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Abstract	  
Combining sensory inputs over space and time is fundamental to vision. Population receptive field 
models have been successful in characterizing spatial encoding throughout the human visual pathways. 
A parallel question—how visual areas in the human brain process information distributed over time—
has received less attention. One challenge is that the most widely used neuroimaging method—fMRI—
has coarse temporal resolution compared to the time-scale of neural dynamics. Here, via carefully 
controlled temporally modulated stimuli, we show that information about temporal processing can be 
readily derived from fMRI signal amplitudes in male and female subjects. We find that all visual areas 
exhibit sub-additive summation, whereby responses to longer stimuli are less than the linear prediction 
from briefer stimuli. We also find fMRI evidence that the neural response to two stimuli is reduced for 
brief interstimulus intervals (indicating adaptation). These effects are more pronounced in visual areas 
anterior to V1-V3. Finally, we develop a general model that shows how these effects can be captured 
with two simple operations: temporal summation followed by a compressive nonlinearity. This model 
operates for arbitrary temporal stimulation patterns and provides a simple and interpretable set of 
computations that can be used to characterize neural response properties across the visual hierarchy. 
Importantly, compressive temporal summation directly parallels earlier findings of compressive spatial 
summation in visual cortex describing responses to stimuli distributed across space. This indicates that 
for space and time, cortex uses a similar processing strategy to achieve higher-level and increasingly 
invariant representations of the visual world. 

 

Keywords: Functional MRI, Population Receptive Fields, Temporal Summation, Visual Cortex, 
Adaptation, visual hierarchy 

Significance	  statement	  
Combining sensory inputs over time is fundamental to seeing. Two important temporal phenomena are 
summation, the accumulation of sensory inputs over time, and adaptation, a response reduction for 
repeated or sustained stimuli. We investigated these phenomena in the human visual system using 
fMRI. We built predictive models that operate on arbitrary temporal patterns of stimulation using two 
simple computations: temporal summation followed by a compressive nonlinearity. Our new temporal 
compressive summation model captures (1) subadditive temporal summation, and (2) adaptation. We 
show that the model accounts for systematic differences in these phenomena across visual areas. 
Finally, we show that for space and time, the visual system uses a similar strategy to achieve 
increasingly invariant representations of the visual world.   
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1.	  Introduction	  	  
A fundamental task of the visual system is to combine sensory information distributed across space and 
time. How neural responses sum inputs across space has been well characterized, with several robust 
phenomena. First, spatial summation in visual cortex is subadditive: the response to two stimuli 
presented in different locations at the same time is less than the sum of the responses to the stimuli 
presented separately. This phenomenon is observed in all cortical areas studied and has been 
measured with both fMRI (Kastner et al., 2001; Kay et al., 2013a) and electrophysiology (Rolls and 
Tovee, 1995; Britten and Heuer, 1999; Heuer and Britten, 2002; Winawer et al., 2013); such 
nonlinearities may reflect an adaptation to achieve efficient encoding of natural images (Schwartz and 
Simoncelli, 2001). In addition, in higher visual areas, receptive field size increases (Maunsell and 
Newsome, 1987) and sub-additive summation becomes more pronounced (Kay et al., 2013a; Kay et al., 
2013b). As the subadditivity becomes more pronounced in later areas and receptive fields get larger, a 
stimulus that occupies only a small fraction of a neural receptive field can produce a large response. As 
a result, responses in higher visual areas become increasingly insensitive to changes in the size and 
position of stimuli (Tovee et al., 1994; Grill-Spector et al., 2001; Kay et al., 2013a). The tendency 
towards increasing tolerance for size and position in higher areas trades off with the increasing 
specificity of tuning to higher level stimulus information (Rust and Dicarlo, 2010, 2012). 

Here, we hypothesize that the same organizational principles for the visual cortex apply in the temporal 
domain (Figure 1). Just as natural images tend to vary slowly over space, image sequences typically 
vary slowly over time (Dong and Atick, 1995; Weiss and Adelson, 1998). As a result, an efficient code 
would prioritize abrupt changes in time over sustained or repeated stimuli (Snow et al., 2016); this 
would result in sub-additive temporal summation for sustained or repeated stimuli (also referred to as 
adaptation or repetition suppression). Evidence for such temporal non-linearities are abundant in single 
cell recordings of primary visual cortex (for example, Tolhurst et al., 1980), but have not been 
systemically characterized across visual areas or with a forward model. At longer time scales, the fMRI 
BOLD signal sums contrast patterns close to, but slightly less than, linearly (Boynton et al., 1996; 
Boynton et al., 2012). We hypothesize that (1) at the time scale of neuronal dynamics in sensory cortex 
(tens to hundreds of ms), temporal summation will be substantially subadditive, and (2) that more 
anterior visual areas will show greater subadditivity. This greater subadditivity in later areas will make 
these responses less sensitive to the precise duration and timing of a stimulus, paralleling size and 
position tolerance in the spatial domain. This prediction is consistent with the logic that later visual 
areas trade off position and duration specificity for increased tuning for high level stimulus properties.  
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Figure 1. Parallels between spatial and temporal processing. It is well established that spatial receptive fields are small in 
V1 (left) and grow larger in later visual areas such as the temporal occipital maps (‘TO’, right). It was recently shown that there 
is also a gradient of an increasingly pronounced compressive summation over space from early to later areas (Kay et al., 
2013a). Here, we hypothesize that temporal summation, as well as the temporal receptive field size, follows a similar pattern, 
with increasingly long temporal windows and more compressive summation over time in the more anterior visual areas. We 
propose that the combination of larger spatiotemporal windows and more compressive nonlinearities is part of a coding 
strategy whereby higher visual areas achieve increasing invariance to changes in stimulus size, position, and duration. 

In this paper, we used fMRI to study temporal summation and adaptation. We characterized responses 
to brief stimuli (tens to hundreds of ms) in many visual areas, measured with fMRI, which has the 
advantage of being non-invasive and recording from many visual areas in parallel. To quantify and 
understand how temporal information is encoded across visual cortex, we implemented a temporal 
population receptive field (“pRF”) model which predicts the fMRI response amplitude to arbitrary 
stimulus time courses.  

2.	  Materials	  and	  methods	  	  

2.1	  fMRI	  procedure	  

Participants	  

Data from six experienced fMRI participants (two males and four females, age range 21- 48, mean age 
31) were collected at the Center for Brain Imaging (CBI) at NYU. All participants had normal or 
corrected-to-normal visual acuity. The experimental protocol was approved by the University Committee 
on Activities Involving Human Subjects, and informed written consents were obtained from all 
participants prior to the study. For each participant, we conducted a 1-hour session for visual field map 
identification and high-resolution anatomical volumes, and either one or two 1.5-hour sessions to study 
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temporal summation. Two of the six participants (one male, one female) were included in both the main 
temporal summation experiment and the self-replication experiment (hence two 1.5-hour sessions). The 
other four participants (one male and three females) were included in only the main temporal 
summation experiment or the self-replication experiment.  

Visual	  Stimuli	  

Stimuli. For the main experiment, stimuli were large field (24° diameter) band-pass noise patterns 
(centered at 3 cycles per degree), independently generated for each trial. The pattern was chosen 
because it was previously shown to be effective in eliciting responses in most visual areas (Kay et al., 
2013b). (See Kay et al (2013b) for details on stimulus construction). A second experiment replicated all 
aspects of the main experiments except that the stimulus patterns differed. For this experiment, the 
patterns were either pink noise (1/f amplitude spectrum, random phase), or a front-view face image 
embedded in the pink noise background. The face stimuli were the front-facing subset of the faces used 
by Kay et al (2015). For both experiments, stimuli were windowed with a circular aperture (24° 
diameter, 768 x 768 pixels) with a raised cosine boundary (2.4 deg). All stimuli were gray scale. 
Stimulus generation, presentation and response recording were coded using Psychophysics Toolbox 
(Brainard, 1997; Pelli, 1997) and vistadisp (https://github.com/vistalab/vistadisp). We used a MacBook 
Air computer to control stimulus presentation and record responses from the participants (button 
presses) during the experiment.  

