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Abstract
The increased usage of whole-genome selection (WGS) and other molecular evaluation
methods in plant breeding relies on the ability to genotype a very large number of
untested individuals in each breeding cycle. Many plant breeding programs evaluate
large biparental populations of homozygous individuals derived from homozygous parent
inbred lines. This structure lends itself to parent-progeny imputation, which transfers
the genotype scores of the parents to progeny individuals that are genotyped for a much
smaller number of loci. Here we introduce a parent-progeny imputation method that
infers individual genotypes from index-free pooled samples of DNA of multiple
individuals using a Hidden Markov Model (HMM). We demonstrated the method for
pools of simulated maize double haploids (DH) from biparental populations, genotyped
using a genotyping by sequencing (GBS) approach for 3,000 loci at 0.125x to 4x
coverage. We observed high concordance between true and imputed marker scores and
the HMM produced well-calibrated genotype probabilities that correctly reflected the
uncertainty of the imputed scores. Genomic estimated breeding values (GEBV)
calculated from the imputed scores closely matched GEBV calculated from the true
marker scores. The within-population correlation between these sets of GEBV
approached 0.95 at 1x and 4x coverage when pooling two or four individuals,
respectively. Our approach can reduce the genotyping cost per individual by a factor up
to the number of pooled individuals in GBS applications without the need for extra
sequencing coverage, thereby enabling cost-effective large scale genotyping for
applications such as WGS in plant breeding.

Introduction 1

With the advent of whole-genome evaluation and other molecular methods in plant 2

breeding [1–3], the ability to generate high volumes of genotype data becomes a critical 3

factor in the success of modern breeding programs [3, 4]. Whole genome selection 4

(WGS) [5] in particular is revolutionizing plant breeding programs and strategies [3]. 5

The approach applies whole-genome marker effects parameterized in a fully phenotyped 6

and genotyped estimation population to predict performance from genotype alone in 7

target populations. Accurate selections from genotype facilitate faster and greater 8

genetic gain through shorter cycle lengths and increased selection intensity [6–8]. WGS 9

also opens up new opportunities that were inconceivable previously, such as selection for 10
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hybrid performance in the earliest stages of the breeding cycle [9, 10] or for performance 11

in yet unobserved environments under strong genotype by environment interaction [11]. 12

WGS creates these possibilities without the need for increased resources for 13

phenotypic testing, but it consequently increases the use of genotype data. Large 14

numbers of genotyped and phenotyped reference individuals are required for building 15

accurate prediction models, in particular to predict performance across generations and 16

unrelated populations in order to shorten breeding cycles [12–15]. To maximize 17

investment return over purely phenotypic selection, WGS should be applied to a large 18

number of genotyped-only target individuals [16]. Application of selection to large 19

numbers of unphenotyped target populations in turn facilitates a massive increase in 20

scale of breeding programs [3], but only in combination with the ability to support the 21

corresponding increase in genotype data. Genotyping costs, even though significantly 22

reduced by technological advances over the last two decades [4, 17], therefore remain a 23

critical and limiting factor in implementing a successful WGS strategy [18,19]. 24

Genotype imputation is a promising and well-studied approach to reduce genotyping 25

costs [20]. Imputation of missing genotypes typically relies on linkage disequilibrium 26

generated from shared population history [21,22], genetic linkage due to familial 27

relationships [23,24], or a combination of these forces [25,26]. Many individuals 28

evaluated by modern plant breeding programs are fully homozygous doubled haploid 29

lines (DH) [27,28] derived from biparental crosses between elite inbred parents [29]. 30

This system is ideal for parent-progeny imputation, which transfers parental genotype 31

scores to all progeny individuals, each of which may initially carry a much smaller 32

number of genotyped loci. Parent-progeny imputation is recognized as a cost-effective 33

way for generating high resolution marker genotypes for a large number of individuals, 34

particularly in the context of WGS [30–32] 35

Obtaining genotypes from DNA sequence data, termed genotyping by sequencing 36

(GBS) [17] emerged as another approach to reduce genotyping costs and increase scale. 37

This approach efficiently generates high volumes of genotypic data and holds particular 38

promise for applications in plant breeding and genetics [33–35]. Because GBS methods 39

typically result in a large amount of missing data [36], genotype imputation is an 40

integral component of this technology [33,35,37]. 41

The reduction of costs from the combination of GBS and imputation is limited by 42

the need of a separate sequencing library for each sample. Although many libraries can 43

be multiplexed in a single sequencing run, sample-specific library construction is needed 44

to incorporate a sample-identifying oligonucleotide index. In contrast, methods that do 45

not require individual sample identity achieve cost reduction by pooled genotyping, 46

which combines DNA from several individuals and genotypes them jointly in a single 47

assay [38]. Pooled genotyping provides a cost-effective method to assess allele frequency 48

differences between groups of individuals in order to detect signals of selection [39] or 49

identify loci associated with extreme phenotypes as in bulk segregant analysis [40]. 50

Within the context of current GBS approaches, index-free pooling into a single sample 51

eliminates the information needed to link a sequencing read to a unique individual. 52

Here we develop a method of parent-progeny genotype imputation from index-free 53

DNA samples of two or more individuals to simultaneously reduce both the number of 54

genotyped samples and markers per sample. The method takes advantage of pedigree 55

and linkage information to deduce the genotype probabilities of pooled DH lines relative 56

to their fully genotyped parents. The objective of this study is to provide a proof of 57

concept of this approach using simulated data and to identify variables affecting its 58

accuracy. 59
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Materials and methods 60

Imputation method 61

Parent-progeny genotype imputation from pooled samples infers the marker locus 62

genotypes of the pooled individuals in reference to the set of their direct ancestors (e.g., 63

the parents of the populations). This requires as input the following four pieces of 64

information 65

1. the complete marker genotypes of the parents at all loci of interest 66

2. the genotype of the pooled DNA sample (possibly at only a subset of the marker 67

loci) 68

3. the pedigree relationship between the pooled individuals and their parents, and 69

4. the genetic linkage map of the loci 70

Given this information, we calculate for each locus the posterior probabilities of the 71

identity by decent (IBD) inheritance configurations which describe possible patterns of 72

inheritance from parent to offspring. These probabilities are then used to infer the 73

marker genotypes of the pooled individuals. Hereafter we will use the term ’imputation’ 74

to indicate the inference of genotype scores of individuals from pooled DNA samples, 75

regardless of whether a marker genotype was observed in the pool or not. 76

Introductory example 77

The following example will introduce the concept intuitively (Figure 1). Assume we are 78

interested in the genotypes of two DH (P1 and P2) at four biallelic SNP markers (L1, 79

. . . , L4). The DH are progeny of two biparental populations with four distinct and fully 80

homozygous inbred lines as parents (I1 × I2 and I3 × I4). The DNA of the two DH is 81

pooled into a single sample and genotyped. The critical task becomes inference, at each 82

locus, of the parent of origin for each DH in the pool. We term the combination of 83

parents of origin the inheritance pattern of a locus and denote it as, e.g., I1-I3. 84

Our example incorporates the read counts of each allele of a marker as would be 85

available if a GBS method is used for genotyping. For simplicity, the parent genotypes 86

at each locus are recoded to represent dosage of a chosen reference allele such that ‘0’ 87

represents a diploid individual with no doses of the reference allele (homozygous 88

alternate), and ‘2’ represents a diploid individual with two doses of the reference allele 89

(homozygous reference). The genotype data for the pool then becomes the sequence 90

read counts of the reference allele relative to the total read count. We will henceforth 91

denote pool genotypes in which only a single allele is present as “homogeneous” and 92

those with multiple alleles as “heterogeneous”, in distinction to homozygous or 93

heterozygous genotypes of individuals. A key factor for inference is the ability to assess 94

whether a pool presents a homogeneous or heterogeneous allelic state at each locus. The 95

technique of inference is therefore not limited to sequencing methods, as any genotyping 96

approach that can detect allelic heterogeneity in the DNA pool would suffice. 97

In our example, a heterogeneous pool genotype was detected for marker L1, with one 98

read of the reference allele out of three total reads. In the absence of genotyping error, 99

the true inheritance pattern must therefore contain both marker alleles. At this locus 100

only parent I4 carries the alternate allele and only DH P2 can inherit from this parent. 101

Consequently, P2 must carry the alternate allele and P1 the reference allele. This 102

inference was made possible by knowledge of the parental genotypes and of the pedigree 103

linking parents to DH progeny. A similar reasoning can be applied to locus L4 to infer 104

that P2 carries the reference allele. A heterogeneous genotype was also detected at locus 105
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Fig 1. Schematic visualization of parent-progeny imputation Parent-progeny
imputation is carried out for four genetically linked loci L1, L2, L3 and L4 for a DNA
pool of two DH individuals (P1 and P2) from two biparental populations (I1 × I2 and I3
× I4).

