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ABSTRACT 
 
GIGGLE is a genomics search engine that identifies and ranks the significance of shared genomic loci 
between query features and thousands of genome interval files. GIGGLE scales to billions of intervals, is faster 
(+1,000X) than existing methods, and its speed extends the accessibility and utility of resources such as 
ENCODE, Roadmap Epigenomics, and GTEX by facilitating data integration and hypothesis generation. 
GIGGLE is available at https://github.com/ryanlayer/giggle. 
 
INTRODUCTION 
 
The results from genome-wide assays (e.g., ChIP-seq, RNA-seq, variant calling) are often interpreted by 
comparing experimentally identified genomic loci to other known genomic features (e.g., open chromatin, 
enhancers, transcribed regions). While large-scale functional genomics projects have greatly empowered this 
type of analysis by characterizing the genomic regions associated with a wide range of genomic processes, 
interpretation is complicated by the thousands of results that span hundreds of different tissue types, assays, 
and biologic conditions. Effectively integrating these large, complex, and heterogeneous resources requires the 
ability to rapidly search the full dataset and identify the most statistically relevant features. While existing 
software such as BEDTOOLS1 and TABIX2 identify regions that are common to genome interval files, these 
methods were designed to investigate a limited number of files. More recent methods3,4 describe improved 
statistical measures, yet do not scale to the vast amount of data that is now available. 
 
We introduce GIGGLE as a fast and highly scalable genomic interval searching strategy that, much like web 
search engines did for the Internet, provides users with the ability to conduct large-scale comparisons of their 
results with thousands of reference datasets and genome annotations in seconds. GIGGLE enables the 
identification of novel and unexpected relationships among local datasets as well as the vast amount of 
publicly available genomics data through command line and web interfaces, as well as APIs in the C, Go, and 
Python programming languages. GIGGLE is based on a temporal indexing scheme5 that uses a B+tree to 
create a single index of the genome intervals from thousands of annotations and genomic data files (Figure 
1a). Each interval in an indexed file is represented by two keys in the tree that correspond to the interval’s 
bounds (start and end+1). Each key in a leaf node contains a list of intervals that either start at (indicted by a 
“+”) or have ended (indicated by a “-”) just prior to that chromosomal position. For example, in Figure 1a 
position 7 corresponds to a key in the second leaf node with the list [+T2, -B2]. This indicates that at 
chromosomal position 7, the second interval in the "Transcripts" file (T2) starts and the second interval in the 
"TF binding sites" file (B2) has ended. To find the intervals in the index that intersect a query interval (e.g. [1,5] 
in  Figure 1a), the tree is searched for the query start and end (shown in bold red in  Figure 1a), the keys 
within that range (shown in red in Figure 1a) are scanned, and intervals in the lists of those keys are identified 
as intersecting the query interval (see Online Methods for complete algorithmic details).  
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GIGGLE's potential for high scalability is based on two factors. First, identifying the number of overlaps 
between a query and any given annotation file is determined entirely within the unified index, thus eliminating 
the inefficiencies of existing methods, which must instead open and inspect the underlying data files. Second, 
the B+tree structure minimizes disk reads; this is vital to performance since databases of this scale will grow 
beyond the capacity of main memory and must be stored on disk. To measure GIGGLE's query performance, 
we created an index of the ChromHMM6 annotations curated by the Roadmap Epigenomics Project 
(Roadmap) from 127 tissues and cell lines. Each genome was segmented into 15 genomic states, yielding 
over 55 million intervals in the resulting GIGGLE index. When testing query performance with a range of 10 to 
1,000,000 query intervals, a GIGGLE was 2,336X faster than TABIX and 25X faster than BEDTOOLS (Figure 
1b) for the largest comparison. Similarly, using an index of 5,603 annotation files for the human genome (hg19, 
a total of 6.9 billion intervals) from the UCSC Genome browser, GIGGLE was up to 345X faster than TABIX 
and 8X faster than BEDTOOLS (Figure 1c).  
  

