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Abstract 

DNA methylation age is an accurate biomarker of chronological age and predicts lifespan, but its 

underlying molecular mechanisms are unknown. In this genome-wide association study of 9,907 

individuals, we found gene variants mapping to five loci associated with intrinsic epigenetic age 

acceleration (IEAA) and gene variants in 3 loci associated extrinsic epigenetic age acceleration 

(EEAA). Mendelian randomization analysis suggested causal influences of menarche and 

menopause on IEAA and lipid levels on IEAA and EEAA. Variants associated with longer 

leukocyte telomere length (LTL) in the telomerase reverse transcriptase gene (TERT) locus at 

5p15.33 confer higher IEAA (P<2.7x10-11). Causal modelling indicates TERT-specific and 

independent effects on LTL and IEAA. Experimental hTERT expression in primary human 

fibroblasts engenders a linear increase in DNA methylation age with cell population doubling 

number. Together, these findings indicate a critical role for hTERT in regulating the DNA 

methylation clock, in addition to its established role of compensating for cell replication-

dependent telomere shortening. 
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INTRODUCTION  

DNA methylation (DNAm) profiles of sets of cytosine phosphate guanines (CpGs) allow one to 

develop accurate estimators of chronological age which are referred to as “DNAm age", 

"epigenetic age", or the "epigenetic clock". Across the life course the correlation between DNAm 

age and chronological age is greater than 0.95 1,2. Individuals whose leukocyte DNAm age is 

older than their chronological age (“epigenetic age acceleration”) display a higher risk of all-

cause mortality after accounting for known risk factors 3-6, and offspring of centenarians exhibit 

a younger DNAm age 7. Taken together, these findings suggest that DNAm age is a biomarker of 

biological age – a premise supported by associations of epigenetic age acceleration with 

cognitive impairment, neuro-pathology in the elderly 8,9, Down syndrome 10, Parkinson’s disease 

11, obesity 12, HIV infection 13, and frailty 14, and menopause 15. However, DNAm age shows no 

apparent correlation with telomere length, whose pace of shortening in cultured somatic cells has 

been referred to as the ‘mitotic clock’. In vivo, DNAm age and telomere length appear to be 

independent predictors of mortality 16. 

 

Here, we examine two widely used measures of epigenetic age acceleration: (a) intrinsic 

epigenetic age acceleration (IEAA), based on 353 CpGs described by Horvath (2013) 2, which is 

independent of age-related changes in blood cell composition, and (b) extrinsic epigenetic age 

acceleration (EEAA), an enhanced version of that based on 71 CpGs described by Hannum 

(2013) which up-weights the contribution of blood cell count measures 1,6. IEAA and EEAA are 

only moderately correlated (r=0.37) 17. IEAA measures cell-intrinsic methylation changes, 

exhibits greater consistency across different tissues, appears unrelated to lifestyle factors and 

probably indicates a fundamental cell ageing process that is largely conserved across cell types 
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2,6. By contrast, EEAA captures age-related changes in leukocyte composition and correlates 

with lifestyle17, yielding a stronger predictor of all-cause mortality 6. To understand mechanisms 

that explain DNAm age, we performed genome-wide association studies (GWAS) of IEAA and 

EEAA based on leukocyte DNA samples from almost ten thousand individuals. 

 

 

RESULTS 

GWAS meta-analyses for IEAA and EEAA 

Genomic analyses were performed in as many as 9,907 individuals (aged 10-98 years), from 15 

data sets, adjusted for chronological age and sex (Supplementary Table 1, Fig. 1 and 

Supplementary note 1). Eleven data sets comprised individuals of European ancestry (84.7%) 

and four comprised individuals of African (10.3%) or Hispanic ancestry (5.0%). GWAS 

genotypes were imputed to ~7.4 million variants using the 1000 genomes reference panel. 

Heritability estimates based on family relationships in one European ancestry cohort were 

�����
� =0.37 and �����

� =0.33, which are consistent with previous estimates in twins 2 and with 

those obtained in other tissues (e.g., adipose and brain) 12,18,19. SNP-based estimates of narrow 

sense heritability in our European ancestry cohorts were lower, �����
� =0.19 and �����

� =0.19 

(Supplementary Table 2).  

 

We first performed GWAS meta-analysis of IEAA and EEAA only in our European ancestry 

cohorts (N= 8,393). Variants with suggestive associations (P < 1.0x10-5) were then evaluated in 

non-European ancestry cohorts (N= 1,514), followed by a combined meta-analysis across the 

two strata (Fig. 1a&b). We found no evidence for genomic inflation in individual studies 
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(��� � 0.99~1.06, Supplementary Tables 3&4) or in the European ancestry meta-analysis 

(��� � 1.03 ~ 1.05; LD score regression intercept terms ��,���� � 1.004 and ��,���� � 1.004; 

Supplementary Fig. 1 and Supplementary Table 2). Variant associations were also adjusted 

for trans-ethnic heterogeneity using MANTRA software 20 which calculates a Bayes Factor (BF). 

Variants that met two criteria: P<5.0x10-8 and 
��	�
� � 6 (approximately equivalent to 

P<5x10-8) were regarded as significant. 

 

For IEAA, we identified 264 associated variants, mapping to five genomic loci (3q25.33, 

5p15.33, 6p22.3, 6p22.2 and 17q22, Table 1, Supplementary Table 5, Fig. 2 and 

Supplementary Fig. 2). Conditional GCTA analyses revealed a secondary signal for IEAA at 

6p22.3 (Table 1, Supplementary Figs. 3c & 3h). For EEAA, we identified 440 associated 

variants, mapping to three loci (4p16.3, 10p11.1 and 10p11.21; Table 1, Supplementary Table 

5, Fig. 2 and Supplementary Fig. 4), however the two lead SNPs, rs71007656 and rs1005277 at 

10p11.1 and 10p11.21, respectively, are moderately correlated (��
�
� =0.35, Table 1) and in a 

conditional model rs1005277, but not rs71007656, was associated with EEAA (Supplementary 

Fig. 5b-c & e-f). Associations were consistent across studies (Supplementary Figs. 6 & 7), 

except for at one locus (6p22.3: Cochran’s ��=58%, MANTRA posterior probability of 

heterogeneity=0.64, Table 1). At the associated loci, each allele conferred between 0.41 to 1.68 

years higher IEAA, or 0.59 to 0.74 years higher EEAA (Table 1). Analysis of published 

chromatin state marks 21 showed that most lead variants are in chromosomal regions that are 

transcribed in multiple cell lines (Supplementary Fig. 8). Two loci, 6p22.2 and 6p22.3, co-

locate (within 1 Mb) with CpGs that contribute to the Horvath estimate of DNAm age (Table 1 

and Supplementary Table 5), and it is possible that these genotypic associations with IEAA 
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arise from direct SNP effects on local methylation (Supplementary note 2 and Supplementary 

Figures 9 & 10).  

 

Transcriptomic studies in leukocytes 

To learn about potential functional consequences of these associations, we conducted cis-eQTL 

analysis for each locus associated with IEAA or EEAA, using data on leukocyte mRNA 

expression in up to 15,295 samples from five studies (Fig. 1c; Methods). We identified 11 

putative cis-eQTLs located in seven of the eight associated loci (Supplementary Tables 6 &7). 