L2. Here, however, the pedigree and genotype information are inconclusive on their own 106

because both the reference and alternate alleles could each be traced to either DH 107

pedigree. For example, the same observed pool genotype could have arisen from P1 and 108

P2 inheriting respectively from either I1 and I4 or from I2 and I3. Although both 109

scenarios are equally likely when locus L2 is considered on its own, their relative 110

probabilities can be updated with information from linked loci. Having established the 111

marker genotypes at loci L1 and L4, and with knowledge of the genetic distance 112

between the loci, it can be shown that the second inheritance pattern (I2 and I3) is the 113

more likely one because it requires a recombination within a 10cM interval instead of a 114

7cM interval. Thus, the most likely genotype at L2 is the reference allele for P2 and the 115

alternate allele for P1. We are then left with locus L3, for which no read counts were 116

observed for either allele. By combining all of the aforementioned information, it can be 117

shown that again I2-I3 is the most likely inheritance pattern, because it does not require 118

any additional recombination events beyond the one invoked previously. It follows that 119

P1 most likely inherited the alternate allele and P2 the reference allele at L3. The 120

purpose of this small example was to show how loci with multiple possible inheritance 121

patterns or missing data can be resolved by collectively weighing information from the 122

genetic linkage map, the marker genotypes at linked loci, and the pedigree. Such 123
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heuristic reasoning is clearly impractical for more than a few loci and facilitates only 124

very crude inference. A more formal and powerful approach will be described next. 125

Parent-progeny imputation with a Hidden Markov Model 126

If all parents of the pooled DH are present in the ancestor set and the pedigree fully 127

describes all crosses carried out, then the sequence of inheritance patterns along the 128

genomes of the pooled offspring fulfills the requirements of a Hidden Markov Model 129

(HMM). The HMM incorporates the four pieces of information outlined above in the 130

form of the emission and the transition matrix. The emission matrix provides the 131

probabilities that an observed pool genotype could be produced by each possible hidden 132

state of the ancestral inheritance pattern. The transition matrix provides the 133

probabilities that the inheritance pattern at the previous locus can result in a particular 134

pattern at the current locus. These probabilities are a function of both the pedigree and 135

the genetic map. Throughout we assume that the parents of the pooled individuals are 136

fully homozygous inbred lines. 137

The forward-backward algorithm [41] provides an analytic method to calculate the 138

posterior probabilities of the inheritance patterns for all loci. Given a locus k, with an 139

emission matrix Ek, a transition matrix Tk, and a vector of forward probabilities from 140

the previous step (henceforth denoted as fk−1), the forward pass is 141

fk = c−1k (T ′kfk−1) ◦Ek[m,] (1)

where [m, ] specifies the row of the emission matrix for the observed genotype m (e.g., 142

m counts of a reference allele), ‘◦’ refers to element-wise multiplication, and ck is a 143

normalization constant equal to
(
(T ′kfk−1) ◦Ek[m,]

)′
1. The backward pass then is 144

bk = a−1k T ′k(bk+1 ◦Ek[m,]) (2)

where bk indicates the vector of backward probabilities and ak is similarly defined as ck. 145

The initial vector of forward probabilities f0, which is used when k = 1, corresponds 146

to the prior probabilities for the populations involved in the pool. For a pool of two DH 147

from a biparental, F1 derived population f0 =
(
0.25 0.25 0.25 0.25

)′ (i.e., the 148

products of the expected parental genome contributions to the populations, which are 149

all equal to 0.5 in the case of biparental F1 crosses). The initial bM+1, where M is the 150

number of markers, for the backward pass is always bM+1 =
(
1 1 1 1

)′. 151

The forward pass is executed from k = 1 to k = M and the backward pass from 152

k = M to k = 1. The posterior inheritance probabilities at locus k are then obtained by 153

calculating 154

pk = (fk ◦ bk+1)
(
(fk ◦ bk+1)′1

)−1 (3)

Transition and emission matrices 155

We will now use the previously introduced example in Figure 1 to illustrate the 156

derivation of the transition and emission matrices. The transition matrix Tk for locus k 157

for a pool of two F1 derived DH from fully homozygous parents is 158

Tk =


I1 − I3 I1 − I4 I2 − I3 I2 − I4

I1 − I3 (1− rk)2 rk(1− rk) rk(1− rk) r2k
I1 − I4 rk(1− rk) (1− rk)2 r2k rk(1− rk)
I2 − I3 rk(1− rk) r2k (1− rk)2 rk(1− rk)
I2 − I4 r2k rk(1− rk) rk(1− rk) (1− rk)2


where rk is the recombination frequency between loci k and k − 1. For example, the 159

value in row 1 column 2 of this matrix describes the probability that P1 inherited from 160
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parent I1 and P2 from parent I4 at locus L2, conditional on the two progeny inheriting 161

from I1 and I3, respectively, at locus L1. For P1 this requires that there is no 162

recombination between the two loci, which happens with probability (1− rk). For P2, 163

the transition from I3 to I4 requires a recombination event, which has probability rk. 164

Because both events happen independent of each other, the joint probability is 165

rk(1− rk). The same rationale can be applied to derive transition matrices for different 166

cross types (see S1 File. for BC1 derived DH, the second most important cross type in 167

maize breeding, after the F1 [29]) or to pooling more than two individuals (see S2 File 168

for a pool of three F1 derived DH). Progeny from advanced crosses with additional 169

rounds of meiosis (e.g., F2 derived DH or recombinant inbred lines) can also be modeled 170

appropriately. Similar to other parent-progeny approaches, the reduction of linkage 171

between markers in an advanced cross design could lead to lower imputation accuracy 172

unless marker density is increased. 173

The emission matrix Ek for locus k describes the probability of observing a marker 174

genotype conditional on the inheritance pattern at that locus. The genotype data 175

generated by most sequencing platforms is observed in the form of allele counts and can 176

be modeled with a Beta-Binomial probability distribution. Briefly, the Beta-Binomial 177

distribution models the probability of observing m reads of a reference allele out of n 178

total reads, when the underlying allele frequency in the sample is uncertain. In 179

principle, this allele frequency is determined by the genotypes of the parents involved in 180

a particular inheritance pattern and can be calculated easily. However, technical 181

variation in quantity and quality of the DNA that each individual contributes to a pool 182

can distort allele frequencies and generate uncertainty [38]. 183

Under the Beta-Binomial model, the probability of observing m reference allele reads 184

out of n total reads is 185

P (m | n, α, β) =

(
n

m

)
B(m+ α, n−m+ β)

B(α, β)
(4)

where B is the Beta function and α and β are positive parameters that reflect the 186

uncertainty in the reference allele frequency. The average frequency is given by 187