 
Figure 1. GIGGLE indexing, searching, performance, and score calibration. (a) A set of three genomic intervals files (transcription 
factor (TF) binding sites, promoters, and transcripts) (left, black) is indexed using a single (simplified) B+ tree (right). Intervals among 
the annotations overlapping a query interval (left, red) are found by searching the tree for the query start and end (right, bold red) and 
scanning the keys between these positions (right, red). (b) Run times for GIGGLE, BEDTOOLS, and TABIX considering random query 
sets with between 10 and 1 million random 100 base pair intervals against the CHROMHMM processing of Roadmap Epigenomics 
(1,905 files and over 55 million intervals). (c) Run times for the same method and queries against UCSC genome browser annotations 
(5,603 files and over 6.9 billion intervals). Here, the runtimes for GIGGLE and BEDTOOLS converge for query sizes exceeding 
hundreds of millions of intervals. While this is expected given the underlying computational complexities of the methods, this scenario 
far exceeds typical query set sizes. (d,e) A comparison between GIGGLE’s relationship estimates using a contingency table and Monte 
Carlo-based methods for (d) significance and (e) enrichment considering a search of MyoD ChIP-seq peaks against CHROMHMM 
predictions from Roadmap. 
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Speed is essential for searching data of this scale, but, as with internet searches, it is arguably more important 
to rank order results by their relevance to the set of query intervals. Ranking requires a metric that quantifies 
the degree of similarity between the query intervals and each interval file in the GIGGLE index. Monte Carlo 
(MC) simulations are commonly used in genomics analyses7,8 to compare the observed number of 
intersections to a null distribution of intersections obtained by randomly shuffling intervals thousands of times 
and testing the number of intersections in each trial. While MC simulations are an effective method for pairs of 
interval sets, they are computationally intractable for large-scale datasets since thousands of permutations are 
required for each interval file.  
 
GIGGLE eliminates this complexity by estimating the significance and enrichment between the query intervals 
and each indexed interval file with a Fisher’s Exact Test and the odds ratio of a 2x2 contingency table 
containing the number of intervals that are in (1) both the query and indexed file, (2) solely the query file, (3) 
solely the indexed file, and (4) neither the query file nor the indexed file. The first three values are directly 
computed with a GIGGLE search, and the last value is estimated by the difference between the union of the 
two sets and the quotient of the mean interval size of both sets and the genome size. These estimates are well 
correlated with the Monte Carlo results (Figure 1d, Figure 1e) and have the favorable property of near instant 
computation.  
 
GIGGLE ranks query results by a composite of the product of -log10(p-value) and log2(odds ratio). This 
"GIGGLE score" avoids some of the issues that arise when using only p-values to select top hits. In MC 
simulations, the proportion of values that are more extreme than the observation (i.e., the p-value) is highly 
dependent on the variance of the trials. When the variance MC distribution is low, observations that are only 
marginally larger than the expected value may be significant, yet not interesting biologically. For example, one 
result from the search of MyoD ChIP-seq peaks against Roadmap had a low enrichment (1.7X), but the 
variance of the MC simulations was also low (88.36) making the observation significant (p < 0.001). Similarly, 
when the MC distribution variance is high, large enrichments may not reach significance. These effects are 
mitigated by combining significance and enrichment into the GIGGLE score.  
 
While the GIGGLE score can be used to rank results, it is also insightful to use all scores to visualize the full 
spectrum of relationships between a query set and all indexed interval sets. For example, a heatmap of 
GIGGLE scores from a search of MyoD ChIP-seq peaks against the GIGGLE index of Roadmap (Figure 2a) 
illustrates MyoD's important and specific role in muscle tissues. Similarly, a search of GWAS SNPs associated 
with Crohn's disease11 (Figure 2b) shows that variants cluster in immune cell enhancers. While these results 
illuminate the dynamics of individual features, the speed of GIGGLE (<0.3s for Crohn’s SNPs) allows 
researchers to conduct exploratory research on a massive scale. For example, GIGGLE can quickly (3.5s) 
query sets of GWAS SNPs for 39 different traits11 against Roadmap to not only confirm that the enrichment of 
SNPs in immune cell enhancers is present in other autoimmune diseases and absent in non-autoimmune 
traits11 (Figure 2c, left), but to also show that there is no cell-specific pattern in transcribed regions for either 
set of traits (Figure 2c, right). 
 