Each putative cis-eQTL was then analyzed by summary data-based Mendelian randomization 

(SMR), which infers the association between gene transcript levels and the outcome trait 22 

(Methods). Three transcripts were associated with IEAA: KPNA4 at 3q25.33, TPMT at 6p22.3 

and STXBP4 at 17q22; and three transcripts were associated with EEAA: RNF4 at 4p16.3, and 

ZNF25 and HSD17B7P2 at 10p11.1 (Table 2 and Supplementary Table 8). Notably, STXBP4, 

encoding the syntaxin binding protein, is a reported locus for age at menarche 23, and our lead 

SNP for IEAA was also associated with age at menarche (rs78781855, P=0002). Consistent with 

our genetic analyses, blood transcript levels of several cis-acting genes correlate directly with 

chronological age, for example: STXBP4: r=-0.13, p=3x10-9; RNF4: r=-0.09, p=1.0x10-5; ZNF25: 

r=0.06, p=6.4x10-3 (Supplementary Table 9 ). Additional details can be found in 

Supplementary note 3.  
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Alleles associated with higher IEAA at the TERT locus were also associated with longer 

telomere length 

The TERT locus (in 5p15.33) harbored 11 genome-wide significant SNPs for IEAA but 

conditional analysis did not reveal any secondary signal (Table 1, Fig. 3a, and Supplemental 

Table 5). The leading SNP, rs2736099, was located in a region transcribed in human embryonic 

stem cells, induced pluripotent stem cells, and hematopoietic stem cells (Supplementary Fig. 

8b), and each minor allele conferred 0.6 years higher IEAA (P=1.3x10-12; Table 1, 

Supplementary Fig. 6b). Our IEAA locus at TERT closely overlaps the reported GWAS locus 

for leukocyte telomere length (LTL 24-26, Fig. 3b). SMR analysis indicated that the association 

signals for LTL and IEAA at this TERT locus share the same underlying causal variant (as 

indicated by a non-significant HEIDI test, Supplementary Table 10, Supplementary Fig. 11c). 

Intriguingly, TERT alleles associated with a longer LTL (indicative of younger biological age) 

were robustly associated with increased IEAA (indicative of older biological age) (P ~ 1.0x10-11, 

Table 3, Supplementary Table 11 and Supplementary Figure 12).  

 

Other known GWAS LTL signals (at 10q24.33 near OBFC1 and at 16q23.3 near MPHOSPH6), 

also exhibited modest associations with IEAA (4.1x10-3 ≤ P ≤ 3.7x10-2), but others such as the 

gene TERC (on 3q26.2) encoding the telomerase RNA component, showed no association 

(Table 3). Using the lead variants for each trait in MR-Egger analyses27, we found pleiotropic 

effects specific to TERT on LTL and IEAA without evidence for a causal relation between LTL 

and IEAA (P =0.7, Table 4 and Supplementary Table 12). 
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IEAA-associated SNPs in the TERT locus also exhibit modest associations with epigenetic age 

acceleration in the prefrontal cortex (P < 0.05, Table 3). We found no association between LTL-

related SNPs and epigenetic age acceleration in other brain regions, which were represented by 

fewer brain samples (Supplementary Table 13). 

 

hTERT is required for DNAm ageing in human primary cells 

As we were unable to functionally link IEAA to TERT through cis eQTL analysis at 5p15.33, we 

examined the effects of experimental-induced hTERT expression on IEAA in a primary human 

cell culture model. We introduced a TERT-expressing vector or empty vector (as control) into 

primary fibroblasts isolated from human neonatal foreskin. Transduced TERT-expressing and 

non-TERT cells were cultured in parallel. After reaching confluence, the cells were harvested, 

counted, seeded into fresh plates, and profiled using the Illumina Infinium 450K DNA 

methylation array.  

 

While non-TERT cells senesced after ~150 days, TERT-expressing cells continued to proliferate 

unabated at a constant rate with the time in culture (Fig. 3c). Single time point analyses (Fig. 3d) 

showed that TERT-expressing cells exhibited a linear relationship between time in culture and 

the Horvath estimate of DNAm age (equivalent to a DNAm age of 50 years at 150 days), 

whereas in non-TERT cells DNAm age plateaued (equivalent to a DNAm age of 13 years) in 

spite of continued proliferation to the point of replicative senescence. Notably, DNAm age did 

not increase in TERT-expressing cells that received regular media change but were not passaged 

throughout the entire observation period of 170 days (right most bar in Fig. 3d). These cells were 

not senescent, given that their subsequent passaging resulted in normal proliferation. In 
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multivariable regression analysis, the associations of DNAm age with cell passage number and 

cell population doubling number were highly modified by TERT-expression (P-interaction: 

P=1.6x10-6 and P=4.0x10-5, respectively; Supplementary Table 14). In the absence of TERT-

expression, DNAm age did not increase with cell passage number, cell population doubling 

number, or time in culture.  

 

Other putative determinants of epigenetic age acceleration 

To systematically elucidate possible further biological processes that influence epigenetic age 

acceleration, we tested our full genome-wide association statistics for IEAA and EEAA using a 

number of approaches. First, we used MAGENTA 28 (Methods) to identify biological pathways 

that are enriched for genes that harbor associated variants. For IEAA, nuclear transport 

(FDR=0.017), Fc epsilon RI signaling (FDR=0.027), and colorectal cancer processes 

(FDR=0.042) were implicated. For EEAA, mRNA elongation (FDR 0.011), mRNA transcription 

(FDR=0.018), and neurotrophin signaling pathway (FDR=0.042) were implicated 

(Supplementary Table 15). 

 

Second, we explored the genetic correlations (��) between IEAA or EEAA and several other 

phenotypes using LD score regression analysis of summary level GWAS data 29 (Methods and 

Fig. 1g). We observed moderate positive genetic correlation between IEAA and EEAA (��=0.5, 

�
�
=8.9x10-3). IEAA showed weak positive genetic correlations with central adiposity (waist 

circumference; waist-to-hip ratio) and metabolic disease-related traits, and EEAA showed 

stronger positive genetic correlations with central adiposity (�� =0.27 with waist-to-hip ratio, 
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P=8.0x10-8) and metabolic disease-related traits (Table 4 and Supplementary Table 16). IEAA 

and EEAA also showed modest inverse genetic correlations or trends with age at menopause. 

Third, we performed MAGENTA based hypergeometric analyses to test whether the top 2.5% 

and 10% of genes enriched for GWAS associations with IEAA or EEAA overlap with the top 

enriched genes for a range of complex traits (Methods). This analysis suggested several 

additional possible genetic overlaps, including Huntington disease onset30 and bipolar disorder 

with IEAA, schizophrenia with EEAA, and age-related dementia18 with both IEAA and EEAA 

(Supplementary Table 17). 

 

Finally, all the study traits, were tested using MR-Egger which, by modelling the reported top 

genetic signals for each candidate trait, estimates the likely causal influence of that trait on IEAA 

or EEAA 27 (Methods). Nominally significant causal relationships on higher IEAA and EEAA 

were found for low density lipoprotein (LDL) and total cholesterol levels (P<0.05, 

Supplementary Tables 18 & 19) and for triglyceride levels on IEAA (P=3.0x10-2, Table 4). 

