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Abstract 30 

 31 

A central feature of pathogen genomics is that different infectious particles (virions, bacterial 32 

cells, etc.) within an infected individual may be genetically distinct, with patterns of relatedness 33 

amongst infectious particles being the result of both within-host evolution and transmission from 34 

one host to the next. Here we present a new software tool, phyloscanner, which analyses 35 

pathogen diversity from multiple infected hosts. phyloscanner provides unprecedented resolution 36 

into the transmission process, allowing inference of the direction of transmission from sequence 37 

data alone. Multiply infected individuals are also identified, as they harbour subpopulations of 38 

infectious particles that are not connected by within-host evolution, except where recombinant 39 

types emerge. Low-level contamination is flagged and removed. We illustrate phyloscanner on 40 

both viral and bacterial pathogens, namely HIV-1 sequenced on Illumina and Roche 454 41 

platforms, HCV sequenced with the Oxford Nanopore MinION platform, and Streptococcus 42 

pneumoniae with sequences from multiple colonies per individual.  phyloscanner is available from 43 

https://github.com/BDI-pathogens/phyloscanner. 44 

 45 

Introduction 46 

 47 

The infectious transmission process imposes a hierarchical structure of relatedness on 48 

pathogen genomes. The genotype of an individual infectious particle is the result of both within-49 

host evolution and transmission between hosts; a population sample collected from multiple 50 

hosts, with multiple genotypes for each host, therefore simultaneously encodes the history of 51 

both processes. Despite the existence of many tools for analysing pathogen genomes, none, to 52 

our knowledge, are specifically adapted to exploiting this hierarchical genealogical structure.  53 

 54 

A central aim of infectious disease epidemiology is the identification of risk factors for 55 

transmission. The development of methods that use pathogen genomes to infer transmission 56 

events, along with their direction, is therefore a priority. A critical recent insight is that including 57 

multiple pathogen genomes per infected individual in such methods makes this inference easier: 58 

it is equivalent to the simpler process of inferring ancestry (Romero-Severson et al. 2016). 59 

Specifically, if a pathogen has passed from individual X to individual Y (either directly, or 60 

indirectly via unsampled intermediate individuals) then all the pathogen particles sampled from 61 

individual Y must be descended from the population of pathogen particles from individual X. 62 
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Inferring ancestral states is a standard problem in population genetics for which many methods 63 

exist; the novel insight is that this standard approach may be used to infer the direction of 64 

transmission. We illustrate this in Figure 1. 65 

 66 

 67 
[Figure 1: pathogen transmission direction via ancestral state reconstruction. In the left-68 

hand phylogeny, tips are labelled red or blue according to their state: in our case the state of 69 

interest is ‘in which individual was this pathogen found?’. This state is known for the tips, but 70 

can only be inferred for the internal nodes of the phylogeny: these represent coalescence 71 

events, ancestors of the pathogens we have sampled. A change in state corresponds to a 72 

change in the pathogen’s host, i.e. to transmission, be it direct or indirect. The central phylogeny 73 

shows one possible ancestral state reconstruction for which the root of the tree is blue, meaning 74 

blue is ancestral to red. This requires at least four changes of state (shown with black branches) 75 

– four sampled lineages transmitted from blue to red. The right-hand phylogeny shows one 76 

possible ancestral state reconstruction for which the root of the tree is red, meaning red is 77 

ancestral to blue. This requires only one change of state – one sampled lineage transmitted 78 

from red to blue. Based on parsimony we would prefer the right-hand scenario.] 79 

 80 

A frequently used approach in molecular epidemiology is to describe patterns of genetic 81 

clustering - who is close to whom. However, identifying transmission pairs or clusters without 82 

the ability to infer transmission direction - who infected whom - limits our ability to distinguish 83 

risk factors for transmission from those for simply acquiring the pathogen. One approach for 84 

inferring direction is to augment the sequence data with epidemiological data, and to couple 85 

phylogenetic inference with mathematical models of transmission, for example references (Volz 86 

and Frost 2013; Jombart et al. 2014; Hall et al. 2015; Didelot et al. 2017). However, this requires 87 

strong assumptions from the model. In addition epidemiological data, such as dates and 88 

location of sampling and reported contacts, are not always available, are subject to their own set 89 
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of uncertainties and errors, or are sometimes regarded as too sensitive to link to pathogen 90 

genetic data.  91 

 92 

Using multiple genotypes per host, and exploiting the link between transmission and ancestral 93 

reconstruction, therefore promises an alternative and potentially powerful approach to molecular 94 

epidemiology. Whilst several studies have used this idea to great effect on an ad hoc basis 95 

(Numminen et al. 2014; Worby et al. 2016), no systematic or automatic tool has been developed 96 

for this task.  97 

 98 

Once multiple genotypes per host are included in a study, other questions present themselves 99 

naturally, for example identifying multiply infected individuals. These may be defined as 100 

individuals harbouring pathogen subpopulations resulting from distinct founder pathogen 101 

particles. Multiple infections may be clinically relevant, for example in the case of Human 102 

Immunodeficiency Virus 1 (HIV-1), dual infection is associated with accelerated disease 103 

progression (Cornelissen et al. 2012). Multiple infections also represent unique opportunities for 104 

pathogen evolution, especially for pathogens that recombine. Recombination between divergent 105 

strains accelerates the generation of novel genotypes, and so potentially novel phenotypes. The 106 

distinct pathogen strains in a multiple infection could have been transmitted simultaneously from 107 

the same individual (if that individual harboured sufficient within-host diversity), or sequentially – 108 

‘super-infection’ – with each strain perhaps originating from a different transmitter. For HIV-1, 109 

mathematical modelling has suggested that recombinants can reach high prevalence even 110 

when the possibility of super-infection is restricted to a short window after initial infection, and 111 

even when recombinants have no fitness advantage, if the epidemic is fuelled by a high-risk 112 

core group (Gross et al. 2004). 113 

 114 

Molecular epidemiology is being transformed by the advent of next-generation sequencing 115 

(NGS; also called high-throughput) technologies (Goodwin et al. 2016). For many sequencing 116 

protocols applied to pathogens with extensive within-host diversity, such as HIV-1 and Hepatitis 117 

C Virus (HCV), the NGS output from a single sample can capture extensive within-host 118 

diversity. Zanini et al. (Zanini et al. 2015) inferred phylogenies from NGS reads - fragments of 119 

