions can be extensively manipulated 

(Steinberg et al., 2013; Ferenczi et al., 2016). However, at the condensed timescale of 

most human paradigms, “massed” timing likely allows processes in addition to 

dopaminergic mechanisms of feedback-based learning, such as working memory, to 

support behavior (Collins and Frank, 2012; Collins et al., 2014). 

While no studies have directly compared values learned in a massed session or 

across days, several recent neuroimaging studies have examined the neural 

representation of values learned across days (Tricomi et al., 2009; Wunderlich et al., 

2012), supporting a role for the human posterior striatum in representing the value of 

well-learned stimuli. These findings align with neurophysiological recordings in the 

striatum of animals (Yin and Knowlton, 2006; Kim and Hikosaka, 2013). However, 
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reward-related BOLD responses in the putamen are not selective to consolidated or 

“habitual” reward associations (e.g. O'Doherty et al., 2003; Dickerson et al., 2011; 

Wimmer et al., 2014); moreover, previous studies did not allow for a matched 

comparison between newly-learned reward associations and consolidated associations.  

In addition to the striatum, fMRI and neurophysiological studies have shown that 

responses in the medial temporal lobe and hippocampus are correlated with reward and 

value (Lebreton et al., 2009; Wirth et al., 2009; Lee et al., 2012; Wimmer et al., 2012). 

While these responses are not easily explained by a relational memory theory of MTL 

function (Eichenbaum and Cohen, 2001), they may fit within a more general view of the 

hippocampus in supporting some forms of statistical learning (including stimulus-

stimulus associations; Schapiro et al., 2012; Schapiro et al., 2014). Memory 

mechanisms in the MTL may also play a role in representing previous episodes that can 

be sampled to make a reward-based decision (Murty et al., 2016; Wimmer and Buechel, 

2016; Bornstein et al., 2017), a role that could be enhanced by consolidation.  

To characterize the cognitive and neural mechanisms which support learning 

long-term reward associations, we utilized a simple reward-based learning task. 

Participants initially learned value associations for spaced stimuli in the lab and then 

online across two weeks in multiple short massed sessions. Associations for massed 

stimuli were acquired during a second in-lab session over approximately 20 minutes 

(followed by fMRI scanning in one group), similar to the kind of training commonly used 

in reinforcement learning tasks. Finally, to examine maintenance of learning, a long-

term test was administered three weeks after the completion of training.  
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Methods 
 

 
 
Figure 1. A, Experimental timeline. Learning for the spaced-trained stimuli is indicated 

in blue and learning for the massed-trained stimuli is indicated in grey. The initial 

learning session for spaced-trained stimuli was completed on day 1. Learning for 

spaced stimuli was then competed in multiple short (massed) sessions, while learning 

for massed stimuli was completed in a single session approximately 14 days later. 

Aside from the separation of spaced learning into multiple condensed sessions, inter-

trial timing was matched across conditions. A forced-choice test was also collected after 

initial learning and the completion of learning. A long-term follow-up measure of reward 

value using ratings was collected after approximately 3 weeks. B, Reward learning task. 

Participants learned to select “Yes” for reward-associated stimuli and select “No” for 

loss-associated stimuli. Choices were presented for 2 sec, and feedback followed after 

a 1 sec delay. C, Reward association rating test. This rating scale followed the initial in-

lab learning sessions and was also administered 3 weeks after the last learning session. 

 

 

Participants and Overview. Participants were recruited via advertising on the Stanford 

Department of Psychology paid participant pool web portal 

(https://stanfordpsychpaid.sona-systems.com). Informed consent was obtained in a 

manner approved by the Stanford University Institutional Review Board. In study 1, 
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behavioral and fMRI data acquisition proceeded until fMRI seed grant funding expired, 

leading to a total of 33 scanned participants in the reward learning task. In order to 

ensure that the fMRI sessions two weeks after the first in-lab session were fully 

subscribed, a total of 62 participants completed the first behavioral session. Of this 

group, a total of 29 participants did not complete the fMRI and behavioral experiment 

described below. The results of 33 participants (20 female) are included in the analyses 

and results, with a mean age of 22.8 years (range: 18-34). Participants were paid 

$10/hour for the first in-lab session and $30/hour for the second in-lab (fMRI) session, 

plus monetary rewards from the learning phase and choice test phase. 

In Study 2, a total of 35 participants participated in the first session of the 

experiment, but 4 were excluded from the final dataset, as described below. Our sample 

size was designed to approximately match the size of Study 1. The final dataset 

included 31 participants (24 female), with a mean age of 23.3 years (range: 18-32). Two 

participants failed to complete the second in-lab session and all data were excluded; 

one other participant exhibited poor performance the first session (less than 54% 

correct during learning and less than 40% correct in the choice test) and was therefore 

excluded from participation in the follow-up sessions. Of the 31 included participants, 

one participant failed to complete the third in-lab session, but data from other sessions 

were included. Participants were paid $10/hour for the two in-lab sessions, monetary 

rewards from the learning phase and choice test phase, plus a bonus of $12 for the 5-

minute duration third in-lab session. 

Both Study 1 and Study 2 utilized the same reward-based learning task (adapted 

from Gerraty et al., 2014). Participants learned the best response for individual stimuli in 

order to maximize their payoff. Two different sets of stimuli were either trained in 

multiple massed sessions spaced across two weeks (“spaced-trained” stimuli) or in a 

single session (“massed-trained” stimuli; Fig. 1A). Initial spaced learning began in the 

first in-lab session and continued across three online training sessions spread across 

approximately 2 weeks. Initial learning about massed stimuli began in the second in-lab 

session and continued until training was complete. Spaced training always preceded 

massed training, so that by the end of the second in-lab session both sets of stimuli had 

been shown on an equal number of learning trials. This design was the same across 

Study 1 and Study 2, with the difference that Study 1 included an fMRI portion at the 
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time of the second in-lab session and that post-learning tests were conducted at 

different points during learning in the two studies. Additionally, the three-week follow-up 

measurement was conducted online for Study 1 and in-lab for Study 2. 

We chose to use a simple instrumental learning task (adapted from Gerraty et al., 

2014) instead of a choice-based learning task for three reasons. First, the majority of 

the animal work we are translating involves relatively simple instrumental or Pavlovian 

value learning designs with a single focal stimulus (e.g. Schultz et al., 1997; O'Doherty 

et al., 2003; Tricomi et al., 2009), including previous work on spacing effects in 

feedback learning (Spence and Norris, 1950; Teichner, 1952). Most directly, the present 

design was inspired by the work of Hikosaka and colleagues on long-term memory for 

value (Kim and Hikosaka, 2013; Kim et al., 2015; Ghazizadeh et al., 2018) and by the 

work of Collins and colleagues on short-term memory contributions to rapid feedback-

based learning (Collins and Frank, 2012; Collins et al., 2014). Second, a single-stimulus 

design avoids differential attentional allocation toward the relatively more valuable 

stimulus in a set, which is inherent in multi-stimulus designs (Daw et al., 2006; 

Pessiglione et al., 2006). Third, our reward learning paradigm has been shown 

previously to effectively establish stimulus-value associations (Gerraty et al., 2014), as 

evidenced by the ability of newly learned stimulus-reward associations to transfer or 

generalize across previously established relational associations. Such transfer is related 

to striatal correlates of learned value (Wimmer and Shohamy, 2012). While our in-task 

learning measures are related to (“Yes” / ”No”) action value, this previous work and 

recent human fMRI research indicate that mechanisms supporting the learning of 

stimulus-action and stimulus-value associations operate at the same time (Colas et al., 

2017). 

 

Experimental design, Study 1. In Study 1, before the learning phase, participants 

rated a set of 38 landscape picture stimuli based on liking, using a computer mouse, 

preceded by one practice trial. The same selection procedure and landscape stimuli 

were used previously (Wimmer and Shohamy, 2012). These ratings were used to select 

the 16 most neutrally-rated set of stimuli per participant to be used in Study 1. Stimuli 

were then randomly assigned to condition (spaced or massed) and value (reward or 

loss). In Study 2, we used the ratings collected across participants in Study 1 to find the 
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most neutrally-rated stimuli on average and then created two counterbalanced lists of 

stimuli from this set. 
Next, in the reward game in both studies, participants’ goal was to learn the best 

response (arbitrarily labeled “Yes” and “No”) for each stimulus. Participants used up and 

down arrow keys to make “Yes” and “No” responses, respectively. Reward-associated 

stimuli led to a win of $0.35 on average when “Yes” was selected and a small loss of -

$0.05 when “No” was selected. Loss-associated stimuli led to a neutral outcome of 

$0.00 when “No” was selected and -$0.25 when “Yes” was selected. These 

associations were probabilistic, such that the best response led to the best outcome 

80% of the time during training. If no response was recorded, at feedback a warning 

was given: “Too late or wrong key!  - $0.50”, and participants lost $0.50. 

In a single reward learning trial, a stimulus was first presented with the options 

“Yes” and “No” above and below the image, respectively (Fig. 1B). Participants had 2 

seconds to make a choice. After the full 2 s choice period, a 1 s blank screen ITI 

preceded feedback presentation. Feedback was presented in text for 1.5 s, leading to a 

total trial duration of 4.5 s. Reward feedback above +$0.10 was presented in green, and 

feedback below $0.00 was presented in red, while other values were presented in white. 

After the feedback, an ITI of duration 2 preceded the next trial (min, 0.50 s; max, 3.5 s), 

where in the last 0.25 s prior to the next trial the fixation cross turned from white to 

black. The background for all parts of the experiment was grey (RGB value [111 111 

111]). We specifically designed the timing of feedback (3 sec from the onset of choice) 

to fall within the range of previous studies on feedback-based learning and the 

dopamine system which show a strong decay of the fidelity of the dopamine reward 

prediction error response as feedback is delayed beyond several seconds (Fiorillo et al., 

2008); beyond this point, other (e.g. hippocampal) mechanisms may support learning 

(Foerde et al., 2013). 

To increase engagement and attention to the feedback, we introduced 

uncertainty into the feedback amounts in two ways: first, all feedback amounts were 

jittered ± $0.05 around the mean using a flat distribution. Second, for the reward-

associated stimuli, half were associated with a low reward amount ($0.45) and half with 

a higher reward amount ($0.25). We did not find that this second manipulation 
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significantly affected learning performance at the end of the training phase, and thus our 

analyses and results collapse across the reward levels. 

In the initial spaced learning session in-lab, participants learned associations for 

spaced-trained stimuli, which differed from the training for massed-trained stimuli only in 

that training for spaced stimuli was spread across 4 “massed” sessions, 1 in-lab and 3 

online. Initial learning followed by completion of learning for massed-trained stimuli 

occurred in the subsequent second in-lab session. The spaced- and massed-trained 

conditions each included 8 different stimuli, of which half were associated with reward 

and half were associated with loss. In the initial learning session for both conditions, 

each stimulus was repeated 10 times. The lists for the initial learning session were 

pseudo-randomized, with constraints introduced to facilitate initial learning and to 

achieve ceiling performance before the end of training.  

In order to more closely match the delay between repetitions commonly found in 

human studies of feedback-based learning (e.g. Pessiglione et al., 2006), where only 

several different trial types are included, we staged the introduction of the 8 stimuli into 

two sets. In the initial learning session for both spaced- and massed-trained stimuli, 4 

stimuli were introduced in the first 40 trials and the other 4 stimuli were introduced in the 

second 40 trials. Further, when a new stimulus was introduced, the first repetition 

followed immediately. The phase began with 4 practice trials including 1 reward-

associated practice stimulus and 1 loss-associated practice stimulus, followed by a 

question about task understanding. Three rest breaks were distributed throughout the 

rest of the phase. 