Display. Stimuli were displayed via an LCD projector (Eiki LC_XG250; resolution: 1024 x 768 pixels; 
refresh rate: 60 Hz) onto a back-projection screen in the bore of the magnet. Participants, at a viewing 
distance of ~58 cm, viewed the screen (field of view, horizontal: ~32°, vertical: ~24°) through an angled 
mirror. The images were confined to a circular region with a radius of 12º. The display was calibrated 
and gamma corrected using a linearized lookup table.  

Fixation task. To stabilize attention level across scans and across participants during the main 
experiment, all participants were instructed to do a one-back digit task at the center of fixation 
throughout the experiment, as in previous publications (Kay et al., 2013a; Kay et al., 2013b). The digit 
(0.24° x 0.24°) was presented at the center of a neutral gray disk (0.47° diameter). Within a scan, each 
digit (randomly selected from 0 to 9) was on for 0.5 second, off for 0.167 second before the next digit 
appeared at the same location. Participants were asked to press a button when a digit repeated. Digit 
repetition occurred around 2-3%, with no more than two identical digits being presented successively. 
To reduce visual adaptation, all digits alternated between black and white, and on average participants 
pressed a button every 30 seconds. During the retinotopy task, the fixation alternated pseudo-randomly 
between red and green (switches on average every 3s), and the participant pressed a button to indicate 
color changes. 

Experimental	  Design	  

We used a randomized event-related experimental design (Figure 2A-B) to prevent participants from 
anticipating the stimulus conditions. An event is a stimulus presented according to one of thirteen 
distinct time courses (< 800 ms in total), either a single pulse with variable duration or a double pulse 
with fixed duration and variable inter-stimulus interval (ISI). Durations and ISIs were powers of 2 times 
the monitor dwell time (1/60 s). Each pulse in the double-pulse stimuli lasted 134 ms. The 0-ms 
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stimulus was a blank (zero-contrast, mean luminance, and hence identical to the preceding and 
subsequent blank screen between stimulus events). For the main experiment, each participant 
completed seven scans, and within a scan, each temporal event repeated 4 times. A temporal event 
started with the onset of a pattern image, and the inter-trial interval (stimulus plus subsequent blank) 
was always 4.5 seconds. For stimuli with two pulses, the two noise patterns were identical. The design 
was identical for the self-replication experiment, except that each time course repeated three times per 
scan instead of 4, and each participant completed 6 scans.  

 

Figure 2. Experimental design and analysis. (A) Participants were presented with one or two pulses of large field (24°) 
spatial contrast patterns. One-pulse stimuli were of varying durations and two-pulse stimuli were of varying ISI (with each 
pulse lasting 134ms). (B) The temporal conditions were presented in random order, indicated by the white bars in the 13-
column design matrix (one column per temporal condition). To analyze the data, we extracted a ß-weight for each temporal 
condition per area using a variant of the general linear model, GLM denoise. (C) Nine visual field maps or visual field maps 
pairs were bilaterally identified for each participant (V1; V2; V3; hV4; VO-1/2; V3A/B; IPS-0/1; LO-1/2; TO-1/2).  

MRI	  Data	  Acquisition	  

All fMRI data were acquired at NYU Center for Brain Imaging (CBI) using a Siemens Allegra 3T head-
only scanner with a Nova Medical phased array, 8-channel receive surface coil (NMSC072). For each 
participant, we collected functional images (1500 ms TR, 30 ms TE, and 72-degree flip angle). Voxels 
were 2.5mm3 isotopic, with 24 slices. The slice prescription covered most of the occipital lobe, and the 
posterior part of both the temporal and parietal lobes. Images were corrected for B0 field inhomogeneity 
using CBI algorithms during offline image reconstruction.  

In a separate session, we acquired two to three T1-weighted whole brain anatomical scans (MPRAGE 
sequence; 1mm3). Additionally, a T1-weighted “inplane” image was collected with the same slice 
prescription as the functional scans to aid alignment of the functional images to the high-resolution T1-
weighted anatomical images. This scan had an inplane resolution of 1.25 x 1.25 mm and a slice 
thickness of 2.5 mm. 
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Data	  Preprocessing	  and	  Analysis	  

Data preprocessing. We co-registered and segmented the T1-weighted whole brain anatomical images 
into gray and white matter voxels using FreeSurfer’s auto-segmentation algorithm 
(surfer.nmr.mgh.havard.edu). Using custom software, vistasoft (https://github.com/vistalab/vistasoft), 
the functional data were slice-time corrected by resampling the time series in each slice to the center of 
each 1.5s volume. Data were then motion-corrected by co-registering all volumes of all scans to the first 
volume of the first scan. The first 8 volumes (12 seconds) of each scan were discarded for analysis to 
allow longitudinal magnetization and stabilized hemodynamic response. 

GLM analysis. For analysis of the temporal summation functional data, we used a variant of the GLM 
procedure—GLM denoise (Kay et al., 2013c), a technique that improves signal-to-noise ratios by 
entering noise regressors into the GLM analysis. Noise regressors were selected by performing 
principle component analysis on voxels whose activities were unrelated to the task. The optimal number 
of noise regressors was selected based on cross-validated R2 improvement (coefficient of 
determination). The input to GLM denoise was the pre-processed EPI data and a design matrix for each 
scan (13 distinct temporal profiles x number of volumes per scan), and the output was Beta-weights for 
each temporal profile for each voxel, bootstrapped 100 times across scans (Figure 2B). For analysis, 
we normalized all 13 Beta-weights per voxel by the vector length and selected a subset of voxels (see 
Voxel selection). We then averaged the Beta-weights for a given temporal condition from the first 
bootstrap across voxels within each ROI and across all participants to get a mean; this gives one 
estimate of the mean response per ROI for a given condition. This was repeated for each condition, and 
then repeated for each of the 100 bootstraps, yielding a matrix of 100 x 13 for each ROI (bootstraps by 
temporal condition). GLM denoise was not applied to the visual field map measurements, since these 
experiments did not have an event-related design, and hence are not amenable to a GLM analysis. 

ROI identification. We fitted a linear population (‘pRF’) model (Dumoulin and Wandell, 2008) to each 
subject’s retinotopy data (average of two scans). We made an initial guess of ROI locations by first 
projecting the maximum likelihood probabilistic atlas from Wang et al (2015) onto the cortical surface. 
Then we visualized eccentricity and polar angle maps derived from the pRF model fits and modified 
ROI boundaries based on visual inspection. For each participant, we defined nine bilateral ROIs (V1, 
V2, V3, hV4, VO-1/2, LO-1/2, TO-1/2, IPS-0/1) (Figure 2C). For the second experiment (self-
replication), in addition to the nine ROIs from the main experiment, we also identified a bilateral face-
selective region of interest. This ROI included face-selective voxels in the inferior occipital gyrus (‘IOG-
faces, or ‘Occipital Face Area’) and in the posterior fusiform (pFus, or ‘FFA-1’) (Gauthier et al., 2000; 
Weiner and Grill-Spector, 2010). We identified these areas by taking the difference between the mean 
fMRI response to all face images and the mean response to all noise images, and then thresholding the 
difference for voxels at the two anatomical locations (IOG and pFus), as described previously (Weiner 
and Grill-Spector, 2010; Kay et al., 2015). 