DNA - in windows along the genome for longitudinally sampled individuals infected with HIV-1, 120 

to quantify patterns of within-host evolution over time. Here our focus will be on cross-sectional 121 

datasets: by constructing phylogenies from NGS reads from multiple infected individuals at 122 

once, within-host and between-host evolution can be resolved. 123 
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 124 

We present phyloscanner: a set of methods implemented as a software package, with two central 125 

aims. The first is efficient computation of phylogenies with multiple genotypes per infected host, 126 

and the second is analysis of such phylogenies and inference of biologically and 127 

epidemiologically relevant properties from a set of related phylogenies. Multiple related 128 

phylogenies arise naturally, either by sampling different portions of a genome, or in representing 129 

uncertainty in phylogenetic inference (though bootstrapping, or sampling phylogenies from a 130 

posterior distribution, for example). phyloscanner automatically performs the following steps: 131 

1. Inference of between and within-host phylogenies from NGS data in multiple windows 132 

along the pathogen genome (optionally skipped, if the user has such phylogenies 133 

already); 134 

2. Identification and removal of likely contaminant sequences; 135 

3. Quantification of within-host diversity; 136 

4. Identification of multiple infections; 137 

5. Identification of crossover recombination breakpoints in NGS genotypes; 138 

6. Ancestral host-state reconstruction from multiple phylogenies; 139 

7. Identification of transmission events from ancestral host-state reconstructions. 140 

 141 

phyloscanner was intended for analysis of two distinct types of sequence data. Firstly for deep 142 

sequencing data, in which NGS has produced reads from the population of diverse pathogens 143 

represented in the sample. Secondly, for single-genome amplification (SGA), clonal sequencing 144 

or bacterial colony picks, whereby laboratory methods are employed to separate the genomes 145 

of individual pathogen particles prior to amplification and sequencing. Sequencing with primer 146 

IDs (Jabara et al. 2011) may in some cases produce similar results at reduced costs. We also 147 

considered haplotype reconstruction (Zagordi et al. 2011; Prabhakaran et al. 2014; Töpfer et al. 148 

2014), i.e. bioinformatically inferring different haplotypes represented in the short reads of a 149 

mixed sample, but in our hands this approach did not yield satisfactory results (analysis not 150 

shown).  151 

 152 

With SGA-style data, within- and between-host phylogenies can be directly inferred using 153 

standard methods, and therefore phyloscanner is not necessary for step 1 in the process 154 

described above. With deep sequencing data, reads for each sample must first be mapped 155 

(placed at the correct location in the genome); thereafter phyloscanner begins by aligning reads 156 
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in windows of the genome that are matched across infected individuals, and inferring a 157 

phylogeny for each window (Figure 2). 158 

 159 

 160 
[Figure 2: phyloscanner schematic for whole-genome deep sequence data. In this 161 

schematic, pathogens are sampled from the population infecting three hosts. NGS deep 162 

sequencing produces reads, which are fragments of the genome sequence of one pathogen 163 

particle (after amplification if necessary). Mapping to a reference means aligning each read to 164 

the appropriate location in the genome; this must be done beforehand, as mapped reads are the 165 

inputs to phyloscanner. phyloscanner produces alignments of reads in sliding windows along the 166 

genome, automatically adjusting for the fact that the reference may be different for each sample. 167 

Phylogenies are inferred for each alignment. These phylogenies are analysed separately using 168 

ancestral host-state reconstruction (i.e. assigning hosts to internal nodes), and their information 169 

is combined to give biologically and epidemiologically meaningful summaries. For example 170 

here, we infer that the red individual infected the blue individual directly or indirectly, and the 171 

green individual has two distinct pathogen strains.] 172 

 173 

 174 

Results 175 

 176 

The best way to illustrate phyloscanner is through examples. We chose five datasets illustrating 177 

different uses, pathogens, and sequencing platforms. We describe four in the main text, and 178 

one in the Supplementary Information. These are far from systematic samples or population 179 

surveys; they are small selections of infected individuals chosen to illustrate the different 180 

next-gen
sequencing
gives reads

mapping
+ ... + ...

phyloscanner
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conclusions that can be drawn using phyloscanner. We leave the application of phyloscanner to 181 

large systematic population samples to future work. 182 

 183 

Before presenting phylogenies for these data we introduce the term host subgraph. Host 184 

subgraphs result from ancestral host-state reconstruction: they are defined as connected 185 

regions of the phylogeny (tips and internal nodes, with the branches joining them) that have all 186 

been assigned the same host state (i.e., the host that pathogen was in). See supplementary 187 

section SI 1 for an explanation of the ancestral state reconstruction algorithm. Each subgraph 188 

can be shown with a solid block of colour corresponding to that host, uninterrupted by colouring 189 

associated with any other host. Figure 3 shows an example. 190 

 191 

 192 
[Figure 3: subgraphs defined by a given ancestral state reconstruction. Here we show 193 

again the two different ancestral state reconstructions on the same phylogeny from Figure 1, 194 

this time illustrating the host subgraphs that these reconstructions define: connected regions of 195 

the phylogeny that have all been assigned the same state (blue host or red host). Note that the 196 

set of tips in a subgraph may or may not form a clade. In both of the above reconstructions, the 197 

blue tips are contained in one subgraph and form a monophyletic group (one clade), whereas 198 

the red tips form a polyphyletic group. The minimum number of clades needed to encompass all 199 

and only the red tips is four, coinciding with the four red subgraphs in the left-hand 200 

reconstruction.] 201 

 202 

 203 

Six illustrative HIV-1 infections, sequenced with Illumina MiSeq 204 

 205 

We used phyloscanner to analyse data from the BEEHIVE project (Bridging the Evolution and 206 

Epidemiology of HIV in Europe), in which whole-genome samples from individuals with well-207 
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characterised dates of HIV-1 infection are being sequenced, primarily to investigate the viral-208 

molecular basis of virulence (Fraser et al. 2014). We chose two groups of patients for detailed 209 

investigation (presented in this subsection and the next), that together demonstrate interesting 210 

features revealed by phyloscanner.  211 

 212 

For the BEEHIVE samples, viral RNA was extracted manually from blood samples following the 213 

procedure of Cornelissen et al. (Cornelissen et al. 2016). The RNA was reverse transcribed and 214 

amplified using universal HIV-1 primers that define four overlapping amplicons spanning the 215 

whole genome, then sequenced using the Illumina MiSeq platform, following the procedure of 216 