After the initial learning session in both conditions, participants completed a 

reward rating phase and an incentive-compatible choice phase. In the reward rating 

phase, participants tried to remember whether a stimulus was associated with reward or 

not. They were instructed to use a rating scale to indicate their memory and their 

confidence in their memory using a graded scale, with responses made via computer 

mouse (Fig. 1C). Responses were self-paced. After 0.5 s, trials were followed by a 3 s 

ITI. For analyses, responses (recorded in pixel left-right location values) were 

transformed to 0-100 percent.  

In the incentive-compatible choice phase, participants made a forced-choice 

response between two stimuli, only including spaced stimuli in the first in-lab session 
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and only including massed stimuli in the second in-lab session. Stimuli were randomly 

presented on the left and right side of the screen. Participants made their choice using 

the 1-4 number keys in the top row of the keyboard, with a ‘1’ or ‘4’ response indicating 

a confident choice of the left or right option, respectively, and a ‘2’ or ‘3’ response 

indicating a guess choice of the left or right option, respectively. The trial terminated 

0.25 s after a response was recorded, followed by a 2.5 s ITI. Responses were self-

paced. Participants were informed that they would not receive feedback after each 

choice but that the computer would keep track of the number of correct choices of the 

reward-associated stimuli that were made and pay a bonus based on their performance. 

As the long-term follow-up only included ratings, choice analyses were limited to 

comparing how choices aligned with ratings. 

At the end of the session, participants completed two additional measures. We 

collected the Beck Depression Inventory (BDI), but scores were too low and lacked 

enough variability to enable later analysis (median score = 2 out of 69 possible; scores 

above 13 indicate mild depression). The second measure we collected was the 

operation-span task (OSPAN), which was used as an index of working memory capacity 

(Lewandowsky et al., 2010; Otto et al., 2013). In the OSPAN, participants made 

accuracy judgments about simple arithmetic equations (e.g. ‘2 + 2 = 5’). After a 

response, an unrelated letter appeared (e.g. ‘B’), followed by the next equation. After 

arithmetic-letter sequences ranging in length from 4 to 8, participants were asked to 

type in the letters that they had seen in order, with no time limit. Each sequence length 

was repeated 3 times. In order to ensure that participants were fully practiced in the task 

before it began, the task was described in-depth in instruction slides, followed by 5 

practice trials. Scores were calculated by summing the number of letters in fully correct 

letter responses across all 15 trials (mean, 49.9; range, 19-83) (Otto et al., 2013); mean 

performance on the arithmetic component was 81.9%. 

 

Online training. Subsequent to the first in-lab session where training on spaced stimuli 

began, participants completed three short online “massed” sessions with the spaced-

trained stimuli. Sessions were completed on a laptop or desktop computer (but not on 

mobile devices), using the expfactory.org platform (Sochat et al., 2016). Code for the 

online reward learning phase can be found at: https://github.com/gewimmer-
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neuro/reward_learning_js.  Each online training session included 5 repetitions of the 8 

spaced-trained stimuli, in a random order, leading to 15 additional repetitions per 

spaced-trained stimulus overall. The task and timing were the same as in the in-lab 

sessions, with the exception that the screen background was white and the white 

feedback text was replaced with grey. Participants completed the online sessions 

across approximately 2 weeks, initiated with an email from the experimenter including 

login details for that session. In the case that participants had not yet completed the 

preceding online session when the notification about the next session was received, 

participants were instructed to complete the preceding session that day and the next 

session the following day. Thus, at least one overnight period was required between 

sessions. Participants were instructed to complete the session when they were alert and 

not distracted. We found that data for two sessions in one participant were missing and 

for an additional 7 participants, data for one online session was missing. Based on 

follow-up with a subset of participants, we can conclude that missing data was due in 

some cases to technical failures and in some cases due to non-compliance. Among 

participants with a missing online spaced training session, performance during scanning 

for spaced-trained stimuli was above the group mean (94.8% vs. 91.0%). Note that if a 

subset of participants did not complete some part of the spaced training, this would, if 

anything, weaken any differences between spaced and massed training. 

 

Second in-lab session. Next, participants returned for a second in-lab session, 

approximately two weeks later (mean, 13.5 days; range, 10-20 days). Here, participants 

began and completed learning on the massed-trained stimuli. Initial training across the 

first 10 repetitions was conducted as described above for the first in-lab session. Next, 

participants completed a rating phase including both spaced- and massed-trained 

stimuli and choice phase involving only the massed-trained stimuli. After this, 

participants finished training on the massed-trained stimuli, bringing total experience up 

to 25 repetitions, the same as for the spaced-trained stimuli to that point. 

 In Study 1, participants next entered the scanner for an intermixed learning session. 

Across 2 blocks, participants engaged in additional training on the spaced- and massed-

trained stimuli, with 6 repetitions per stimulus. With four initial practice trials, there were 

100 total trials. During scanning, task event durations were as in the behavioral task 
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above, and ITI durations were on average 3.5 s (min, 1.45 s; max, 6.55 s). Responses 

were made using a button cylinder, with the response box positioned to allow finger 

responses to mirror those made on the up and down arrow keys on the keyboard. 

Following the intermixed learning session, participants engaged in single no-

feedback block, where stimuli were presented with no response requirements. This 

block provided measures of response to stimuli without the presence of feedback, and 

lists were designed to allow for tests of potential cross-stimulus repetition-suppression 

(Barron et al., 2013; Klein-Flugge et al., 2013; Barron et al., 2016). Stimuli were 

presented for 1.5 s, followed by a 1.25 s ITI (range, 0.3 – 3.7 s). To provide a measure 

of attention and to promote recollection and processing of stimulus value, participants 

were instructed to remember whether a stimulus had been associated with reward or 

with no reward. On ~10% of trials, 1 s after the stimulus had disappeared, participants 

were asked to answer whether the best response to the stimulus was a “Yes” or a “No”. 

Participants had a 2 s window in which to make their response; no feedback was 

provided unless a response was not recorded, in which case the warning “Too late or 

wrong key! -$0.50” was displayed. Each stimulus was repeated 10 times during the no-

feedback phase, yielding 160 trials. Different stimuli of the same type (spaced training 

by reward value) were repeated on sequential trials to allow for repetition suppression 

analyses. At least 18 sequential events for each of these critical 4 comparisons were 

presented in a pseudorandom order. 

In Study 1, participants also engaged in an additional unrelated cognitive task 

during the scanning session (approximately 30 min) and a resting scan (8 min). The 

order of the cognitive task and the reward learning task were counterbalanced across 

participants. Results from the cognitive task will be reported separately. 

After scanning, participants engaged in an exploratory block to study whether 

and how participants would reverse their behavior given a shift in feedback 

contingencies. Importantly, the “reversed” stimuli and control non-reversed stimuli (4 per 

condition per participant) were not included in the analyses of the 3-week follow-up 

data. One medium-reward stimulus and one loss-associated stimulus each from the 

spaced and massed conditions were subject to reversal. These reversed stimuli were 

pseudo-randomly interspersed with a non-reversed medium-reward stimulus and a non-

reversed loss stimulus from each condition, yielding 8 stimuli total. In the reversal, the 
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feedback for the first presentation of the reversed stimuli was as expected, while the 

remaining 9 repetitions were reversed (at a 78% probability). 

We did not find any reliable effect of spaced training on reversal of reward or loss 

associations. Massed-trained reward-associated stimulus performance across the 

repetitions following the reversal (3-10) was 65.7 % [58.7 76.9]; spaced-trained 

performance was 60.1 % [49.1 71.1]. While performance on the spaced-trained stimuli 

was lower, this effect was not significant (t(30) = 1.06, CI [-5.2 16.5]; p = 0.30; TOST t(30) 

= 1.89, p = 0.034). Massed-trained loss-associated stimulus performance across the 

repetitions following the reversal was 36.3% [23.6 49.0]; spaced-trained performance 

was 38.3% [23.9 52.8] (t(30) = -0.26, CI [-18.0 13.0]; p = 0.80; TOST equivalence test, 

t(30) = -2.69, p = 0.005). As the reversal phase came after a long experiment before and 

during scanning, including an unrelated demanding cognitive control task, it is possible 

that the results were affected by general fatigue. The lack of an effect of spaced training 

of reversal performance indicates that alternative cognitive or short-term learning 

mechanisms can override well-learned reward associations. 

 

Three-week follow-up. We administered a follow-up test of memory for the value of 

conditioned stimuli approximately 3 weeks later (mean, 24.5 days; range, 20-37 days). 

An online questionnaire was constructed with each participant’s stimuli using Google 

Forms (https://docs.google.com/forms). Participants were instructed to try to remember 

whether a stimulus was associated with winning money or not winning money, using an 

adapted version of the scan from the rating phase of the in-lab experiment. Responses 

were recorded using a 10-point radio button scale, anchored with “0% lucky” on the left 

to “100% lucky” on the right. Similar to the in-lab ratings, participants were instructed to 

respond to the far right end of the scale if they were completely confident that a given 

stimulus was associated with reward and to the far left if they were completely confident 

that a given stimulus was associated with no reward. Thus, distance from the center 

origin represented confidence in their memory. Note that no choice test measures were 

collected at the long-term follow-up. 

In-lab portions of the study were presented using Psychtoolbox 3.0 (Brainard, 

1997), with the initial in-lab session conducted on 21.5” Apple iMacs. Online training 

was completed using expfactory.org (Sochat et al., 2016), with functions adapted from 
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the jspsych library (de Leeuw, 2015). At the second in-lab session, before scanning, 

participants completed massed-stimulus training on a 15” MacBook Pro laptop. During 

scanning, stimuli were presented on a screen positioned above the participant’s eyes 

that reflected an LCD screen placed in the rear of the magnet bore. Responses during 

the fMRI portion were made using a 5-button cylinder button response box (Current 

Designs, Inc.). Participants used the top button on the side of the cylinder for “Yes” 

responses and the next lower button for “No” responses. We positioned the response 

box in the participant’s hand so that the arrangement mirrored the relative position of 

the up and down arrow keys on the keyboard from the training task sessions. 

 

Experimental design, Study 2. The procedure for Study 2 was the same as for Study 

1, with the important difference that the long-term follow-up was conducted in the lab 

rather than online. There were two smaller differences: learning for massed stimuli was 

conducted in full without interruption for intermediate ratings and choices and fMRI data 

were not collected. 

Stimuli for Study 2 were composed of the most neutrally-rated landscape stimuli 

from Study 1 pre-experiment ratings. Two counterbalance stimulus lists were created 

and assigned randomly to participants. The initial learning session for the spaced-

trained stimuli and the three online training sessions were completed as described 

above. Following the training and testing phases, participants completed the OSPAN to 

collect a measure of working memory capacity. Scores were calculated as in Study 1 

(mean, 49.7; range 17-83); mean performance on the arithmetic component was 93.1%. 