Earlier menarche and menopause were associated with higher IEAA; each 1-year earlier age at 

menarche was associated +1.03 years higher IEAA (P=4.1x10-3) and each 1-year earlier age at 

menopause was associated +0.43 years higher IEAA (P=3.5x10-3) (Table 4).  
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DISCUSSION 

This large genomic study provides several mechanistic insights into the regulation of epigenetic 

ageing, including apparently opposing roles for TERT on DNAm age and LTL. TERT encodes 

the catalytic subunit of telomerase, which counters telomere shortening during cell division 31. 

TERT also possesses activities unrelated to telomere maintenance, such as in DNA repair, cell 

survival, protection from apoptosis/necrosis, stimulation of growth 32-34 and cell proliferation, 

possibly by decreasing p21 production 35. Here, we show an additional pleiotropic role of TERT 

on advancing cell intrinsic DNAm age during cell proliferation. Our findings provide an 

explanation for the previously reported rapid rate of DNAm ageing during embryonic 

development and early postnatal life, which are stages of rapid organismal growth accompanied 

by high levels of TERT activity and cell division 36 37,38.  

 

Our paradoxical finding that TERT alleles associated with longer telomeres are associated with 

higher IEAA is substantiated by our in vitro evidence that TERT expression promotes DNAm 

age; this might suggest a potential trade-off between telomere length and epigenomic 

maintenance systems. However, we found no evidence for a broader causal inter-relationship 

between telomere length and IEAA, consistent with the lack of phenotypic association between 

these traits in our studies (WHI: r = -0.05, p=0.16; FHS: r=0.0, p=0.99, ref 39) and in previous 

reports 14,16. Furthermore, while critically short telomere length is a well-established trigger of 

replicative senescence 36,40-42, the functional consequences of epigenetic ageing are yet unknown. 

Our experimental data suggest that epigenetic ageing is not a determinant or marker of cell 

replicative senescence, since TERT-expressing cells continued to proliferate unabatedly despite 

well-advanced DNAm age, and non-TERT-expressing cells exhibited no DNAm age increase 
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even at days 120-170 when proliferation had ceased. Rather, TERT suppression appears to allow 

cells to record their proliferation history during stages of development. 

 

Large-scale cross-sectional cohort studies have previously reported associations between 

epigenetic age acceleration (IEAA and EEAA) and body mass index and measures of insulin 

resistance 17. Our genetic correlation analyses (between the measures of age acceleration and 

complex phenotypes) indicate that some of these associations may arise in part from shared 

genetic variants. Moreover, our Mendelian randomization analyses provided tentative evidence 

for causal influences for blood lipid levels, but not for adiposity, on IEAA and EEAA.  

 

Finally, we found evidence for causal influence of earlier ages at menarche and menopause on 

higher IEAA. The directionally-concordant influences of menarche and menopause, which signal 

the onset and cessation, respectively, of reproductive capacity, together with the lack of influence 

of any measure of adiposity on IEAA, suggest an effect of some yet identified driver of 

reproductive ageing on DNAm ageing. These findings, which suggests that sex steroids affect 

epigenetic ageing, are consistent with previously reported associations regarding early 

menopause timing and higher IEAA in blood 15. While menopausal hormone therapy was not 

found to be associated with IEAA in blood, it was found to be associated with younger 

epigenetic age acceleration in buccal epithelium 15. The effect of menopause is consistent with 

reported anti-ageing effects of sex hormone therapy on buccal cells and the pro-ageing effect of 

the surgical ovariectomy in blood 15. Early age at menarche, a widely studied marker of the 

timing of puberty in females, is associated with higher risks for diverse diseases of ageing 43. Our 
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findings indicate epigenetic ageing as a possible intrinsic mechanism that underlies the recently 

described link between menarche age-lowering alleles and shorter lifespan 44. 

 

ONLINE METHODS 

GWAS Cohorts 

GWAS meta-analysis was performed on 9,907 individuals across 15 studies (Supplementary 

Table 1) coming from eight cohorts: Framingham Heart Study (FHS), TwinsUK, Women’s 

Health Initiate (WHI), European Prospective Investigation into Cancer–Norfolk (EPIC-Norfolk), 

Baltimore Longitudinal Study of Aging (BLSA), Invecchiare in Chianti, ageing in the Chianti 

Area Study (inCHIANTI), Brisbane Systems Genetics Study (BSGS), and Lothian Birth Cohorts 

of 1921 and 1936 (LBC) (Supplementary note 1). Eleven data sets comprised individuals of 

European ancestry (EUR, 84.7%) and four data sets comprised individuals of African ancestry 

(AFR, 10.3%) or Hispanic ancestry (AMR, 5.0%). Age range was 10-98 years (69% females).  

 

DNA methylation age and measures of age acceleration 

By contrasting the DNAm age estimate with chronological age, we defined measures of 

epigenetic age acceleration that are uncorrelated with chronological age. We distinguished two 

types of measures of epigenetic age acceleration in blood: cell-intrinsic and extrinsic epigenetic 

measures, which are independent of, or enhanced by blood cell count information, respectively. 

Intrinsic epigenetic age acceleration (IEAA) is defined as the residual resulting from regressing 

the Horvath’s estimate of epigenetic age on chronological age and measures of blood cell counts. 

Extrinsic epigenetic age acceleration (EEAA) does depend on blood cell counts because it is 

defined by up-weighting the blood cell count contributions to the Hannum based measure of age 
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acceleration. Thus, EEAA captures both age-related changes in blood cell types as well as cell-

intrinsic age-related changes in DNAm levels. 

IEAA and EEAA are based on the DNAm age estimates from Horvath 2 (353 CpG markers) and 

from Hannum 1 (71 CpGs), respectively. Mathematical details and software tutorials for 

estimating epigenetic age can be found in Horvath (2013) 2. To estimate "pure" epigenetic ageing 

effects that are not influenced by differences in blood cell counts (cell-intrinsic epigenetic age 

acceleration, IEAA), we obtained the residual resulting from a multivariate regression model of 

epigenetic age on chronological age and various blood immune cell counts (naive CD8+ T cells, 

exhausted CD8+ T cells, plasma B cells, CD4+ T cells, natural killer cells, monocytes, and 

granulocytes) imputed from methylation data. Our measure of EEAA is defined using the 

following three steps. First, we calculated the epigenetic age measure from Hannum et al 1, 

which already correlated with certain blood cell types 3. Second, we increased the contribution of 

immune blood cell types to the age estimate by forming a weighted average of Hannum’s 

estimate with 3 cell types that are known to change with age: naïve (CD45RA+CCR7+) 

cytotoxic T cells, exhausted (CD28-CD45RA-) cytotoxic T cells, and plasma blasts using the 

Klemera-Doubal approach 45. The weights used in the weighted average are determined by the 

correlation between the respective variable and chronological age 45. The weights were chosen 

on the basis of the WHI data. Thus, the same (static) weights were used for all data sets. Third, 

EEAA was defined as the residual variation resulting from a univariate model regressing the 

resulting age estimate on chronological age. By construction, EEAA is positively correlated with 

the estimated abundance of exhausted CD8+ T cells, plasma blast cells, and a negative correlated 

with naive CD8+ T cells. Blood cell counts were estimated based on DNA methylation data as 

described in the next section. By construction, the measures of EEAA track both age related 
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changes in blood cell composition and intrinsic epigenetic changes. Both the intrinsic and 

extrinsic DNAm age measures were correlated highly with chronological age within each 

contributing cohort (0.63 ≤ r ≤ 0.97, Supplementary Table 1), except for the two Lothian birth 

cohorts whose participants were born in one of two single years and hence had a small age range 

at testing. Conversely, by design, our measures of DNAm age acceleration, IEAA and EEAA 

are unrelated with chronological age.  