Gall et al. (Gall et al. 2012; Gall et al. 2014). The resulting reads were mapped to a reference 217 

constructed for each sample using IVA (Hunt et al. 2015) and shiver (Wymant et al. 2016), 218 

producing input analogous to the illustration in Figure 2. See Materials and Methods for more 219 

detail.  220 

 221 

These mapped reads were analysed with phyloscanner using 54 overlapping windows, each 320 222 

base pairs (bp) wide, covering the whole HIV-1 genome (approximately 9200 bp long; the 223 

window entirely overlapping the variable V1-V2 loop in the envelope gene was not included due 224 

to the richness of insertions and deletions, which leads to poor alignment). To increase 225 

phylogenetic resolution and accuracy, we used the phyloscanner options to merge overlapping 226 

paired-end reads into single, longer reads, and to delete drug resistance sites (Gatanaga et al. 227 

2002; Johnson et al. 2011; Wensing et al. 2015) which are known to be under convergent 228 

evolution. 229 

 230 

Figure 4 shows the resulting phylogenies for four windows, chosen for clarity when visually 231 

inspected. The phylogenies illustrate single infection (patient A), dual infection (patient B), 232 

contamination (from the sample of patient C to the sample of patient D) and transmission (from 233 

patient E to patient F, possibly via an unsampled intermediate individual). Colouring on each 234 

phylogeny illustrates host subgraphs.  235 

 236 

Contamination. Filtering for contamination is an important part of analysis of NGS data. 237 

Contamination may be physical contamination of one sample into another, or low-level barcode 238 

switching which occurs during the multiplexing and demultiplexing steps which are central to the 239 

high throughput of NGS. phyloscanner uses two criteria to identify reads as likely contaminants 240 

(either criterion is sufficient). The first is that they are exact duplicates of reads from another 241 
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patient, but much less numerous; the second is that they form an additional host subgraph 242 

separated from the primary subgraph, but with too few reads to a call of multiple infection. This 243 

The second means that the source of the contaminant reads need not be present in the 244 

analysed dataset to infer contamination. These reads are flagged according to tuneable 245 

parameters (which will depend on the precise sample and method used), and blacklisted from 246 

further analysis (marked by pink crosses in Figure 4). We note that in general, phylogenetic 247 

patterns associated with transmission are distinct from those associated with contamination: the 248 

process of transmission is accompanied by within-host evolution in the recipient, whereas 249 

contamination is not. 250 

 251 

Multiple infections. If the phylogeny and host-state reconstruction are correct, the number of 252 

subgraphs a patient has equals the number of founder pathogen particles with sampled 253 

descendants (for example if this is 2, a dual infection is inferred). Sampling effects mean that 254 

representatives of these multiple infections may not be present in all windows.  255 

 256 

Transmission. Nodes of the phylogeny not in any patient’s subgraph are coloured black in our 257 

figures, as are branches connecting nodes not part of the same subgraph. These black regions 258 

connect the different host subgraphs to each other, and so correspond to the pathogen jumping 259 

between hosts; each region must contain one or more transmission events. They may, or may 260 

not, correspond to the passage of the pathogen lineage through one or more unsampled hosts. 261 

The probability of an indirect transmission will increase with the size of the black region and may 262 

be best investigated by examining the subgraph relationships and branch lengths together. 263 

 264 

 265 
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 266 
[Figure 4: phyloscanner analysis of four illustrative windows of the HIV-1 genome. A map of 267 

the HIV-1 genome is shown at the bottom with the nine genes in the three reading frames. 268 

Phylogenies are shown for the four windows highlighted in grey, with scale bars measured in 269 

substitutions per site. Tip labels are coloured by patient, as are all nodes assigned to that 270 

patient by ancestral reconstruction, and the branches connecting these tips and nodes; a solid 271 

block of colour therefore defines a single subgraph for one patient (see main text). The number 272 

labelling each tip is the number of times that read was found in the sample, and the size of the 273 

circle at each tip is proportional to this count. The count is after merging all identical reads and 274 

reads differing by a single base pair (merging similar reads can be done for computational 275 

efficiency, or as here, for presentational clarity). External references included for comparison 276 

are shown with black squares. One is HXB2; the other, labelled R, is a subtype C reference 277 

used to root each phylogeny. The six patients are labelled A through F. Single infection: 278 

patient A is a singly infected; all reads from this patient form a single subgraph. Dual infection: 279 

patient B is inferred to be dually infected, as is apparent by the fact that ancestral reconstruction 280 

produces two subgraphs in each window. Contamination: patients C and D are both singly 281 

infected, but we infer that some contamination has occurred from C to D. Patient D’s sample 282 
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has a small number of reads that are identical to reads from patient C, but much less numerous. 283 

Such reads are removed, but are shown here as crosses in the clade of patient C, for illustrative 284 

purposes. Transmission: in all four windows shown here, the reads of patient F are seen to be 285 

wholly descended from within the subgraph of reads of patient E. We infer that patient E 286 

infected patient F, either directly, or indirectly via an unsampled intermediate. Patient F having a 287 

single subgraph that is linked to patient E by a single branch indicates that the viral population 288 

was bottlenecked down to a single sampled ancestor during transmission.] 289 

 290 

Genome-wide summary statistics. In general, a phyloscanner analysis may produce a large 291 

number of phylogenies and associated ancestral reconstructions. These can be output both as 292 

annotated NEXUS format files, and as PDF files created with ggtree (Yu et al. 2017) for rapid 293 

visual inspection. Statistics are calculated to summarise the wealth of information in the 294 

phylogenies; these are shown for the 6 patients and 54 genomic windows in Figure 5. They 295 

include measures of within-host diversity, measures that allow rapid identification of multiply 296 

infected individuals, and a basic metric of recombination (defined in the supplementary section 297 

S3). 298 

 299 
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 300 
[Figure 5 - Summary statistics for six illustrative HIV-1 infected patients. Each column 301 

shows data from a single patient; each row is one or two statistics, plotted along the genome. 302 