We emphasize that GIGGLE is a completely general framework that enables researchers to efficiently explore 
any collection of intervals sets. For example, using a GIGGLE index of all ChIP-seq datasets available from 
Cistrome12 (5,992 files, 8,716,024 intervals), we quickly (<3 min) performed a full pair-wise comparison of the 
270 factors (734,249 intervals) available for the MCF-7 breast cancer cell line. From this comparison, distinct 
subsets become clear, including coordinated genomic binding of CTCF, RAD21, and STAG1, indicative of 
regions involved in long-range interactions13–15, and estrogen receptor ɑ (ER) co-occurrence with other 
transcription factors (Group 1 and Group 2 in Supplemental Figure 2, respectively). Focusing specifically on 
ER (Figure 2d) uncovers sequence-specific transcription factors known to play important roles in ER genomic 
binding (FOXA116, GATA317 and PR18) and co-factors that are involved in estrogen-induced gene regulation 
(EP30019 and NCAPG20). One unexpected finding from this large-scale analysis of MCF-7 ChIP-seq data is the 
strong co-occurrence of histone variant H2AFX20,21 and ER co-factor GREB122 (Group 3 in Supplemental 
Figure 2), suggesting a potential physical interaction between these factors.   
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GIGGLE also provides the infrastructure to integrate data sources. For example, we developed a web interface 
that allows users to further investigate interesting results from Roadmap (e.g., MyoD ChIP-seq and Myoblast 
enhancers) by a querying a GIGGLE index of the UCSC genome browser data (Supplemental Figure 3). 
Those results are visualized in the genome browser as a dynamic “smartview” where only the tracks with at 
least one overlap are visible. Other GIGGLE indices can also be used to verify results. For example, we 
recapitulated the top hits from the GIGGLE search of both MyoD ChIP-seq peaks and Crohn’s disease GWAS 
SNPs against Roadmap with similar searches against an index of the FANTOM5 data23 (1,825 files, 
11,284,790 intervals) (Supplemental Tables 1-4). This is especially promising since FANTOM5 and Roadmap 
are based on fundamentally different assays, and therefore provide orthogonal corroboration of these 
biological relationships. These examples illustrate GIGGLE's ability to confirm previously characterized 
associations, and demonstrate the discovery potential afforded by GIGGLE's rapid, prioritized searches.  
 
The exploratory power of a single interface from which many datasets can be searched is unmatched by any 
current method, and has the possibility to dramatically advance large-scale, integrative analyses. GIGGLE is 
capable of powering a single access point that will inform researchers and clinicians of all known experiments 
and curated annotations that are associated with a particular genomic region. In summary, GIGGLE provides a 
new engine with which to conduct large-scale, in silico "screens" of multi-dimensional genomics datasets in 
search of insights into genome biology in diverse experimental contexts. 
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Figure 2.  Visualization of GIGGLE scores from various searches. Darker red (higher GIGGLE scores) indicate more enrichment and 
darker blue (lower GIGGLE scores) indicate more depletion versus the expected value. The relationships between (a) MyoD ChIP-seq 
peaks and (b) genome-wide significant SNPs for Crohn’s disease and 15 genomic states across 127 different cell types and tissues 
predicted by ChromHMM for Roadmap. Black boxes within panels highlight (a) muscle and (b) immune tissues and cell types. (c)  
Results from the enhancer (major left column) and strong transcription (major right column) tracks from ChromHMM for Roadmap when 
considering GWAS SNPs for 21 autoimmune disorder (minor left) and 18 non-autoimmune traits (minor right). The black boxes highlight 
immune tissues and cell types. (d) The relationships between ESR1 ChiP-seq binding sites and the binding sites from 105 other ChiP-
seq experiments (38 different unique factors) in MCF-7 cells. Darker red (higher GIGGLE scores) indicate more enrichment. Black 
boxes highlight the relationships between ESR1 and FOXA1, GATA3, PR, EP300 and NCAPG. 
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ONLINE METHODS 
 