Voxel selection. All analyses were restricted to voxels that satisfy the following three criteria. First 
voxels must be located within 2-10° (eccentricity) based on the pRF model. Second, voxels must have 
a positive Beta-weight for the average across all non-blank temporal conditions (and averaged across 
bootstraps). The bootstraps, computed by GLM denoise, were derived by sampling with replacement 
from the repeated scans. Third, voxels must have > 2% GLM R2. Voxels that satisfy all criteria were 
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averaged within a participant to yield 13 beta weights per ROI per participant per 100 bootstraps. The 
data were then averaged across participants. Averaging within a participant prior to averaging across 
participants ensures that the contribution for each participant has the same weight, irrespective of the 
numbers of voxels per participant.  

Hemodynamic	  response	  function	  (HRF)	  for	  individual	  ROIs	  

In section 3.8, we estimated an HRF for each ROI to test whether the use of ROI-specific HRFs, rather 
than a single HRF for each subject, altered the pattern of results. We estimated the HRFs using two 
experiments, the retinotopic mapping experiment and the temporal summation experiment. In both 
cases, we assumed that the HRF was parameterized by the difference between two gamma functions 
with five free parameters (Friston et al., 1998; Worsley et al., 2002). For the retinotopy HRF, we used 
the vistasoft pRF code, which uses an iterative approach alternating between fitting the pRF 
parameters and the HRF parameters: first the HRF is assumed to have default parameters for all voxels 
and the pRF parameters are fit; then the pRF parameters are fixed and the HRF is found which 
maximizes the mean variance explained across voxels in an ROI; finally, the HRF parameters are fixed 
and the pRF parameters are refit. This procedure was done separately for each ROI.  

To estimate HRFs from the temporal experiment, we first selected voxels for each ROI as described in 
voxel selection. We averaged the output time series from GLMdenoise (0-mean, polynomial detrended, 
and noise PCs regressed-out) from the selected voxels within each ROI to estimate a set of Beta-
weights. As with the retinotopy experiment, we estimated the HRF and a set of Beta-weights for each 
ROI using an iterative procedure. Each HRF was parameterized using the difference between two 
gamma functions with five free parameters (same as for retinotopy), and was seeded using the same 
vistasoft default parameters (see rmHrfTwogamms.m). The iterative fitting procedure terminates when 
the two types of fits converge. 

2.2	  Temporal	  pRF	  Models	  
We used two variants of a temporal pRF model, one linear and one non-linear, to predict neuronal 
summation measured using fMRI. All model forms take the time course of a spatial contrast pattern as 
input (Tinput), and produce a predicted neuronal response time course as output. To predict the fMRI 
data (BOLD), we summed the predicted time course within a trial (< 1 s) to yield one number per 
temporal condition. For model fitting, these numbers were compared to the fMRI Beta-weights, derived 
from the GLM denoise analysis.  

Models	  

Linear model. The linear model prediction is computed by convolving a neuronal impulse response 
function (IRF) with the stimulus time course (Tinput), and scaling by a gain factor (g) 

𝑅!"#$%& = 𝑔   𝐼𝑅𝐹   ∗ 𝑇!"#$%  

The time course is then summed for the fMRI predictions (plus an error term, e): 

𝐵𝑂𝐿𝐷!"#$%! = 𝑔   𝐼𝑅𝐹   ∗ 𝑇!"#$% + 𝑒 

For the IRF, we assumed a gamma function, parameterized by 𝜏!, of the form, 
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𝐼𝑅𝐹 = 𝑡 ∗   exp −𝑡/𝜏  
Because the IRF was assumed to have unit area, the specific shape of the IRF has no effect on the 
predictions of the linear model, and the prediction reduces to: 

𝐵𝑂𝐿𝐷!"#$%& = 𝑔 𝑇!"#$% + 𝑒 

and the only value solved for is the gain factor, g.  

Compressive temporal summation model (CTS). The CTS model is computed with a linear convolution, 
followed by a divisive normalization. The linear step is identical to the linear model. For the divisive 
normalization:  

𝐵𝑂𝐿𝐷!"# = 𝑔   
𝑥!

𝜎! + 𝑥!
+ 𝑒 

𝑥 =   𝐼𝑅𝐹(𝜏)   ∗ 𝑇!"#$% 

we solved for τ, σ, and gain factor g for the CTS model. In section 3.9, we implemented two additional 
variations of this model. In the first variation, we relaxed the exponent from 2 to n, and fitted 4 
parameters, τ, σ, n, and the gain factor g.  

𝐵𝑂𝐿𝐷!"# = 𝑔   
𝑥!

𝜎! + 𝑥!
+ 𝑒 

In the second variation, we allowed the exponent in the numerator to be different from that in the 
denominator, and we fitted 5 parameters, τ, σ, n, m, and g. 

𝐵𝑂𝐿𝐷!"# = 𝑔   
𝑥!

𝜎! + 𝑥!
+ 𝑒 

Compressive summation model (CTS) with power law implementation. In section 3.9, we implemented 
the CTS model with a power law nonlinearity rather than divisive normalization. To compute the model 
predicted neuronal response, we first computed the linear response by convolving an IRF (gamma 
function with variable time to peak τ) with an input stimulus time course, identical to the normalization 
implementation. Then an exponent ε is applied point-wise to the predicted linear output.  

𝑅!"# = 𝑔   𝐼𝑅𝐹(𝜏)   ∗ 𝑇!"#$%
! 

To fit the CTS model with a power law to the fMRI data, we again summed the predicted response time 
series: 

𝐵𝑂𝐿𝐷!"# = 𝑔    𝐼𝑅𝐹(𝜏)   ∗ 𝑇!"#$%
! + 𝑒 

and solved for τ1, ε, and g.  

Because of the nonlinearity, the specific shape of the impulse response function does matter, in 
contrast to the linear model. This version of the CTS model is identical to the normalization 
implementation, except that the shape of the compressive non-linearity due to the power law is slightly 
different from the shape obtained using divisive normalization. 
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Two temporal channels (TTC) model. We implemented a two-temporal-channels model, previously 
used for fitting V1 responses to temporal variation in luminance (Horiguchi et al., 2009). The two 
temporal channels model consists of a linear combination of the outputs from a sustained and a 
transient temporal channel. The output of the sustained channel is computed by convolving an impulse 
response function with the stimulus. The output of the transient channel is computed by convolving the 
transient impulse response function with the stimulus time course, then squared point-wise in time. The 
sustained IRF has a positive mean and the transient IRF has a zero mean, as implemented by 
(Horiguchi et al., 2009) for fMRI data. This IRF form was previously used for modeling psychophysical 
data (Watson, 1982; McKee and Taylor, 1984). The outputs from both channels are weighted by 
parameter a and b. 

𝐵𝑂𝐿𝐷!!" = {𝑎[𝐼𝑅𝐹_𝑠𝑢𝑠𝑡𝑎𝑖𝑛𝑒𝑑     ∗ 𝑇_𝑖𝑛𝑝𝑢𝑡  ]     +   𝑏 𝐼𝑅𝐹!"#$%&'$! ∗ 𝑇!"#$%
!} 

The form of both the sustained and the transient channel IRFs is the same: 

𝐼𝑅𝐹!!" = (
𝑡
𝑥
)!𝑒!! ! −   

1
𝑦
  (
𝑡
𝑧
)!𝑒!! ! 

with t being time, and x, y and z take values [3.29, 14, and 3.85] respectively for the sustained IRF, and 
[2.75, 11, 3.18] for the transient IRF.  