Top row: number of reads, and number of unique reads (corresponding to tips in the 303 

phylogeny). Second row: the number of clades required to encompass all and only the reads 304 

from that patient, and the number of subgraphs (see Fig. 3 for clarification of these quantities). 305 

In many windows, though not all, the reads of patient B form two subgraphs: evidence of dual 306 

infection. For patients C and E, we see a single subgraph but many clades. This is because of 307 

the presence of reads from other patients (D and F, respectively, as seen in Fig. 4) inside what 308 

would otherwise be a single clade, turning a monophyletic group into polyphyletic group (which 309 
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requires splitting in order to form clades). Third row: within-host divergence, quantified by mean 310 

root-to-tip distance. Defining a patient’s subtree as the tree obtained by removing all tips not 311 

from this patient, we calculate root-to-tip distances both in the whole subtree and in just the 312 

largest subgraph. For patient B, this distinction is substantial due to the very large distance 313 

(~0.1 substitutions/site) between the two subgraphs of this dually infected patient. For singly 314 

infected patients, divergence may correlate with time since infection. Fourth row: for each 315 

window, a stacked histogram of the proportion of reads in each subgraph. For patient B, when 316 

two subgraphs are present, an appreciable proportion of reads are in the second one (mean 317 

12%). The histogram is absent in the window that was excluded by choice. Bottom row: a 318 

score based on Hamming distance (between 0 and 1) of the extent of recombination in that 319 

window. The highest score across all six patients and all windows is indicated with an orange 320 

diamond; the reads giving rise to this score are shown in supplementary Figure S6.]  321 

 322 

In a single window, phyloscanner classifies two patients to be related if they are adjacent (see 323 

supplementary section SI) and optionally, also “close”, i.e. that their subgraphs are within a 324 

prespecified patristic distance of each other. Relationships are further categorised by the 325 

ancestry, or lack of it, that is suggested by the tree topology. To summarise transmission across 326 

all windows, phyloscanner output summarises the number of windows in which each pair of 327 

patients are related, and the topological nature of that relationship. This allows the complete set 328 

of relationships between all patients in the dataset to be visualised in graph form. For example, 329 

in this dataset, only two of the six patients, E and F, are related in at least half of the windows. 330 

In Figure 6A the counts of the different topological relationships between these two patients are 331 

displayed. With many links between many patients these graphs become difficult to interpret 332 

visually; a threshold on the number of windows for links to be displayed is therefore helpful. 333 

phyloscanner also produces a second version of the graph simplified further, shown in Figure 334 

6B. Here a single link appears if relatedness of any type is present in 50% of windows, and that 335 

link is an arrow if transmission in that direction is inferred in at least 33% of windows. (The 50% 336 

and 33% thresholds are defaults that can be changed.) These relationship diagrams were 337 

plotted using Cytoscape 3.5.1 (Shannon et al. 2003).  338 

 339 

Diagrams such as those in Figure 6, when extended to greater numbers patients, will not always 340 

represent a single, coherent transmission tree amongst all the patients in the dataset (as can be 341 

seen in Figures 7 and 9). Instead, they simply summarise each pairwise relationship. As a 342 

result, we refer to them as “relationship graphs”. The inference of a single, most probable 343 
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transmission tree over all windows is complicated by the presence of multiple infections, 344 

incomplete transmission bottlenecks, and missing data for some patients in some windows. To 345 

our knowledge, no method yet exists to produce a consensus transmission history that takes 346 

into account all these possibilities. 347 

 348 

 349 
[Figure 6 – Relationship graphs: visual representations of the relationship between two 350 

connected patients infected with HIV-1. The power of phyloscanner in studying transmission 351 

events comes from aggregating information over many within- and between-host phylogenies, in 352 

this case obtained from different windows of the whole HIV-1 genome. In the top diagram, the 353 

outcomes from all 54 windows are shown. The top blue arrow shows that in 41 windows, patient 354 

E was inferred to be ancestral to patient F, with a single bottleneck. The bottom blue arrow 355 

shows that in 2 windows the reverse was true – F was ancestral to E. The undirected red line 356 

shows that in 2 windows, the patients were linked by “complex” ancestry, with the direction 357 

unclear. The undirected green line shows that in 9 windows the patient subgraphs were 358 

adjacent and close, but no ancestry was implied by the topology. In no window was 359 

transmission of more than one lineage inferred, and in no window were the patients distant and 360 

unlinked. (See supplementary section SI 1 for more details on these categories.) A simplification 361 

of these relational data is shown in the bottom diagram, with a single directed arrow. The first 362 

number indicates the proportion of windows supporting transmission in the direction of the 363 

arrow, and the second number indicates the proportion of windows supporting transmission in 364 

either direction.]  365 
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 366 

Resolving the transmission pathway within a HIV-1 phylogenetic cluster 367 

 368 

To illustrate the resolution into the transmission process that can be obtained by phyloscanner, 369 

we chose a set of 7 patients from the BEEHIVE study that were found to be closely connected 370 

in the chain of transmission (Fig. 7). 3 of the patients’ samples were sequenced with Illumina 371 

MiSeq and 4 with Illumina HiSeq; the resulting reads were processed and mapped using IVA 372 

and shiver as previously, with the mapped reads given as input to phyloscanner. phyloscanner 373 

summarises all the pairwise relationships between individuals in each window (Figure 7A), 374 

suggesting a complex network. However, we find that when we focus on the most likely 375 

inferences of source attribution (Figure 7B), phyloscanner largely resolves a complex set of 376 

pairwise relationships into a coherent transmission network, that is consistent with the years of 377 

seroconversion. However, this is not guaranteed to be the case: an exception is the triangle 378 

connecting Patients J, L and M, where there is too much uncertainty in the relationships 379 

amongst the triplet to resolve their ancestry.   380 

 381 
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 382 
[Figure 7 - The relationship between 7 patients infected with HIV-1. The colouring and 383 

numbers on the arrows connecting patients are as in Figure 6; in addition, the lower diagram 384 

here contains undirected green lines as well directed blue lines. These green lines suggest that 385 

the pair are close in the transmission network but with unknown transmission direction; the 386 

single number on the line indicates the proportion of windows supporting this. The known or 387 

estimated year of infection is shown in parentheses after each patient’s label.] 388 

 389 

HIV-1 sequenced with Roche 454 390 

 391 

A subset of patients from the BEEHIVE study were also sequenced using the Roche 454 392 

platform; results from their analysis with phyloscanner are in Supplementary Information section 393 