The GIGGLE Index. The GIGGLE index is based on a previously described temporal indexing method and 
consists of a set of B+Trees, one for each chromosome, represented among the database interval files. A 
B+Tree is a generalization of a binary tree where each node can have multiple keys, internal nodes contain 
only keys and facilitate tree searching, leaf nodes contain the key-value pairs, and adjacent leaf nodes are 
linked. Each key in an internal node is linked to two child nodes. The “left” link points to a node with keys that 
are less than the current key and the “right” link points to a node with keys that are greater than or equal to the 
current key. In the GIGGLE index, keys represent chromosomal positions, and the values associated with keys 
are lists of intervals that either start at that position (indicated by a “+” in Figure 1a and Supplemental Figure 
1) or have ended just prior to that position (indicated by a “-” in Figure 1a and Supplemental Figure 1). Leaf 
nodes also contain a “leading” key (“L” in Supplemental Figure 1, omitted from Figure 1a) that stores 
intervals that start prior to the first key in the leaf, but have not ended by the last key in the prior leaf node (e.g., 
interval T1 in Supplemental Figure 1). While the leading values contain redundant information and require 
extra storage, they improve performance by preventing queries from having to load and scan other leaf nodes 
for intervals that start in some earlier leaf node (e.g interval T1). 
 
Bulk Indexing. To improve indexing efficiency, GIGGLE performs “bulk” indexing across many pre-sorted 
interval files (see Data Format And Sorting Requirements, Supplemental Figure 1a). In bulk indexing, a 
priority queue is used to is used to select the interval with the next lowest start position among the full set of 
files. The queue is loaded with one (the first) interval from each file and as intervals are removed from the 
queue the next interval from the corresponding file is added to the queue. For example, in Supplemental 
Figure 1b, Step 1 considers interval P1 from the Promoters file and Step 2 considers interval B1 from the TF 
binding sites file. Afre P1 is considered the next interval in the Promoters file (P2) is added to the queue. 
Similar in step 2 for B2 in the TF binding sites file. 
 
Each interval is inserted into both the B+Tree based on its start position and an auxiliary priority queue that is 
keyed by the end coordinate (plus one). This priority queue is used to add intervals to the leading values and 
insert end positions into the B+Tree. If the start position of the current interval has been previously observed, 
then the interval start is added to the list of the existing value (intervals B2, P2, and T2 in Steps 4, 5, and 6 in 
Supplemental Figure 1b). Otherwise a new key is added to the current leaf for the start position (assuming 
the current leaf has not reached its maximum number of keys, which is set to 100 by default), and the interval 
start (“+”) is added to the new list that is associated with that key (intervals P1, B1, and T1 in Steps 1, 2, and 3 
in Supplemental Figure 1b). Before a key is added for a new start position, all intervals with end-values less 
than or equal to the start value are removed from the priority queue and the interval ends (”-”) are either added 
to the lists of existing keys (interval B1 in Steps 4 in Supplemental Figure 1b) or new keys are created 
(intervals P1, T1, B2, P2, and T2 in Steps 4 and 6 in Supplemental Figure 1b). If at any point the current 
node becomes full, then a new leaf node is created, all intervals in the priority queue are added to the leading 
key value of the new node, and the new key is added to the new node (Step 4 in in Supplemental Figure 1b). 
Once all files have been processed and leaf node construction is complete, internal nodes are added by 
promoting the first key in each leaf node (other than the leftmost node) to a parent node (Step 7 in 
Supplemental Figure 1b). This process continues one level at a time until there is only one parent node. 
 