Parameter	  estimation	  and	  model	  fitting	  

All models except the linear model were fit in two steps, a grid fit followed by a search fit, as described 
below. (Also, see script trf_fitModel.m.) 

CTS model – normalization implementation. For the grid fit, we computed the model response to the 13 
temporal conditions for 100 combinations of τ and σ (τ values from 10-3 to 1 with 10 equal steps, and σ 
from 10-3 to 0.5 with 10 equal steps). For each ROI, the parameter pair generating the predictions with 
the highest correlation to the data was then used as a seed for the search fit. This was repeated 100 
times per ROI, once for each bootstrap of the data. See trf_gridFit.m and trf_fineFit.m. 

We then did a search fit using a bounded nonlinear search algorithm in Matlab (fminsearchbnd.m), 100 
times per ROI, using the 100 sets of bootstrapped Beta-weights, and the 100 seed values as derived 
above. The search finds the parameters that minimize the squared error between predicted and 
measured Beta-weights. The lower bound used for the search fit is [10-3, 10-4, 0] for τ, σ, and g, a 
scaling factor. The upper bound was [1, 1, 1].  This gave us 100 estimates of each model parameter for 
each ROI, which we summarized by the median and 50% confidence interval.  

Additionally, for section 3.9, we implemented the normalization model with additional free parameters. 
To fit the first variation of the normalization model (free parameters: τ, σ, n, g), we used the same ten 
steps grid fit for τ and σ as in the previous model. For n, a ten-step grid with equal steps from 0.1 and 6 
was used. In the search fit stage, same bound was used for τ, σ, and g as in the previous model, and 
the bound for n was [0, 10]. To fit the second variation of the normalization model (free parameters: τ, 
σ, n, m, g), the same ten-step grid was used for both n and m in the search stage, and the same bound 
for both exponents was used in the search stage.  
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CTS model – exponential implementation. For the grid fit, we computed the model responses to the 13 
temporal conditions for 100 combinations of τ and ε (τ values from 10-3 to 1 with 10 equal steps; ε 
values from 10-3  to 2 with 10 equal steps). The procedure to select the best fitting parameter pair and 
the search fit step is the same as above. The lower bound we used for the search fit is [0.02, 0.001, 0] 
for τ, ε, and g (a scaling factor). The upper bound was [1, 2, 1]. See trf_gridFit.m and trf_fineFit.m. 

Two temporal channels model. For the grid fit, we generated a 10 by 10 grid for the sustained and the 
transient weight (from 10-5  to 1 with 10 equal steps). Then we implemented the search fit step as 
above, with lower bound [0, 0] and upper bound [1, 1]. See trf_gridFit.m and trf_fineFit.m. 

Linear model. The linear model does not require a search or seeds. Instead, we fit the 100 
bootstrapped data sets per ROI by linear regression, giving us 100 estimates of the gain factor, g, per 
ROI.  

Statistical	  analysis	  

We compared model accuracy of the CTS and the linear model. Because the models have different 
numbers of free parameters, it is important to obtain an unbiased estimated of model accuracy, which 
we did by leave-one-out cross validation. For each ROI, and for each of the 100 bootstrapped sets of 
Beta-weights, we fit 13 linear models and 13 CTS models by leaving out each of the 13 temporal 
stimuli. For each bootstrap, we thus obtained 13 left-out predictions, which were concatenated and 
compared to the 13 Beta-weights by coefficient of determination, R2: 

 
This yielded 100 R2’s per ROI, and we summarized model accuracy as the median and 50% confidence 
interval derived from these 100 values.  

Note that the coefficient of determination, R2, is bounded by [-∞, 1], as the residuals between model 
and data can be larger than the data. In contrast, r2 is bounded by [0, 1]. 

Noise ceilings. The noise ceiling represents the highest accuracy a model can achieve given the signal-
to-noise ratio in the data, irrespective of the specific model used. We computed noise ceilings 
stochastically based on the mean and standard error of the GLM-Beta weights from bootstrapped 
estimates, as implemented in (Kay et al., 2013a).  

Flat model. We computed a model that assumes the BOLD responses to all stimuli are identical (‘flat 
model’) as a further basis of comparison to the CTS and linear models. Like the CTS and the linear 
model, the accuracy of the flat model was computed by leave-one-out cross validation. (The cross-
validated predictions from the flat model are not quite identical across conditions, because the mean is 
affected by the left-out data.) 

Parameter Recovery. To estimate how well model parameters are specified, for each visual area, we 
simulated the CTS model responses by first generating the predicted fMRI Beta-weight for each 
temporal condition. The parameters used for simulation were the median of each of the parameters 
from the bootstrapped fits to the data. We then added noise to each Beta-weight by randomly sampling 

R2 = 100 × 1−
(MODEL − DATA)2∑

DATA2∑
⎡

⎣
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⎢

⎤
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from a normal distribution whose standard deviation was matched to the standard error in the 
bootstrapped data, averaged across the temporal conditions. We added noise 1,000 times per ROI, and 
then solved the CTS model for the 1,000 simulated responses using the same procedure used with the 
actual data. The parameters recovered from this fitting procedure provide an estimate of how well 
specified each parameter is given the form of the model (including the parameters) and the noise level 
in the data. 

2.3	  Public	  Data	  Sets	  and	  Software	  Code	  
To ensure that our computational methods are reproducible, all data and all software are made publicly 
available via an open science framework site, https://osf.io/v843t/. The software repository includes 
scripts of the form trf_mkFigure2 to reproduce figure 2, etc., as in prior publications (e.g., Winawer and 
Parvizi, 2016).  

3.	  Results	  

3.1	  Measuring	  temporal	  summation	  in	  visual	  cortex	  
In each trial of the experiment, participants viewed either one or two pulses of a static spatial contrast 
pattern. The pattern was an independently generated band-pass noise image (24° diameter), used in 
prior studies of spatial encoding (Kay et al., 2013a; Kay et al., 2013b). For the two-pulse trials, the two 
spatial patterns were identical. Each trial used one of thirteen distinct time courses (Figure 2A). The 
durations of the one-pulse stimuli and the ISIs of the two-pulse stimuli were the same: 0, 1, 2, 4, 8,16, 
32, or 64 video frames of a 60 Hz monitor (i.e., 0, 17, 33, 67, 134, 267, 533 ms). Each pulse in the 2-
pulse stimuli was 8 frames (134 ms). The 0-ms one-pulse stimulus was a blank (mean luminance), and 
the two-pulse stimulus with 0 ISI was identical to the one-pulse stimulus of twice the length (16 frames, 
267 ms). Four participants were scanned, and data were binned into nine bilateral, eccentricity-
restricted (2-10°) visual areas defined from a separate retinotopy scan (Figure 2C). 

The fMRI data were analyzed in two stages. First, we extracted the amplitude (Beta-weight) for each of 
the 13 temporal conditions using a variation of the general linear model, “GLM denoise” (Kay et al., 
2013c), a technique that improves the signal-to-noise ratio by including noise regressors in the GLM 
(Figure 2B). Second, we fitted the temporal pRF model to the GLM Beta-weights, averaged across 
voxels within ROIs. 