SI 2. 394 

 395 
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HCV sequenced with Oxford Nanopore MinION 396 

 397 

To further illustrate phyloscanner’s applicability to different sequencing platforms and also 398 

different pathogens, we used it to analyse HCV viral data sequenced using the Oxford 399 

Nanopore MinION device. Plasma samples were obtained from four patients in the BOSON 400 

study (Foster et al. 2015), a phase 3 randomized trial of antiviral therapy with sofosbuvir (trial 401 

registration NCT01962441). Sequencing was performed using RNAseq-based methods 402 

previously described for Illumina (Bonsall et al. 2015) and adapted for the MinION device. 403 

Briefly, plasma-derived RNA was reverse transcribed, then sequencing libraries were prepared 404 

for each sample using Oxford Nanopore adapters and customised barcoded primers. These 405 

were pooled and enriched using HCV-specific nucleotide baits before sequencing on a MinION 406 

R9.0 flow cell. Viral sequences were identified and mapped using BLASTN (Altschul et al. 407 

1990), standard reference sequences and BWA (Li and Durbin 2009). See Materials and 408 

Methods for more details. The resulting BAM files were used as input for phyloscanner, with a 409 

window size of 600 bp and no overlap between windows. Nanopore sequencing platforms are 410 

capable of producing longer inserts than those of Illumina, at the cost of a higher error rate 411 

(approximately 10% erroneous base calls). Despite this error, phyloscanner could 412 

phylogenetically resolve the within- and between-host evolution, shown in Figure 8. 413 

 414 
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 415 
[Figure 8 - phyloscanner analysis of two illustrative windows of the HCV genome. 416 

Sequence data from four individuals was obtained with the Oxford Nanopore MinION device. A 417 

continuous region of the phylogeny with the same colour shows a subgraph for one patient (see 418 

main text). Black tips were flagged as contamination and excluded. Patient-derived sequences 419 

clustered with respective genotype 2 and genotype 3 references (G2R, G3R) as expected from 420 

the virus genotypes known from the clinical information available for participants. Two windows, 421 

600 bp in length, are shown for the E2 and NS4B genes at positions given by the genome map 422 

(bottom panel).] 423 

 424 

Multiple colony picks per carrier of S. pneumoniae  425 

 426 

phyloscanner’s analysis of phylogenies need not be restricted to those derived from deep 427 

sequencing data in different windows of the genome: it can also be applied to datasets where 428 

within-host diversity is captured by SGA or sequences from multiple colony picks per individual. 429 

We illustrate this approach with the S. pneumoniae data of Croucher et al. (Croucher et al. 430 

2016), specifically the BC1-19F cluster. This dataset consists of 286 sequences from 92 431 
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individuals carrying the bacterium (with multiple colonies per carrier). These were sequenced 432 

with Illumina HiSeq, though for SGA data sequencing platform is largely irrelevant to 433 

interpretation, since each sequenced sample should not contain any real within-sample diversity 434 

by design. Genomes were processed with Gubbins (Croucher et al. 2015) to remove 435 

substitutions likely to have been introduced by recombination. As each of these sequences is a 436 

whole genome (unlike the short reads produced by NGS), we did not split the genome into 437 

windows to be analysed separately. Instead, we represented phylogenetic uncertainty by 438 

generating a posterior set of 100 phylogenies using MrBayes 3.2.6 (Ronquist et al. 2012) and 439 

analysed these with phyloscanner. Ancestral state reconstruction was performed on each 440 

posterior phylogeny independently, relationships between carriers identified, and the results 441 

summarised over the entire set. In each phylogeny, carriers were inferred as being related if the 442 

minimum patristic distance between two nodes from the subgraphs associated with each was 443 

less than 7 substitutions and they were categorised as adjacent (explained in Supplementary 444 

Information section SI 1.5). This distance threshold was selected to demonstrate the method as 445 

it picked out obvious clades in the phylogeny as groups, and was not chosen to imply direct 446 

transmission.  Retaining such relationships where they existed in at least 50% of posterior 447 

phylogenies revealed 18 separate groups of carriers whose bacterial strains were closely 448 

related (see Fig. 9). 449 

 450 
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 451 
[Figure 9 - Phylogeny and relationships between S. pneumoniae carriers. The phylogeny 452 

shown is the MrBayes consensus tree. Tip shapes are coloured by carrier, with mother and 453 

infant pairs sharing the same colour; diamonds represent infants and circles mothers. All nodes 454 

assigned to a carrier by ancestral reconstruction, and the branches connecting these tips and 455 

nodes, are given the same colour as that carrier’s tips; a solid block of colour therefore defines a 456 

single subgraph for one carrier (see main text). Regions of the phylogeny not in any carrier’s 457 

subgraph are grey. These regions connect carriers’ subgraphs to each other, and so each must 458 

contain one or more transmission events. The carrier relationship diagram (inset) displays the 459 

relationships between the carriers in 18 identified groups, in the same fashion as in Figures 6 460 
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and 7, except that here the numbers represent the proportion of phylogenies from the posterior 461 

set, rather than the proportion of genomic windows in which both patients have sequence data. 462 

The clades representing these 18 groups are labelled in the phylogeny.] 463 

 464 

Note that if some residual signals of recombination remain after processing with Gubbins, 465 

analysing the full-length genomes in windows by choice (rather than by necessity, as with short-466 

read NGS data) could mitigate this effect at the cost of reduced phylogenetic resolution in each 467 

window. The merits of this could be explored in a dedicated analysis of such a dataset; here we 468 

simply illustrate application of phyloscanner to full-length sequences as opposed to genomic 469 

windows. 470 

 471 

 472 

Discussion 473 

 474 

Improving our understanding of the transmission of pathogens is valuable for identifying 475 

epidemiological risk factors – the first step for targeting public health interventions for efficient 476 

impact. Phylogenetic analysis of one pathogen sequence per infected individual may identify 477 

clusters of similar sequences that are expected to be close in a transmission network. However, 478 

nothing is learned about the direction of transmission within the network. Indeed it may be that 479 

none of the individuals transmitted the pathogen to anyone else, and they were all infected by a 480 

common individual who was not sampled. Through automatic fitting of maximum-likelihood 481 

evolutionary models to within- and between-host genetic sequence data, phyloscanner enhances 482 