α/(α+ β) and the smaller α+ β, the more variation is expected around it. The 188

parameters were calculated as follows: 189

α =

{
ν if π < 0.5

−(πν)/(π − 1) else

β =

{
−(π − 1) ν/π if π < 0.5

ν else

(5)

where π is the expected or estimated frequency of the reference allele (with the expected 190

reference allele dosage being nπ) for a given inheritance pattern and ν a dispersion 191

parameter reflecting the uncertainty in the estimate. A smaller value for ν implies 192

greater uncertainty, with ν > 0 (S1 Fig). We will use ν = 2 throughout to allow 193

moderate deviation of the allele frequencies from their expected values. A suitable value 194

of ν in practice can be based upon experimental controls and could be set as 195

locus-specific if desired. The value of π is determined by the genotypes of the parents 196

comprising the inheritance pattern and the proportion of DNA each individual 197

contributed to the pool. This DNA proportion can be estimated from the sequence 198

reads of loci that are monomorphic within each population but for alternate alleles. In 199

the absence of prior estimates, it should be assumed that all individuals contributed an 200

equal amount of DNA. For inheritance pattern I2-I3 of locus L2, for example, π = 0.4, 201

because the reference allele is carried only by I3, which would have contributed 40% of 202

the pooled DNA (Figure 1). For inheritance patterns in which all or none of the parents 203
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contribute the reference allele, π would be one or zero, respectively. To accommodate 204

small rates of genotyping error or background contamination, the values could be 205

bounded to reflect some uncertainty. For instance, bounds of 0.99 and 0.01 would reflect 206

an expected genotype error rate of 1%. The full emission matrix for L2 then would be 207

E2 =



I1 − I3 I1 − I4 I2 − I3 I2 − I4
m = 0 0.00 0.07 0.21 1.00
m = 1 0.00 0.17 0.29 0.00
m = 2 0.00 0.26 0.26 0.00
m = 3 0.00 0.29 0.17 0.00
m = 4 1.00 0.21 0.07 0.00


The same principle can be applied to derive emission matrices for different cross types 208

or for pooling more than two DH (see S2 File for the example of a pool of three F1 209

derived DH). 210

For a genotyping platform that produces categorical genotype calls (i.e., 211

homogeneous reference, homogeneous alternate and the heterogeneous genotype) instead 212

of allele counts, the emission matrix is simply a row vector with a 1 for inheritance 213

pattern that can emit the observed genotype and a 0 for those that cannot. Also in this 214

case, the probability of genotype error could be factored into those values. In case of 215

missing data, such as locus L3 in the example, the emission matrix reduces to a row 216

vector of ones, because no data was observed to distinguish among inheritance patterns. 217

In these cases the posterior inheritance probabilities are informed solely by genetically 218

linked loci. 219

Application of the forward-backward algorithm to the transition and emission 220

matrices for all loci leads to the matrix of posterior inheritance probabilities pk shown 221

in Figure 1. A final step is required to convert the posterior probabilities of the 222

inheritance patterns of a locus into imputed marker genotypes. The imputed reference 223

allele dosages of each DH can be calculated by first summing the posterior probabilities 224

of all inheritance patterns containing a parent with the reference genotype and then 225

multiplying by two, i.e., 226

gdk = 2(pki
′
dk) (6)

where gdk indicates the imputed marker genotype of DH d at locus k and idk is an 227

incidence vector to indicate the occurrence of the reference allele in the parents of DH d. 228

It contains ones to identify inheritance patterns in pk for which the relevant parent of 229

DH d carries the reference allele and contains zeros where the relevant parent carries the 230

alternate allele. 231

Data simulation 232

We numerically evaluated the described approach using Monte-Carlo simulations of 233

scenarios with varying pool sizes, composition and sequencing coverages. We conducted 234

1,200 independent replications of each simulated scenario to accurately evaluate the 235

expected values of the statistics of interest, which were then summarized in graphical 236

and tabular form (full results are available in S1 Table, which also includes the standard 237

errors of the estimates). All computations were performed in the R software 238

environment [42]. 239

Parental inbred line genomes 240

The simulations were based on the observed genotypes of 35,478 loci with SNP markers 241

of 123 Dent and 86 Flint inbred lines from the maize breeding program of the University 242

of Hohenheim in Germany (the data set is publicly available from the supplement of 243
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Technow et al. [8]). The simulated data thus realistically reflects the genome properties 244

such as allele frequency distribution, LD pattern and population structure of this 245

applied maize breeding program, which were described in detail previously [8, 43]. 246

In-silico biparental populations 247

In each replication of the simulation, we generated in-silico 40 biparental Dent by Dent 248

populations, with random selection of the parents from the set of Dent inbred lines. 249

Each line was restricted to use as a parent of only one population. From each population 250

25 recombinant DH progeny were generated by simulating meiosis between the loci of 251

the parental lines followed by a chromosome doubling step. This was done with the 252

software package ‘hypred’ [44], which simulates meiosis according to the Haldane 253

mapping function. Together, the Dent populations thus comprised 1,000 recombinant 254

DH. The same procedure was followed to generate 40 Flint populations of size 25. 255

Simulation of recombination requires a genetic linkage map of the loci. We obtained 256

this by linear scaling of the physical map positions of the loci to the chromosome 257

lengths of the genetic map reported by Fu et al. [45]. This genetic map was 258

subsequently used for parent-progeny imputation, too. 259

SNP markers and causal loci 260

A random sample of 200 loci were considered as ‘causal loci’ of a generic polygenic trait. 261

Those markers were subsequently removed from the set of available loci and treated as 262

unobserved. The causal loci were assigned additive substitution effects drawn from a 263

standard Normal distribution. True genetic values for all DH were then calculated by 264

summing the substitution effects according to the genotypes at the corresponding causal 265

loci. To those we then added a Normal distributed noise variable to generate phenotypic 266

values with heritability of 0.5. The genetic and phenotypic values were used only for 267

later application of WGS. They played no role in the imputation process itself. 268

As 35,478 loci carry highly redundant information in F1 derived DH families 269

produced by a single generation of meiosis, we randomly selected a subset of 3,000 of 270

the non-causal SNP loci for genotyping and imputation. This number of markers was 271

previously found to be sufficient for WGS in a collection of biparental populations in 272

maize [31]. All subsequent analyses were based on these reduced sets of loci. The true 273

scores of each marker genotype were represented as dosages of the reference allele (i.e., 2 274

and 0 for the reference and alternate homozygote genotype, respectively). As reference 275

allele in this context we arbitrarily chose the allele with highest allele frequency in the 276

original set of 123 Dent and 86 Flint lines. 277

Pooling strategies 278

We considered pools of two (two-way), three (three-way), and four (four-way) 279

individuals. The pooled individuals either all came from the Dent group (“dent-dent” 280

pools) or from the dent and flint group (“dent-flint” pools). The dent-flint two-way 281

pools comprised one Dent and one Flint individual, three-way pools two Dent and one 282

Flint individual and four-way pools two Dent and two Flint individuals. The pools were 283

formed on a by-population basis, e.g., to form the dent-dent two-way pools, we paired 284

the 25 DH from one Dent population to those of another or to form the four-way pools, 285

we paired the 25 DH from four Dent populations. Within those restrictions, the 286

population pairings and DH pairings within population pairings were chosen at random. 287
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Simulation of GBS data 288

To simulate the GBS data of the 3,000 markers for the pooled samples we used the 289

procedure Gorjanc et al. [35] developed for individual samples. The only modification 290

was that we included the possibility of unequal DNA contribution in pooled samples. 291

The step-by-step procedure was as follows 292

1. Sequenceability of each marker (seqk) was sampled from a Gamma distribution 293

with shape and rate of 4 [35]. 294

2. For a pool p the DNA contributions dp of the pooled individuals was sampled 295

from a Dirichlet distribution with uniform concentration parameter of 50, 29 or 18 296

for two-way, three-way and four-way pools, respectively. Those values were chosen 297

such that the standard deviation of each element of dp was approximately 0.05. 298

3. The number of sequence reads npk for a pool p at marker k was drawn from a 299

Poisson distribution with mean x · seqk, with x being the targeted sequencing 300

coverage. 301

4. Finally, the number of reference allele reads mpk was drawn from a Binomial 302

distribution with success probability equal to sum of the elements of dp that 303

correspond to individuals carrying the reference genotype. The number of trials 304

was equal to npk. 305

As sequencing coverage levels x we considered 0.125x, 0.25x, 0.5x, 1x, 2x, and 4x. As in 306