 The measures of epigenetic age acceleration are implemented in our freely available software 

(https://dnamage.genetics.ucla.edu) 2.  

Estimating blood cell counts based on DNA methylation levels 

We estimated blood cell proportions using two different software tools. Houseman's estimation 

method 46, which is based on DNA methylation signatures from purified leukocyte samples, was 

used to estimate the proportions of cytotoxic (CD8+) T cells, helper (CD4+) T, natural killer, B 

cells, and granulocytes. The software does not identify the type of granulocytes in blood 

(neutrophil, eosinophil, or basophil) but neutrophils tend to be the most abundant granulocyte 

(~60% of all blood cells compared with 0.5-2.5% for eosinophils and basophils). The advanced 

analysis option of our epigenetic age calculator software was used to estimate the percentage of 

exhausted CD8+ T cells (defined as CD28-CD45RA-) and the number (count) of naïve CD8+ T 

cells (defined as CD45RA+CCR7+) as described in Horvath et al.13  These DNAm based 

estimates of blood cell counts are highly correlated with corresponding flow cytometric measures 

47. 

GWAS meta-analysis 

Our GWAS meta-analysis involved approximately 7.4 million SNPs/INDEL variants, which 

were genotyped and imputed markers with the 1000 genomes haplotype reference panel. Prior to 
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imputation, SNP quality was assessed by estimating minor allele frequency (MAF), Hardy-

Weinberg equilibrium (HWE), and missingness rates across individuals (Supplementary Table 

4). The individual studies used IMPUTE2 48,49 with haplotypes phased using SHAPEIT 50 or 

MaCH 51 phased using Beagle 52 or Minimac 48 to impute SNP and INDEL markers based on the 

1000 Genomes haplotypes released in 2011 June or 2012 March. The quality of imputed markers 

was assessed by the Info measure > 0.4 (in IMPUTE2) or �� > 0.3 (in Minimac), and HWE P > 

1.0x10-6. To increase resolution for SNP association, a few genomic regions in the FHS cohort 

were also imputed based the Haplotype Reference Consortium (N=64,976)53. FHS used linear 

mixed models to account for pedigree structure via a kinship matrix, as implemented in R 

"lmekin" package. The BSGS cohort used Merlin/QTDT 54 for family-based association analysis. 

For other association analyses, we regressed the age acceleration trait values on estimated 

genotype dosage (counts of test alleles) or (2) expected genotype dosage, implemented in 

Mach2QTL55, SNPTEST56, and PLINK. All association models were adjusted for sex, to account 

for the higher epigenetic age acceleration in men than women 47, and also for PCs as needed. We 

included variants with MAF ≥ 2%. SNPs were removed from an individual study if they 

exhibited extreme effects (absolute regression coefficient β >30, Supplementary Table 4).  

We divided the meta-analysis into two since IEAA and EEAA differ across racial/ethnic groups 

47. In one arm, we performed GWAS meta-analysis of IEAA and EEAA, focusing on individuals 

of European ancestry (N= 8,393, studies 1-11 in Supplementary Table 1). We required a 

marker present in at least 5 study data sets and combined the coefficient estimates β from each 

study using a fixed-effects meta-analysis model weighted by inverse variance, as implemented in 

the software Metal 57. In the other arm, each SNP with suggestive association (P < 1.0x10-5) in 

Europeans was subsequently evaluated in individuals of non-European ancestry (N= 1,514, 
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studies 12-15 in Supplementary Table 1). A further meta-analysis combined the GWAS 

findings from the two ancestries. We removed SNPs from the meta-analysis if they exhibited 

highly significant heterogeneity across studies (Cochran Q I2 P-value ≤ 0.001), or (2) co-located 

with CpG from the DNAm age predictors according to the Illumina annotation file for the 

Illumina Infinium 450K array. We analyzed additional SNPs across all study sets to arrive at 

summary statistics at the combined stage, which were needed for our summary statistics based 

Mendelian randomization analyses. The quality of SNPs was also assessed using the Cochran Q 

I2 P-value.  

Linkage disequilibrium analysis 

Regional SNP association results were visualized with the software LocusZoom58. All linkage 

disequilibrium (LD) estimates presented in this article were calculated using individuals of 

European ancestry from the 1000 genomes reference panel (released in Oct 2012).  

Conditional analysis based on GCTA  

The conditional analysis of the GCTA software 59-61 was used to test whether a given genetic 

locus harbored multiple independent causal variants. We conditioned on the leading SNP with 

the most significant meta-analysis P value (Table 1). As reference panel for inferring the LD 

pattern we used the N=379 individuals with European ancestry from the 1000 genomes panel 

released in December 2013. We defined a SNP as having an additional association if it remained 

significant (P<5x10-8) after conditioning on the leading SNP and also met the additional criterion 


��	�
� � 6 for a significant trans-ethnic association. 

Chromatin state annotations 

For each leading SNP/variant of a significant locus, we used the UCSC genome browser to 

display the primary chromatin states across 127 cell/tissue lines at 200bp resolution 
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(Supplementary Fig. 8). The n=127 diverse cell/tissue lines were profiled by the NIH RoadMap 

Epigenomics 21 (n=111) and ENCODE projects 62 (n=16). We used a 15-state chromatin model 

(from ChromHMM) which is based on five histone modification marks 21.  

Annotations for genome-wide significant variants 

We used the HaploReg (version 4.1) tool 63 to display characters of genome-wide significant 

variants including conserved regions by GERP64 and SiPhy65 scores, DNase tracks, involved 

proteins and motifs, GWAS hits listed in NHGRI/EBI and functional annotation listed in dbSNP 

database, as summarized in Supplementary Table 5. 

Leucocyte cis-eQTL analyses 

To evaluate cis-eQTL in blood, our cis-eQTL study leveraged a large-scale blood expression 

data (n=15,295) that came from five broad categories of data. The first category involved a large-

scale eQTL analysis in 5,257 individuals collected from the FHS pedigree cohort (of European 

ancestry)66. Linear mixed models were performed for the eQTL analysis, adjusted for family 

structure via random effects and adjusted gender, age, blood cell counts, PCs, and other potential 

confounders via fixed effects. The analysis was carried out using the pedigreemm package of R. 

The second category involved the significant cis-eQTL, released from GTEx (version 6 in 2015) 

67. The expression data from GTEx involve multiple tissues from 449 individuals of mostly (> 

80%) European ancestry. We used the cis eQTL results evaluated in 338 blood samples. The 

downloaded cis-eQTL results only list significant results (FDR q < 0.05), according to a 

permutation test based threshold that corrected for multiple comparisons across genes and tissue 

types. The third category involved the cis-eQTL results from LSMeta68
, which was a large-scale 

eQTL meta-analysis in 5,331 blood samples collected from 7 studies including our study cohort 

inChianti. We downloaded the cis-eQTL results from http://genenetwork.nl/bloodeqtlbrowser/. 
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The fourth and fifth categories were discovery and replication samples from an eQTL analysis in 

peripheral blood 69, respectively. The publicly released cis-eQTL results only involved the 9,640 

most significant (FDR q < 0.01) cis-eQTL results (corresponding to 9,640 significant genes) 

from the discovery sample. The fourth category involved the expression data of 2,494 twins from 

the NTR cohort. The fifth category involved 1,895 unrelated individuals from the NESDA 

cohort.  