Searching the GIGGLE Index. A B+Tree search starts at the root node, proceeds down internal nodes, and 
terminates at a key in a leaf node. At each node in the search path, an internal search is performed among the 
keys in the node. While the current node is not a leaf node, the result of that search determines the next node 
in the path. If the matching key is less than or equal to the query, the path will follow the key’s the “right” link, 
otherwise it will follow the key’s “left” link. When the keys of a leaf node have been searched, the leaf and 
matching key are returned. 
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For a given query interval, GIGGLE performs a specialized range query to find overlapping intervals (the 
intersecting set) across all indexed files. First, the B+Tree is searched for the query interval's start and end 
values, which gives the start leaf node and start key and the end leaf node and end key, respectively (Step 1 in 
Supplemental Figure 1c). Next, the intervals in the leading value of the start leaf node are added to the 
intersecting set (Step 2 in Supplemental Figure 1c). Then the keys in the leaf node are scanned from the first 
value up to and including the start key. At each key, starting intervals (“+”) are added to the intersecting set 
and ending intervals (“-”) are removed (Step 3 and 4 in Supplemental Figure 1c). Last, the remaining keys up 
to and including end key are scanned and the starting intervals are added at each key (Step 5 and 6 in 
Supplemental Figure 1c). If the start key does not equal the end key, then the search will use the links 
between leaf nodes. 
 
Data Format And Sorting Requirements. For indexing, GIGGLE supports VCF files 
(https://samtools.github.io/hts-specs/VCFv4.3.pdf) and BED files 
(https://genome.ucsc.edu/FAQ/FAQformat.html#format1) that have been sorted and bgzipped 
(https://github.com/samtools/htslib). Sorting is ascending lexicographical by chromosome, then ascending 
numerically by start and then by end. For searching, GIGGLE supports bgzipped VCF and BED files. These 
need not be sorted, but sorted files are likely to perform better due to cache performance. We provide a script 
in the GIGGLE repository (https://github.com/ryanlayer/giggle/blob/master/scripts/sort_bed) that can sort and 
bgzip full directories using multiple processors. Otherwise the following command can be used on individual, 
uncompressed BED files: 
 
LC_ALL=C sort --buffer-size 2G -k1,1 -k2,2n -k3,3n track.bed | bgzip -c > track.bed.gz 

 
DATA SOURCES:  
 
CHROMHMM / Roadmap Epigenomics data source. Tissue-based annotations were downloaded from: 
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel
/final/all.mnemonics.bedFiles.tgz 
These files were subsequently split and renamed into tissue/state-based files (e.g. Spleen/Enhancers). 
Detailed methods underlying this process can be found at: 
https://github.com/ryanlayer/giggle/blob/master/examples/rme/README.md 
 
UCSC Genome Browser data source. The full set of hg19 annotations were downloaded from: 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database. The files with identifiable chromosome, start, and 
end values are converted to BED files. Detailed methods underlying this process can be found at: 
https://github.com/ryanlayer/giggle/blob/master/examples/ucsc/README.md 
 
MyoD ChIP-seq data source. ChIP-seq peaks from GSM1218850 are downloaded from: 
ftp://ftp.ncbi.nlm.nih.gov/geo/samples/GSM1218nnn/GSM1218850/suppl/GSM1218850_MB135DMMD.peak.tx
t.gz 
Peaks with a q-value greater than or equal to 100 are retained: Detailed methods underlying this process can 
be found at: 
https://github.com/ryanlayer/giggle/blob/master/examples/myod/README.md 
 
GWAS variants for 39 autoimmune and non-autoimmune traits data source: A spreadsheet with a list of 
traits, chromosome, start, end, and other fields was downloaded from: 
https://www.nature.com/nature/journal/v518/n7539/extref/nature13835-s1.xls 
Detailed methods underlying this process can be found at: 
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https://github.com/ryanlayer/giggle/blob/master/examples/gwas/README.md 
 
Fantom5 data source: The enhance expression matrix and associated metadata was downloaded from: 
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/Human.sample_name2library_id.txt 
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2_e
xpression_count_matrix.txt.gz 
Values were extracted from the matrix and placed in tissue-specific files. Detailed methods underlying this 
process can be found at: 
https://github.com/ryanlayer/giggle/blob/master/examples/fantom/README.md 
 