resolution into the pathogen transmission process. An evidence base is built up by analysing 483 

many phylogenies, notably through consideration of NGS reads in windows along the 484 

pathogen’s genome. The relationship between infected individuals is no longer quantified by a 485 

single number summarising closeness, but by a rich set of data resulting from ancestral host-486 

state reconstruction for each phylogeny.  487 

 488 

Romero-Severson et al. (Romero-Severson et al. 2016) demonstrated the utility of parsimony 489 

for the assignment of ancestral hosts to internal nodes in a phylogeny containing many tips from 490 

two infected individuals, for simulated HIV-1 data. We have continued with this approach, 491 

developing it for suitability for real sequence data from many infected individuals. In particular 492 

we allow for (i) contamination, (ii) multiple infections, and (iii) the possible presence of 493 

unsampled hosts in the tree. Details of two such parsimony algorithms, available for use in 494 
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phyloscanner, are presented in the supplementary section SI 1. Parsimony has the advantage 495 

that a reconstruction can be completed in reasonable computational time even for phylogenies 496 

with tens of thousands of tips. Other methods of reconstructing the host state of internal nodes 497 

could also be suitable and may be added to the package in future. Our identification of 498 

contamination and multiple infections is highly valuable in its own right: the former because this 499 

is critical for any empirical study of within-host diversity, and the latter because such individuals 500 

may be special cases clinically and for pathogen evolution. Transmission of multiple distinct 501 

pathogen strains may occur simultaneously, or sequentially – ‘super-infection’. phyloscanner can 502 

detect both cases, though distinguishing them is difficult without longitudinal sampling (it could 503 

be possible through inference of timed trees, or using the diversity of each separate infection as 504 

a proxy for its age). 505 

 506 

Great care must be taken to correctly interpret the ancestry of pathogens infecting individuals.  507 

Even if ancestry were established beyond any doubt, individual X’s pathogen being ancestral to 508 

individual Y’s pathogen does not imply that X infected Y: the pathogen could have passed 509 

through unsampled intermediate hosts. Nevertheless the ancestry does provide valuable 510 

epidemiological information, as X has been identified as a transmitter (and Y a recipient not far 511 

down the same transmission chain). Finding likely transmitters in a large population cohort 512 

would allow risk factors to be identified and quantified.  513 

 514 

Furthermore, inference of ancestry is itself subject to uncertainty. The inference of ancestry 515 

depends on the correct rooting of the phylogeny, in order that the direction in which evolution 516 

proceeded over time is known. Molecular clock analyses (such as implemented in TempEst 517 

(Rambaut et al. 2016)) can aid correct rooting when the sampling dates of the tips of the 518 

phylogeny are known.  519 

 520 

The relationships between infected individuals are inferred by phyloscanner across many 521 

phylogenies, for example those constructed from NGS reads in windows along the pathogen 522 

genome. By analysing many phylogenies, phyloscanner mitigates the effect of random error - any 523 

error that is independent in each phylogeny. We therefore give greater credibility to those 524 

relationships observed many times than to those observed only once. However, systematic 525 

error may arise, for example, due to different patients being sampled at different stages of 526 

infection, with different amounts of within-host diversity to analyse (Romero-Severson et al. 527 

2016). Given uncertainties in any individual assignment, we recommend phyloscanner for 528 
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population-level analyses, rather than focussing on isolated transmission events (as we have 529 

done here, for simplicity in explaining the method). 530 

 531 

The fraction of genomic windows in which a given relationship is inferred between individuals 532 

(for example A infecting B directly or indirectly), is not equal to the probability of that relationship 533 

being true. However it provides a measure of the robustness with which the available data 534 

support that conclusion. This is analogous to bootstrapping – sampling with replacement from 535 

the same sequence alignment, to create a set of similar phylogenies. Here however, different 536 

windows of the genome make use of different sequence data. Given the potential for 537 

disagreement between different windows due to genuine biological variation, imperfect 538 

sequencing procedures etc., agreement between a fraction x of (non-overlapping) windows is a 539 

stronger statement of robustness than agreement between a fraction x of bootstraps. 540 

Identification of transmission events with phyloscanner will involve false positives and false 541 

negatives; these will be context dependent, depending on how strictly transmission thresholds 542 

are defined (which balance sensitivity and specificity) and on the inclusion of sequences similar 543 

to those being investigated. We will illustrate this in two works in preparation examining large 544 

population studies. 545 

 546 

Whilst our emphasis has been on extracting broad-brush information from the rich within-and-547 

between host phylogenies, these phylogenies contain more information that could be used in 548 

future research. A specific example is that by resolving the transmission event at a finer level of 549 

genetic detail, it is possible to identify which pathogen genotypes are typically transmitted and 550 

which ones are not, with potential relevance for vaccine design.  551 

 552 

By providing a tool for automatic phylogenetic analysis of NGS deep sequencing data, or 553 

multiple genotypes per host generated by other means, we aim to simplify identification of 554 

transmission, multiple infection, recombination and contamination across pathogen genomics.  555 

 556 

Materials and Methods 557 

 558 

Generation and assembly of the BEEHIVE Illumina data 559 

 560 

Viral RNA was extracted manually from blood samples following the procedure of Cornelissen et 561 

al. (Cornelissen et al. 2016). RNA was amplified and sequenced according to the protocol of 562 
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Gall et al. (Gall et al. 2012; Gall et al. 2014). Briefly, universal HIV-1 primers define four 563 

amplicons spanning the whole genome. 5 μl of amplicon I was pooled with 10 μl each of 564 

amplicons II–IV. Libraries were prepared from 50 to 1000 ng DNA as described in Quail et al. 565 

(Quail et al. 2008; Quail et al.), using one of 192 multiplex adaptors for each sample. Paired-end 566 

sequencing was performed using an Illumina MiSeq instrument with read lengths of length 250 567 

or 300 bp, or in the ‘rapid run mode’ on both lanes of a HiSeq 2500 instrument with a read 568 

length of 250 bp.  569 

 570 

For each sample, the reads were assembled into contigs using the de novo assembler IVA. The 571 

reads and contigs were processed using shiver as described previously (Wymant et al. 2016). In 572 

summary: non-HIV contigs were removed based on a BLASTN search against a set of standard 573 

whole-genome references (Kuiken et al. 2012). Remaining contigs were corrected for assembly 574 

error then aligned to the standard reference set using MAFFT (Katoh et al. 2002). A tailored 575 

reference for mapping was then constructed for each sample using the contigs, with gaps 576 

between contigs filled by the corresponding part of the closest standard reference. The reads 577 

were trimmed for adapters, PCR primers and low-quality bases using Trimmomatic (Bolger et al. 578 