During the two weeks between the in-lab sessions, participants completed three 

short “massed” online training sessions for the spaced-trained stimuli, as described 

above. We found that data for three sessions in one participant were missing, data for 

two sessions in one participant were missing, and data for one session in 5 participants 

was missing. Based on the information from Study 1, we can infer that some data was 

missing for technical reasons and some missing because of non-compliance. Among 

participants with at least one missing online session, performance during scanning for 

spaced-trained stimuli was near the group mean (84.8% vs. 86.4%). Note that the 

absence of spaced training in some participants would, if anything, weaken any 

differences between the spaced and massed condition. 
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Second in-lab session. The second in-lab session was completed approximately two 

weeks after the first session (mean, 12.8 days; range, 10-17 days). Here, participants 

engaged in the initial massed learning session, which then continued through all 25 

repetitions of each “massed” stimulus. Short rest breaks were included, but Study 2 

omitted the intervening reward rating and choice test phases of Study 1. In the last part 

of the learning phase, to assess end-state performance on both spaced-trained and 

massed-trained stimuli, 3 repetitions of each stimulus were presented in a pseudo-

random order. Rating and choice phase data were acquired after this learning block, 

with trial timing as described above. 

 After the choice phase, we administered an exploratory phase to assess potential 

conditioned stimulus-cued biases in new learning. This phase was conducted in a 

subset of 25 participants, as the task was still under development when the data from 

the initial 6 participants were acquired. Participants engaged in learning about new 

stimuli (abstract characters) in the same paradigm as described above (Fig. 1B) while 

unrelated spaced- or massed-trained landscape stimuli were presented tiled in the 

background during the choice period. Across all trials, we found a positive influence of 

background prime reward value on the rate of “Yes” responding (reward prime mean 

54.4 % CI [48.2 60.4]; loss prime mean 43.2 % CI [36.6 48.0). This did not differ 

between the spaced and massed conditions (spaced difference, 13.0 % CI [4.4 21.6]; 

massed difference, 11.0 % CI [1.6 20.4]; t(24) = 0.71, CI [-3.8 7.8]; p = 0.49; TOST 

equivalence test, p = 0.017). One limitation in this exploratory phase was that learning 

for the new stimuli, similar to that reported below for the regular phases, was quite 

rapid, likely due to the sequential ordering of the first and second presentations of a new 

stimulus (performance reached 77.5 % correct by the second repetition). Rapid learning 

about the new stimuli may have minimized the capacity to detect differences in priming 

due to spaced vs. massed training. 

 

Three-week follow-up. Approximately 3 weeks after the second in-lab session (mean, 

21.1 days; range, 16-26 days), participants returned to the lab for the third and final in-

lab session. Using the same testing rooms as during the previous sessions (which 

included the full training session on massed stimuli), participants completed another 
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rating phase. Participants were reminded of the reward rating instructions and told to 

“do their best” to remember whether individual stimuli had been associated with reward 

or loss during training. Trial timing was as described above, and the order of stimuli was 

pseudo-randomized. As in Study 1, we did not collect any choice test data in the follow-

up session.  

 

fMRI Data Acquisition. Whole-brain imaging was conducted on a GE 3T Discovery 

system equipped with a 32-channel head coil (Stanford Center for Cognitive and 

Neurobiological Imaging). Functional images were collected using a multiband 

(simultaneous multi-slice) acquisition sequence (TR = 680 ms, TE = 30 ms, flip angle = 

53, multiband factor = 8; 2.2 mm isotropic voxel size; 64 (8 by 8) axial slices with no 

gap). For participant 290, TR was changed due to error, resulting in runs of 924, 874, 

and 720 ms TRs. Slices were tilted approximately 30° relative to the AC–PC line to 

improve signal-to-noise ratio in the orbitofrontal cortex (Deichmann et al., 2003). Head 

padding was used to minimize head motion. 

During learning phase scanning, two participants was excluded for excessive 

head motion (5 or more >1.5 mm framewise displacement translations from TR to TR). 

No other participant’s motion exceeded 1.5 mm in displacement from one volume 

acquisition to the next. For seven other participants with 1 or more events of >0.5-mm 

displacement TR-to-TR, any preceding trial within 5 TRs and any current/following trial 

within 10 subsequent TRs of the motion event were excluded from multivariate 

analyses; for univariate analyses, these trials were removed from regressors of interest. 

For participant 310, the display screen failed in the middle of the first learning phase 

scanning run. This run was restarted at the point of failure and functional data were 

concatenated. For four participants, data from the final no-feedback fMRI block was not 

collected due to time constraints. Additionally, for the no-feedback block three 

participants were excluded for excessive head motion, leaving 26 remaining participants 

for the no-feedback phase analysis. 

For each functional scanning run, 16 discarded volumes were collected prior to 

the first trial to both allow for magnetic field equilibration and to collect calibration scans 

for the multiband reconstruction. During the scanned learning phase, two functional runs 

of an average of 592 TRs (6 min and 42 s) were collected, each including 50 trials. 
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During the no-feedback phase, one functional runs of an average of 722 TRs (8 min and 

11 s) was collected, including 160 trials. Structural images were collected either before 

or after the task, using a high-resolution T1-weighted magnetization prepared rapid 

acquisition gradient echo (MPRAGE) pulse sequence (0.9 x 0.898 x 0.898 mm voxel 

size). 

 

Behavioral analysis. Behavioral analyses were conducted in Matlab 2016a (The 

MathWorks, Inc., Natick, MA). Results presented below are from the following analyses: 

t-tests vs. chance for learning performance, within-group (paired) t-tests comparing 

differences in reward- and loss-associated stimuli across conditions, Pearson 

correlations, and Fisher z-transformations of correlation values. We additionally tested 

whether non-significant results were weaker than a moderate effect size using the Two 

One-Sided Test (TOST) procedure (Schuirmann, 1987; Lakens, 2017) and the TOSTER 

library in R (Lakens, 2017). We used bounds of Cohen’s d = 0.51 (Study 1) or d = 0.53 

and d = 0.54 (Study 2), where power to detect an effect in the included group of 

participants is estimated to be 80%. 

End-state learning accuracy in Study 1 averaged across the last 5 of 6 repetitions 

in the scanned intermixed learning session. End-state learning accuracy for Study 2 

averaged across the last 2 of 3 repetitions in the final intermixed learning phase. For the 

purpose of correlations with working memory, initial learning repetitions 2-10 were 

averaged (as repetition 1 cannot reflect learning). In Study 1, the post-learning ratings 

were taken from the ratings collected before the scan (after 25 repetitions across all 

massed- and spaced-trained stimuli). In Study 2, the post-learning ratings were 

collected after all learning repetitions were completed.  

For the analysis of maintenance of learned values in Study 2, we computed a 

percentage maintenance measure. This was calculated by dividing the long-term reward 

rating difference (reward- minus loss-associated mean stimulus ratings) by the post-

learning rating difference. The same analysis but with a range restricted to a minimum 

of 0 (eliminating any reversals in ratings) and a maximum of 100% yielded similar 

results but with lower variance and correspondingly higher t-value.  
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fMRI Data Analysis. Data from all participants were preprocessed several times to fine 

tune the parameters. After each iteration the decision to modify the preprocessing was 

purely based on the visual evaluation of the preprocessed data and not based on 

results of model fitting. Results included in this manuscript come from application of a 

standard preprocessing pipeline using FMRIPREP version 1.0.0-rc2 

(http://fmriprep.readthedocs.io), which is based on Nipype (Gorgolewski et al., 2011). 

Slice timing correction was disabled due to short TR of the input data. Each T1 

weighted volume was corrected for bias field using N4BiasFieldCorrection v2.1.0 

(Tustison et al., 2010), skullstripped using antsBrainExtraction.sh v2.1.0 (using the 

OASIS template), and coregistered to skullstripped ICBM 152 Nonlinear Asymmetrical 

template version 2009c (Fonov et al., 2009) using nonlinear transformation 

implemented in ANTs v2.1.0 (Avants et al., 2008). Cortical surface was estimated using 

FreeSurfer v6.0.0 (Dale et al., 1999).  

Functional data for each run was motion corrected using MCFLIRT v5.0.9 

(Jenkinson et al., 2002). Distortion correction for most participants was performed using 

an implementation of the TOPUP technique (Andersson et al., 2003) using 3dQwarp 

v16.2.07 distributed as part of AFNI (Cox, 1996). In case of data from participants 8, 12, 

14, 27, and 36 spiral fieldmaps were used to correct for distortions due to artifacts 

induced by the TOPUP approach in those participants. This decision was made based 

on visual inspection of the preprocessed data prior to fitting any models. The spiral 

fieldmaps were processed using FUGUE v5.0.9 (Jenkinson, 2003). Functional data was 

coregistered to the corresponding T1 weighted volume using boundary based 

registration 9 degrees of freedom - implemented in FreeSurfer v6.0.0 (Greve and Fischl, 

2009). Motion correcting transformations, field distortion correcting warp, T1 weighted 

transformation and MNI template warp were applied in a single step using 

antsApplyTransformations v2.1.0 with Lanczos interpolation. Framewise displacement 

(Power et al., 2014) was calculated for each functional run using Nipype 

implementation. For more details of the pipeline see 

http://fmriprep.readthedocs.io/en/1.0.0-rc2/workflows.html. 

 General linear model analyses were conducted using SPM (SPM12; Wellcome Trust 

Centre for Neuroimaging). MRI model regressors were convolved with the canonical 

hemodynamic response function and entered into a general linear model (GLM) of each 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

participant’s fMRI data. Six scan-to-scan motion parameters (x, y, z dimensions as well 

as roll, pitch, and yaw) produced during realignment were included as additional 

regressors in the GLM to account for residual effects of participant movement. 

We first conducted univariate analyses to identify main effects of value and 

reward in the learning phase, as well as effects of presentation without feedback in the 

final phase. The learning phase GLM included regressors for the stimulus onset (2 s 

duration) and feedback onset (2 s duration). The stimulus onset regressor was 

accompanied by a modulatory regressor for reward value (reward vs. loss), separately 

for spaced- and massed-trained stimuli. The feedback regressor was accompanied by 

four modulatory regressors for reward value (reward vs. loss) and spacing (spaced- vs. 

massed-trained). The median performance in the scanner was 97.5%, and because 

learning was effectively no longer occurring during the scanning phase, we did not use 

a reinforcement learning model to create regressors. 

The no-feedback phase GLM included regressors for the stimulus onset (1.5 s 

duration) and query onset (3.0 s duration). In the no-feedback phase, we conducted an 

exploratory cross-stimulus repetition-suppression analyses (XSS; Klein-Flugge et al., 

2013). Here, non-perceptual features associated with a stimulus are predicted to 

activate the same neural population representing the feature. This feature coding is then 

predicted to lead to a suppressed response in subsequent activations, for example, 

when a different stimulus sharing that feature is presented immediately after the first 

stimulus (Barron et al., 2016). In the XSS model, we contrasted sequential 

presentations of stimuli that shared value association (reward and loss) and spacing 

(spaced vs. massed), yielding four regressors. For example, if two different reward-

associated and spaced-trained stimuli followed in successive trials, the first trial would 

receive a 1 value and the second trial would receive a -1. These regressors were 

entered into contrasts to yield reward vs. non XSS for spaced-trained stimuli and reward 

vs. non XSS for massed-trained stimuli. 

For multivariate classification analyses, we estimated a mass-univariate GLM 

where each trial was modeled with a single regressor, giving 100 regressors for the 

learning phase. The learning phase regressor duration modeled the 2 seconds long 

initial stimulus presentation period. Models included the 6 motion regressors and block 

regressors as effects of no interest. Multivariate analyses were conducting using The 
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Decoding Toolbox (Hebart et al., 2014). Classification utilized a L2-norm learning 

support vector machine (LIBSVM; Chang and Lin, 2011) with a fixed cost of c = 1. The 

classifier was trained on the full learning phase data, with the two scanning blocks 

subdivided into four runs (balancing the number of events within and across runs). We 

conducted four classification analyses: overall reward- vs. loss-associated stimulus 

classification, spaced- vs. massed-trained stimulus classification, and reward- vs. loss-

associated stimulus classification separately for spaced- and massed-trained stimuli. 

