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Tumor growth is an evolutionary process governed by somatic mutation, clonal 

selection and random genetic drift1. Tumor subclones are subpopulations of tumor cells with 

a common set of mutations resulting from the expansion of a single cell during tumor 

development, and have been observed in a significant fraction of cancers and across multiple 

cancer types2. Akin to ongoing discussions in the field of speciation genetics, the relative 

importance of selection and genetic drift in the emergence of these tumor subpopulations 

remains unknown. According to a model proposed by Nowell3, tumors evolve through a 

series of selective sweeps, whereby one cell acquires a selective advantage and its lineage 

becomes predominant. According to this traditional model, tumor subclones reflect ongoing 

selective sweeps. While the vast majority of mutations found in a tumor genome are 

passengers, a much smaller set of driver mutations is thought to provide a handle for natural 

selection concomitant with clonal expansion1. 

Williams et al.4 recently claimed that under neutral evolution and given a simple 

model of tumor growth there would be a linear relationship between the number of passenger 

mutations 𝑀(𝑓) present in a fraction f of cells and the reciprocal of that fraction: 𝑀 𝑓 ∝    !
!
. 

The authors argued that this relationship provides a convenient and intuitive null model, in 

which deviation indicates the presence of selection. In particular they note that the values 

required to assess it are routinely measured in DNA-sequencing data: mutations and their 

corresponding variant allele fractions (VAF), from which f can be derived. In real cancer data 

from The Cancer Genome Atlas (TCGA), Williams et al. reported no detectable deviation 

from the proposed linear relationship in about one third of the cases and concluded that these 

tumors are neutrally evolving. While providing an interesting approach to infer selection in 

human cancers, the analysis by Williams et al. is unfortunately limited by four major 

simplifying assumptions that render their conclusions questionable.  

First, inferring f of variants from their VAF requires accurate estimates of local copy 

number, overall tumor purity and ploidy. Williams et al. tried to account for some of these 

factors by restricting their analyses to variants with VAF between 0.12 and 0.24 and located 

in copy-neutral regions of the genome. However, tumors with whole genome duplications, 

(i.e. 37% of tumors in the analyzed dataset5), have a clonal peak of mutations at or below 

VAF=0.25, which would lead to artificial deviation from the linear fit within that VAF 

window. The approach of Williams et al. would therefore likely produce false neutral calls in 

a significant fraction of tumors.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2017. ; https://doi.org/10.1101/158006doi: bioRxiv preprint 

https://doi.org/10.1101/158006
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   3	
  

Second, the interpretation of the analyses is inconsistent with the use of neutrality as 

a null model. Failure to reject the null hypothesis is not the same as proving it is true. To infer 

neutrality one would need to demonstrate, in addition, either that a linear fit is sufficient to 

infer neutrality or the corollary, that all models of non-neutral tumor growth yield non-linear 

relationships.  

Using the method described by Williams et al., we fail to reject neutrality in 

simulated tumors in which we explicitly model subclonal growth with a selective advantage, 

i.e. increasing the division rate λ or the mutation rate µ of the subclone (Supplementary 

Methods). In fact, non-neutrality is detected only within a narrow range of λ and µ values 

tested that would lead to detectable subclones (true rejection of neutrality in ~11% of 

simulations; Fig. 1a). We conclude that a linear fit is not sufficient to call neutrality and that 

misuse of this model is likely to result in substantial over-calling of neutrality. 

Third, the deterministic model of tumor growth described by Williams et al. relies 

on strong biological assumptions, among which are synchronous cell divisions, constant cell 

death and constant mutation and division rates. Stochastic models of tumor growth are 

biologically more realistic, as they allow for asynchronous divisions and probabilistic 

mutation acquisition, cell death and division rates. Using branching processes to simulate 

neutral and non-neutral growth6 (Supplementary Methods), we show that 𝑀 𝑓 ∝    !
!
 is 

neither a necessary nor a sufficient property of neutrally evolving tumors. Although it can be 

shown that the expected cumulative number of mutations – i.e. the average over many 

independent samples – 𝑀 𝑓 ∝    !
!