Gorjanc et al. [35], we assumed absence of genotyping errors or DNA contamination. 307

Figure 2 shows how those coverage levels translate into distributions of observed 308

coverages per locus. These values span from the extreme case where data is missing at 309

most marker loci to a more forgiving scenario where coverage is low (typically 1-6 reads) 310

but present for most loci. Even larger values of x (and thus higher sequence coverage) 311

would increase accurate detection of heterogeneous pool genotypes. However, since the 312

goal of the approach is to reduce genotyping costs we considered only low coverage 313

scenarios where the resources consumed by parent-progeny imputation from a pooled 314

sample will be competitive with single-sample GBS. 315

GBS cost model 316

To assess the cost efficiency of pooled genotyping with GBS we used the cost model 317

developed by Gorjanc at al. [35] and available from their supplement. Using the same 318

assumptions for library preparation etc., the cost for genotyping a sample for 3,000 loci 319

at the various sequencing levels were 4x: $6.20, 2x: $5.60, 1x: $5.30, 0.5x: $5.15, 0.25x: 320

$5.08 and, 0.125x: $5.04. To arrive at the genotyping costs per individual, we divided 321

the cost per sample by the number of pooled individuals, assuming that the cost of the 322

pooling step itself was negligible. The ‘true’ marker scores of the DH were treated as 323

obtained from genotyping the individuals separately and at 10x coverage. We will 324

henceforth refer to these as high-quality (HQ) marker scores, in contrast to the marker 325

scores obtained from our pooled genotyping approach, which will be referred to as PG 326

marker scores. The cost per individual for the HQ genotyping was $8.00. 327

Parent-progeny imputation 328

The HMM was applied to the GBS data to obtain imputed reference allele dosages of 329

the pooled individuals for all 3,000 loci. For this we assumed that the parents were 330

genotyped without error (i.e., it is known without error whether they have the reference 331

or alternate genotype at each locus) and that all genetic positions are known. Loci 332
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monomorphic in all populations contributing to a pool provide no information to linked 333

loci and impute with certainty. To reduce computation time we therefore removed 334

monomorphic loci from the HMM and imputed them directly by filling in the scores of 335

the corresponding parents. 336

Imputation accuracy 337

For brevity, imputation accuracy was assessed only for the Dent populations. The pools 338

containing Flint populations were used to measure the effect of pooling more genetically 339

diverse individuals than are observed in a dent-dent pool. 340

Among the Dent populations, imputation accuracy was measured as the marker 341

concordance rate between the true and imputed genotype scores of the polymorphic 342

markers for an individual. We define the marker concordance rate as the percent of 343

markers for which the genotype with highest posterior probability matches the true 344

genotype. Concordance rates were calculated on a by-individual basis and then 345

summarized by the average and standard deviation across individuals. Those statistics 346

were recorded for each replication of the simulation and then averaged across 347

replications, resulting in numerical evaluations of their expected values. 348

The minimum marker concordance rate depends upon the allele frequency, so 349

concordance should be interpreted relative to a baseline value obtained by a simple 350

imputation of most frequent genotype [46]. In our case this baseline concordance is 50%, 351

because polymorphic markers in biparental populations have an expected minor allele 352

frequency of 0.5. 353

We further investigated the relationship between the proportion of multi-polymorphic 354

markers to total polymorphic markers (multi-polymorphism rate) on the marker 355

concordance rate. We defined multi-polymorphic loci as those polymorphic between the 356

parents of at least one more individual in the pool (e.g., locus L2 in the example in 357

Figure 1). Because pools were formed on a by-population basis, the proportion of 358

multi-polymorphic markers will be the same for all members of a population. We 359

therefore correlated this rate to the average concordance rate of polymorphic markers in 360

the population. We focused this comparison on the 1x coverage level but report results 361

for all other levels in S1 Table. 362

We also assessed the impact of imputation uncertainty, which we define as the 363

posterior probability of the most likely genotype call. As a call becomes more uncertain, 364

the posterior probability will decrease towards the prior for the pool. The average 365

imputation uncertainty was calculated for each individual across all polymorphic loci 366

and across those that were imputed correctly or incorrectly, respectively. 367

Assessing impact on WGS 368

We again evaluated only the Dent populations. A random subset of 30 of the 40 369

populations was used as the estimation set. As previously mentioned, WGS is most 370

efficient when applied to very large target sets [16]. In our study the target set 371

comprised only the remaining 10 populations, but these can be viewed as representing 372

the performance of a potentially much larger set of target populations. We used the 373

whole genome regression method “BayesB” [5] for estimation of marker effects in the 374

estimation set. This was done with the ‘BGLR’ [47] software package and its default 375

settings for prior distributions and hyperparameters. The BayesB Gibbs-sampler was 376

run for 50,000 iterations. The first 20,000 were discarded as burn-in and only samples 377

from every 3rd subsequent iteration were stored. We used the posterior means as point 378

estimates of the estimated marker effects. These estimates were then applied to the 379

marker scores of the individuals in the target set to produce predictions of their 380

performance in the form of a genomic estimated breeding value (GEBV). 381
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Both the estimation of marker effects as well the calculation of GEBV was done with 382

either the HQ or the PG marker scores. The GEBV obtained when using the HQ scores 383

for estimation and prediction were considered as the “gold-standard” and will henceforth 384

be referred to as “HQ-GEBV”. The GEBV obtained using PG marker scores (for 385

estimation, prediction or both) will collectively be referred to as “PG-GEBV”. 386

We measured the impact of imputation accuracy and uncertainty on WGS within 387

the target set by calculating the Pearson correlation between the HQ-GEBV and 388

PG-GEBV of the individuals in the target set. We will refer to this measurement as 389

“GEBV concordance”. Thus, whereas the marker concordance rate is a direct measure of 390

imputation accuracy, the GEBV concordance can be understood as measuring it 391

indirectly through its effects on WGS. Other studies investigating the use of imputed 392

marker scores for WGS used the correlation between predicted and true genetic values 393

(commonly referred to as the “prediction accuracy”) as indirect measures of imputation 394

uncertainty [32,35]. We decided against this, however, because the prediction accuracy 395

depends on many other factors that are independent of the genotyping and imputation 396

process, such as the trait heritability or genetic architecture [48]. The GEBV 397

concordance was calculated either across populations (“across GEBV concordance”) or 398

within each population (“within GEBV concordance”). In the latter case the values for 399

the 10 populations were averaged. In each replication of the simulation we further 400

calculated the correlations between the average “within” GEBV concordances and the 401

multi-polymorphism rate of the populations. 402

Results and Discussion 403

Genotype imputation is recognized as an accurate and effective way to reduce 404

genotyping costs for WGS in plant breeding [30–32,34,35,46]. Imputation delivers lower 405

genotype accuracy per sample than could be achieved from fully observed data, but in 406

return it enables larger sample sizes that increase the response to selection and thus the 407

effectiveness of the breeding program overall. In this study we build on this concept of 408

trading small decreases in genotype certainty for large increases in scale by describing a 409

method to genotype two or more individuals from a non-indexed pool of DNA in a 410

single sequencing library. Pooling reduces the per-individual cost of GBS library 411

construction and thereby removes a barrier to genotype cost reduction in low coverage 412

GBS applications [32]. We conducted simulations to investigate the feasibility of pooled 413

sample GBS and varied parameters across different simulated scenarios to assess the 414

impact of sequencing coverage and pool composition on marker and GEBV concordance, 415

and on cost-effectiveness relative to single-sample GBS. 416

Marker concordance 417

We observed generally high concordance rates, with >95% concordance achieved in 418

two-way pools at 1x coverage (Figure 3). Both sequence coverage and pool composition 419

contributed to differences in concordance, with a minimum value near 66% for four-way 420

pools at 0.125x coverage, and a maximum near 98% for two-way pools at 4x coverage. 421