For the final two analyses, the results were compared to test differences in value 

classification performance for spaced vs. massed stimuli. Leave-one-run-out cross-

validation was used, with results reported in terms of percent correct classification. 

Statistical comparisons were made using t-tests vs. chance (50%); for the comparison 

of two classifier results, paired t-tests were used. 

In addition to the two ROI analyses, we conducted a searchlight analysis using 

The Decoding Toolbox (Hebart et al., 2014). We used a 4-voxel radius spherical 

searchlight. Training of the classifier and testing were conducted as described above for 

the region of interest MVPA. Individual subject classification accuracy maps were 

smoothed with a 4mm FWHM kernel prior to group-level analysis. A comparison 

between value classification between spaced- and massed-trained stimuli was 

conducted using a t-test on the difference between participant’s spaced- and massed-

trained classification SPMs (equivalent to a paired t-test). 

For both univariate and searchlight results, linear contrasts of univariate SPMs 

were taken to a group-level (random-effects) analysis. We report results corrected for 

family-wise error (FWE) due to multiple comparisons (Friston et al., 1993). We conduct 

this correction at the peak level within small volume ROIs for which we had an a priori 

hypothesis or at the whole-brain cluster level (in each case using a cluster-forming 

threshold of p < 0.005 uncorrected). The striatum and MTL (including hippocampus and 

parahippocampal cortex) ROIs were adapted from the AAL atlas (Tzourio-Mazoyer et 

al., 2002). The striatal mask included the caudate and putamen, as well as the addition 

of a hand-drawn nucleus accumbens mask (Wimmer et al., 2012). All voxel locations 

are reported in MNI coordinates, and results are displayed overlaid on the average of all 

participants’ normalized high-resolution structural images using xjview and AFNI (Cox, 

1996). 
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Data availability. 
Complete behavioral data are publicly available on the Open Science Framework 

(www.osf.io/z2gwf/). Unthresholded whole-brain fMRI results are available on 

NeuroVault (https://neurovault.org/collections/3340/) and the full fMRI dataset is publicly 

available on OpenNeuro (https://openneuro.org/datasets/ds001393/versions/00001). 
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Results 
Across two studies, we measured learning and maintenance of conditioned stimulus-

value associations over time. In the first in-lab session, participants learned stimulus-

value associations for a set of “spaced-trained” stimuli (the spaced initial learning 

session). Over the course of the next two weeks, participants engaged in three short 

“massed” training sessions online (the spaced online training sessions). Participants 

then returned to complete a second in-lab session, where they learned stimulus-value 

associations for a new set of “massed-trained” stimuli (the massed initial learning 

session and continued training). All learning for the massed-trained stimuli occurred 

consecutively in the same session. By the end of training on the massed-trained stimuli, 

experience was equated between the spaced- and massed-trained stimuli. While the 

timing of trials was equivalent across the spaced-trained and massed-trained stimuli, 

the critical difference was that multiple days were inserted in-between the short training 

sessions for spaced-trained stimuli. 3-weeks after the second in-lab session, 

participants completed a long-term follow-up reward rating measure. 

 
Study 1 
Learning of value associations. Participants rapidly acquired the best “Yes” or “No” 

response for the reward- or loss-associated stimuli during the initial spaced (lab session 

1) and massed (lab session 2) learning sessions. By the second repetition of each 

stimulus, accuracy quickly increased to 89.1 % (95% Confidence Interval (CI) [87.4 

95.2]) for spaced-trained stimuli and 91.3 % (CI [84.7 93.5]) for massed-trained stimuli 

(p-values < 0.001). Participants exhibited a noted bias (77.7 %) toward “Yes” responses 

for the first trial of a given stimulus when no previous information could be used to guide 

their response. By the end of the initial learning sessions (repetition 10), performance 

increased to 83.3 % (CI [76.8 89.8]) for the spaced-trained stimuli and 93.6 % (CI [90.4 

96.7]) for the massed-trained stimuli (Fig. 2A). Performance was higher by the end of 

the initial learning session for the massed-trained stimuli (t(32) = 3.13, CI [3.6 17.0]; p = 

0.0037). Note that the only difference between the spaced and massed learning 

sessions is that there is greater task exposure at the time of the massed learning 

session; both sessions have the same within-session trial timing and spacing. After the 

completion of the online learning sessions for spaced-trained stimuli and further in-lab 
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learning for massed-trained stimuli, as expected, we found that participants showed no 

significant difference in performance across conditions (repetitions 27-31; spaced-

trained, 92.1 % CI [88.3 96.0]; massed-trained, 94.7 % CI [91.9 97.6]; t(32) = 1.59, CI [-

1.0 5.9]; p = 0.123; Fig. 2A). However, this effect was not statistically equivalent to a 

null effect, as indicated by an equivalence test using the TOST procedure (Lakens, 

2017): the effect was not significantly within the bounds of a medium effect of interest 

(Cohen’s d = ± 0.51, providing 80% power with 33 participants; t(32) = 1.34, p = 0.094), 

and thus we cannot reject the presence of a medium-size effect.  
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Figure 2. Study 1 learning results. A, Performance in the initial learning sessions for the 

spaced- and massed-trained stimuli across the first ten repetitions of each stimulus. 

(Massed stimuli in grey; spaced in blue; reward-associated stimuli in solid lines; loss-

associated stimuli in dotted lines.) B, Incentivized two-alternative forced-choice 

performance between reward- and loss-associated stimuli following the initial spaced 

and massed learning sessions. C, Spaced performance across online learning sessions 

and terminal performance for spaced and massed stimuli. Performance is depicted for 

the last in-lab repetition and the first and last (fifth) repetition of each stimulus per online 

session, followed by the average of the final 27-31 repetitions in the second in-lab 

session including fMRI. D, Positive correlation between early massed-trained stimulus 

learning phase performance and working memory capacity (O-SPAN). (* p < 0.05). Rep. 

= repetition. Error bars represent one standard error of the mean (s.e.m.). 
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Performance in the initial session illustrated that participants learned the reward 

value of the stimuli during learning. First, participants showed higher learning accuracy 

for high reward (mean $0.45 feedback) vs. medium reward (mean $0.25) spaced-

trained stimuli in the second half of learning (high reward, 90.0 % CI [83.2 96.8]; 

medium reward 78.0 % CI [70.7 85.4]; t(32) = 2.98, CI [3.8 20.1]; p = 0.0054). After 

extensive training in the task, however, we did not observe a similar effect for initial 

learning of the massed-trained stimuli (high reward, 91.9 % CI [85.8 97.9]; medium 

reward, 93.2 % CI [88.5 98.0]; t(32) = -0.38, CI [-8.6 5.9]; p > 0.70; TOST = t(32) = 2.54, p 

= 0.008). Second, after the initial learning phase participants completed an incentivized 

two-alternative forced choice test phase. Here, no trial-by-trial feedback was given, but 

additional rewards were paid based on performance. Participants exhibited a strong 

preference for the reward- vs. loss-associated stimuli in choices between both spaced- 

and massed-trained stimuli (spaced accuracy, 96.5 % CI [82.6 93.6]; massed accuracy, 

88.1 % CI [94.4 98.8]; p-values < 0.00001; Fig. 2B).  

After the first in-lab session, participants continued learning about the set of 

spaced-trained stimuli across three short “massed” online sessions. We found that 

across the 3 online sessions, mean performance increased for loss-associated stimuli 

(one-way ANOVA; F(2,72) = 9.26, p = 0.003; Fig. 2B) but not for reward-associated 

stimuli (F(2,72) = 0.53, p = 0.59). This increase in performance for loss-associated stimuli 

was accompanied by a significant decrease in performance between sessions (mean 

change from end of session to beginning of next session: t(24) = 4.71, CI [14.5 37.1]; p < 

0.001) but not for reward-associated stimuli (t(24) = 0.38, CI [-3.4 5.0]; p = 0.704). 

Performance at the beginning of the online sessions may have been influenced by a 

response bias toward “Yes”, as also shown in first responses to stimuli in initial learning 

(Fig. 2A). Forgetting that leads to a bias under uncertainty would decrease memory 

performance for loss-associated stimuli. However, a bias would mask any forgetting for 

reward-associated stimuli, as it would lead to higher performance. Thus, we cannot rule 

out the forgetting of reward-associated stimuli in the current design. 

During the second in-lab (fMRI) session, learning performance was above 90% 

for both conditions, but massed-trained stimuli showed higher performance than 

spaced-trained stimuli (spaced choice performance, scan repetitions 2 to 6, 92.1 % CI 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27 

[88.3 96.0]; massed, 94.7 % CI [91.9 97.5]; p = 0.01; CI [3.0 20.6]; t(32) = 2.74; Fig. 
2C). 

After sufficient general experience in the task, we expected to find a positive 

relationship between learning performance for new stimuli and working memory. We 

thus estimated the correlation between learning during the initial acquisition of massed-

trained stimulus-value associations during the second in-lab session with the operations 

span measure of working memory. We found that learning performance on the massed-

trained stimuli positively related to working memory capacity (r = 0.369, p = 0.049; Fig. 
2C). Initial performance for spaced-trained stimuli did not correlate with working memory 

(r = -0.097, p = 0.617; TOST equivalence test providing 80% power in range r ± 0.34, p 

= 0.080, and thus we cannot reject the presence of a medium-size effect). The 

correlation between working memory and massed performance was significantly greater 

than the correlation with spaced performance (z = 2.16, p = 0.031). In contrast to the 

predicted effect for massed performance in the second session, we did not predict a 

relationship between first session spaced condition performance and working memory. 

While working memory clearly contributed to spaced learning performance, given the 

rapid shift in responding to loss-associated stimuli after the first trial (Fig. 2A), absent a 

prolonged practice session, working memory is also likely to be utilized to maintain task 

instructions (Cole et al., 2013). Initial task performance is also likely to be affected by 

numerous other noise-introducing factors such as the acquisition of general task rules 

(“task set”) and adaptation to the testing environment. However, the lack of a correlation 

with working memory in the spaced may also indicate that the working memory 

correlations in general are weak and hard to detect if present, even with more than 30 

participants. Future studies are needed to further investigate the effects of working 

memory on initial learning and task acquisition. When interpreting these working 

memory correlations with respect to previous studies on the contribution of working 

memory to feedback-based learning (Collins and Frank, 2012), it is important to note 

that the 8 stimuli in the spaced and massed condition were introduced in two sequential 

sets of 4 stimuli. Thus, participants would only need to maintain 4 instead of 8 stimulus-

reward or stimulus-response in short-term memory, well within the range reported in 

previous studies. 
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Long-term maintenance. Next, we turned to the critical question of whether spaced 

training over weeks led to differences in long-term memory for conditioned reward 

associations. Baseline reward ratings were collected before the fMRI scanning in the 

second in-lab session. Higher ratings indicate strong confidence in a reward association 

while lower ratings indicate higher confidence in a neutral/loss association; ratings more 

toward the middle of the scale indicated less confidence (Fig. 1C). After training but 

before fMRI scanning, when experience was matched across the spaced and massed 

conditions, we found that ratings across condition clearly discriminated between reward- 

and loss-associated stimuli (spaced rating difference, 47.5 % CI [39.2 55.7]; massed 

rating difference, 62.5 % CI [56.5 68.4]; p-values < 0.00001; condition difference, t(32) = 

2.73, CI [3.0 20.6]; p = 0.01; Fig. 3A, left). 