,6 due to the biological noise modeled in branching 

processes, a typical realization of the neutral process in a single sample deviates substantially 

from the expected linear fit. As a result, discrimination of neutral and non-neutral simulated 

tumors using a linear fit is almost arbitrary, with 53.5% false positive neutral calls in non-

neutral tumors (Fig. 1b) and an area under the ROC curve of 0.42 for the classification of 

1,919 neutral and 1,919 non-neutral tumors (Fig. 1c). 

Fourth, we reason that in tumors called neutral, no selection should be detected. To 

evaluate this, we use an orthogonal method to identify selection, based on the observed 

variants themselves rather than on their allele frequencies. dN/dS analysis derives the fraction 

of mutated non-synonymous positions to the fraction of mutated synonymous positions in the 

coding regions. It is widely used to detect the presence of negative or positive selection of 

non-synonymous variants in coding regions7. We applied a dN/dS model optimized for the 
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detection of selection in somatic cancer variants7 to the TCGA exome data (Supplementary 

Methods). The analysis was performed separately using variants called as clonal or 

subclonal8 (Supplementary Methods), in tumors called neutral and non-neutral based on the 

rationale outlined by Williams and collaborators4. dN/dS ratio analysis revealed significant 

positive selection in subclonal mutations of tumors classified as neutral (Fig. 1d), reinforcing 

the conclusion that the approach of Williams et al. is under-equipped to detect the presence 

or absence of selection.  

It is of clinical importance to identify and better understand the drivers of the 

potentially more aggressive (sub)clones expanding under selective biological or therapeutic 

pressure, as these are good candidates for predicting resistance and exploring combination 

therapy. Williams et al. claimed that about one third of tumors are neutrally evolving. 

However, we find that their approach often leads to identification of individual tumors as 

neutral when they are non-neutral and non-neutral when they are neutral. Therefore 

quantification of selection during the evolution of single tumors using allele frequencies 

remains an open challenge.  
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Figure 1 legend 
 

(a) Neutrality calls in simulations of tumor growth with subclonal expansion underlying 

selective sweeps. The tree topology being modelled is represented on the right together with the 

parameters of the neutral evolution equations for the two subpopulations of cells (Supplementary 

Methods). The subclone’s fraction (subclone %) increases with its selective advantage advsubclone. 

We vary the λ=1+advsubclone and µ parameters of the subclone along a grid. Simulations are defined 

as true non-neutral (light blue) or false neutral (dark blue) when the growing subclone has 

expanded sufficiently to be detectable and the sweep is not complete, i.e. 10% ≤ subclone % ≤ 

90%, otherwise the subclone is considered beyond detection (light green). Non-neutral call: 

R2 < 0.98; neutral call: R2 ≥ 0.98. (b) As (a), using the Gillespie algorithm to simulate 

branching processes6. Simulations leading to subclones beyond detection are either called neutral 

(light green) or non-neutral (dark green). Because of the stochastic nature of branching processes, 

different subclone % values are obtained across simulations from the same advsubclone values. For 

five increasing advsubclone values, we report median ± mad of the subclone % across the simulations. 

(c) Summary ROC curve for the neutral vs. non-neutral classification based on the R2 values 

in 1,919 non-neutral simulations from (b) and 1,919 simulations of neutral tumors. The false 

positive rate and the true positive rate are highlighted for R2=0.98 used by Williams et al. (d) 

dN/dS analysis. dN/dS ratios and confidence intervals for (sub)clonal mutations in TCGA tumors 

categorized into neutral and non-neutral groups. Ratios for missense and truncating mutations are 

given. dN/dS > 1 indicates positive selection. 
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Neutral	
  tumor	
  evolution?	
  -­‐	
  Methods	
  