We will first address the impacts of sequence coverage, then add the variable of pool 422

composition to the discussion. 423

The impact of sequence coverage 424

As expected, increases in sequence coverage improved imputation concordance across all 425

of the coverage rates we tested from 0.125x to 4x (Figure 3). Concordance increased 426

sharply from the lowest coverage of 0.125x until the intermediate coverage value of 1x, 427
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at which point the improvement of concordance leveled off. The strong positive effect of 428

coverage increase on concordance was previously observed for imputation without 429

pooling [35]. Increased coverage can improve imputation through both greater read 430

counts per locus and reduction of the amount of missing data (the number loci 431

represented by zero reads). In our pooled scenario a greater read count at a locus 432

improves the power of inference of the allele dosage, whereas a reduction in missing data 433

increases the information available from linked loci. 434

The uncertainty stemming from the Binomial sampling process presents a major 435

challenge for allele dosage estimation when x is low. At the low sequencing coverage 436

levels used in this study, e.g., x < 2, most observed loci are expected to consist of only a 437

single sequence read (Figure 2), which is insufficient to distinguish a heterogeneous from 438

a homogeneous site. Due to the sampling variation inherent in sequencing, the 439

observation of multiple reads still does not guarantee accurate representation of allele 440

dosages. A simple case occurs in a two-way pool with equal sample contribution, where 441

both alleles are expected at equal frequencies. At minimum two reads could accurately 442

capture the allele dosage at such a locus, but under Binomial sampling two reads will 443

still fail to detect heterogeneity 50% of the time. Application of low-coverage GBS to 444

heterozygous or heterogeneous material therefore requires explicit accounting for read 445

sampling uncertainty [35]. 446
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We calculate HMM emission probabilities of observed read counts sampled from the 447

underlying allele states according to the Beta-Binomial probability model. This model 448

allows us to account for uncertainty due to sequence read sampling variance. Perhaps 449

more importantly for pooled genotype inference, the π and ν parameters in the 450

Beta-Binomial model allow an investigator to also account for the uncertainty around 451

the expected allele dosages within the pool (S1 Fig). 452

Potential sources of uncertainty in allele dosages include unequal quantities of DNA 453

from individual samples and differential amplification of alleles [38]. The parameter π 454

serves to incorporate known or empirically estimated deviations from equal allele 455

dosages. In this study the relative DNA proportions were estimated empirically using 456

read data from loci where the populations generating the pooled individuals were fixed 457

for different alleles (details in methods). For example, a genome-wide π value of 0.6 458

would represent a 0.6:0.4 ratio of sample DNA contributions in a two-way pool. 459

Differential amplification was absent in our simulations, but it could be measured for 460

each locus from high coverage, non-pooled sequencing of a set of heterozygous 461

individuals [38]. Because differential amplification is locus-specific, incorporation of this 462

source of variation would lead to locus-specific π values. The parameter ν, which 463
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specifies the density of the beta-binomial distribution around π, serves to represent 464

general uncertainty in allele dosages when the deviations cannot be estimated 465

empirically for each locus. For example, ν could be increased in an experiment expected 466

to generate a greater degree of allele-specific amplification bias. The Beta-Binomial 467

emission model can also incorporate uncertainty due to residual contamination and 468

other sources of genotyping error. To model genotype error for heterogeneous 469

inheritance patterns, ν can be decreased or increased depending on the amount of 470

genotyping error expected (S1 Fig). Allowance for genotyping error and contamination 471

at homogeneous inheritance patterns must be handled differently. One option is to set 472

maximum and minimum values for the emission probabilities; for example, to a 473

maximum of 0.99 (homogeneous for the expected allele) and a minimum of 0.01 474

(homogeneous for the unexpected allele) if an error rate of 1% is expected. 475

Correctly accounting for deviations of allele dosages eliminates their bias but the 476

uncertainty they generate remains, as evidenced by the range of concordance values 477

across pool types and coverage rates. Nonetheless a probabilistic approach enables 478

imputation despite sampling error and low coverage. The concordance rate for two-way 479

pools at 0.125x coverage was greater than 80%, suggesting that that many 480

heterogeneous loci are accurately imputed even when represented by a single read. This 481

is possible because the HMM combines sequence read counts at a locus of interest with 482

information from linked loci to jointly calculate the posterior probabilities of each 483

inheritance pattern. This process happens simultaneously for all loci on a chromosome 484

which, in essence, facilitates “borrowing of information” across loci to infer inheritance 485

patterns even with only a small amount of information from each locus. Within this 486

probabilistic framework much of the impact of lower sequence coverage arises from a 487

loss of information from linked loci as more become unobserved. To illustrate this point, 488

we calculated concordance rates for two-way pools in a case where the proportion of 489

missing loci reflected the x sequence coverage as before, but the actual observed read 490

counts per locus were capped at a value of 1. In this scenario, greater sequence coverage 491

increases the number of observed loci but provides no additional power to infer the 492

allele dosage at an individual locus. This experiment still displayed a strong increase in 493

marker concordance as the proportion of missing loci decreased, and there was a 494

comparatively small decrease in overall concordance relative to the original simulation 495

that allowed multiple reads per locus (S2 Fig). The result suggests that much of the 496

benefit of increased sequencing coverage comes through the reduction of missing data at 497

linked loci, and this interpretation points to a strategy in which surplus sequencing 498

resources would be better applied to expansion of the number of loci genotyped rather 499

than to increased coverage of a constant set. Our data are derived from simulation, 500

however, and real-world sources of variability such as differential amplification could tip 501

the balance towards increased coverage per locus in order to better inform the 502

parameters of the Beta-Binomial model. 503

Number of pooled individuals 504

We will first discuss the results for the dent-dent pools and later contrast them with the 505

dent-flint pools. The two-way pools resulted in the highest concordance across all 506

coverage rates, followed by three-way and then four-way pools (Figure 3). At the lowest 507

coverage level of 0.125x, two way dent-dent pools achieved average concordance around 508

80%, but three-way pools were instead slightly above 70% and four-way pools slightly 509

below this value (Figure 3). The expected standard deviations of concordance rates 510

from individual to individual for the three and four-way pools were just below 10 511

percentage points (S3 Fig). This statistic reveals that for a sizable proportion of the 512

individuals the concordance rate was in the vicinity of 50%, which is the baseline value 513

expected from imputation using only population allele frequencies. At 1x coverage, the 514
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situation improved dramatically. The expected concordance rates for three and four-way 515

pools were at 91% and 87%, respectively, and the standard deviations reduced to 4.4 516

and 6.5 percentage points. The uncertainty and complexity associated with pooling 517

more than two individuals can thus be largely overcome with a relatively modest 518

increase in coverage. 519
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Fig 3. Expected marker concordance rates (%) of polymorphic loci

An obvious reason for the general decrease in concordance in larger pools is the 520

expansion of possible inheritance patterns. There are only four possible inheritance 521

patterns for a two-way pool, but eight for a three-way and sixteen for a four-way pool. 522

Accurate representation of allele dosages for higher order pools is also more difficult, 523

particularly at low coverage. For example, consider a scenario in which a locus is 524

polymorphic in all populations of a pool. Observation of a single read of the reference 525

allele is sufficient to exclude an inheritance pattern that would emit a homogeneous 526

alternate allele genotype. This would eliminate one of four patterns for a two-way pool, 527

but only one out of eight patterns for a three-way pool and only one out of 16 for a 528

four-way pool. When multiple reads are observed the chance that they capture the true 529

allele dosage is also lower for three and four-way pools because a greater number of 530

more subtle frequency differences must be distinguished. For example, when the true 531

reference allele frequency in a four-way pool is 75%, the chance of actually observing 532

three reference reads out of a total of four is only 42.2%, while the chance of observing 533

four homogeneous reference or alternate reads is still 32%. 534

The parental allele frequencies also play a role in concordance rates, and their 535

impact can be understood by returning to the hypothetical example in Figure 1. Here 536

locus L1 is polymorphic only in the population that generated the second individual P2, 537

and this locus is therefore a singly polymorphic locus. In the example, heterogeneous 538

data is observed for this locus, which can only occur with inheritance from parent I4. 539