At the long-term follow-up, only rating data were collected. Importantly, to 

validate the use of the reward rating scale in the follow-up measures, we tested how 

strongly these measures were related. We found that within-participants, massed-

trained ratings were strongly correlated with preferences for stimuli in the separate 

choice test phase (mean r = 0.92, CI [0.88 0.95]; range 0.68-1.00; t-test on z-

transformed r-values, t(32) = 11.10 CI [1.79 2.59]; p < 0.0001). This strong correlation 

indicates that the reward ratings capture the same underlying values learned via 

feedback learning as the forced-choice test measure commonly used as an assessment 

of learning.  

To measure long-term maintenance of conditioning, after approximately 3 weeks, 

participants completed an online questionnaire on reward association strength using a 

10-point scale. The instructions for ratings were the same as the in-lab ratings phase. 

Critically, we found that while the reward value discrimination was significant in both 

conditions (spaced difference, 4.55 CI [3.75 5.34]; t(32) = 11.61, p < 0.001; massed 

difference, 2.24 CI [1.59 3.01]; t(32) = 6.60, p < 0.001), reward value discrimination was 

significantly stronger in the spaced than in the massed condition (t(32) = 4.55, CI [1.23 

3.25]; p < 0.001; Fig. 3B). This effect was driven by greater maintenance of the values 

of reward-associated stimuli (spaced vs. massed, t(32) = 4.73, CI [1.04 2.58]; p < 0.001; 

loss spaced vs. massed, t(32) = -1.37, CI [-1.08 0.21]; p = 0.18; TOST equivalence test, 

t(32) = 1.56, p = 0.064, n.s.). Note that the benefit of spacing at the long-term follow-up 
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also differs from the baseline at the end of learning, where performance was marginally 

higher for massed-trained stimuli.  

Next, we analyzed the consistency of ratings from the end of learning to the long-

term follow-up. The post-learning ratings were collected on a graded scale and the 3-

week follow-up rating was collected on a 10-point scale; this prevents a direct numeric 

comparison but allows for a correlation analysis. Such an analysis can test whether 

ratings in the massed case were simply scaled down (preserving ordering) or if actual 

forgetting introduced noise (disrupting an across-time correlation). We predicted that the 

value association memory for massed-trained stimuli actually decayed, leading to a 

higher correlation across time for spaced-trained stimuli. We indeed found that ratings 

were significantly more correlated across time in the spaced-trained condition (spaced r 

= 0.74, CI [0.63 0.85]; massed r= 0.47, CI [0.35 0.59]; t-test on z-transformed values, 

t(32) = 4.13, CI [1.28 0.44]; p < 0.001). While the correlation for the spaced-trained stimuli 

was high (median r = 0.85), there was still variability in group, with individual participant 

r-values ranging from -0.36 to 1.0. Overall, these results indicate that spaced-trained 

stimuli exhibited significantly stronger long-term memory for conditioned associations 

and more stable memory than massed-trained stimuli. 

One limitation to these results is that in the current design, cues in the learning 

environment may bias performance in favor of the spaced-trained stimuli: online training 

for spaced stimuli was conducted outside the lab, likely on the participant’s own 

computer, which was likely the same environment for the 3-week follow-up measure. 

While it seems unlikely that a testing environment effect would fully account for the large 

difference in long-term maintenance that we observed, we conducted a second study to 

replicate these results in a design where the testing conditions would if anything bias 

performance in favor of the massed-trained stimuli. 
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Figure 3. Study 1 post-learning value association strength and long-term maintenance 

of value associations. A, Post-learning reward association ratings for the massed- and 

spaced-trained stimuli (left); 3-week-later reward association ratings (right). Reward-

associated stimuli in darker colors; loss-associated stimuli in lighter colors. B, Average 

of the correlation (r) within-participant of massed-trained stimulus reward ratings and 

spaced-trained stimulus reward-ratings (statistics were computed on z-transformed 

ratings). (*** p < 0.001). Error bars, s.e.m.  

 

Study 2 

Learning of value associations. In Study 2, our aim was to replicate the findings of 

Study 1 and to extend them by conducting the 3-week follow-up session in the lab, 

allowing for a direct comparison with post-learning performance. Learning sessions for 

spaced- and massed-trained stimuli were the same as in Study 1, with the exception 

that massed learning in Study 2 omitted the mid-learning assessment with ratings and 

choices. During the initial spaced and massed learning sessions, by the second trial, 

accuracy had increased to 89.9 % (CI [85.3 94.6]) for spaced-trained stimuli and to 87.2 

% (CI [84.1 93.3]) for massed-trained stimuli (p-values < 0.001). As before, participants 

exhibited a noted bias (67.2 %) toward “Yes” responses for the first trial of a given 

stimulus when no previous information could be used to guide their response. By the 

end of the initial learning sessions, performance was at a level of 84.3 % (CI [79.3 89.3]) 

for the spaced-trained stimuli and 86.2 % (CI [81.2 91.1]) for the massed-trained stimuli 

(Fig. 4A), which was matched across conditions (10th repetition; t(30) = 0.59, CI [-4.72 
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8.52]; p = 0.56; TOST equivalence test within a range of Cohen’s d = ± 0.53, providing 

80% power with 31 participants; t(30) = 2.37, p = 0.012). By the end of training, after the 

online sessions for spaced-trained stimuli and the completion of the in-lab learning for 

massed-trained stimuli, we found that performance was equivalent across conditions 

(spaced-trained, 86.4 % CI [82.2 90.6]; massed-trained, 87.1 % CI [81.4 92.8]; t(30) = 

0.248, CI [-4.76 6.08]; p = 0.806; TOST equivalence test, t(30) = 2.70, p = 0.006; Fig. 
4C). 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

 
 

Figure 4. Study 2 learning results. A, Performance in the initial spaced and massed 

learning sessions across the first ten repetitions of each stimulus. (Massed stimuli in 

grey; spaced in blue; reward-associated stimuli in solid lines; loss-associated stimuli in 

dotted lines.) B, Incentivized two-alternative forced-choice performance between 

reward- and loss-associated stimuli following the completion of all learning repetitions. 

C, Spaced performance across training and terminal performance for spaced and 

massed stimuli. Performance is shown for the last in-lab repetition and the first and last 

(fifth) repetition of each stimulus per online session. Terminal performance is 

represented as the average of the final 2 repetitions of each stimulus in the last learning 

session. D, Positive correlation between early massed-trained stimulus learning 

performance and working memory capacity (OSPAN). (** p < 0.01). Error bars, s.e.m. 
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As in Study 1, performance in the initial learning sessions illustrates that 

participants learned the reward value of the stimuli during learning. First, participants 

tended to prefer the high reward vs. medium reward spaced-trained stimuli during the 

second half of learning (high reward, 90.3 % CI [84.7 96.0]; medium reward, 79.9 % CI 

[71.0 88.7]; t(30) = 2.03, CI [0.0 20.9]; p = 0.051). Later, however, after extensive training 

in the task, we did not observe a similar effect for initial learning of the massed-trained 

stimuli (high reward, 84.8 % CI [75.5 94.2]; medium reward, 85.5 % CI [77.7 93.3]; t(30) = 

-0.11, CI [-12.5 11.2]; p > 0.91; TOST = t(30) = 2.84, p = 0.004). Second, performance in 

the incentivized forced-choice test phase after the completion of learning showed strong 

preference for the reward- vs. loss-associated stimuli in choices between both spaced- 

and massed-trained stimuli (spaced-trained, 94.6 % CI [87.2 96.3]; massed-trained, 

91.7 % CI [90.8 98.3]; difference between conditions, p > 0.26; TOST equivalence test, 

t(30) = 1.83, p = 0.04; Fig. 4B). Equivalent choice performance after learning for spaced- 

and massed-trained stimuli is important for the long-term follow-up measure. 

After the initial spaced learning session in the first in-lab visit, participants 

continued learning about the set of spaced-trained stimuli across three short “massed” 

online sessions. As in Study 1, we found that across the 3 online sessions, mean 

performance did not change for reward-associated stimuli (one-way ANOVA; F(2,69) = 

0.06, p = 0.94; Fig. 4B). In contrast to the previous study, we did not find an increase in 

performance across sessions for loss-associated stimuli (F(2,69) = 1.09, p = 0.34), 

although a post-hoc comparison of the first to the third session showed an increase (t(23) 

= 2.43, CI [1.1 3.4]; p = 0.024). However, we did replicate the finding that loss-

associated stimuli showed a significant decrease in performance between sessions 

(mean change from end of session to beginning of next session: t(23) = 2.69, CI [2.4 

18.2]; p = 0.013; reward-associated stimuli (t(23) = 1.40, CI [-1.6 8.3]; p = 0.18). As 

discussed above, this decrease in performance evident for loss-associated stimuli could 

indicate forgetting of values and a return toward a default “Yes” response bias (as seen 

in first exposure responses; Fig. 2A). Such a bias would make it difficult in the current 

design to determine whether memories for the value of reward-associated stimuli also 

decayed. 

As in Study 1, after sufficient general experience in the reward association 

learning task, we expected to find a positive relationship between performance on the 
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reward association learning task and working memory. Indeed, we found a significant 

correlation between massed-stimulus performance and working memory capacity (r = 

0.484, p = 0.0058; Fig. 4C). Initial learning performance was relatively lower in Study 2 

than in Study 1, which may have helped reveal a numerically stronger correlation 

between massed-trained stimulus performance and working memory. Meanwhile, the 

relationship between working memory and initial performance for spaced-trained stimuli 

was weak (r = 0.040, p = 0.83; TOST equivalence test, p = 0.043, providing 80% power 

in range r ± 0.35; difference between massed and spaced correlation, z = 1.40 p = 

0.16), as expected, given the other noise-introducing factors in initial learning 

performance discussed above. As in Study 1, however, working memory clearly also 

contributed to spaced learning performance, as demonstrated by the immediate shift in 

mean response to loss-associated stimuli from “Yes” to “No” after initial negative 

feedback (Fig. 2A). 

 
Long-term maintenance. Next, we turned to the critical question of whether spaced 

training over weeks led to differences in long-term memory for conditioned reward 

associations. For the baseline post-learning measurement for spaced- and massed-

trained stimuli, ratings were collected at the end of the complete massed-stimulus 

training session (Fig. 5A, left). Reward ratings showed strong discrimination of value 

(spaced-trained reward minus loss rating difference, 47.1 % CI [40.9 53.2]; massed-

trained rating difference, 52.5 % CI [46.7 58.3]; condition difference, t(30) = -1.86, CI [-0.5 

11.4]; p = 0.073; Fig. 5A, left). Note that as in the previous study, we collected ratings 

data but no choice test data in the long-term follow-up. To again validate the use of the 

reward rating scale in the follow-up measures, we tested whether within-participant 

reward ratings were related to choice test preferences. Again, we found that ratings 

positively correlated with choice preference across all stimuli (mean r = 0.87, CI [0.82 

0.91]; range 0.56-1.00; t-test on z-transformed r-values, t(30) = 14.08, CI [1.33 1.78]; p < 

0.0001). By replicating the strong correlation found in Study 1, these results indicate 

that reward ratings capture the essential underlying values revealed through forced-

choice preferences. 

To measure long-term maintenance of conditioning, after approximately 3 weeks, 

participants returned for a third in-lab session for a brief session where they gave 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35 

reward ratings for all stimuli. Rating discrimination between reward- and loss-associated 

stimuli was significant in both conditions (spaced difference, 39.1 % CI [32.4 45.8]; t(29) 

= 11.96, p < 0.001; massed difference, 16.7 % CI [9.4 24.1]; t(29) = 4.65, p < 0.001). 