Outline	
  

First, we describe the two tumor growth models that were used. The first one 

is based on the deterministic continuous model presented by Williams et al.1. The 

second one is based on a branching process, a commonly-used discrete and fully 

stochastic growth model. We next explain how, using these two models, we can 

simulate variant allele fractions encountered in tumor sequencing studies. We 

describe our implementation of the approach by Williams et al.1 to infer the most 

likely evolutionary path after the emergence of the most recent common ancestor 

(MRCA), i.e. neutral vs. non-neutral evolution. Finally, using real data from The 

Cancer Genome Atlas, we compare neutrality calls to results of dN/dS analysis, an 

independent and well-established approach to detect selection. We further describe 

the availability of the code as a tarball containing R and Java scripts and a Java 

runnable jar file called via one of the R scripts. 

Simulations	
  –	
  continuous	
  deterministic	
  models	
  

The deterministic equations described in Williams et al.1 relate the number of 

cells in a tissue growing exponentially, N, 

𝑁 𝑡 = 2!"# 

and the cumulative number of mutations, M: 

𝑀 𝑡 = 𝜇 2!"!!𝑑𝑡! = !
!" !" !

!
! 2!"# − 1 = !

!" !" !
(𝑁 𝑡 − 1)         (Eq. 1) 

at any given time t ≥ 0, where λ	
  >	
  0  is the division rate per unit of time, β	
  ≥	
  0  is the 

unitless “effective” division fraction, i.e. the fraction of divisions in which both 

daughter cells survive (β = 1 for no cell death, β < 1 to model cell death), and µ > 0 is 

the mutation rate per cell division.  

We have used these continuous deterministic models to simulate tumor growth 

in silico and followed each mutation and its corresponding variant cell fraction. To 

derive the cell fractions, we follow the progeny of the mother cell within which each 

mutation occurred.  

Assume that the MRCA appears at time t1, with division coefficient β1, 

division rate λ1, and mutation rate µ1. To model a selective sweep within the cell 
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 2 

population spawned from the MRCA, we assume that at time t2 > t1, a subclone is 

initiated with division coefficient β2,	
  division rate λ2, and mutation rate µ2.  

There is positive selection when λ2β2 > λ1β1. At time t the number of cells 

spawned from the MRCA but not part of the subclone (i.e. the cells with parameters 

β1, λ1, µ1; further referred to as the MRCA lineage) is  

𝑁!(𝑡) = 2!!!!(!!!!) − 2!!!!(!!!!) 	
  
where the second term is omitted when t < t2. Similarly, the number of cells at time t 

from the subclonal lineage (i.e. with parameters β2, λ2, µ2) is 

𝑁!(𝑡) = 2!!!!(!!!!) 

when t>t2 and N2(t)=0 otherwise. The total cell count at time t is 

𝑁 𝑡 = 𝑁! 𝑡 + 𝑁!(𝑡). 

The tumor growth simulation is terminated at time T > t2 and we derive the 

distribution at time T of the cell fractions for all mutations in the tumor.  

Following	
  the	
  number	
  of	
  mutations	
  and	
  their	
  cell	
  fraction	
  

Because the equations are continuous, they can lead to non-integer numbers of 

mutations and divisions. Hence, rather than deriving the number of mutations and 

their allele frequencies f at discrete time points, we model divisions in continuous 

time. We assess the number of additional mutations that have been added in fixed 

small time intervals of length dt. From Eq. (1) we find that the number of additional 

mutations occurring in the time interval [t, t+dt] within a population of cells from the 

same lineage (i.e. parameters β, division rate λ, and mutation rate µ) is: 

𝑀 𝑡 + 𝑑𝑡 −𝑀 𝑡 = 𝜇
1

𝜆𝛽 ln 2 (𝑁 𝑡 + 𝑑𝑡 − 𝑁(𝑡)) 

For a mutation occurring at time t we may compute the variant cell fraction at 

time T.  If the mutation occurred in a cell from the MRCA lineage that was not 

inherited by the subclone-initiating cell, then the variant cell fraction is 

𝑓! 𝑡 =
2!!!!(!!!)