For all five categories of blood data, the cis-window surrounding each SNP marker was defined 

as ±1 Mb. We defined a significant cis-eQTL relationship by imposing the following criteria: a) 

FDR q < 0.05 for categories 1 -3, b) FDR q < 0.01 for categories 4 & 5. 

SMR analysis  

SMR22 uses SNPs as instrumental variables to test for a direct association between an exposure 

variable and an outcome variable, irrespective of potential confounders. Unlike conventional 

Mendelian randomization analysis, the SMR test uses summary-level data for both SNP-

exposure and SNP-outcome that can come from different GWAS studies 22. We tested the 

expression levels of the eleven candidate genes identified in our leucocyte cis-eQTL analysis. 

SMR defines a pleiotropic association as association between gene expression and a test trait due 

to pleiotropy or causality (Supplementary Fig. 11a-b). A significant SMR test p-value does not 

necessarily mean that gene expression and the trait are affected by the same underlying causal 

variant, as the association could possibly be due to the top associated cis-eQTL being in LD with 

two distinct causal variants. Zhu et al (2016) define the scenario of several causal variants, which 

is of less biological interest than pleiotropy, as "linkage" and proposed a statistical test "HEIDI" 

for distinguishing it from pleiotropy. The null hypothesis of the HEIDI test corresponds to 

desirable causal scenarios). Thus, a non-significant p value (defined here as P ≥ 0.01) of the 
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HEIDI test is a desirable finding. Conversely, a significant HEIDI test p-value indicates that at 

least two linked causal variants affect both gene expression and epigenetic age acceleration 

(Supplementary Fig. 11c).  

 To test the association of a given gene expression with age acceleration, we used summary level 

cis-eQTL results from (1) FHS, (2) GTEx and (3) LSMeta (total: N=10,906).  

We included the cis SNPs (with MAF ≥ 0.10) within a test gene (± 1Mb). We selected the cis 

SNPs as instrumental markers as follows: cis-eQTL FDR < .05 for GTEx, cis-eQTL P=1x10-6 

for the two large-scale studies: LSMeta and FHS. All significant SNP-gene pairs were subjected 

to the HEIDI analysis. The analysis involves the summary data of the cis SNPs surrounding the 

instrumental markers and the LD pattern evaluated from a reference panel. We used the 1000 

genome individuals with ancestry of European (N=379) released in December 2013 as the 

reference panel, imposed an LD threshold of 0.9 and selected a default setting based on a chi-

square (�	 
� ) test statistic threshold of 10 for SNP pruning. The GWAS summary data were based 

on the meta-analysis results at the combined stage. As a sensitivity check, we repeated the 

HEIDI analysis using the summary GWAS data of individuals with European ancestry (studies 

1-11).  

Telomere length association studies for Mendelian randomization analysis 

We gathered the summary statistics from three large-scale meta-analysis studies for association 

with LTL, including (I) the association results of 484 SNPs located in TERT locus listed in 

Supplementary Info from the study conducted by Bojesen et al.24 (N=53,724 individuals of 

European ancestry), (II) the GWAS summary data from the study conducted by Codd et al.25 

(N=37,684 individuals of European ancestry) downloaded from the European Network for 

Genetic and Genomic Epidemiology consortium (ENGAGE, see URL) and (III) the association 
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results of 4 SNPs at P < 5.0x10-8 and 1 SNPs at P < 1.0x10-6 listed in Table 1 from the study 

conducted by Pooley et al.26 (N=26,089 individuals of European ancestry). In the first study, the 

effect sizes were available for change in telomere length (∆�� > 0 indicating a test allele 

associated with longer LTL) and fold change in telomere length (>1 indicating a test allele 

associated with longer LTL). We used the effect sizes with respect to ∆�� in our analysis. The 

other two studies reported ∆�� in their summary data. All telomere lengths refer to the relative 

telomere to single copy gene (T/S) ratios using quantitative PCR methods with different scaling 

approaches applied to each study. The summary data of the second were used for bi-directional 

Mendelian randomization analysis. Summary statistics of IEAA and EEAA were based on the 

association results from the combined meta-analysis. Our SMR analysis used the summary data 

from studies I & II. To compare the patterns between LTL associations and IEAA associations at 

5p15.33 TERT locus, we used the dense panel of SNP association results from study I (484 

SNPs), as depicted in Figure 3b. 

IEAA association in brain tissues 

To study the generalization of the overlap between telomere association and IEAA association in 

non-blood tissues, we used the GWAS results of IEAA in brain tissues from our recent studies 

including brain regions in cerebellum (N=555)18, in prefrontal cortex (N=657)70 and in multiple 

areas across cerebellum, frontal cortex, pons, temporal cortex and prefrontal cortex (N=1,796 

brain tissues)70 . All the study populations were of European ancestry. All the IEAA measures 

were derived from Horvath DNAm Age. But, strictly speaking, the measure variable of age 

acceleration in cerebellum was simply based on the residuals from regression DNAm Age on 

chronological age only, referred as to AgeAccelerationResidual which is subtly distinct from 

IEAA. 
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In vitro studies of hTERT in human fibroblasts 

Foreskins were obtained from routine elective circumcision. The tissue was cut into small pieces 

and digested overnight at 4C with Liberase, after which the epidermis was peeled away from the 

dermis. Several of dermis were placed face down in a plastic dish with DMEM supplemented 

with 10% foetal calf serum, penicillin, streptomycin and gentamycin. After incubation at 37oC 

with 5% carbon dioxide for a week, fibroblasts that emerged from the tissues were harvested and 

expanded in fresh vessels. 

Recombinant retroviruses bearing the hTERT gene (pBabePurohTERT) or empty vector 

(pBabePuro) were prepared by transfecting Phoenix A cells, recovering the recombinant viruses 

in the media and using them to infect primary fibroblasts. Following selection with 1ug/ml 

puromycin, surviving cells were used in the experiment described.  

GWAS based enrichment analysis with MAGENTA 

We used the MAGENTA software 28 to assess whether our meta-analysis GWAS results of 

epigenetic age acceleration are enriched for various gene sets, e.g. KEGG pathways, Gene 

Ontology (GO) terms such as biological processes or molecular functions. To assign genes to 

SNPs, we extended gene boundaries to +/- 50kb. For computational reasons, we removed 

categories that did not contain any genes related to age acceleration at a level of P<1.0x10-3 or 

that contained fewer than 10 genes. The cutoffs of gene set enrichment analysis (GSEA) in the 

MAGENTA algorithm were set at 95th and 75th percentiles which are the default parameter 

values for a general phenotype and for a highly polygenic trait, respectively 28. 

Initially, empirical P values were estimated based on 10,000 permutations. For significant gene 

sets (empirical P < 1.0x10-4), we estimated the final empirical P value using one million 
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permutations. We only report gene sets whose false discovery rate FDR (calculated by 

MAGENTA) was less than 0.20. 