Importantly, reward value discrimination was significantly stronger in the spaced than in 

the massed condition (t(29) = 4.98, CI [13.2 31.5]; p < 0.001; Fig. 5A, right). At follow-up, 

this stronger maintenance of learned value associations in the spaced condition was 

significant for both reward and loss stimuli (reward, t(29) = 3.43, CI [5.0 20.0]; p = 0.0018; 

loss, t(29) = -4.11, CI [-14.7 -5.0]; p < 0.001). The design of Study 2 allowed us to directly 

compare post-learning ratings and 3-week later ratings to calculate the degree of 

maintenance of conditioning. As expected, the difference in maintenance for reward 

associations was significantly greater for spaced- than massed-trained stimuli (spaced, 

87.3 % CI [73.2 101.5]; massed, 30.0 % CI [16.2 43.9]; t(29) = 5.49, CI [36.0 78.6]; Fig. 
5B). Moreover, we found that ratings significantly decayed toward neutral for both 

reward- and loss-associated massed-trained stimuli (massed reward, t(29) = -6.09, CI [-

21.7 -10.8]; p < 0.001; loss, t(29) = 9.95, CI [15.3 23.3]; p < 0.001). For spaced-trained 

stimuli, we found no decay for reward-associated stimuli but some decay for loss-

associated stimuli (spaced reward, t(29) = -1.21, CI [-4.0 1.0]; p = 0.23; TOST 

equivalence test, t(29)  = 1.74, p = 0.045; loss, t(29) = 3.00, CI [2.1 11.4]; p = 0.0055). 

Interestingly, we found that the ratings for loss-associated stimuli decayed significantly 

more than those for reward-associated stimuli (t(29) = -2.18, CI [-10.20 -0.33]; p = 0.037), 

an effect in line with the between-sessions drop in performance for loss-associated 

stimuli. We did not find a difference in ratings decay for the massed-trained stimuli (t(29) 

= -1.05, CI [-9.01 2.89]; p = 0.302); however, this null finding could be due to floor 

effects, as ratings are near 50%. 

Finally, as in Study 1, we predicted that the value association memory for 

massed-trained stimuli was not decreased by scaling but actually decayed, which would 

lead to a lower across-time correlation in ratings. To test this, we correlated ratings in 

the second in-lab session with ratings in the third in-lab session separately for massed- 

and spaced-trained stimuli. We replicated the finding that ratings were significantly more 

correlated across time in the spaced-trained condition (spaced r = 0.82, CI [0.74 0.90]; 

massed r = 0.50, CI [0.37 0.63]; t-test on z-transformed values, t(29) = 5.22, CI [0.45 

1.03]; p < 0.001). 
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By collecting the long-term follow-up ratings in the same lab environment as the 

massed training sessions, our design would, if anything, be biased to find stronger 

maintenance for massed-trained stimuli because the training and testing environments 

overlap. However, we found similar differences in long-term conditioning across Study 1 

and Study 2, suggesting that testing environment was not a significant factor in our 

measure of conditioning maintenance. While it will be important in the future to also 

replicate these results in a choice situation such as a stable bandit task, the replication 

and extension of the findings of Study 1 provide strong evidence that spaced training 

leads to more robust maintenance of conditioned value associations at a delay, while 

performance in short-term learning is partly explained by working memory.  
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Figure 5. Study 2 post-learning reward association strength and maintenance of value 

associations. A, Reward association ratings for the massed- and spaced-trained stimuli 

after the second in-lab session (left), and after the 3-week-later in-lab final reward 

association rating session (right). Reward-associated stimuli in darker colors; loss-

associated stimuli in lighter colors. B, Percent of initial reward association difference 

(reward minus loss associated rating) after the second in-lab session maintained across 

the 3-week delay to the third in-lab session, separately for massed- and spaced-trained 

stimuli. C, Post-learning and 3-week follow-up ratings re-plotted within condition for 

reward-associated (solid line) and loss-associated stimuli (dotted line). D, Average of 

the correlation (r) within-participant of massed-trained stimulus reward ratings and 

spaced-trained stimulus reward-ratings (statistics were computed on z-transformed 

ratings). (** p < 0.01, *** p < 0.001) Error bars, s.e.m. (A, B, D), and within-participants 

s.e.m (C). 
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fMRI Results 
 In Study 1, after the completion of matched training for the massed-trained associations 

in the second in-lab session, we collected fMRI data during an additional learning 

phase, where massed- and spaced-trained stimuli were intermixed. As noted above, 

during fMRI scanning, we found overall performance above 90 %, but a slight benefit for 

massed-trained stimuli (Fig. 2C). 

Initial univariate analyses we did not reveal any value or reward-related 

differences in striatal or MTL responses due to spaced training (see Table 1-1). At 

stimulus onset, across conditions a contrast of reward vs. loss-associated stimuli 

revealed activation in the bilateral occipital cortex and right somatomotor cortex (whole-

brain FWE-corrected p < 0.05; Table 1-1; unthresholded map available at 

https://neurovault.org/images/63125/), with no differences due to spaced- vs. massed-

trained stimuli. At feedback, we found expected effects of reward (hit) vs. non-reward 

(miss) feedback for reward-associated stimuli in the ventral striatum (x, y, z: -10, 9, -8; z 

= 4.48, p = 0.019 whole-brain FWE-corrected) and VMPFC (-15, 51, -1; z = 4.93, p < 

0.001 FWE; see Table 1-1 and https://neurovault.org/images/59042/). Across 

conditions, loss (miss) vs. neutral (hit) feedback activated the bilateral anterior insula 

and anterior cingulate (Table 1-1; https://neurovault.org/images/63127/). However, we 

found that miss versus hit feedback elicited greater responses in the anterior insula and 

anterior cingulate cortex for loss-associated stimuli than for reward-associated stimuli 

(Table 1-1; Fig. 6-1; https://neurovault.org/images/63126/). Loss feedback led to 

greater activity for massed- vs. spaced-trained stimuli in the bilateral DLPFC, parietal 

cortex, and ventral occipital cortex (Table 1-1). A second model contrasting spaced- vs. 

massed-trained stimuli across value revealed no significant differences in subcortical 

regions of interest or in the whole brain. In a subsequent no-feedback scanning block, 

we examined the effect of cross-stimulus repetition-suppression (XSS) for reward- vs. 

loss-associated stimuli. We found no differences due to condition, but several clusters 

that showed overall repetition-enhancement by value, including the right dorsolateral 

PFC and anterior insula (Table 1-1). While our univariate results exhibited no clear 

differences based on spacing condition, they do align well with previous results on 

reward-based learning in human fMRI studies (Bartra et al., 2013). 
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 To gain greater insight into the neural response to massed- and spaced-trained 

stimuli, we leveraged multivariate analysis methods. Specifically, we tested whether 

distributed patterns of brain activity within regions of interest or in a whole-brain 

searchlight analysis were able to discriminate between reward value, spaced vs. 

massed training condition, or their interaction. Our primary question was whether 

patterns of activity differentially discriminated the value of spaced- vs. massed-trained 

stimuli. 

Our first analysis tested for patterns that discriminated between reward- vs. loss-

associated stimuli. In the striatal region of interest, classification was not significantly 

different than zero (49.5 % CI [47.5 51.6]; t(30) = -0.48, p = 0.63), and a similar null result 

was found in the hippocampus and parahippocampus MTL ROI (49.1 % CI [47.1 51.2]; 

t(30) = -0.89, p = 0.38). Using a whole-brain searchlight analysis, thresholding at the 

standard cluster-forming threshold of p < 0.005 resulted in a large single cluster 

spanning much of the brain; for this reason, we used a more stringent cluster-forming 

threshold of p < 0.0005 in order to obtain more interpretable clusters. We identified 

several regions that showed significant value discrimination, including the left pre- and 

postcentral gyrus and a large bilateral cluster in the posterior and ventral occipital cortex 

(p < 0.05 whole-brain FWE-corrected; Fig. 6; Table 1). 
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Figure 6. Searchlight pattern classification of reward- vs. loss-associated stimuli across 

the massed and spaced conditions (images whole-brain p < 0.05 FWE corrected; 

unthresholded map available at https://neurovault.org/images/59040/) For univariate 

results of the response to reward and loss feedback, see Figure 6-1. 

 

To directly compare value-discriminating regions across condition, we examined 

the interaction of value by spacing condition. This analysis involved the contrast of two 

separate classifiers, one trained to discriminate reward- vs. loss-associated stimuli for 

massed-trained stimuli and the other for spaced-trained stimuli. In our ROI classification 

analysis, we found that patterns of activity in the MTL showed significantly stronger 

discrimination for spaced vs. massed values (difference, 8.2 % CI [3.8 12.5]; t(30) = 3.81, 

p < 0.001; Fig. 7A). Importantly, the effect in the spaced condition alone was significant 

(55.5 % CI [53.1 57.9]; t(30) = 4.58, p < 0.001; massed, 47.3 % CI [44.0 50.7]; t(30) = -

1.60, p = 0.12). In the striatum, we found a similar effect (difference, 7.2 % CI [3.1 11.2]; 

t(30) = 3.63, p = 0.001), but the difference is difficult to interpret given the below-chance 

performance in the massed condition (53.5 % CI [50.2 56.7]; t(30) = 2.20, p = 0.036; 

massed, 46.3 % CI [43.8 48.8]; t(30) = -3.01, p = 0.005). 
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Next, we examined whether more local patterns of activity showed significant 

discrimination of spaced- vs. massed-trained values. Thresholding at the standard 

cluster-forming threshold of p < 0.005 resulted in a large single cluster spanning much 

of the brain; as above, for this reason, we used a more stringent cluster-forming 

threshold of p < 0.0005 in order to obtain more interpretable clusters. We found multiple 

clusters exhibiting greater value discrimination in the spaced vs. massed condition, 

including the bilateral dorsolateral prefrontal cortex (DLPFC), the ventromedial 

prefrontal cortex (VMPFC), and orbitofrontal cortex (OFC) (Fig. 7B, Table 1). The 

searchlight analysis also demonstrated that the stronger classification of value observed 

in the spaced vs. massed conditions in the MTL ROI analysis were also found in the 

local searchlight analysis in the right hippocampus and parahippocampus (Fig. 7C; 

Table 1.). No regions showed greater discrimination of massed-trained values over 

spaced-trained values. 

 
 
 
 

 
 
Figure 7. Pattern classification of spaced-trained values vs. massed-trained values. A, 

MTL (hippocampus and parahippocampus) ROI shows significant classification of 

spaced versus massed values. B, whole-brain searchlight analysis identified a cluster in 

the right medial temporal lobe. (*** p < 0.001; images whole-brain p < 0.05 FWE 

corrected; unthresholded map available at https://neurovault.org/images/59031/) 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 42 

Finally, we examined the effect of spaced training by investigating which brain 

regions could successfully discriminate between spaced- vs. massed-trained stimuli. 

We found that the striatum showed significant discrimination of spacing condition (52.1 

% CI [50.4 53.8]; t(30) = 2.57, p = 0.016; Fig. 8A) while the effect in the MTL was not 

significant (51.1 % CI [49.5 52.6]; t(30) = 1.40, p = 0.17). In the whole-brain searchlight 

analysis, we found several regions that discriminated the effect of time of training, 

including the left cingulate / supplementary motor area (3 -9 61; z = 3.93, p < 0.001 

FWE; Table 1) and right pre- and post-central gyrus (58 -13 32; z = 5.05, p < 0.0001 

FWE; Fig. 8B). 