3.2	  Temporal	  summation	  in	  visual	  cortex	  is	  subadditive	  
We tested the linearity of the fMRI BOLD signal in each visual area. To do so, we assume a time-
invariant linear system such that the BOLD amplitude (GLM Beta-weight) is proportional to the total 
stimulus duration within the trial. Due to the linearity assumption, the form of the neural impulse 
response function does not affect the pattern of the predicted BOLD amplitudes. For example, the linear 
prediction is that a stimulus of duration 2t produces twice the amplitude as a stimulus of duration t, and 
the same amplitude as a two-pulse stimulus, with total duration 2t (Figure 3A). This prediction is not 
borne out by the data. The response to a stimulus of length 2t is about 75% of the linear prediction in 
V1 and 50% in area TO (a homolog of macaque areas MT and MST) (Figure 3B, left panel). This 
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systematic failure of linearity is found in all visual areas measured, with temporal summation ratios 
below 0.8 for all ROIs, and a tendency toward lower ratios in later areas (Figure 3C). The BOLD 
amplitudes to all stimuli are low (<1%) because the stimuli are brief, compared to measurements of 
visual cortex using moving stimuli or a block design with multiple static stimuli, where percent BOLD 
changes can be several percent. 

	  
Figure 3. Sub-linear temporal summation in visual cortex. (A) Linear temporal summation prediction. The sum of the 
responses to two separate events (top) is equal to the response to the two events in the same trial, with or without a brief gap 
between them (bottom). (B) Sub-linear temporal summation. Gray circles are the measured responses to a 134-ms pulse, a 
268-ms pulse, and two 134-ms pulses, with either a 17-ms or 134-ms gap between pulses. Plots show the mean across 
participants and 50% CI (bootstrapped across repeated scans within each participant). The green circles and dotted lines are 
the linear prediction based on the response to the single 134-ms pulse. For V1, the measured responses are less than the 
linear prediction except when there is a long gap. For area TO, all responses are less than the linear prediction. (C) Temporal 
summation ratio. Temporal summation ratio is the response to a stimulus of length 2x divided by twice the response to a single 
pulse stimulus of length x, averaged across 5 stimulus pairs (17 and 34 ms, 34 and 68 ms, etc.). Linear summation occurs 
when the temporal summation ratio is 1. The temporal summation ratio is less than 1 in all visual areas, indicating 
compressive temporal summation. The ratio is higher in early visual areas (~0.7 in V1-V3), and lower in later areas (~0.5 to 
0.65). Error bars represent the 50% CI (bootstrapped across scans). The ROIs on the x-axis are arranged in order of 
increasing spatial pRF size at 5 deg eccentricity, as a proxy for order in the visual hierarchy. Figure made from the script 
trf_mkFigure3.m. 

A further failure of linearity occurs for trials with two pulses and variable ISI: the response is larger when 
the ISI is longer, especially in V1. The linear prediction is that the amplitudes are the same, and double 
the response to the one-pulse stimulus (Figure 3B, right). When the ISI is relatively long (528 ms), the 
response in V1 is close to the linear prediction made from the one-pulse stimulus. In TO, even with a 
long ISI the response is still well below the linear prediction. This pattern, whereby the response to a 
second stimulus is reduced for short ISIs, and larger for longer ISIs, is often called adaptation and 
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recovery (Priebe et al., 2002; Kohn, 2007). For TO, the recovery time is longer than V1, and longer than 
the longest ISI we tested. 

3.3	  The	  temporal	  subadditivity	  is	  captured	  by	  a	  compressive	  temporal	  summation	  model	  
(CTS)	  
We modeled the temporal subadditivity with a compressive temporal summation model (“CTS”) (Figure 
4A). The CTS model has a Linear-Nonlinear (LN) structure. The linear stage convolves the stimulus 
time course with a temporal impulse response function (parameterized by the time constant τ). The 
nonlinear stage passes the linear output through a static nonlinearity, divisive normalization. The 
normalization is implemented by squaring the linear response at each time point (as in (Heeger, 1992)), 
and dividing this by the sum of two terms, a semi-saturation constant (σ) and the linear response, both 
of which are squared (Heeger, 1992). Squaring is widely used for modeling neural computations such 
as color (Helmholtz, 1886; Koenderink et al., 1972) and motion (Adelson and Bergen, 1985; Simoncelli 
and Heeger, 1998). The normalization model was developed to describe responses at the level of 
single neurons. However, we can generalize it to an fMRI voxel by assuming that the neurons within a 
voxel share a normalization pool, and the voxel sums across neurons within it. In this case, the 
normalization equation has the same term in the numerator and denominator, as implemented in the 
CTS model. (See also: Relationship to Divisive Normalization in (Kay et al., 2013a).)  

We illustrate the effect of the CTS model with example responses to brief stimuli (17 ms and 33 ms), 
assuming an impulse response function with time constant 100-ms (Figure 4B). For a linear model, the 
predicted response to the longer stimulus peaks at almost double the value of the briefer stimulus. For 
the CTS model with a large σ, the response more than doubles for the long stimulus compared to the 
brief stimulus, due to the squaring in the numerator. When σ is small, the model is compressive, as the 
response to the longer stimulus is very similar to the brief stimulus. 

To relate the CTS model output to the BOLD signal, we summed the predicted CTS output for a trial, 
and scaled this by a gain parameter, g, to convert to units of percent BOLD change. We sum the CTS 
output to give a single value per temporal condition, which can be compared to the Beta-weight in each 
condition, fit from the GLM. If we instead convolve the time-varying CTS model prediction with an HRF, 
rather than convolving the summed CTS model prediction with the HRF, the predicted BOLD response 
is nearly identical (Figure 4C). We note that while we refer to the model as compressive, technically the 
normalization model amplifies the output when the instantaneous linear response is low due to the 
squaring in the numerator, and compresses the response when the amplitude is high. However, for all 
temporal conditions we tested, the model output is compressive in the sense that the predicted 
response for any of our single pulse stimuli is less than the linear prediction from a briefer stimulus. 
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Figure 4. Compressive temporal summation (CTS) model. (A) The CTS model. The CTS model takes the binary stimulus 
time course for a trial as input (1 whenever the contrast pattern is present, 0 whenever it is absent). The input is convolved 
with an impulse response function parameterized by τ to produce a linear prediction. The second stage is a divisive 
normalization computation. The numerator is the linear prediction raised point-wise and squared. The denominator is the sum 
of the squared semisaturation constant, σ2, and the squared linear response. Finally, the time-varying CTS prediction is 
summed and scaled (g) to predict the percent BOLD response. The CTS model was fit for each ROI by finding the values of τ, 
σ, and g that minimized the squared error between the model predictions and the GLM Beta-weights. (B) Predicted neural time 
series. The left panel shows predictions from a linear model to a 17-ms and 33-ms stimulus, assuming an impulse response 
function with time constant 100ms. The other two panels show the CTS model predictions with large σ (middle) and small σ 
(right). When σ is small, the predicted time series are similar for the two stimuli. (C) CTS-predicted BOLD time series. CTS 
model predictions were computed for two stimuli, a 128-ms and a 512-ms single pulse stimulus (assuming τ = 0.05; σ = 0.01). 
The CTS model predictions were then passed through a hemodynamic response function (HRF) in one of two ways, either by 
convolving the CTS model prediction with the HRF (dashed lines), or by convolving the HRF with a single number for each 
stimulus, the sum of the CTS model prediction (solid lines). For each stimulus, the predicted response to the summed CTS 
response and to the time-varying CTS response is almost identical.  Further, the BOLD response to the longer stimulus is the 
same shape as the response to the briefer stimulus, just scaled in amplitude.  