This example shows how singly polymorphic loci can provide strong evidence 540

implicating a specific parent of origin, leading to more certain and accurate imputation. 541

However as the number of individuals in a pool increases, so does the chance that a 542

locus is instead polymorphic in more than one population (multi-polymorphic). As 543

expected, the percent of loci that were multi polymorphic was lowest for two-way pools, 544

followed by three-way and four-way pools (Table 1). On average, higher order pools will 545

contain more multi-polymorphic loci. 546

The impact of pool composition 547

A straightforward objective function for optimizing pool composition would therefore be 548

to choose individuals in a way that minimizes the multi-polymorphism rate. This can be 549

achieved by pooling individuals from populations representing genetically differentiated 550
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germplasm groups because allele frequency differences will make it less likely that a 551

locus is polymorphic in multiple populations. The Dent and Flint germplasm groups 552

present two genetically distinct heterotic groups in European maize [8]. Consequently 553

we found that constructing dent-flint pools resulted in a considerably lower 554

multi-polymorphism rate than for the dent-dent pools (Table 1), which translated into a 555

small but consistent increase in marker concordance (Figure 3). The greatest 556

improvements in marker concordance were observed for the four-way pools, which was 557

not surprising given the high multi-polymorphism rate in the dent-dent versions of these 558

pools. The next highest difference, however, was not observed for the three-way pools 559

but the two-way pools. We speculate that this was because moving to the dent-flint 560

version of the three-way pools reduced the Dent germplasm only by one third, whereas 561

it was reduced by half in two and four-way pools. The benefit of the dent-flint 562

arrangement for the three and four-way pools increased with coverage level. In four-way 563

pools, using flint-dent combinations increased the marker concordance rate by more 564

than 1.5 percentage points at 4x coverage. The benefit was lower as coverage decreased, 565

but since pooling across germplasm groups does not incur any additional costs relative 566

to pooling within germplasm groups, even small improvements could be worthwhile to 567

pursue. Many of the commercially important field and vegetable crops are bred as 568

hybrid varieties [49,50] that typically target multiple heterotic groups. Pools can be 569

constructed taking advantage of heterotic group divergence in order to optimize singly 570

polymorphic marker rates and thus marker concordance. 571

Steps can also be taken to promote or avoid pairing of specific populations within a 572

germplasm group. In our study, pools were constructed by randomly selecting 573

populations from within a germplasm group, which led to a high standard deviation for 574

the multi-polymorphism rates among population pairs (Table 1). For example, in 575

dent-dent pools the expected standard deviation was 10.9 percentage points around an 576

expected mean of 39.2%. We found that in both dent-flint and dent-dent scenarios the 577

variation in multi-polymorphic rates was negatively correlated with concordance. At 1x 578

coverage, the correlation between a population’s multi-polymorphism rate and marker 579

concordance was strongly negative for most pooling strategies (Table 1). The only 580

exception from this trend were the dent-flint two-way pools, for which the 581

multi-polymorphism rate (21.5%) was very low. Carefully pairing of populations in a 582

way that minimizes the multi-polymorphism rate could therefore result in a further 583

increase in marker concordance. At the very minimum this would involve avoidance of 584

pairing populations that share closely related parents. 585

Table 1. Mean and standard deviation (sd) of the multi-polymorphism rate and its correlation with marker
and GEBV concordance

dent-dent dent-flint
two-way three-way four-way two-way three-way four-way

multi-polymorphism rate
mean (%) 39.2 61.6 74.5 21.5 52.2 60.7
sd (%) 10.9 7.8 8.5 7.8 9.9 8.8

cor. multi-polymorphism rate and marker concordance
-0.48 -0.57 -0.65 -0.04 -0.39 -0.37

cor. multi-polymorphism rate and GEBV concordance
-0.21 -0.21 -0.28 -0.02 -0.14 -0.15
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Uncertainty of allele calls 586

The concordance rate measures the frequency of “erroneous” hard genotype calls. The 587

direct output of the HMM, however, are genotype probabilities which afford a much 588

richer inference that considers the uncertainty around each call. A probability 589

assessment is said to be calibrated when an event occurs in p% of the cases in which it 590

was predicted to occur with p% probability. For example, the probabilities from our 591

HMM are calibrated when 80% of the genotype calls made with 80% posterior 592

probability are correct. Figure 4 shows the expected average posterior probability of all 593

genotype calls, for different coverage levels and for the three dent-dent pooling 594

strategies. For example, at 0.125x coverage, genotype calls of dent-dent two-way pools 595

were made with 79.2% probability, on average. So we would expect that roughly 79% of 596

them were correct. Comparing this with Figure 3 shows that this was indeed the case, 597

with the corresponding concordance rate being 79.8%. Similarly, at 1x coverage the 598

average call probability for two-way pools was 96% and the concordance rate was as 599

well. This close alignment, which holds for all other cases (S4 Fig), shows that the 600

probabilities obtained from the HMM were well calibrated and correctly reflect the 601

uncertainty around each imputed marker score. 602

Many applications in statistical genetics, including estimation of whole genome 603

marker effects and calculation of GEBV, do not require hard genotype calls and accept 604

fractional scores proportional to the posterior probability. Carrying over the uncertainty 605

around each marker score into the subsequent analysis, as done in this study, weights 606

each score by the chance of it being incorrect and thus acts as a buffer against 607

imputation error [35]. Indeed, the average certainty of correct calls was always 608

considerably higher than that of incorrect calls (Figure 4). The certainty also increased 609

to a greater degree for correct than incorrect calls, as sequencing coverage increased. 610

Incorrect calls thus not only became fewer but their relative weight in subsequent 611

analyses decreased as well. 612
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Fig 4. Expected genotype call probabilities (%) for dent-dent pools.

Related computational approaches 613

Imputation from pooled samples requires assignment of genotype alleles to parental 614

haplotypes, which is a problem also faced when phasing haplotypes in heterozygous 615

individuals. Some phasing algorithms incorporate pedigree information and 616

parent-progeny relationships [26,51], as does pooled genotype imputation. One key 617

difference between the methods is that in a pooled genotyping scenario a genotype can 618

represent more than two haplotypes, as occurs in a three or four-way pool, whereas 619

haplotype phasing is always an attempt to resolve two haplotypes in diploid species. 620

Genome-wide haplotype phasing in polyploid species is considerably more challenging 621

and the methodology is still in its infancy [52]. This potential increase in complexity is 622
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alleviated by optimizing the approach specifically for the genetic structure of the 623

populations typically observed in plant breeding. Phasing algorithms are designed to 624

infer haplotypes in populations where all individuals are heterozygous at some loci, such 625

that multiple individuals are often required to accurately infer the phase of the target 626

sample [53]. In plant breeding programs, the parents of populations are in most cases 627

fully homozygous inbred lines genotyped on the full set of marker loci. In this scenario 628

only the parent haplotypes need to be considered to infer the haplotypes of the pooled 629

sample. Further, some phasing approaches, particularly those targeting unrelated 630

individuals, require iterative estimation of haplotype transition probabilities from the 631

data [53]. When a linkage map and pedigree information are available, the transition 632

probabilities can instead be calculated directly. Linkage maps for the 3,000 loci 633

considered here are available [45] and this number of markers was found more than 634

sufficient for genomic selection in biparental breeding populations [31]. Because possible 635

haplotypes are fully represented by the parents and recombination rates do not have to 636

be estimated, imputation is carried out independently for each pool and can easily be 637

parallelized. For example, imputation from the 1,000 dent-flint two-way pools could be 638

carried out on as many CPUs on a high performance computing cluster, with the 639

obvious gains in computing time. Given the very large number of individuals that are 640

generated by modern plant breeding programs [3], this could be an important advantage. 641