𝑁(𝑇)  

If the mutation occurred in the subclone, then the variant cell fraction is 

𝑓! 𝑡 =
2!!!!(!!!)

𝑁(𝑇)  

Finally, if the mutation occurred in an ancestor cell of the subclone-initiating 

cell, then the variant cell fraction is 
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 3 

𝑓!" 𝑡 =
2!!!!(!!!) − 2!!!!(!!!!) + 2!!!!(!!!!)

𝑁(𝑇)  

Alternatively, we may calculate variant cell fractions in two steps, first 

determining the variant cell fraction of a mutation within the subpopulation of cells 

from the same lineage, and then scaling the variant cell fraction by the size of that 

subpopulation relative to the total cell population.  

Setting	
  the	
  parameters	
  for	
  the	
  grid	
  of	
  simulations	
  

In each of our simulations the subclone growing under selective advantage 

appears at the 11th generation and the tumor is sampled at the 40th generation with a 

virtual purity of 100%. The number of initial clonal mutations µ0 is not part of these 

models, and we arbitrarily set µ0=µ2. We fix the following parameters: clonal 

mutation rate µ1 = 16, clonal division rate λ1 = 1, clonal division efficiency β1 = 0.4, 

subclonal β2 = 0.4. The depth of sequencing of the variants cov ~ Pois(10,000) to 

approach the theoretical distribution and the alternate read counts ~ Bin(cov, f/2), 

where f is the variant allele frequency derived from the model (see section on 

simulating tumor variant allele frequencies from sequencing data). We explore the 

results of the neutrality calls for a grid of parameter values 

𝜇! = 2!.!! !∈ !,!,…,!" − 0.5  

and 

𝑎𝑑𝑣!"#$%&'( = (0.01𝑛)!∈ !,!,!,…,!" , 

where 

𝑎𝑑𝑣!"#$%&'( = 𝜆! − 𝜆!. 

Simulations	
  –	
  fully	
  stochastic	
  models	
  

To model stochastic discrete tumor growth, we used branching processes with 

the Gillespie algorithm3. These simulated tumors grow under asynchronous division, 

with zero or one subclone.  

This was coded in Java. Each cell is a Java object and has four attributes: a 

Boolean value reporting whether the cell is alive or dead; an integer for the average 

number of mutations per division; an integer with mother cell ID; and an ArrayList of 

all MutationSets inherited from the mother cell. MutationSet is another class, for 

which each object contains one integer for the mother cell ID and one integer for the 

number of mutations within them. The constructor of MutationSet takes the mutation 
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rate of the mother cell as average number of events per interval of a Poisson 

distribution to draw the number of mutations. 

Starting with an ArrayList of one tumor initiating cell, for each of 220 cell 

division events, one cell is picked randomly from the living cells and either dies with 

probability P(cell death) or divides into two daughter cells with probability 

P(division) = 1 - P(cell death), akin to the Gillespie algorithm.  

In our simulations, the subclone appears at the 28 th division (~8th generation) 

by changing the division rate value of one of the cells, and the tumor is sampled at the 

220 th division (~20th generation). In these simulations, the number of mutations 

acquired at each cell division for each daughter cell is drawn from a Poisson 

distribution for the MRCA lineage µ ~ Pois(μMRCA) and the subclone lineage 

µ ~ Pois(µsubclone).  

The subclone is selected for division with probability  

𝑃(𝑠𝑢𝑏𝑐𝑙𝑜𝑛𝑒  𝑑𝑖𝑣𝑖𝑑𝑒𝑠) =
(1+ 𝑎𝑑𝑣!"#$%&'()𝑁!"#$%&'(

1+ 𝑎𝑑𝑣!"#$%&'( 𝑁!"#$%&'( + 𝑁!"#$
 

where Nsubclone and NMRCA are the number of cells from the subclonal lineage and the 

MRCA lineage, respectively, and advsubclone > 0 for positive selection and 

advsubclone = 0 for neutral growth. The MRCA population will be selected for division 

with probability 1-P(subclone divides). 