We compared the CTS model to a linear model by measuring cross-validated accuracy. The CTS 
model is more accurate than the linear model for all areas (Figure 5). The linear model substantially 
underpredicts responses to short durations and overpredicts responses to long durations, whereas the 
CTS model does not. Further, the predictions of the linear model do not depend on ISI, whereas the 
CTS model correctly predicts that the response amplitude increases with longer ISI. The cross-
validated CTS model predicts the left-out fMRI responses with accuracy between 81% and 98% across 
the 9 ROIs. This represents a large improvement compared to the linear model for every area (Figure 
5B). The improvement is especially pronounced in later than early areas (LO/TO/IPS vs. V1-V3).  
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The CTS model is also more accurate than a flat model (Figure 5B). The flat model predicts the same 
response amplitude to all stimuli. This indicates that although the BOLD responses are relatively small 
(low percent signal change) and compressive (similar for different duration stimuli), there are 
nonetheless meaningful differences in the response amplitudes to different temporal conditions. 
Importantly, the CTS model accurately captures these differences, as it is substantially more accurate 
than the flat model. One notable exception is area TO, where the BOLD responses are most 
compressive: here the CTS model is only slightly more accurate than the flat model (and both are much 
more accurate than the linear model). In contrast, the linear model is more accurate than the flat model 
only in early visual areas (V1-V3) and less accurate in higher visual areas.  

	  
Figure 5. CTS model fits to BOLD data across visual areas. (A) Data and predictions. BOLD responses to each temporal 
condition averaged across participants are plotted as circles. The temporal conditions on the x-axis show increasing durations 
of one-pulse stimuli (0 to 533 ms; left) and increasing ISI of two-pulse stimuli (0 to 533 ms, right). Stimulus temporal conditions 
are as in Figure 2A. Error bars show the 50% CI bootstrapped across repeated scans. Predictions for the linear (green) and 
CTS (red) model fits are computed by leave-out-one-condition cross-validation. Shaded regions represent the 50% CI of the 
predictions across bootstraps (not visible for most of the linear fit because the CI is narrow). (B) The cross-validated accuracy 
(x-R2) is higher for the CTS model, compared to the linear model in each area. Each circle represents the median cross-
validated R2 for each model and the error bar is the 50% CI across bootstraps. (Figure made from the script trf_mkFigure5.m.) 

We note that although the cross-validated accuracy of the CTS model is high (close to the noise ceiling 
in all areas), some data points appear to deviate systematically from the model predictions – for 
example, the response to the 17-ms single-pulse stimulus is under-predicted in TO, and the 67-ms 
single pulse stimuli are under-predicted in multiple areas. We do not try to interpret these particular data 
points as they were not robust to replication (section 3.6). 
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3.4	  The	  CTS	  model	  fits	  capture	  systematic	  differences	  between	  areas	  
The CTS model is parameterized by τ, σ, and a gain factor, g. τ is the time to peak in the temporal 
impulse response function, and therefore is related to temporal summation window length; σ is the 
semisaturation constant, and reflects how much the CTS prediction deviates from the linear prediction. 
When σ is lower, the response is more compressive. The intuition for this is that when σ is small, the 
numerator and denominator have similar values, so that the model output is relatively invariant to 
stimulus duration (hence more compressive). In contrast, when σ is very large, the denominator is 
approximately a constant, so there is little normalization. In later visual areas (hV4 - IPS), σ is about 10 
times lower than earlier areas (V1 – V3ab) (~0.003 v ~0.03; Figure 6A, right), consistent with temporal 
summation being more sub-linear in the model-free summary (Figure 3C). The more pronounced sub-
linearity later in the visual hierarchy is qualitatively similar to the pattern found for spatial summation 
(Kay et al., 2013a). A consequence of more compressive temporal summation is that the response 
amplitude varies less with minor changes in stimulus duration, just as greater compression of spatial 
summation predicts more tolerance to changes in size and position (Kay et al., 2013a). From the 
current fMRI data set, there is also a tendency toward shorter time constants (τ) in earlier areas, with 
some exceptions (except for VO, V1-V3 have the smallest τ, ~50 ms; Figure 6A).  

The precision of our parameter estimates in each area depends on the BOLD noise level (the 
confidence interval of the Beta-weights), as well as the specific parameters estimated for that area. To 
understand how these factors interact, we simulated 1,000 data sets for each of 3 areas – V1, V3ab, 
and LO. The simulations used the median parameter fits for each area (τ and σ) to generate a 
noiseless prediction. We then added noise independently for each of the 1,000 predictions, according to 
the noise level in the fMRI measures for that area. Finally, we solved the CTS model for each of the 
predicted set of responses and analyzed the parameters. This parameter recovery analysis reveals two 
important results. First, it shows that the parameters for the different areas are distinguishable: models 
solved from simulations matched to V1, say, are not confusable with models solved from simulations 
matched to V3ab or LO (Figure 6B). Second, the analysis shows that the precision of the parameter 
estimates differs across areas. For example, for V1, τ is more precisely specified than σ, whereas for 
LO, σ is more precisely specified than τ (Figure 6B, insets). V3ab is intermediate. These simulations 
are consistent with the observation that model solutions on the bootstrapped data show a smaller 
confidence interval for τ than for σ in V1, and the reverse for LO (Figure 6A).  
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Figure 6. CTS model parameters and summary metrics. (A) CTS model parameter estimates. The estimated parameter σ 
is smaller for later (~0.003, hV4 - IPS), compared to earlier visual areas (~0.3, V1 – V3ab), indicating that the temporal sum in 
the later visual areas deviates more from the linear sum. The time constant τ is short in V1-V3, compared to most of the later 
visual areas. (B) CTS parameter recovery. The precision with which parameters can be fit depends on the noise level in the 
data and the specific parameter values. We simulated data using the median τ and σ from V1, V3ab, and LO, and the noise 
levels estimated from these areas. The analysis shows that under these conditions, τ (x-axes) is specified most precisely in V1 
and least precisely in V3ab; the opposite pattern is found for σ (y-axes). (C) Summary metrics. Two summary metrics of the 
CTS model reveal a pattern across ROIs. Rdouble is the ratio of the predicted response to a 200-ms pulse divided by twice the 
response to a 100-ms pulse. Rdouble is below 1 for all ROIs, indicating sub-additivity, and decreases along the visual hierarchy 
(V1-V3, ~0.67, LO-IPS, < 0.6). TISI is the length of ISI required for the response to two 100-ms pulses to approach the linear 
prediction. TISI is short in the earlier areas (V1-V3, ~100 ms) compared to most of the later areas. (Figure made from the script 
trf_mkFigure6.m.) 

To further examine the differences in temporal processing between ROIs, we summarized the CTS 
model predictions to each ROI response in terms of two metrics that have more directly interpretable 
units: Rdouble and TISI (Figure 6C). Rdouble is the ratio between the CTS-predicted BOLD response to a 
100-ms stimulus and a 200-ms stimulus. Lower Rdouble means more compressive temporal summation. 
Later visual areas have lower Rdouble than earlier ones. TISI is the minimal duration separating two 100-
ms pulses such that the response to the paired stimuli is close to the linear prediction from the single 
stimulus. Similar to previous measurements at longer time scales (Weiner et al., 2010; Mattar et al., 
2016), the recovery time is longer for later than earlier visual areas. 

3.5	  The	  CTS	  parameters	  do	  no	  vary	  systematically	  with	  eccentricities	  from	  2	  to	  12	  degrees	  
Prior work has shown that temporal encoding in V1 differs between fovea and periphery (Horiguchi et 
al., 2009). In a separate analysis, we asked whether the CTS model parameters differed as a function 
of eccentricity. We did not find reliable differences for parafovea (2º-5º) versus periphery (5º-10º), either 
in the response amplitude (Figure 7A) or in the summary metrics (Figure 7B). This may be due to the 
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limited range of eccentricities: Horiguchi et al (2009) found the biggest difference in temporal sensitivity 
between fovea and the far periphery (20º-60º), with only minimal differences between the low-to-mid 
eccentricity bins we tested.  