Cistrome data data source: Reanalyzed ChIP-seq narrow peaks from raw GEO data was downloaded from: 
http://cistrome.org/db/interface.htm 
With the following fields selected: Human_TF, Human_histone, Human_chromatin_accessibility, Human_other. 
Only peaks with a q-value greater than 100 were retained. For Figure 2d, all files had to pass two Cistrome 
CQ metrics: fraction of reads in peaks, and at last 500 peaks had to have 10 fold enrichment. We also 
removed files with less than 100 peaks with a q-value greater than or equal to 100. Detailed methods 
underlying this process can be found at: 
https://github.com/ryanlayer/giggle/blob/master/examples/cistrome/README.md 
 
EXPERIMENTS:  
 
Speed tests: Runtimes were for counting the number of intersection between a query set and a database set 
for GIGGLE (https://github.com/ryanlayer/giggle), BEDTOOLS (https://github.com/arq5x/bedtools2), and TABIX 
(https://github.com/samtools/htslib). The query sets had between 10 and 1 million 100 basepair intervals, and 
the databases were the ChromHMM predictions from Roadmap Epigenomics and the hg19 annotations from 
the UCSC genome browser. All tests were performed using a single core on the 2. 4GHz Intel Xeon processor 
(E5-2680 v4) with 25 MB of cache and a 510 MB/s read 485 MB/s write SSD drive (SM863a). Detailed 
methods underlying this process can be found at: 
https://github.com/ryanlayer/giggle/blob/master/experiments/speed_test/README.md 
 
Relationship comparison: Two pairs of methods for quantifying the relationship between a query interval set 
and a database interval set were compared: the Fisher’s exact test of a 2x2 contingency table versus a Monte 
Carlo-base p-value and the odds ratio of a 2x2 contingency table versus a Monte Carlo-base enrichment. The 
query set was the GWAS variants associated with Crohn’s disease, and the database was the ChromHMM 
predictions from Roadmap Epigenomics. Monte Carlo simulations were performed using BITS 
(https://github.com/arq5x/bits), a simulation was performed for the intersection of the GWAS variants and each 
tissue/genomic state interval set, and each simulation consisted of 1,000 rounds. Detailed methods underlying 
this process can be found at: 
https://github.com/ryanlayer/giggle/blob/master/experiments/mc_vs_table/README.md 
 
MyoD heat map: The GIGGLE scores for MyoD ChIP-seq peaks searched against  the ChromHMM 
predictions from Roadmap Epigenomics. Only the peaks with a q-value greater that 100 were used. The cell 
line and tissue names are in Supplementary File 1. Detailed methods underlying this process can be found at: 
https://github.com/ryanlayer/giggle/blob/master/experiments/chipseq/README.md 
 
Crohn’s disease heat map and Autoimmune / non-autoimmune heat map: The GIGGLE scores for the 
sets of GWAS variants associated with Crohn's disease and other traits were searched against the 
ChromHMM predictions from Roadmap Epigenomics. For Figure 2c, the left two columns correspond to the 
scores from the Enhancer state from ChromHMM for each tissue and the right two columns correspond to the 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2017. ; https://doi.org/10.1101/157735doi: bioRxiv preprint 

https://doi.org/10.1101/157735
http://creativecommons.org/licenses/by/4.0/


 

scores from the Strong Transcription state. Within these major columns the left minor column corresponds to 
the autoimmune disorders and the right minor column to the non-autoimmune traits. The categorization of 
these traits was retained from Farh et al11. The cell line and tissue names are in Supplementary File 1. The 
autoimmune disorders and the non-autoimmune traits are listed in Supplemental File 1. Detailed methods 
underlying this process can be found at: 
https://github.com/ryanlayer/giggle/blob/master/experiments/gwas/README.md 
 