Within the selected clone, one cell is selected randomly for division with 

probability 

𝑃 𝑐𝑒𝑙𝑙  𝑑𝑖𝑣𝑖𝑑𝑒𝑠 =
1
𝑁 

where N = NMRCA if the cells belong to the MRCA lineage or N = Nsubclone if the cell 

belongs to the subclonal lineage. 

With higher P(cell death), the first divisions are more likely to lead to the 

death of all cells and the tumor quickly stops growing. To limit this effect when cell 

death is high, we force the D first divisions to happen, i.e. P(cell death)=0 transiently 

until at least 2D cells are alive.  

Setting	
  the	
  parameters	
  for	
  the	
  grid	
  simulations	
  

In our simulations, starting from one tumor initiating cell, for each of the 220 

cell division events, one cell is picked randomly and either dies with probability 

P(cell death) = 0.2 or divides into two daughter cells with probability P(division) = 1-

P(cell death) = 0.8. The subclone appears at the 28 th division (~8th generation) and the 
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tumor is sampled at the 220-th division (~20th generation). The ancestor clone’s 

mutation rate µ ~ Pois(16). The average depth of coverage is 100X (see section on 

simulating tumor variant allele frequencies from sequencing data). In our simulations, 

D=6. 

We explore a grid of values for 

𝜇!"#$%&'( = 2!.!! !∈ !,!,…,!" − 0.5  

and 

𝑎𝑑𝑣!"#$%&'( = (0.01𝑛)!∈ !,!,!,…,!"" . 

This leads to 19*101=1,919 simulated tumors covering the grid.  

Simulating	
  tumor	
  variant	
  allele	
  frequencies	
  from	
  sequencing	
  data	
  

Using the tumor growth models presented here, we can derive the exact 

number of mutations and their prevalence within a virtual tumor. These are taken as 

input to simulate the frequencies that would be observed in the sequencing reads from 

real tumor tissue. 

In order to test the initial hypothesis, i.e. 𝑀(𝑓) ∝ !
!   

𝑛𝑒𝑢𝑡𝑟𝑎𝑙𝑖𝑡𝑦, we start 

with the simplest models and assume: (i) the absence of non-tumor contaminant, (ii) 

100% of the tumor cells are resected, and (iii) a fully diploid cancer genome.  

Given exact cell fractions, f, of each mutation and an average sequencing 

coverage, cov, we draw for each individual mutation the total number of reads 

covering its genomic position N from a Poisson distribution N ~ Pois(cov), and the 

alternate read counts alt ~ Bin(N,f/2), where f/2 is the allelic fraction for diploid 

regions. Finally, we generate variant calls by taking mutations with alt > 2 and derive 

the variant allelic fraction (VAF) of each variant 𝑉𝐴𝐹 =    !"#
!

. We then use the VAF 

distribution to call neutral and non-neutral tumors, as described by Williams et al.1 

Calling	
  neutral	
  tumors	
  

We followed the description by Williams et al.1 to call neutral and non-neutral 

tumors based on the variant allele frequencies of their somatic single nucleotide 

variants. Tumors with less than 12 mutations with 0.12 ≤ VAF ≤ 0.24 were removed.  

From the TCGA dataset, only tumors with a purity of at least 70%, as inferred by 

ASCAT2, were analyzed.  
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We calculated the explained variance (R2) for linear regression models both 

with fixed intercept (intercept = 0) and without fixing the intercept, using the R 

commands: 

> summary(lm(y~x+0,offset=rep(0,length(y))))$r.squared, 

and  

> cor(x,y)^2  

respectively, where y is the cumulative number of mutations and x is the inverse 

allelic frequency minus the upper limit 𝑥 = !
!
− !