	  
Figure 7. CTS model fits by eccentricity. Data from the main fMRI experiment are re-plotted separating each ROI into 2 
eccentricity bins. (A) CTS model fit to low and high eccentricity bins. The left panels are the data and CTS model fits restricted 
to voxels with population receptive field centers within 2 - 5°.  The right panels are data and CTS model fits restricted to voxels 
within 5 - 10° eccentricity. (B) Summarized metrics for different eccentricity bins. The summarized metrics do not differ 
systematically between the two eccentricity ranges. Each dot represents the median of the metrics summarized for 100 
bootstraps of data (across scans), error bars represent 50% confidence interval. (Figure made from the script 
trf_mkFigure7.m.) 

3.6	  The	  CTS	  model	  fits	  replicate	  across	  experiments	  
We conducted a separate experiment with the identical temporal profiles and two different classes of 
images – pink noise and faces embedded in pink noise (Figure 8A). This experiment tests the 
generalizability across spatial pattern. Because faces were used as one of the textures in this 
experiment, we included an additional region of interest – a face-selective area, which is a combination 
of the occipital face area (OFA) and the fusiform face area (FFA). A single model was fit to each ROI for 
each participant, assuming independent gain parameters for the two stimulus classes, and the same 
time constant and semi-saturation constant. The results from the main experiment hold: all visual areas 
in the second experiment sum sub-linearly in time, with the CTS model fitting the data more accurately 
than the linear model (Figure 8B). Moreover, as with the main experiment, later areas tended to sum 
more sub-linearly compared to the earlier ones (Figure 8C). The response amplitudes are slightly lower 
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than those in the main experiment due to stimulus selectivity, and the responses are noisier due to 
fewer trials per condition; otherwise the pattern of responses is highly similar. 

	  
Figure 8. FMRI data and model fits from a second experiment. (A) Stimuli and V1 responses. The two stimulus classes – 
noise patterns and faces embedded in noise patterns, were randomly interleaved within runs. Temporal conditions were 
identical to those in Figure 4. The general pattern of responses and model fits are highly similar to those in the main 
experiment, with the CTS model fitting the data much more accurately than the linear model. (B) CTS model fit to extrastriate 
visual areas. The CTS model (red) fit the data more accurately than the linear model in all visual areas. (C) Parameters 
derived using the CTS model fit. The derived metrics, Rdouble and TISI show similar patterns as in the main experiment: 
decreased Rdouble and increased TISI in higher visual areas. (Figure made from the script trf_mkFigure8.m.) 

3.7	  Differences	  in	  parameters	  across	  ROIs	  are	  not	  explained	  by	  differences	  in	  HRFs	  	  
We found that the CTS parameters representing temporal processing differed systematically along the 
visual hierarchy, with a tendency towards a pronounced nonlinearity and longer time constant in later 
visual areas. These results were obtained with a model in which a single HRF was fitted to each 
individual subject, but not to each ROI separately. Fitting a single HRF to each area is robust in that it 
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reduces sensitivity to noise within an area as signal). However, if the actual HRF differs systematically 
across areas, then it is possible that enforcing a single HRF will result in biased estimates of the Beta-
weights.  In this section, we consider the possibility that the differences in derived metrics (Rdouble  and 
TISI) across ROIs might be explained by variations in the HRF rather than differences in the underlying 
neuronal responses.  

  
To address this question, we estimated a separate HRF for each ROI and each subject. We estimated 
the ROI-specific HRF in two ways: from the retinotopy experiment and from the first temporal 
experiment. For each area, the HRFs were parameterized as a difference of two gamma functions 
(Friston et al., 1998; Worsley et al., 2002). The resulting HRFs were broadly similar across ROIs. For 
example, the time course of the HRF of an intermediate area, hV4, is within a standard deviation of the 
time course of all other ROIs at almost all time points from both retinotopy and the temporal experiment 
(Figure 9A,B). There are some qualitative differences, such as a larger post-stimulus undershoot in 
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later areas, particularly as estimated by the temporal experiment (VO, LO, TO, IPS). To assess the 
impact of these modest differences in the HRFs across areas, we recomputed the CTS model 
parameters and the two derived summary metrics, Rdouble and TISI (Figure 9C). The general pattern of 
results is the same whether the HRFs are fit to each area or to each individual: Rdouble tends to decrease 
along the visual hierarchy, and TISI increases.  

3.8	  The	  CTS	  model	  is	  more	  accurate	  than	  a	  two	  temporal	  channels	  model	  in	  later	  visual	  areas	  
The CTS model was implemented to capture subadditive temporal summation using canonical neural 
computations (filtering, exponentiation, normalization). An alternative model, in which neuronal 
responses are thought to reflect the outputs of two temporal channels, has been proposed to account 
for psychophysical temporal sensitivity (Watson and Robson, 1981; Hess and Plant, 1985; Watson, 
1986) and fMRI responses in V1 (Horiguchi et al., 2009) and extrastriate cortex (Stigliani et al., 2017). 
This two-temporal-channels model linearly combines the output from a sustained and a transient 
temporal frequency channel. The sustained channel has a mostly positive IRF and is linear and the 
transient channel has a balanced (zero-sum) IRF and its output is squared (Figure 10A). The two 
temporal channels model contains filtering and exponentiation but not normalization. The specific forms 
of the impulse response functions in the two temporal channels model are derived from psychophysics, 
not neural data, and hence are assumed to be the same in all visual areas; the model is fit only by 
varying the relative weights of the two channels.  

We fit the two-temporal-channels model to the bootstrapped Beta-weights estimated from the first 
temporal experiment, and compared this to the CTS model fits. In early visual areas (V1 – V3), the two 
models have similar accuracy (as assessed by cross-validated R2). In later visual areas (for example, in 
LO, TO and IPS), the CTS model captures the data better. For the later areas, the two-temporal-
channels model systematically under-predicts Beta-weights for the one-pulse conditions, and over-
predicts the two-pulse conditions (Figure 10B-C): Because of the relatively brief time scales of the IRFs 
in the two-temporal-channels model, the predicted response to the second of two pulses is largely 
unaffected by the first pulse. This will result in an over-prediction for any visual area with long temporal 
windows. As noted earlier, measurements further in the periphery of V1 have greater sensitivity to 
stimulus transients (Horiguchi et al., 2009); it is therefore likely that had our measurements extended 
into the far periphery, the CTS model would need to be augmented with a second, transient channel.  
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Figure 10.  The CTS model describes data in later visual areas better than the two temporal channels model. (A) Two 
temporal channels model schematic. The model combines the outputs from a sustained channel (mostly positive IRF, linear 
output) and a transient channel (biphasic IRF, squared output). This model was used by Horiguchi et al. (2009) to fit FMRI 
data to temporal modulations in luminance. The fMRI implementation was adapted from previous models that account for 
psychophysical data (Watson, 1986). (B) The CTS and two-temporal-channels model fit the data about equally well in V1-V3, 
whereas the CTS model fits the data better in later areas (LO, TO, and IPS). In the later visual areas, the two-temporal-
channels model systematically under-predicts the response to the one-pulse stimulus and over-predicts the response to two-
pulse stimuli (lower four panels). (C) The cross-validated accuracy (x-R2) is higher for the CTS model in later areas. (D) The 
predicted weights for the sustained versus the transient channels differ across areas. The ratio between the weights for the 
transient versus for the sustained channels is plotted for each visual area (median, and 50% CI across bootstraps). Later 
visual areas tend to show increasingly high transient weights, consistent with Stigliani et al., 2017. (Figure made from the 
script trf_mkFigure10.m.)  