LDSC genetic correlation analysis  

We performed cross-trait LD score regression29 to relate IEAA/EEAA to various complex traits 

(27 GWAS summary data across 23 distinct phenotypes). The GWAS results for IEAA and 

EEAA were based on the summary data at stage 1 analysis.  

The following is a terse description of the 27 published GWAS studies. Two GWAS results in 

individuals of European ancestry came from the GIANT consortium on body fat distribution: 

waist circumference and hip to waist ratio. GWAS results of BMI and height also from the 

GIANT consortium. Further, we used published GWAS results from inflammatory bowel 

disorder (IBD) and its two subtypes: Crohn’s disease and ulcerative colitis, lipid levels, 

metabolic outcomes and diseases: insulin and glucose levels, type 2 diabetes (stage 1 results) 

phenotype, age-related macular degeneration (neovascular and geographic atrophy), Alzheimer’s 

disease (stage 1 results), attention deficit hyperactivity disorder (ADHD), bipolar disorder, major 

depressive disorder, schizophrenia, education attainment, age at menarche, age at menopause, 

LTL and longevity. The summary data of LTL was based the GWAS conducted by Codd et al25, 

as described in an earlier section. A description of other published GWAS study can be found in 

Supplementary Note 4.  

As recommend by LDSC, we filtered to HapMap3 SNPs for each GWAS summary data, which 

could help align allele codes of our GWAS results with other GWAS results for the genetic 

correlation analysis conducted. We constrained intercepts with the --intercept –h2 flag for the 

GWAS studies with GC-correction that we input the estimates of intercepts obtained from the 

heritability analysis implemented under LDSC.  
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MR-Egger regression 

Under a weaker set of assumptions than typically used in Mendelian randomization (MR), an 

adaption of Egger regression can be used to detect and correct for the bias due to directional 

pleiotropy 27. While the standard method of MR estimation, two-stage least squares, may be 

biased when directional pleiotropy is present, MR-Egger regression can provide a consistent 

estimate of the causal effect of an exposure (e.g. age at menopause) on an outcome trait (e.g. 

epigenetic age acceleration). In testing the regression model, we used the leading variants (P < 

5.0x10-8 or their surrogates) from each GWAS locus associated with the exposure, as 

instrumental variables. We performed LD-based clumping procedure in PLINK with a threshold 

of r2 set at 0.1 in a window size of 250kb to yield the leading variants present in both GWAS 

summary data sets (for exposure and outcome), as needed. The random effects model meta-

analysis was performed using "MendelianRandomization" R package.  

 

GWAS-based overlap analysis between age acceleration and various phenotypes  

Our GWAS-based overlap analysis related gene sets found by our GWAS of epigenetic age 

acceleration with analogous gene sets found by published GWAS of various phenotypes. We 

used the MAGENTA software to calculate an overall GWAS P value per gene, which is based 

on the most significant SNP association P value within the gene boundary (+/- 50 kb) adjusted 

for gene size, number of SNPs per kb, and other potential confounders 28. To assess the overlap 

between age acceleration and a test trait, we selected the top 2.5% (roughly 500 genes ranked by 

P values) and top 10 % genes (roughly 1900 genes) for each trait and calculated one-sided 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 30, 2017. ; https://doi.org/10.1101/157776doi: bioRxiv preprint 

https://doi.org/10.1101/157776


27 

 

hypergeometric P values 18,70. In contrast with the genetic correlation analysis, GWAS based 

overlap analysis does not keep track of the signs of SNP allele associations.  

We performed the overlap analysis for all the 23 complex traits used in the genetic correlation 

LDSC analysis and a few more studies that we were not able to conduct the LDSC analysis due 

to small sample size (N < 5000), negative heritability estimates or the entire study population 

from non-European ancestry. The additional traits including modifiers of Huntington's disease 

motor onset, Parkinson’s disease and cognitive functioning traits (Supplementary note 4).  
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FIGURES 

Figure 1. Roadmap of studying genetic variants associated with epigenetic age acceleration 

in blood 

Legend for Figure 1 
 
The roadmap depicts our analytical procedures. Panel (a) describes the study sets were divided 

into two stages according to European (EUR) and non-European ancestry. Panel (b) indicates 

that stage 1 yielded GWAS summary data on all QC SNPs and the combined stage yielded 

GWAS summary data on the SNPs with Meta EUR P < 1.0x10-5 at stage 1. Genome-wide 

significant loci were determined based on the association results from the combined stage. Panel 

(c) describes our transcriptomic studies: (I) blood cis-eQTL to identify potential functional 

genes, (II) summary statistics based Mendelian randomization (SMR) to assess the causal 

associations between expression levels and IEAA (or EEAA). Panel (d) describes our detailed 

analysis in the TERT locus, which was implicated by our GWAS of IEAA. Bi-directional 

Mendelian randomization via MR-Egger analysis did not reveal a direct causal effect between 

leukocyte telomere length and IEAA. Our in vitro studies validate our genetic findings by 

demonstrating that hTERT over-expression promotes epigenetic ageing in Panel (e). To explore 

molecular pathways underlying epigenetic age acceleration, we conducted gene set enrichment 

analysis, as listed in Panel (f). Lastly, we performed LDSC genetic correlation between IEAA or 

EEAA and a broad category of complex traits, followed by MR-Egger regression analysis, as 

depicted in Panel (g). 

Abbreviation: GE= gene expression, LTL=leukocyte telomere length.  
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Figure 2. Genome-wide meta-analysis for intrinsic and extrinsic age acceleration in blood 

Legend for Figure 2 

Manhattan plots for the meta-analysis p-values resulting from 15 studies comprised of 9,907 

individuals. The y-axis reports log transformed p-values for (a) intrinsic epigenetic age 

acceleration (IEAA) or (b) extrinsic epigenetic age acceleration (EEAA). The horizontal dashed 

line corresponds to the threshold of genome-wide significance (P=5.0x10-8). Genome-wide 

significant common SNPs (MAF ≥ 5%) and low frequency SNPs (2% ≤ MAF < 5%) are colored 

red and cyan, respectively.  

 

Figure 3. Genetic analysis of the 5p15.33 TERT locus and in vitro studies of hTERT in 

fibroblasts 

Legend for Figure 3 

(a) Regional association plot of locus associated with IEAA. The y-axis depicts log-transformed 

meta-analysis P values across all studies 1-15. The colors visualize linkage disequilibrium (LD) 

�� between rs2736099 (colored in purple) and neighboring SNPs. (b) TERT-locus association 

with IEAA (marked in red) overlaid with the association with telomere length given by Bojesen 

et al24 (marked in blue). Note that several SNPs in the TERT-locus are associated with both 

IEAA and leukocyte telomere length at a genome-wide significant level. (c) Growth of human 

primary fibroblasts represented as population doublings (y-axis) versus days in culture. (d) 

Adjusted epigenetic age of individual samples versus days in culture. The adjusted age estimate 

was defined as difference between DNAm age (Horvath method) minus 28 years, since the 

former exhibited a substantial offset in fibroblasts. 
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Tables 

 
Table 1: Meta-analysis of GWAS of epigenetic age acceleration in blood 

         Fixed-effects  Trans-ethnic 

Band 

No. 
GWAS 

SNPs SNP Gene 

Nearby 
clock CpGa 

(distance) Mb A1/A2 MAF Stage Beta (SE) P-value I2 (P)  ������� PHET. 