A different method to deconvolute the genotypes of pooled, non-barcoded samples is 642

described by Skelly et al [54] to infer parental origin of homozygous offspring. The 643

distinctions between this approach and ours make each appropriate for different 644

applications. The Skelly et al. approach derives information from the reads that map 645

well to only one of each of a set of parent genomes relative to the other possible parents, 646

which is analogous to using only the singly-polymorphic loci in our approach. The 647

genotypes of each progeny in the pool are deconvoluted individually by modeling a 648

bin-specific read map-ability and Binomial sample of read counts within a bin. An 649

advantage of the read map-ability method is that it does not require a pre-defined set of 650

polymorphic loci. The method does however require sequence information for the 651

parents. The requirement for sequence characterization is an investment justified for 652

populations serving as community resources, but is unrealistic for the breeding scenarios 653

targeted by our approach. A limitation of using uniquely mapping reads is that they 654

cannot inform inheritance in regions of shared ancestry among the parents where only 655

multi-polymorphic loci might be available. Our method jointly models the inheritance of 656

each pooled sample at all loci such that it benefits from alleles unique to a single parent 657

but also leverages information from multi-polymorphic alleles. As we do not rely on 658

read map-ability, our method is better suited to reads containing a low polymorphism 659

rate that does not impact alignment rates. The Skelly et al. method instead takes 660

advantage of reads that will map at different rates across parents, whereas such reads 661

would introduce error into our approach. Our method can therefore be applied to pools 662

of populations with non-sequenced parents that may share ancestry, whereas the Skelly 663

et al. approach is better suited to highly divergent and unrelated parent genomes. 664

Sonesson et al. [55] demonstrated in a simulation study the use of bulk segregant 665

analysis [40] for estimating whole-genome marker effects from pooled samples. Their 666

approach, however, would require discretizing a continuous trait like grain yield into 667

binary ‘high’ and ‘low’ categories. While this might provide a reasonable approximation 668

for estimating marker effects in some cases, actually using those for WGS would still 669

require the availability of marker genotypes of each selection candidate individually. 670

Their method therefore does not address the main genotyping bottleneck presented by 671

WGS. 672
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Using array based genotyping platforms 673

The Binomial sampling error inherent in counting individual sequence reads manifests 674

as the main source of error in allele dosage estimation. Genotyping technologies that do 675

not rely on sequencing, such as fluorescence-based array hybridization, generally achieve 676

less than 5% deviation from the true allele frequency in a sample pool [38]. Other 677

studies indicate that coverages of >20x or perhaps even >100x would be needed to 678

reach this degree of certainty from sequence reads [56,57]. Imputation of pooled 679

offspring provides a less demanding scenario because the possible allele dosages are 680

limited by the number of potential parents in each inheritance pattern (e.g. 0, 0.25, 0.5, 681

0.75, and 1.0 for a four-way pool). Even with these limited possibilities, distinguishing 682

the correct dosage can be challenging. For example, with a Binomial model of sampling 683

a one-tailed test to distinguish dosages of 2/4 and a 3/4 reference alleles requires 79 684

reads to achieve 95% power. As discussed previously, in our simulations we achieve high 685

genotype concordance with much lower coverages due to the “borrowing of information” 686

across linked loci. If fluorescence-based array hybridization or other techniques were 687

used for pooled genotyping, then a higher confidence in single allele dosages might lead 688

to comparable imputation concordance with fewer loci overall. As technology currently 689

stands, the need for more marker loci with a sequencing platform is in general 690

outweighed by the lower cost. 691

Implications for whole genome selection 692

In the previous paragraph we discussed the various factors that influence the accuracy 693

of the imputed marker scores and ways to improve it. However, in a WGS scheme, the 694

marker scores themselves are only an intermediate step and matter only in as far as 695

they influence the estimation of marker effects and calculation of GEBV. To assess the 696

impact of the uncertainty added by the imputation, we calculated the “GEBV 697

concordance” as the correlation between PG-GEBV (obtained from imputed marker 698

scores) and HQ-GEBV of individuals in the prediction set. 699

WGS can be applied within and across populations. Across population selection, 700

however, is largely based on differences in population means [58], which can accurately 701

be predicted from the mean performance of the population parents [59]. The PG-GEBV 702

are expected to reflect differences in population means well, because they are largely the 703

result of differentially fixed alleles, for which imputation in biparental populations is 704

100% certain. The “across” GEBV concordances were therefore generally considerably 705

higher than their “within” counterparts (S1 Table). Because the real value of WGS in 706

early stages of the breeding cycle comes from the ability to select promising progeny 707

within each population [59], we focused on the “within” GEBV concordance. 708

Because PG-GEBV are computed from the PG marker scores, factors affecting the 709

marker concordance are expected to have a similar effect on the GEBV concordance. 710

Consequently, the GEBV concordance increased with increasing coverage level and was 711

highest for two-way pools followed by three-way and four way pools (Figure 5). For 712

dent-dent two-way pools, the GEBV concordance was close to 0.60 at the lowest 713

coverage value of 0.125x and reached close to 0.95 at 1x coverage, when using the PG 714

marker scores for estimation and prediction. For dent-dent four-way pools the 715

corresponding values were considerably lower at 0.30 and 0.69, respectively. 716

Because of the dependence between marker and GEBV concordance, similar 717

optimization options apply. We found that pooling across germplasm groups led to 718

small but consistent increases in GEBV concordance (Figure 5). We also found that the 719

average GEBV concordance of a population was negatively correlated to its 720

multi-polymorphism rate (Table 1), which suggest that pairing individuals in a way that 721

minimizes the multi-polymorphism rate would have a positive effect on the GEBV 722
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Fig 5. Expected within population GEBV concordance Imputed marker scores
were either used only for estimation of marker effects (“estimation only”), only for
calculation of GEBV of target individuals (“prediction only”) or for both (“estimation
and prediction”).

concordance. 723

Scenarios for using imputed marker scores 724

Three main usage scenarios for the PG marker scores can be distinguished: (1) usage for 725

estimation of marker effects only (“estimation only”), (2) usage for calculation of GEBV 726

in the target set only (“prediction only”) and, (3) usage for both (“estimation and 727

prediction”). The GEBV concordance was higher in the “estimation only” scenario than 728

in the “prediction only” scenario (Figure 5). Estimation of marker effects therefore 729

seems less sensitive than prediction to imputation uncertainty, which was found in other 730

studies as well [32]. Because marker effects are estimated using all individuals in the 731

estimation set, small amounts of imputation error distributed randomly across 732

individuals largely cancel out. If the errors are more concentrated at some loci, for 733

example those with low sequenceability, their effects can be captured by other nearby 734

markers, given the generally high levels of LD observed in plant breeding 735

populations [8, 31]. We emphasize again that marker effects were estimated from marker 736

scores proportional to the certainty of the imputed genotype. As we discussed earlier, 737

the weights of erroneously assigned genotypes were considerably closer to the neutral 738

value of 50% (Figure 4), which acted as a buffer against their adverse effects. 739

GEBVs of individuals in the target set, however, are calculated separately for each 740

individual and after marker effects are estimated. Erroneous marker scores then cannot 741

be compensated for by other individuals or linked markers. Prediction is therefore 742

expected to be more sensitive to the errors and uncertainty introduced by usage of PG 743

marker scores. It is therefore even more important for GEBV calculation than marker 744

effect estimation that the genotype uncertainty be incorporated to lower the impact of 745

loci with a greater chance of being incorrect. 746

GEBV concordance was lowest when imputed marker scores were used for both 747

estimation and prediction (Figure 5). This was not surprising because of the cumulative 748

effect of the uncertainty and error coming from the estimation and prediction step. 749

Because WGS is most effective when applied to large numbers of genotyped-only 750

individuals [16], the bulk of the genotyping effort is spent on the target set. The overall 751

cost savings potential of the “estimation only” strategy therefore seems limited in 752

practice. Using PG marker scores for both estimation and prediction has the greatest 753

resource savings potential. However, because the number of individuals in the 754

estimation set is likely going to be small relative to the target set, the difference to the 755
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“prediction only” scenario will be small as well and might not justify the increased 756

uncertainty. In addition, the more costly data obtained on the estimation set 757

individuals are their phenotypes. This includes the cost of collecting data in 758

multi-environment field trials for various traits. These costs are still considerable, 759

despite recent advances in high-throughput field phenotyping [60,61]. The genetic 760

values of inbred lines in hybrid crops are evaluated through the performance of their 761

hybrid progeny with multiple testers from the opposite heterotic group [62]. The cost of 762

phenotyping therefore also includes significant costs for producing the testcross seed [63]. 763