Cistrome ER: The GIGGLE scores for the ChIP-seq peak files of ERS1 from the MCF-7 cells line that passed 
quality control (described above) were searched against all other MCF-7 cell line results that also passed 
quality control. Only the peaks with a q-value greater that 100 were used. The full set of accession numbers is 
Supplementary File 1. Detailed methods underlying this process can be found at: 
https://github.com/ryanlayer/giggle/blob/master/experiments/cistrome/README.md 
 
Cistrome MCF-7: The GIGGLE scores for all ChIP-seq peak files from the MCF-7 cell line that passed quality 
control were searched against themselves. Only the peaks with a q-value greater that 100 were used. The full 
set of accession numbers is Supplementary File 1. Detailed methods underlying this process can be found at: 
https://github.com/ryanlayer/giggle/blob/master/experiments/cistrome/README.md 
 
GIGGLE COMMAND LINE AND PROGRAMMING INTERFACES 
 
Command line interface 
Indexing. 
giggle index -i “intervals/*.bed.gz” -o interval_index -s 
 
Searching. 
giggle search -i interval_index -r chr1:1000000-2000000 
giggle search -i interval_index -q query.bed.gz 
 
C interface 
Indexing. 
#include "giggle_index.h" 
 
int main(int argc, char **argv) { 
    uint64_t num_intervals = giggle_bulk_insert(“intervals/*.bed.gz”, “interval_index”, 1); 
    return 0; 
} 
       
Searching. 
#include "giggle_index.h" 
 
int main(int argc, char **argv) { 
    struct giggle_index *gi = giggle_load(“interval_index”,   
                                          block_store_giggle_set_data_handler); 
    struct giggle_query_result *gqr = giggle_query(gi,“chr1”,1000000,2000000,NULL); 
    uint32_t i; 
    for(i = 0; i < gqr->num_files; i++) { 
        struct file_data *fd = file_index_get(gi->file_idx, i); 
        if (giggle_get_query_len(gqr, i) > 0 )) { 
            char *result; 
            struct giggle_query_iter *gqi = giggle_get_query_itr(gqr, i); 
            while (giggle_query_next(gqi, &result) == 0) 
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                printf("%s\t%s\n", result, fd->file_name); 
            giggle_iter_destroy(&gqi); 
        } 
    } 
    giggle_query_result_destroy(&gqr); 
    giggle_index_destroy(&gi); 
    return 0; 
} 
 
Python interface: https://github.com/brentp/python-giggle 
Indexing. 
from giggle import Giggle 
index = Giggle.create('interval_index', 'intervals/*.bed.gz') 
 
Searching. 
from giggle import Giggle 
index = Giggle('interval_index')  
print(index.files) 
result = index.query('chr1', 9999, 20000) 
print(result.n_files) 
print(result.n_total_hits) 
print(result.n_hits(0)) 
for hit in result[0]: 
    print(hit) # hit is a string 
 
Go interface: https://github.com/brentp/go-giggle 
Indexing. 
import ( 
    giggle "github.com/brentp/go-giggle" 
    "fmt" 
)  
 
func main() { 
    index := giggle.New("interval_indexr", "intervals/*.bed.gz") 
} 
 
Searching. 
import ( 
    giggle "github.com/brentp/go-giggle" 
    "fmt" 
)  
 
func main() { 
    index := giggle.Open("interval_index") 
    res := index.Query("1", 565657, 567999) 
    // all files in the index 
    index.Files() 
    // int showing total count 
    res.TotalHits() 
    // []uint32 giving number of hits for each file 
    res.Hits() 
    var lines []string 
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    # access results by index of file. 
    lines = res.Of(0) 
    fmt.Println(strings.Join(lines, "\n")) 
    lines = res.Of(1) 
} 
 
SUPPLEMENTARY TABLES 
 
Supplementary Table 1. Top GIGGLE results for MyoD ChIP-seq peaks against the CHROMHMM 
Roadmap data set 