2014) and fastaq (https://github.com/sanger-pathogens/Fastaq). Contaminant reads were 579 

removed based on a BLASTN search against the non-HIV contigs and the tailored reference. 580 

The remaining reads were then mapped to the tailored reference using SMALT 581 

(http://www.sanger.ac.uk/science/tools/smalt-0). 582 

 583 

Generation and assembly of the HCV Oxford Nanopore MinION data 584 

 585 

Viral RNA was extracted from plasma using the NucliSENS® easyMAG® total nucleic acid 586 

extraction system (Biomerieux) and sequencing libraries were prepared using a modified 587 

version of an RNA-seq based protocol with a virus enrichment step. Briefly, the NEBNext® 588 

Ultra™ Directional RNA Library Kit (New England Biolabs, Ipswich, MA, USA) was used to 589 

generate cDNA from 5ul of total RNA. The NEBNext® Ultra™ II End Repair/dA-Tailing Module 590 

and Blunt/TA Ligase (New England Biolabs, Ipswich, MA, USA) were used for end repair of 591 

dsDNA and ligation of PCR adapters (Oxford Nanopore Technologies) to allow for 18 cycles of 592 

PCR using custom barcoded primers with a post-PCR clean-up with 1x Ampure XP (Beckman 593 

Coulter, Pasadena, CA, USA). Each library was quantified by Quant-iT™ Qubit® dsDNA HS 594 

Assay Kit and size distribution analysed using Agilent Tapestation High Sensitivity D5000 595 

ScreenTape System. Approximately equimolar quantities of each library were pooled to a total 596 
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of 500 ng mass and processed for probe enrichment using customized xGen® Lockdown® 597 

120mer probes specific to HCV (Integrated DNA Technologies, Inc., Coralville, Iowa, USA) and 598 

a modified Roche NimbleGen protocol for hybridization of amplified sample libraries with a 599 

shorter 4 hours hybridization time and on-bead post-enrichment PCR (12 cycles). The enriched 600 

pool was prepared for sequencing on a MinION R9.0 flow cell using the SQK-NSK007 2d 601 

ligation kit. Raw fasta5 sequence files were base called and demultiplexed using Metrichor 602 

software. Viral sequences were identified and trimmed using a BLASTN search of the Los 603 

Alamos database of HCV genotype references (Kuiken et al. 2005), then mapped to the closest 604 

matching reference using BWA (with the command bwa mem –x ont2d). Consensus sequences 605 

were called from the bam files and used as references for a second iteration of read mapping.	606 

	607 

The phyloscanner Method	608 

 609 

For application of phyloscanner to deep sequence NGS data, the required input is a set of files in 610 

BAM format (Li et al. 2009) each containing the reads from one sample that have been mapped 611 

to a reference, and a choice of genomic windows to examine. A sensible choice of windows 612 

would normally tile the whole genome, perhaps skipping regions that are rich in insertions and 613 

deletions (leading to poor sequence alignment). Windows should be wide enough to capture 614 

appreciable within-host diversity, but short enough for some reads to fully span them; options in 615 

the code help to inform the user’s choice. There is no lower limit to the length of reads given as 616 

input, however as read length decreases, phylogenetic resolution will suffer. phyloscanner 617 

determines the correspondence between windows in different BAM files by aligning the mapping 618 

references in the BAM files. Using the same reference for mapping all samples would negate 619 

the need for this step, but it is of paramount importance to tailor the reference to each sample 620 

before mapping to minimise biased loss of information (Wymant et al. 2016). For each window 621 

in each BAM file, all reads (or inserts, if reads are paired and overlapping) fully spanning the 622 

window are extracted using pysam (https://github.com/pysam-developers/pysam) and trimmed 623 

to the window edges, then identical reads are collapsed to a single read, giving a set of unique 624 

reads each with an associated count (i.e. the number of reads with identical sequence). A basic 625 

metric of recombination is calculated by maximising, over all possible sets of three sequences 626 

and all possible recombination crossover points, the extent to which one of the three sequences 627 

resembles one of the other two sequences more closely on the left and resembles the other 628 

sequence more closely on the right. Further detail is provided in the supplementary section SI 3. 629 

In each window, each sample’s set of unique reads is checked against every other sample’s set, 630 
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with exact matches flagged to warn of between-sample contamination in the analysed dataset; 631 

all unique reads are then aligned with MAFFT, and a phylogeny is inferred with RAxML 632 

(Stamatakis 2014). 633 

 634 

phyloscanner contains many options to customise processing and maximise the information 635 

extracted from reads and phylogenies. Standard reference genomes can be included with the 636 

reads for comparison. User-specified sites can be excised to mitigate the effect of known sites 637 

under selection on phylogenetic inference. Greater faith can be placed in the reads by trimming 638 

low-quality ends and wholly discarding reads that are low-quality, improperly paired, or rare. 639 

Reads in the same sample that differ from each other by less than a specified threshold can be 640 

merged into a single read to increase the speed of downstream processing. Overlapping paired 641 

reads can be merged into a single longer read for greater phylogenetic resolution. Every option 642 

of RAxML can be passed as an option to phyloscanner, for example specifying the evolutionary 643 

model to be fitted, or multithreading. 644 

 645 

Optionally, the user may skip inference of phylogenies from files of mapped reads, and instead 646 

directly provide as input a phylogeny or a set of phylogenies generated by any other method. 647 

 648 

To analyse phylogenies, phyloscanner required that they are rooted. This can be done manually, 649 

or if the phylogenies were constructed by phyloscanner from mapped reads, rooting can be 650 

achieved by providing one or more additional reference sequences with the mapped reads, and 651 

choosing one of these to use as an outgroup. The outgroup should be sufficiently distant from 652 

all sampled isolates that we can assume the most recent common ancestor of it and every 653 

isolate (i.e. the root of the whole tree) was not present in any of the sampled individuals.  654 