 

 

 

 
 
Figure 8. Pattern classification of spaced- vs. massed-trained stimuli. A, Striatal ROI 

shows significant classification. B, searchlight analysis identified additional clusters 

including the left cingulate and right pre- and post-central gyrus. (* p < 0.05; images 

whole-brain p < 0.05 FWE corrected; unthresholded map available at 

https://neurovault.org/images/59041/) 
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Discussion   
When reward-based learning is distributed over time instead of massed in a 

single session, we found significant gains in the long-term maintenance of learned value 

associations. Controlling for the amount of training as well as post-training performance, 

across two experiments we found that stimuli trained across weeks exhibited 

significantly stronger maintenance of value associations 3 weeks later. Conversely, 

single-session massed training, as commonly employed in human reward-based 

learning research, resulted in weaker maintenance of value associations. Decaying 

memory for massed-trained stimuli may be related to reliance on short-term memory to 

support massed learning, and supporting this view, we found that initial learning 

performance was significantly correlated with individual differences in working memory 

capacity. 

Neurally, we found that distributed patterns of activity in the MTL and cortex 

discriminated between well-learned versus newly-learned value associations. Moreover, 

patterns of activity in the striatum discriminated well-learned versus newly-learned 

stimuli independent of value. These results were found in a task where participants 

learned the best of two responses for single reward- or loss-associated stimuli (similar 

to Pavlovian designs in non-human primates, e.g. Schultz et al., 1997; Kim and 

Hikosaka, 2013). It will be important for future research to verify that they extend to 

learning and maintenance of learned values in stable choice situations, such as a 

probabilistic selection task (Grogan et al., 2017). Together, these results indicate that 

reward associations acquired from weeks of training, in contrast to a single condensed 

session of learning, elicit stronger neural differentiation of value and may be more 

effective at guiding choices toward reward-associated options in the future. 

Previous research has shown powerful effects of spacing in humans in memory 

and educational settings, following the initial work of Ebbinghaus (reported in 

Ebbinghaus, 1913; Cepeda et al., 2006). For reward-based learning, a beneficial effect 

of spacing has been well-established in other species (Teichner, 1952; Carew et al., 

1972; Terrace et al., 1975). In humans, however, spacing has only been investigated in 

aversive eyeblink conditioning, which relies on a specialized cerebellar circuit 

(Humphreys, 1940; Spence and Norris, 1950; Kim and Thompson, 1997). Separately, 

effects of spacing have been investigated in category learning, which shares some 
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structural similarities to the two-response instrumental task utilized in our experiments 

(Seger and Peterson, 2013; Carvalho and Goldstone, 2014). However, in contrast to the 

well-documented positive effects of spacing on feedback-based learning – where 

perceptual features do not allow generalization – category learning research indicates 

that the effect of alternating different examples benefits learning more than temporal 

spacing (Kang and Pashler, 2012). 

From animal studies, reward-based learning is known to depend on the striatum 

and its midbrain dopaminergic projections (Schultz et al., 1997; Rangel et al., 2008; 

Steinberg et al., 2013). It is possible that condensed single-session learning in humans 

is primarily supported by the same neural mechanisms that support long-term learning. 

However, both our results and other recent findings strongly suggest that learning 

performance in tasks with condensed repetitions of stimuli additionally benefit from 

short-term cognitive mechanisms such as working memory (Collins and Frank, 2012; 

Collins et al., 2014). In human work on rapidly-paced paradigms, dopaminergic 

manipulations have been shown to affect performance (Frank et al., 2004; Pessiglione 

et al., 2006). While a full discussion of this research is beyond the scope of the present 

paper, we support the interpretation that some part of this shift is likely due to actions on 

a mechanism involving dopamine-induced synaptic plasticity in the striatum (though see 

Grogan et al., 2017). However, unlike work in animals where region and cell-type 

specific manipulations of dopaminergic and striatal neurons is possible (Steinberg et al., 

2013; Ferenczi et al., 2016), pharmacological manipulations in humans have whole-

brain effects. As dopamine also plays a significant role in higher cognitive functions 

including working memory, it is thus difficult to disentangle the effects of dopaminergic 

drugs on striatal plasticity and working memory processes (Cools, 2011; Matsumoto 

and Takada, 2013). A potential limitation of our experiments, as noted above, is that 

while our paradigm involves learning the value of single stimuli, similar to animal work 

on feedback-based learning (Schultz et al., 1997; Kim and Hikosaka, 2013; Ghazizadeh 

et al., 2018), it is not yet clear if these learning and maintenance results directly 

translate to a stable two-alternative bandit task. 

Our results extend previous findings on the role of working memory in feedback 

learning by demonstrating that, in addition to a relationship with principal components of 

learning model fits (Collins et al., 2014), individual differences in working memory 
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capacity are positively related to a simple measure of learning performance. The current 

experimental paradigm also includes both reward- and loss-associated stimuli, going 

beyond the conditional associative learning paradigm used previously (Petrides, 1985; 

Collins and Frank, 2012) and allowing for both forced-choice preference tests of learned 

values and an investigation into neural patterns that differentiate between learned 

values. Finally, our results indicate that more flexible models with multiple timescales of 

forgetting (and learning) may better account for the data than current models employing 

a single short-term working memory module (Collins and Frank, 2012). 

What neural mechanisms support the improvement in long-term maintenance of 

values with spaced training? Our finding of significant classification of reward versus 

loss associations for spaced-trained but not massed-trained associations in the MTL, 

including the hippocampus, indicates a potentially novel role for the hippocampus in 

representing well-learned values. While the hippocampus is known to respond to reward 

and value (Lebreton et al., 2009; Wirth et al., 2009; Lee et al., 2012), hippocampal 

dysfunction does not eliminate the capacity of animals or humans to gradually learn the 

value of stimuli (e.g. Packard et al., 1989; Knowlton et al., 1996; Bayley et al., 2005). 

However, without the support of the hippocampus, feedback-based learning in humans 

is extraordinarily slow and inflexible (Bayley et al., 2005). 

While often viewed as opposing systems, recent evidence suggests that striatal 

and hippocampal systems may cooperate during reward-based learning (Lansink et al., 

2009; van der Meer et al., 2010; Foerde and Shohamy, 2011). Specifically, the MTL 

may support learning and decision making by acquiring statistical structure of stimulus-

feedback associations (Schapiro et al., 2012) or by providing information about previous 

episodes (Shadlen and Shohamy, 2016), a proposal supported by recent research 

(Murty et al., 2016; Wimmer and Buechel, 2016; Bornstein et al., 2017). The MTL may 

play a larger role in supporting learning over longer timescales, allowing for learning 

across contexts as well as the consolidation of synaptic plasticity (Kramar et al., 2012; 

Aziz et al., 2014; Smolen et al., 2016), which could explain selective value 

discrimination in the hippocampus for spaced- but not massed-trained associations. 

Computationally, spaced training may allow for the benefits of offline replay as 

employed in models such as DYNA, where model-free values are trained by post-event 
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replay of experience (Sutton, 1990; Johnson and Redish, 2005; Gershman et al., 2014; 

Russek et al., 2017). 

Additionally, we found that patterns of activity in the striatum discriminated 

spaced-trained versus massed-trained stimuli overall. Decades of animal research have 

shown that different regions of the striatum are important for different types of reward 

associations, with the dorsomedial striatum critical for flexible (and newly-acquired) 

goal-directed learning and the dorsolateral striatum critical for inflexible model-free and 

habit learning (Balleine and Dickinson, 1998; Yin and Knowlton, 2006; Kim and 

Hikosaka, 2013; Foerde, 2018). In contrast to previous fMRI studies that employed a 

multi-day design (Tricomi et al., 2009; Wunderlich et al., 2012), our experimental design 

allows for a direct comparison between equivalent amounts of spaced and massed 

training. We did not find any effect of spacing on univariate measures of value in the 

striatum, in contrast to previous studies (Tricomi et al., 2009; Wunderlich et al., 2012), 

although null results should be treated with caution. Recent findings in non-human 

primates indicate that a novel population of striatum-projecting dopamine neurons 

responds to well-learned value associations, even after stimulus-reward associations 

are extinguished (Kim et al., 2015). Such a neural mechanism may support a “habit” of 

attentional orientation to reward-associated that is resistant to extinction (Kim et al., 

2015; Anderson, 2016). We did not collect a measure of devaluation sensitivity, the 

classic test of habitual behavior - albeit one difficult to administer in humans (Dickinson, 

1985; Graybiel, 2008; Tricomi et al., 2009; de Wit et al., in press). Whether or not the 

learned stimulus-action associations remained sensitive to outcomes, our results 

indicate that the brain may retain the ability to remember and recall the value associated 

with stimulus using other representations in memory, such as those supported by the 

MTL. 

Our results have implications for understanding reward-based learning in the 

healthy brain and for translating this research to patient populations (Huys et al., 2016) 

and more ecologically valid experimental designs (Moutoussis et al., 2016). The 

interpretation of parameters derived from massed feedback learning paradigms is 

difficult for various reasons, including, as we demonstrate, the contribution of working 

memory to performance (see also Collins and Frank, 2012). Additionally, the decaying 

nature of value associations learned in massed-training tasks suggests that parameters 
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derived from massed paradigms may not translate to how people acquire lasting value 

associations and habits over time outside the lab. Our experiments suggest that the 

long-term maintenance of value associations may be a promising individual difference 

measure to explore in future studies. Finally, our experimental design provides a 

starting point for testing how over-learned value associations may be unlearned, with 

implications for research on behavioral change. 

 In summary, across two studies we found that spacing of condensed sessions of 

reward-based learning across weeks resulted in significantly greater maintenance of 

conditioned value associations than training across minutes. Our experiments represent 

the first demonstration of spacing effects on reward-based learning in humans and 

identify neural signatures specific to well-learned vs. transient value associations in the 

human brain. Overall, our results indicate that spaced reward-based learning and long-

term maintenance of conditioning may provide cleaner measures of feedback-based 

learning than current measures. This possibility has implications for the interpretation 

and direction of reward-based learning research, as feedback learning paradigms are 

becoming widely used in studies of mood and psychiatric disorders as well as addiction 

(Herbener, 2009; Maia and Frank, 2011; Montague et al., 2012; Whitton et al., 2015).  
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Table 1. Summary of multivariate whole-brain searchlight analysis results. Clusters of 

activity exceeding whole-brain p < 0.05 FWE-corrected. Within each cluster, the first 10 

regions are listed that include >= 10 voxels of a cluster. For the spaced value and 

spaced vs. massed value results, the cluster-forming threshold was increased to p < 

0.005 to produce more interpretable clusters. For univariate results, see Table 1-1. 