Roadmap Cell Type / Genomic State GIGGLE Score Odds Ratio Fisher’s exact test 

HSMM Skeletal Muscle Myoblasts / 
Enhancers 

1205.91 65.34 1.02e-200 

HSMM Skeletal Muscle Myotubes / 
Enhancers 

1188.27 60.23 1.05e-201 

HSMM Skeletal Muscle Myotubes / 
Flanking Active TSS 

1188.08 60.35 1.415e-201 

HSMM Skeletal Muscle Myoblasts / 
Flanking Active TSS 

1136.93 49.98 3.39e-202 

Fetal Muscle Leg / Enhancers 1008.06 32.45 1.56e-201 

 
Supplementary Table 2. Top GIGGLE results for MyoD ChIP-seq peaks against the FANTOM5 data set 

FANTOM5 Cell Type GIGGLE Score Odds Ratio Fisher’s exact test 

Skeletal muscle cells differentiated into 
Myotubes donor 1 

311.51 40.97 7.03e-59 

Skeletal Muscle Cells donor 1 188.26 28.90 1.614e-39 

Myoblast differentiation to myotubes day 
10 donor 1 

 154.52 32.22 1.44e-31 

Myoblast donor 3 146.10 29.67 1.34e-30 

Myoblast differentiation to myotubes day 2 
donor 3 

137.15 10.51 3.80e-41 

 
Supplementary Table 3. Top GIGGLE results for Crohn’s disease GWAS SNPs against the CHROMHMM 
Roadmap data set 

Roadmap Cell Type / Genomic State GIGGLE Score Odds Ratio Fisher’s exact test 

Primary T CD8+ naive cells / Enhancers 154.68 6.68 3.55e-57 

Primary T helper cells / Enhancers 115.32 5.63 5.616e-47 

Primary T CD8+ memory cells /Enhancers 113.43 6.19 7.45e-44 

Fetal Thymus  / Enhancer 113.09 5.92 8.54e-45 
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Primary T helper cells / Enhancers 112.8 5.81 3.82e-45 

 
Supplementary Table 4. Top GIGGLE results for Crohn’s disease GWAS SNPs against the FANTOM5 
data set 

FANTOM5 Cell Type GIGGLE Score Odds Ratio Fisher’s exact test 

CD14+ monocytes 97.05 21.89 1.59e-22 

CD4+ CD25+ CD45RA- memory 
regulatory T cells 

95.46 24.10 1.61e-21 

Dendritic Cells 90.34 32.59 1.06e-18 

CD14+ monocyte 87.69 17.40 5.22e-22 

CD4+ CD25- CD45RA- memory 
conventional T cells 

86.47 28.0 1.02e-18 
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SUPPLEMENTARY FIGURES 
 

 
Supplemental Figure 1. (a) Three example annotation sets shown graphically (left) and encoded in files (right) by start position, end 
position, and ID. (b) GIGGLE’s bulk indexing process. (c) The GIGGLE interval search process. 
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Supplemental Figure 2. The GIGGLE scores for all pairwise combinations of the ChIP-seq datasets for the MCF-7 cell line. Group 1 
highlights the relationship between CTCF, RAD21, and STAG1. Group 2 highlights ERS1, FOXA1, GATA3, and EPS300. Group 3 
shows an unexpected relationship between H2AFX and GREB1. 
 

Group 1

Group 2

Group 3
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Supplemental Figure 3. A web interface that integrates data from of Roadmap and the UCSC genome browser. (a) Users specify 
either a single interval or file to upload as the query, and the server responds with the GIGGLE results from an index in a heatmap. In 
this case the index is of CHROMHMM prediction from Roadmap. The color of each cell indicates the GIGGLE score, and users can 
click on a cell (e.g., Myoblast enhancers, marked in red) for more information. (b) When a cell is selected by the user, a window opens 
that contains the list of intervals in that particular Roadmap cell type/genome state annotation that overlap the query. Each interval is a 
link that can be followed (e.g., chr1:33642000-33642800, marked in red) for more information. (c) When an interval is selected, that 
interval becomes a query to a GIGGLE index of the UCSC genome browser tracks. The result gives the set of tracks that contain an 
interval that overlaps the query, and the web interface opens a window with a “smartview” where only those tracks with overlaps are 
displayed. 
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