 655 

Each phylogeny analysed is annotated with a reconstruction of the transition process using a 656 

modified maximum-parsimony approach to assign internal nodes to hosts or to an extra 657 

“unassigned” state. The latter is given to lineages that either must have infected a host outside 658 

the dataset, or to those where the situation is sufficiently ambiguous that this cannot be ruled 659 

out. An important parameter of the reconstruction, designated k, is used to help identify dual 660 

infections and contaminants. It acts as a penalty, in the parsimony algorithm, for the 661 

reconstruction of single infections showing unrealistic within-host diversity. A suitable value of k 662 

will depend on the pathogen under study, but as a rule of thumb, we suggest estimating a level 663 

of pairwise genetic diversity that it would be unrealistic to see in an infection from a single 664 
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source, and using the reciprocal of this for k. In situations where the phyloscanner user is 665 

confident that dual infections and contaminants are not present, k can be set to zero, in which 666 

case no penalty for within-host diversity is applied. 667 

 668 

The results of the reconstruction can be represented as a visualisation of the partial pathogen 669 

transmission tree by the process of ‘collapsing’ each subgraph (i.e. each set of adjacent nodes 670 

with the same reconstructed host; see supplementary Fig. S3) into a single node of a new tree 671 

structure. This “collapsed tree” is then analysed to identify relationships between each pair of 672 

infected individuals, according to the following categories: 673 

 674 

1. Minimum distance: what is the smallest patristic distance between a phylogeny node 675 

assigned to one host and a node assigned to the other? 676 

2. Adjacency: is there a path on the phylogeny that connects the two individuals’ subgraphs 677 

without passing through a third individual? (“Unassigned” nodes do not interrupt 678 

adjacency.) 679 

3. Topology: how are the regions from each individual arranged with respect to each other? 680 

(See supplementary Fig. S4.) 681 

 682 

Combinations of these properties can be used to develop criteria which identify individuals who 683 

are closely linked in the transmission chain. For example, two individuals that are adjacent and 684 

within a suitable distance threshold are likely to be either a transmission pair, or infected via a 685 

small number of unsampled intermediaries. If the distance between subgraphs is large, on the 686 

other hand, separation by unsampled hosts in the chain of transmission is likely even if they are 687 

adjacent. The nature of the topological relationship between them may suggest a direction of 688 

transmission, or be equivocal.  689 

 690 

An individual having multiple subgraphs suggests multiple infection, with the ancestor node of 691 

each subgraph inferred to be a distinct founder pathogen particle (the ancestor of that sampled 692 

subpopulation). It can be difficult to distinguish a dual infection from a sample that has been 693 

contaminated by another sample not present in the current data set (i.e. where contamination is 694 

not visible as exact duplication of another individual’s read). For NGS data we make the 695 

distinction in each phylogeny based on thresholds on read counts: outside of the subgraph 696 

containing the greatest number of reads, any additional (‘minor’) subgraph is designated as 697 

contamination and ignored if the number of reads it contains is below an absolute threshold, or 698 
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below a threshold relative to the read count in the largest subgraph. By default, minor 699 

subgraphs with read counts exceeding both thresholds are kept, providing evidence for the 700 

presence of multiple distinct subpopulations in that genomic window. (Alternatively, a 701 

phyloscanner option allows all minor subgraphs to be entirely removed from consideration). 702 

Zanini et al. (Zanini et al. 2015) discarded reads suspected of being contamination by 703 

calculating each read’s Hamming distance from the consensus, plotting the distribution of these 704 

distances, and discarding reads giving rise either to a second peak or to a ‘fat tail’ (taken to be 705 

recombinant reads). This approach is not appropriate when the data set may contain multiply 706 

infected individuals, for example for a dual infection we wish to keep the reads from each of two 707 

distinct groups that may be separated by a large distance. 708 

 709 

The phyloscanner Code  710 

 711 

phyloscanner is freely available at https://github.com/BDI-pathogens/phyloscanner. It is written in 712 

Python and R, but can be run from the command line so that no knowledge of either language is 713 

required. Inference of within- and between-host phylogenies from BAM-format mapped reads is 714 

achieved with a single command of the form 715 

phyloscanner_make_trees.py  ListOfBamsAndRefs.csv  --windows  1,300,301,600,... 716 

where ListOfBamsAndRefs.csv lists the BAM files to be analysed and the fasta-format references 717 

to which the reads were mapped, and the --windows flag above specifies analysis of the 718 

genomic windows with coordinates 1-300, 301-600, ... 719 

Analysis of those trees is achieved with a single command of the form 720 

phyloscanner_analyse_trees.R  TreeFiles  OutputLabel  [choice of ancestral state reconstruction].  721 

 722 

Included with the code is simple simulated HIV-1 data for ease of immediate exploration of 723 

phyloscanner. Within-host evolution was simulated using SeqGen (Rambaut and Grassly 1997); 724 

each resulting sequence was then converted into error-free fragments that were mapped back 725 

to the founding sequence, giving BAM-format files suitable as input for phyloscanner. We also 726 

created BAM-format files by using shiver to process publicly available HIV-1 reads sequenced 727 

with Illumina MiSeq. A tutorial walking the user through a simple application of phyloscanner to 728 

the simulated data, and a more sophisticated application to this real public data, is available 729 

from the GitHub repository with the code itself. 730 

 731 
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Running phyloscanner on the six HIV-1 samples presented in the first results section took 18 732 

minutes on one core of a standard laptop, 10 minutes of which was running RAxML. A number 733 

of options allow the user to speed up phyloscanner. Firstly it is ‘embarrasingly’ parallelisable, in 734 

that each window of the genome can be processed separately (e.g. the 54 windows used for the 735 

HIV data could have been processed via 54 jobs run in parallel). Secondly all options of RAxML 736 

can be passed as options to phyloscanner, including multithreading. Thirdly the number of 737 

unique sequences kept for phylogenetic inference can be controlled through various options, 738 

notably merging of similar reads and/or a minimum read count. Fourthly the user can easily use 739 

a different tool for phylogenetic inference instead of RAxML by using the --no-trees option of 740 

phyloscanner_make_trees.py, and running the desired tool on the fasta file of processed reads that 741 

is output for each window. (As an example running FastTree(Price et al. 2009) on the same data 742 

took 28 seconds instead of the 10 minutes needed by RAxML.) 743 

 744 
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