IEAA               

3q25.33 23 rs11706810  TRIM59    160.16 C/T 0.45 EUR  0.40 (0.073) 2.8x10-8     

       non-EUR  0.44 (0.190) 1.8x10-2     

       Combined  0.41 (0.068) 1.6x10-9  3% (0.42)  7.5 0.26 

5p15.33 11 rs2736099  TERT    1.29 A/G 0.36 EUR  0.64 (0.093) 4.7x10-12     

       non-EUR  0.50 (0.310) 9.9x10-2     

       Combined  0.63 (0.089) 1.3x10-12  0%(0.55)  10.6 0.47 

6p22.3 104 rs143093668 KIF13A- cg22736354 18.11 T/C 0.05 EUR -1.78 (0.187) 1.9x10-21     

   NHLRC1 (8.5kb)    non-EUR -1.37 (0.330) 2.4x10-5     

        Combined -1.68 (0.162) 4.2x10-25 58% (0.004)  23.1 0.64 

  rs6915893b KIF13A-  cg22736354 18.11 T/C 0.39 EUR  0.56 (0.077) 5.1x10-13     

   NHLRC1 (12.2kb)    non-EUR  0.33 (0.170) 5.8x10-2     

        Combined  0.52 (0.070) 1.6x10-13 27% (0.17)  11.4 0.34 

6p22.2 108 rs73397619 LRRC16A cg06493994 25.62 C/T 0.29 EUR -0.46 (0.079) 5.9x10-9     

   -SCGN (27.8kb)   non-EUR -0.46 (0.180) 1.2x10-2     

       Combined -0.46(0.073) 2.3x10-10 18%(0.25)  8.3 0.32 

17q22 18 rs78781855  STXBP4    53.10 G/T 0.22 EUR -0.42 (0.087) 1.6x10-6     

       non-EUR -0.88 (0.230) 1.5x10-4     

       Combined -0.47 (0.082) 5.6x10-9 26% (0.17)  7.2 0.45 

EEAA               
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4p16.3 59 rs10937913  TNIP2   2.75 A/G 0.46 EUR -0.60 (0.095) 3.8x10-10     

       non-EUR -0.56 (0.230) 1.4x10-2     

       Combined -0.59 (0.088) 1.7x10-11  0% (0.9)  9.2 0.24 

10p11.21 59 rs71007656 ANKRD30A   37.97 R/Ic 0.49 EUR  0.61 (0.099) 1.1x10-9     

   -ZNF248     non-EUR  0.52 (0.220) 2.0x10-2     

        Combined  0.59 (0.091) 7.5x10-11  0% (0.64)  8.5 0.29 

10p11.1 322 rs1005277 ZNF248-   38.22 A/C 0.28 EUR  0.78 (0.106) 2.6x10-13     

   ZNF25     non-EUR  0.45 (0.290) 1.1x10-1     

        Combined  0.74 (0.099) 1.2x10-13 32% (0.11)  11.5 0.32 
Position Mb based on Hg19 assembly. A1/A2 =minor/major alleles. MAF=mean of minor allele frequency estimates across studies weighted by study sample sizes. Beta estimate 
is the regression coefficient with respect to each extra minor allele.  
aCpG predictors of epigenetic clock listed if located within ±1 Mb from the reported markers (distance in kb). 
bConditional analysis on rs143093668 (LD EUR r2=0.02) : Beta(SE)= 0.39 (0.069) with effect size dropped 26% and conditional Meta P value at combined phase=2.6x10-8. 
cReference/insertion alleles=C/CGGCTG. 
 
Legend  

Lead SNPs at genome-wide significant (P<5.0x10-8) loci for IEAA or EEAA. Fixed effects meta-analysis was used to estimate the effect size (Beta) 

and standard error (SE) on IEAA or EEAA per minor allele. Trans-ethnic analyses using MANTRA20 present ethnicity-adjusted associations (log10 

Bayes’ Factor (BF) and probability of heterogeneity across studies (PHET.). 
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Table 2: Summary of transcriptomic studies for loci associated with epigenetic age acceleration  

  Meta GWAS 
 

cis-eQTL 
 

SMR 

Band SNP P (sign) 
 

Database Gene P (sign) 
 

P (sign) 
IEAA           

3q25.33 rs11706810 1.6x10-9 (+)  FHS KPNA4 4.2x10-23 (+)  5.1x10-5 (+) 

6p22.3 rs6915893 1.6x10-13 (+)  FHS TPMT 6.0x10-14 (+)  1.1x10-7 (+) 

   (+)  GTEx  1.5x10-4* (+)  2.2x10-6 (+) 

   (+)  LSMeta  2.3x10-27 (+)  3.5x10-7 (+) 

17q22 rs78781855 5.6x10-9 (-)  FHS STXBP4 1.0x10-88 (-)  6.2x10-4 (+) 

EEAA           

4p16.3 rs2341303a 6.5x10-11 (-)  LSMeta RNF4 1.6x10-10 (-)  2.0x10-3 (+) 

10p11.21 rs71007656 7.5x10-11 (+)  FHS ZNF25 7.9x10-7 (+)  2.8x10-3 (+) 

     GTEx HSD17B7P2 3.0x10-8 (+)  6.9x10-6 (+)b 

10p11.1 rs1005277 1.2x10-13 (+)   GTEx HSD17B7P2 1.1x10-5 (+)  6.9x10-6 (+)b 

Bands corresponding the position of Meta GWAS SNP. 
*FDR > 0.05 but FDR < 0.05 associated with other GWAS SNPs (Supplementary Table 6). 
aThe SNP rs2341303 is a surrogate of the leading marker rs10937913 in 4p16.3 (LD �

���

�  =.98).  
bThe SMR results are derived from the same model as the analysis used the cis SNPs of the gene HSD17B7P2. 
 
Legend 

The table presents a total of six cis genes highlighted from transcriptomic study using three large-scale 

databases (N=10,906) including (1) FHS (N=5,257), (2) GTEx (N=338), and (3) LSMeta (5,311). Each cis gene 

exhibited significant cis-eQTL with several nearby GWAS SNPs at FDR q < 0.05 in at least one study and also 

showed a significant pleiotropic association in SMR analysis at P < 0.05 after Bonferroni correction. For each 

gene, we list the unadjusted P values (sign) from Meta GWAS for IEAA (or EEAA), cis-eQTL and SMR 

analysis. The column (sign) indicates the sign of Z statistic at each test while the test alleles were converted to 

the same alleles (with minor variants) for both Meta GWAS and cis-eQTL tests. The summary statistics of Meta 

GWAS and cis-eQTL are both based on the leading marker with the most significant P value in a given locus, 

according to the GWAS results.  
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Table 3: Several leukocyte telomere length associated SNPs are also associated with intrinsic epigenetic age acceleration in blood and brain 

Study Chr Gene SNP A1 MAF Effect size (β) Meta P value 

      
LTL 

blood 

IEAA 

blood 

IEAA 

PFCTX 

EEAA 

blood 

LTL 

blood 

IEAA 

blood 

IEAA 

PFCTX 

EEAA 

blood 

II 2 ACYP2 rs11125529 A 0.14 0.06 -0.06 0.47 -0.15 4.5x10-8 0.5 9.9x10-2 2.5x10-1 