 

Contrast Regions Cluster 
size x y z 

Peak 
z 

stat 

Reward vs. Loss 

Bilat. Middle Occipital Gyrus      
Bilat. Inferior Occipital Gyrus 4022 -28 -79 -14 5.77 
Bilat. Fusiform Gyrus      
L Postcentral Gyrus           
L Precentral Gyrus 1013 -48 -20 47 4.24 
L Parietal Cortex      

Massed Reward vs. Loss -           

Spaced Reward vs. Loss 

R Middle Frontal Gyrus           
R Inferior Frontal Gyrus      
R Superior Frontal Gyrus      
R Superior Temporal Gyrus 4254 49 26 34 6.64 
R Precentral Gyrus      
R Middle Temporal Gyrus      
R Medial Frontal Gyrus      
L Middle Occipital Gyrus 

4032 -43 -86 6 6.37 

L Lingual Gyrus 
L Inferior Occipital Gyrus 
L Cuneus 
L Fusiform Gyrus 
L Cerebellum Posterior Lobe 
L Precuneus 
L Superior Occipital Gyrus 
L Middle Temporal Gyrus 
L Inferior Temporal Gyrus 
L Inferior Parietal Lobule 

1004 -54 -40 41 5.11 

L Postcentral Gyrus 
L Supramarginal Gyrus 
L Superior Temporal Gyrus 
L Precentral Gyrus 
L Angular Gyrus 
L Precentral Gyrus 

582 -19 -29 74 4.74 L Postcentral Gyrus 
L Superior Parietal Lobule 
L Inferior Parietal Lobule 
R Postcentral Gyrus           
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R Inferior Parietal Lobule 401 56 -26 52 4.84 
R Precentral Gyrus      
R Superior Frontal Gyrus 311 23 57 -8 5.04 
R Middle Frontal Gyrus 
Bilat. Medial Frontal Gyrus           
Bilat. Paracentral Lobule 193 -10 -22 52 4.51 
Bilat. Cingulate Gyrus      
L Superior Frontal Gyrus           
L Middle Frontal Gyrus 189 -17 35 50 4.26 
L Medial Frontal Gyrus      
R Inferior Temporal Gyrus 145 62 -29 -19 4.34 
R Middle Temporal Gyrus 
L Thalamus 130 -6 2 3 4.34 
L Caudate 
Bilat. Medial Frontal Gyrus 129 -8 55 8 4.2 
Bilat. Anterior Cingulate 
R Angular Gyrus           
R Middle Temporal Gyrus 122 32 -59 36 4.01 
R Inferior Parietal Lobule      
Bilat. Medial Frontal Gyrus 
(VMPFC) 108 -1 42 -25 4.05 
Bilat. Orbital Gyrus 

Spaced Reward vs. Loss >   
Massed Reward vs. Loss 

Bilat. Inferior Frontal Gyrus 

4063 -34 44 -5 5.47 

L Middle Temporal Gyrus 
L Superior Temporal Gyrus 
L Middle Frontal Gyrus 
Bilat. Medial Frontal Gyrus 
Bilat. Anterior Cingulate 
L Superior Frontal Gyrus 
L Inferior Temporal Gyrus 
Bilat. Orbital Gyrus 
Bilat. Anterior Insula 
R Middle Frontal Gyrus 

3465 18 -4 61 5.09 

R Inferior Frontal Gyrus 
R Superior Temporal Gyrus 
R Middle Temporal Gyrus 
Midbrain 
R Superior Frontal Gyrus 
R Insula 
R Parahippocampal Gyrus 
R Hippocampus 
R Medial Frontal Gyrus 
L Inferior Parietal Lobule 

1309 -54 -37 41 5.71 L Precuneus 
L Occipital Lobe 
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L Cuneus 
L Superior Occipital Gyrus 
L Superior Parietal Lobule 
R Superior Frontal Gyrus           
R Middle Frontal Gyrus 871 18 46 39 4.54 
R Medial Frontal Gyrus      
Bilat. Medial Frontal Gyrus           
L Parietal Lobe 634 -21 -33 54 4.87 
L Postcentral Gyrus      
L Superior Frontal Gyrus           
L Medial Frontal Gyrus 617 -19 37 52 5 
L Middle Frontal Gyrus      
R Inferior Parietal Lobule           
R Middle Temporal Gyrus      
R Supramarginal Gyrus 533 51 -55 23 4.52 
R Superior Temporal Gyrus      
R Angular Gyrus      
L Middle Frontal Gyrus 169 -32 15 63 4.13 
L Superior Frontal Gyrus 
R Middle Occipital Gyrus 131 36 -86 3 3.99 
L Medial Frontal Gyrus           
L Superior Frontal Gyrus 119 -17 9 54 4.23 
L Middle Frontal Gyrus      
L Middle Frontal Gyrus 108 -28 55 10 3.97 
L Superior Frontal Gyrus 
L Cerebellum 106 -10 -40 -30 4.43 
L Brainstem 
R Postcentral Gyrus 102 51 -13 19 4.23 
R Precentral Gyrus 
Cerebellum 102 5 -73 -21 3.83 

Spaced vs. Massed 

R Precentral Gyrus 

1034 58 -13 32 5.05 R Postcentral Gyrus 
R Inferior Parietal Lobule 
R Supramarginal Gyrus 
L Medial Frontal Gyrus           
L Cingulate Gyrus 558 3 -9 61 3.93 
L Superior Frontal Gyrus      
L Superior Temporal Gyrus  296 -45 -35 10 4 
L Parahippocampal Gyrus 

 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 59 

 
 
Figure 6-1. Univariate contrast of hit vs. miss feedback for reward- and loss-associated 

stimuli. A, Reward-associated stimuli: activity related to hit > miss (top) and miss > hit 

(bottom). B, Loss-associated stimuli: activity related to hit > miss (top) and miss > hit 

(bottom). C, Contrast of loss- vs. reward-associated stimuli for hit > miss (top) and miss 

> hit (bottom). 
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Table 1-1. Summary of univariate analysis results. Clusters of activity exceeding whole-

brain p < 0.05 FWE-corrected. Within each cluster, the first 10 regions are listed that 

include >= 10 voxels of a cluster.  

 

Contrast Regions Cluster 
size x y z 

Peak 
z 

stat 

Reward- vs. Loss-associated 
stimuli 

Bilat. Cuneus      
R Middle Occipital Gyrus      
R Inferior Occipital Gyrus      
Bilat. Precuneus 2497 1 -95 28 4.83 
R Lingual Gyrus      
R Fusiform Gyrus      
R Cerebellum Posterior 
Lobe      
L Inferior Occipital Gyrus           
L Fusiform Gyrus      
L Middle Occipital Gyrus 800 -41 -90 -19 4.15 
L Lingual Gyrus      
L Cerebellum Posterior Lobe      
L Middle Occipital Gyrus 528 -63 -73 12 4.28 
R Postcentral Gyrus 242 40 -18 34 4.74 
R Inferior Parietal Lobule 

Reward vs. Non-reward 
feedback 

Bilat. Medial Frontal Gyrus           
Bilat. Anterior Cingulate      
Bilat. Superior Frontal Gyrus 1636 -15 51 -1 4.93 
Bilat. Middle Frontal Gyrus      
Bilat. Inferior Frontal Gyrus      
R Middle Occipital Gyrus           
R Cuneus      
R Middle Temporal Gyrus 756 34 -57 14 4.67 
R Superior Temporal Gyrus      
R Insula      
Bilat. Caudate / Nucleus 
Accumbens 

343 -10 9 -8 4.48 
L Anterior Cingulate 
Subgenual Cingulate 
Lentiform Nucleus 
Putamen 
Inferior Frontal Gyrus 
L Middle Occipital Gyrus 260 -41 -48 -3 4.14 
L Middle Temporal Gyrus 
R Cingulate Gyrus           
R Caudate Body 254 29 -20 23 3.94 
R Thalamus      

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 27, 2018. ; https://doi.org/10.1101/158964doi: bioRxiv preprint 

https://doi.org/10.1101/158964
http://creativecommons.org/licenses/by-nc-nd/4.0/


 61 

Non-reward vs. Reward 
feedback 

R Middle Frontal Gyrus           
R Inferior Frontal Gyrus 1224 47 13 30 4.48 
R Precentral Gyrus      
L Middle Frontal Gyrus           
L Inferior Frontal Gyrus 721 -50 15 30 4.44 
L Precentral Gyrus      
Bilat. Superior Frontal Gyrus 592 -8 24 52 4.59 
Bilat. Medial Frontal Gyrus 
R Inferior Parietal Lobule           
R Superior Parietal Lobule 390 32 -66 43 3.65 
R Precuneus      
L Superior Temporal Gyrus 266 -63 -51 19 4.44 
L Supramarginal Gyrus 
L Middle Occipital Gyrus           
L Fusiform Gyrus 250 -39 -64 -12 3.65 
L Middle Temporal Gyrus      

Non-loss vs. Loss feedback 

L Middle Temporal Gyrus 

503 -50 -70 23 4.88 L Angular Gyrus 
L Superior Temporal Gyrus 
L Precuneus 

Loss vs. Non-loss feedback 

R Middle Frontal Gyrus 

5391 32 22 -12 5.69 

R Inferior Frontal Gyrus 
R Superior Frontal Gyrus 
R Medial Frontal Gyrus 
R Cingulate Gyrus 
R Insula 
R Anterior Cingulate 
R Superior Temporal Gyrus 
R Precentral Gyrus 
R Subcallosal Gyrus 
R Fusiform Gyrus           
R Inferior Occipital Gyrus      
R Middle Occipital Gyrus      
R Cerebellum Posterior 
Lobe 1560 34 -64 -14 5.56 
R Lingual Gyrus      
R Cerebellum Anterior Lobe      
R Parahippocampal Gyrus      
L Cerebellum Posterior Lobe 

1010 -34 -70 -12 4.4 

L Inferior Occipital Gyrus 
L Fusiform Gyrus 
L Middle Occipital Gyrus 
L Cerebellum Anterior Lobe 
L Lingual Gyrus 
L Inferior Frontal Gyrus           
L Insula 674 -41 13 -3 4.64 
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L Superior Temporal Gyrus      
Bilat. Midbrain 

400 7 -29 -16 4.56 
Bilat. Brainstem 
Bilat. Thalamus 
Bilat. Cerebellum Anterior 
Lobe 
R Inferior Parietal Lobule           
R Superior Parietal Lobule 363 45 -51 65 3.61 
R Precuneus      
Bilat. Cingulate Gyrus 303 -4 -20 25 4.63 
Bilat. Posterior Cingulate 

Reward - Non-reward -             
Non-loss - Loss 

R Cerebellum      
R Fusiform Gyrus      
R Inferior Occipital Gyrus 726 36 -73 -12 4.62 
R Middle Occipital Gyrus      
R Lingual Gyrus           
R Inferior Frontal Gyrus      
R Insula 605 40 15 1 4.2 
R Superior Temporal Gyrus           
R Cingulate Gyrus 499 5 31 32 3.92 
R Medial Frontal Gyrus 
L Cerebellum 280 -34 -64 -25 3.79 
L Fusiform Gyrus 

Massed>Spaced:           Loss 
vs. Non-loss feedback 

R Lingual Gyrus 

1206 34 -66 -10 4.34 

R Middle Occipital Gyrus 
R Cuneus 
R Inferior Occipital Gyrus 
R Fusiform Gyrus 
R Parahippocampal Gyrus 
L Inferior Frontal Gyrus           
L Middle Frontal Gyrus 870 -50 9 39 3.93 
L Precentral Gyrus      
R Middle Frontal Gyrus           
R Inferior Frontal Gyrus 735 38 37 17 3.79 
R Precentral Gyrus      
L Middle Occipital Gyrus 

668 -32 -90 -10 4.05 L Inferior Occipital Gyrus 
L Lingual Gyrus 
L Cuneus 
R Precuneus           
R Superior Parietal Lobule 289 25 -64 45 3.77 
R Inferior Parietal Lobule      

XSS: Reward value cross-
stimulus repetition-

suppression 

R Inferior Frontal Gyrus 695 49 4 41 4.38 
R Middle Frontal Gyrus 
R Inferior Frontal Gyrus 500 49 26 1 3.97 
R Anterior Insula 
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R Superior Temporal Gyrus 442 54 -42 10 3.93 
R Middle Temporal Gyrus 
Midbrain 397 1 11 50 4.01 
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