It thus seems prudent to maximize the value of the investment in phenotyping by 764

combining it with a high-quality marker genotype, particularly when the individuals in 765

the estimation set are selection candidates themselves [19,64]. 766

This leaves the “prediction only” scenario as the most promising option in practice. 767

Here, the increased genotyping efficiency of parent-progeny impuation from pooled 768

samples is applied to where it matters most: the large numbers of unphenotyped 769

individuals in the target set. For those individuals, the marker genotype is the only 770

investment, apart from the relatively minor cost of creating the inbred line through 771

doubled haploidy or repeated selfing [63]. The vast majority of these individuals will be 772

discarded after their GEBV are assessed. Moderate levels of added uncertainty in the 773

genotypes therefore seem acceptable, if they are overcompensated by increased 774

genotyping efficiency. This trade off will be discussed in the final section. 775

Balancing uncertainty and cost efficiency 776

There is no question that the ability to obtain genotype information of multiple 777

individuals from a single pooled sample considerably decreases genotyping costs. 778

Assuming that the cost of the added DNA pooling step is negligible, genotyping costs 779

would drop two, three, and four-fold, depending on the number of pooled individuals. 780

Additional cost reductions could be achieved by lowering the sequencing coverage level. 781

However, with increasing number of pooled individuals and decreasing sequencing 782

coverage, the GEBV concordance decreases as well, meaning that increased cost savings 783

potential is associated with an increased uncertainty in the calculated GEBV (Figure 5). 784

These two counteracting factors can be balanced by viewing WGS as an indirect 785

selection method and comparing the expected genetic gain when using PG-GEBV or 786

HQ-GEBV as the auxiliary trait. 787

In general, the standardized response to indirect selection is R = irAh, where i is the 788

selection intensity on the auxiliary trait, rA the genetic correlation between the 789

auxiliary and target trait and h is the accuracy with which the auxiliary trait can be 790

assessed [65]. In the case of WGS, rA is the correlation between true and predicted 791

genetic values. For the HQ marker scores h = 1, because GEBV can be assessed without 792

error. The indirect selection response for HQ-GEBV thus reduces to RHQ = iHQrA. 793

When using PG marker scores, however, the PG-GEBVs themselves are uncertain and 794

so hPG < 1. As estimates of hPG we used the “prediction only” GEBV concordances 795

(Figure 5) of the dent-dent pools. Because we assumed that PG marker scores were used 796

only for prediction, rA remains constant. Using pooled genotyping is then expected to 797

be advantageous when the ratio (iPGhPG)/iHQ is greater than one. 798

The selection intensities iHQ and iPG are calculated from the fraction of selected 799

individuals s as i = s−1φ
(
Φ−1(1− s)

)
, where φ and Φ are the probability density 800

function and cumulative distribution function of the standard Normal distribution, 801

respectively [65]. Let sHQ and sPG denote the selected fraction when using HQ or PG 802

marker scores, respectively and let CHQ and CPG be the corresponding costs of 803

genotyping a single individual, as obtained from the previously described cost model. 804

Then sPG = sHQCPG/CHQ, assuming that the same number of individuals is to be 805

selected in each case. For example, if a breeder wants to select 10 individuals from a 806
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population and can afford to genotype 50 using the HQ marker platform, sHQ would be 807

0.2. If CPG is just half of CHQ, 100 individuals could be genotyped with the same 808

resources and sPG would equal 0.1. As values of sHQ we choose 0.2 and 0.6. The latter 809

value reflects a scenario in which either WGS is applied only as a pre-test to remove the 810

worst individuals from a population [63] or where the investment per population is low. 811

The relative merit of PG over HQ increased on average with increasing coverage 812

level (Figure 6). For dent-only two-way pools, it reached a maximum at around 1x 813

coverage. It then declined again slowly, as any further increase in hPG, which at this 814

point was already above 0.95 (Figure 5), could not justify the increase in cost. A similar 815

optimum was observed for three-way pools at 2x coverage. At very low coverage levels 816

two-way pools had the highest relative merit and four-way pools the lowest, owing to 817

the low GEBV concordance of pools with more than two-individuals. At 1x three-way 818

pools had the highest relative merit and finally four-way pools at 4x as their GEBV 819

concordance approached 0.95 (Figure 5). The optimal combination of coverage level and 820

number of pooled individuals, i.e., where the relative merit was highest, occurred for the 821

four-way pools at the highest coverage level of 4x. Because their GEBV concordance 822

was still notably below 1 at this point, the relative merit did not yet peak, suggesting 823

that the global optimum can be found at even higher coverage levels. This also suggests 824

that the pooling of multiple individuals contributes more to the cost savings potential of 825

the PG approach than the low coverage sequencing per se. The magnitude of the 826

relative merit of PG over HQ at its maximum depended on the initial level sHQ. When 827

sHQ was low, PG could increase genetic gain by a factor of almost 1.5 over HQ. When 828

it was high (sHQ = 0.6), the factor was almost 2.5. This is because the selection 829

intensity i as a function of s follows a curve of diminishing rate of return such that if s 830

is low initially, then a much larger decrease in cost and thereby s is required to affect a 831

sizable increase in i. In such a case it might be advantageous to leave the number of 832

genotyped individuals constant and instead use the freed resources elsewhere. If so, 833

iPG = iHQ and the relative merit of using PG marker scores would be equal to the 834

GEBV concordance. We showed that both the marker and GEBV concordance can 835

reach very high values already at intermediate GBS coverage levels, meaning that the 836

penalty in selection gain could be minimal. The tremendous cost savings potential of 837

pooled genotyping could then benefit those components of the breeding operation where 838

the return on investment is greatest. 839

To summarize, in this study we presented a method for parent-progeny imputation 840

from pooled samples and applied it to simulated GBS data from biparental populations. 841

We demonstrated that the imputed marker scores can be very accurate even at low 842

coverage levels and then only minimally affect the estimation of marker effects or 843

calculation of GEBV in WGS. The tremendous cost savings potential of the method can 844

therefore facilitate large scale genotyping in plant breeding, a key requirement for 845

successful applications of WGS. 846

S1 File. Transition matrix for a pool of two DH derived from a BC1 847

generation The recurrent and donor parents of the first DH are R1 and D1, 848

respectively. Those of the second DH are R2 and D2. The recombination frequency 849

between locus k and k − 1 is rk. 850

S2 File. Example of parent-progeny imputation from a a pool of three F1 851

derived DH Parent-progeny imputation is carried out for four genetically linked loci 852

L1, L2, L3 and L4 for a DNA pool of three DH individuals (P1, P2, P3) from three 853

biparental populations (I1 × I2, I3 × I4, I5 × I6). 854
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Fig 6. Relative merit of using marker scores imputed from pooled samples
for the calculating GEBV in the target set. The merit is expressed relative to
expected genetic gain when using the high-quality marker scores for this purpose
instead.

S1 Fig. Distribution of reference allele dosages under the Beta-Binomial 855

model as a function of ν and π 856

S2 Fig. Expected marker concordance rate of dent-dent two-way pools 857

when fixing the number of sequence read to one for all observed loci. The 858

percent of missing markers (in parentheses) correspond to the expectations at the 859

indicated sequencing coverage levels. The full line shows results from the standard GBS 860

scenario where the read number and % missing loci varies as a function of the 861

sequencing coverage x. Those results are replicated here for comparison purposes. 862

S3 Fig. Expected standard deviation of marker concordance rates. 863

S4 Fig. Average genotype call probability vs. expected marker 864

concordance rate of dent-dent pools 865

S1 Table. Expected marker and GEBV concordances alongside the 866

standard errors of the estimates 867
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