III 3 PXK rs6772228 A 0.06 -120 0.26 -- 0.20 3.9x10-10 1.3x10-1 -- 3.7x10-1 

II 3 TERC rs10936599 T 0.24 -0.10 0.04 0.22 -0.07 2.5x10-31 0.7 3.5x10-1 4.7x10-1 

III 3 rs1317082 G 0.23 -77 0.04 0.22 -0.08 1.3x10-19 0.7 3.5x10-1 4.6x10-1 

II 4 NAF1 rs7675998 A 0.22 -0.07 -0.07 -0.27 0.04 4.4x10-16 4.4x10-1 2.5x10-1 0.7 

III 5 TERT rs7726159 A 0.33 73 0.67 0.53 0.27 4.7x10-17 9.5x10-12 1.0x10-2 6.4x10-2 

I 5  rs7705526 A 0.33 0.51 0.61 0.50 0.18 2.3x10-14 1.0x10-11 1.7x10-2 1.9x10-1 

II 5  rs2736100 C 0.50 0.08 0.49 0.33 0.19 4.4x10-19 2.7x10-11 1.0x10-1 8.2x10-2 

III 10 OBFC1 rs2487999 T 0.14 100 0.22 0.40 0.36 4.2x10-14 3.7x10-2 2.5x10-1 8.8x10-3 

II 10 rs9420907 C 0.20 0.07 0.26 0.34 0.20 6.9x10-11 4.1x10-3 2.4x10-1 9.9x10-2 

II 16 MPHOSPH6 rs2967374 A 0.22 0.05 0.23 0.37 0.12 2.7x10-7 7.8x10-3 1.2x10-1 2.9x10-1 

II 19 ZNF208 rs8105767 G 0.32 0.05 -0.05 0.35 -0.13 1.1x10-9 0.5 1.1x10-1 1.7x10-1 

III 20 BCL2L1 rs6060627 T 0.34 36 -0.13 -0.14 0.11 6.5x10-7 7.7x10-2 0.5 2.6x10-1 

II 20 RTEL1 rs755017 G 0.15 0.06 0.03 -0.03 -0.08 6.7x10-9 0.8 0.9 0.5 

--denote not available. P values associated with age acceleration marked in bold if < 0.05 and red if < 5.0x10-8. 
Chr=chromosome; A1: reference allele; MAF=minor allele frequency; Effect sizes corresponding additive models. 
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Legend 

The table relates genome-wide significant association results of leukocyte telomere length (LTL) to three epigenetic age acceleration measures, 

IEAA in blood, IEAA in prefrontal cortex (PFCTX), and EEAA in blood. We queried the results of 14 SNPs across 10 distinct susceptibility loci 

associated with LTL from three large-scale studies: (I) meta-analysis association of LTL in chromosome 5 hTERT only (N=53,724)24, (II) a genome-

wide meta-analysis of LTL (N=37,684)25, and (III) a genome-wide meta-analysis of LTL (N=26,089)26. Each row presents a genome-wide significant 

locus associated with LTL in a given study, except chromosome 16 MPHOSPH6 and chromosome 20 BCL2L1 just slightly below genome-wide 

significance and highlighted by the corresponding studies as major findings. The listed markers are the leading SNPs with the most significant P 

values associated with LTL at a given study and locus, sorted by chromosome and position. Effect sizes of LTL association refer to the change in 

telomere lengths (∆��). Telomere lengths were measured based on the relative telomere to single copy gene (T/S) ratios using standard qualitative 

PCR methods. A wide range of effect sizes for ∆�� across studies was due to different scaling approaches applied to the measurements. The effect 

sizes for each age acceleration measure are in units of year.  
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Table 4: Genetic correlations with and causal effects of other complex traits on epigenetic age acceleration 

  IEAA  EEAA 

  

Genetic 

correlation 

MR-Egger 

regression  

Genetic 

correlation 

MR-Egger 

regression 

Trait N �� ���
 ������� �������  �� ���

 ������� ������� 

Category ( I )           

Waist circumference (cm) 232,101 0.09 2.4x10-2 1.99 9.6x10-2  0.24 9.9x10-7 -1.48 0.3 

Waist-to-hip ratio 212,243 0.13 1.0x10-2 -0.31 0.9  0.27 8.0x10-8 -3.36 0.3 

BMI (SD)  339,224 -0.01 0.9 1.40 0.056  0.08 0.3 0.40 0.7 

Height (cm) 133,453 -0.02 0.7 0.004 1.3x10-1  0.13 2.8x10-3 0.004 1.6x10-1 

Category (II)           

High density lipoprotein (SD) 188,577 -0.08 1.1x10-2 0.37 1.2x10-1  -0.12 2.0x10-2 0.11 0.7 

Triglyceride (SD) 188,577 0.10 3.4x10-2 0.61 3.0x10-2  0.16 1.0x10-4 0.37 8.0x10-2 

Type 2 diabetes 69,033 0.16 3.5x10-2 0.08 0.8  0.09 1.8x10-1 0.07 0.8 

Inflammatory bowel disease 34,652 0.12 2.5x10-2 0.13 0.5  0.08 1.2x10-1 -0.35 1.5x10-1 

Crohn's disease 20,883 0.12 4.7x10-2 0.10 0.4  0.10 6.9x10-2 -0.29 7.6x10-2 

Category (III & IV)           

AMD subtype 45,818 0.03 0.2 -0.05 0.6  0.05 2.1x10-2 -0.04 0.7 

Educational attainment (years) 328,917 -0.01 0.8 2.35 0.3  -0.13 1.0x10-3 -4.63 7.8x10-2 

Category (V)           

Age at menarche (years) 252,514 -0.02 0.8 -1.03 4.1x10-3  -0.03 0.7 -0.17 0.7 

Age at menopause (years) 69,360 -0.12 5.4x10-2 -0.43 3.5x10-3  -0.17 2.0x10-3 -0.21 0.3 

Leukocyte telomere length (T/S) 37,684 0.18 9.7x10-2 1.80 0.7  -0.16 1.4x10-1 3.20 0.3 
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Units of the traits associated with quantitative measures are displayed within parentheses. P values < 0.05 marked in bold. AMD (subtype) = age-
related macular degeneration (geographic atrophy). 
 
 
Legend 

Results from cross trait LDSC genetic correlation and Mendelian randomization Egger regression (MR-Egger) analyses for IEAA and EEAA are 

presented. The traits are ordered by category (I) GWAS of anthropometric traits conducted by GIANT consortium, (II) GWAS of lipid, metabolic, 

and inflammatory outcomes and diseases, (III) GWAS of neurodegenerative and neuropsychiatric disorders, (IV) cognitive functioning and 

educational attainment traits, and (V) longevity, reproductive ageing and mitotic clock related traits. Complete results are presented in 

Supplementary Tables 16, 18 and 19. We list the sample size of a study trait, Genetic correlation (��) and its P value (���
) as well the estimate of 

causal effect (������� ) and its P value (�������) from MR-Egger regression. A 2-color scale (blue to red) applies to �� in a range of [-1, 1], when the 

trait exhibits ���
 ~ ≤ 0.05. 
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