!.!"
.  Results presented in the 

manuscript were obtained using a variable intercept. In Supplementary Fig. 1, we 

show the heat map of Figure 1a using a fixed intercept. Both methods show 97.5% 

agreement (Supplementary Fig. 2). 

 
Supplementary figure 1. As reported in figure 1a using R2 of a linear regression with fixed intercept = 0. The 

tree topology being modelled is represented on the right together with the parameters of the neutral evolution 

equations for the two subpopulations of cells. The subclone’s fraction (subclone %) increases with its selective 

advantage advsubclone. We vary the λ=1+advsubclone and µ parameters of the subclone along a grid. Simulations are 

defined as true non-neutral (light blue) or false neutral (dark blue) when the growing subclone is sizable enough to 

be detected and the sweep is not complete, i.e. 10% ≤subclone % ≤ 90%, otherwise the subclone is considered 

beyond detection (light green). Non-neutral call: R2 < 0.98; neutral call: R2 ≥ 0.98. 
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 7 

 
Supplementary figure 2. R2 values for the same simulations as in Supplementary figure 2, with variable and 

fixed intercept, showing an agreement of 97.5% on the neutral calls. The x-axis represents R2 values (squared 

Pearson’s correlation coefficients) for the linear regression between M(f) and f for the simulations in 

Supplementary Fig. 1. The y-axis represents R2 values with fixed intercept = 0. Neutral calls, made if R2 ≥ 0.98, 

agree for 97.5% of these simulations (grey) and disagree for 2.5% of them (red). 

 

ROC	
  and	
  area	
  under	
  the	
  curve	
  

Using fully stochastic branching processes, we simulated 1,919 non-neutral 

tumors and 1,919 neutral tumors and derived the R2 values of the linear fit between 

the cumulative number of mutations and their inverse variant allelic fraction (VAF) 

within 0.12 ≤ VAF ≤ 0.24. We then plotted the ROC using the R package ROCR 

version 1.0-7 and calculated the false positive rate and the true positive rate assuming 

the  R2 = 0.98 threshold used by Williams et al.1 

Detection	
  of	
  selection	
  in	
  neutral	
  and	
  non-­‐neutral	
  tumors	
  -­‐	
  dN/dS	
  

Dataset	
  

We ran our analyses on the data from The Cancer Genome Atlas, using 

CaVeMan4,5 single nucleotide variant calls, and ASCAT2 copy number calls, as 

described by Martincorena et al.6 

Grouping	
  variants	
  into	
  clonal	
  and	
  subclonal	
  categories	
  

To classify variants as clonal or subclonal, we used a one-sided proportion test 

to assess whether the alternate and total read counts of each variant were compatible 
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 8 

with its clonality, given its underlying number of DNA copies, and the overall tumor 

purity. This method is previously described in Alexandrov et al.7 

dN/dS	
  analysis	
  

We performed dN/dS analysis to detect positive or negative selection of non-

synonymous variants, as described by Martincorena et al.6 We ran dN/dS separately 

on clonal and subclonal mutations and separately in the neutral and non-neutral 

tumors. 

Effect	
  of	
  copy	
  number	
  

We repeated the analyses after selecting only variants that fall within diploid 

regions, i.e. 1 copy of allele A and 1 copy of allele B according to ASCAT2, to show 

that the results were not induced by unreliable neutral calls, which could have resulted 

from the distortion of allele frequencies by copy number changes (Supplementary 

Fig. 3). 

 

 

 
Supplementary Figure 3. dN/dS ratios on all mutations vs. mutations in diploid regions only, are shown for 

both missense and truncating mutations.  
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Code	
  reproducibility	
  and	
  availability	
  

Analyses and figures were generated using R version 3.1.3. The branching 

processes are coded in Java. The code for simulations is available as a tarball 

(included within this submission) with R scripts for the deterministic simulations and 

for deriving the figures, and a Java runnable jar file for generating variant fractions 

from the branching processes together with the associated Java source code. 
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