3.9	  Alternative	  implementations	  of	  CTS	  model	  
The nonlinear component of the CTS model was implemented as a divisive normalization. This model 
fit the data much more accurately than a linear model, and divisive normalization is a good descriptor of 
a wide range of neural phenomena (Carandini and Heeger, 2012). However, there are many choices of 
static nonlinearities. In prior work, a power law static nonlinearity was used to model compressive 
spatial summation in fMRI (Kay et al., 2013a; Winawer et al., 2013). Although the form of the two 
nonlinearities differ, we found that refitting the fMRI data with the power law nonlinearity produced 
results that were highly similar to the fits with the divisive normalization implementation (Figure 11). The 
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model accuracy was not distinguishable when using a power law vs divisive normalization, and the two 
derived metrices, Rdouble and Tisi, showed the same pattern. Hence the fMRI data in these experiments 
do not distinguish the two forms of the compressive nonlinearity. The power law nonlinearity has the 
advantage of ease of interpretation – the exponent indicates how much the response deviates from 
linear. Divisive normalization has the advantage of strong support from many neural systems 
(Carandini and Heeger, 2012). It might be possible to distinguish the two by measuring responses to 
stimuli with very brief durations or very low contrasts. One difference between the two nonlinearities is 
the precision in which parameters are recovered. For example, τ is recovered with high precision for 
most visual areas in the divisive normalization implementation; for the power-law implementation, the 
exponent ε is recovered more accurately than τ (simulations not shown). 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 14, 2017. ; https://doi.org/10.1101/157628doi: bioRxiv preprint 

https://doi.org/10.1101/157628
http://creativecommons.org/licenses/by/4.0/


 Page 25 of 34 

	  
Figure 11. CTS model implemented with a power-law nonlinearity. (A) Model description. The model is identical to that 
shown in Figure 4, except that the static nonlinearity is a power-law (parameterized by ε) rather than a divisive normalization. If 
ε is 1, the model is linear, and if ε is less than 1, it is compressive. (B) Cross-validated model fit to the data from the main fMRI 
experiment.  The model describes the data with high accuracy. See figure 5A for plotting conventions. (C) Model parameters. 
The estimated exponent ε is below 1 in each area, and is lower (more sub-linear) in later areas (~0.15, hV4-IPS versus ~0.25, 
V1-V3ab). The time constant τ is similar to that observed for the normalization fit. (D) Summary metrics. Rdouble is below 1 for 
all ROIs, indicating sub-additivity, and decreases along the visual hierarchy (V1-V3, ~0.67, LO-IPS, < 0.62).  TISI is short in the 
earlier areas (V1-V3, ~100 ms) compared to most of the later areas. (Figure made from the script trf_mkFigure7.m.) 

Finally, for completeness, we fit two other variants of the CTS model, one in which the exponent of 2 in 
the numerator and denominator was replaced by a free parameter, n, 
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These two variants of the CTS model increase the number of free parameters from 3 (τ, σ, and g) to 4 
and 5, respectively (Figure 12A). For the implementations with more free parameters, the multiple 
nonlinear parameters (σ and exponents) appear to trade-off to a certain degree, so that the error bars 
on the separate parameters tend to be larger than those for the simpler implementation of the CTS 
model. Moreover, as the models become more complex, the separate parameters are harder to 
interpret. For example, σ is an order of magnitude bigger in the rightmost compared to the leftmost 
model, but it is also raised to a higher exponent (n) in the rightmost model, hence the effect of 
normalization may be similar for the two models (Figure 12A).  

Because the individual model parameters are difficult to interpret, and the models differ in the number 
of free parameters, it is most informative to compare them on summary metrics. This shows that the 
same general pattern holds for all implementations: early visual areas (V1-V3) tend to have shorter Tisi 

and larger Rdouble (Figure 12B). Area TO is at the opposite extreme, with long Tisi and low Rdouble. All 
three model variants have very high cross-validated accuracy, substantially outperforming the linear 
model (Figure 12C). Although the models with more parameters have numerically higher accuracy, the 
difference is small, and hence we tend to favor the simpler, more interpretable implementation. This 
bias toward simpler implementations is consistent with other uses of divisive normalization (Carandini 
and Heeger, 2012).  
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Figure 12. Three implementations of divisive normalization for the CTS model show the same pattern of effects. (A) 
We show three implementations of divisive normalization, with increasing numbers of free parameters from L to R: Left, the 
simplest implementation (same as Figures 4-10), with the exponents fixed at 2; Middle, the exponent is a free parameter; 
Right, the exponents in the numerator and denominator are each free parameters. In each case, the normalization step is 
preceded by normalization with an impulse response function and followed by scaling and summation to predict the BOLD 
signal, as indicated in Figure 3. Each of the three implementations is fit to the same data (Experiment 1, same as Figure 4). 
(B) The summary metrics, Tisi and Rdouble, are similar for the three implementations, with a general tendency for V1-V3 (circled) 
to have shorter Tisi and higher Rdouble, indicated by the lower right position in the scatter plots. This shows that the three CTS 
implementations, despite different parameterizations, manifest in similar model behavior. (D) Cross-validated accuracy is high 
for all three model forms, well above the linear model for all areas. 
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4.	  Discussion	  	  

4.1	  Summation	  and	  adaptation	  in	  visual	  cortex	  	  
We report that temporal summation is subadditive throughout human visual cortex. Across 10 visual 
areas, BOLD responses to long stimuli were less than the linear prediction from briefer stimuli. This 
sub-additivity was especially pronounced in areas anterior to V1-V3. We captured this effect with a new 
temporal receptive field model, comprised of a linear stage followed by a static non-linearity. This 
compressive temporal summation model made highly accurate predictions for the fMRI data, and in all 
visual areas was substantially more accurate than a linear model. A single model accurately predicted 
two phenomena: subadditivity in the duration-response function and adaptation over short time scales 
(interstimulus intervals ranging from 0 to 528 ms). This indicates that both effects–the subadditivity with 
respect to duration and the response reduction to repeated stimuli–may arise from the same underlying 
processes.  

A wide range of prior experimental measures are consistent with temporal subadditivities in visual 
cortex. For example, at the scale of 3 to 24 s, the fMRI response in V1 to a long presentation of a 
reversing contrast pattern is less than the prediction from a shorter presentation (Boynton et al., 1996); 
the fMRI response to repeated contrast patterns is larger for 1-s ISIs than 3-s ISIs (Heckman et al., 
2007); the response of a V1 neuron to a steady flash is not predicted by its temporal frequency tuning 
and decreases over time (Tolhurst et al., 1980); the response of a neuron to a repeated stimulus is less 
than the response to the first stimulus (Priebe et al., 2002; Motter, 2006). Here we both quantified 
temporal subadditivities across the cortical visual hierarchy and account for the effects with a forward 
model. The model generalizes from the observed effects, as it takes arbitrary temporal patterns as 
inputs. The two operations – linear summation and a compressive nonlinearity – provide a simple and 
interpretable set of computations that can be used to characterize neural response properties across 
visual areas. For example, an implication of the TISI measures is that when designing an fMRI 
experiment, stimuli must be spaced by at least 100ms to avoid significant interactions in V1 responses, 
and at least 1 s in TO or IPS. 

4.2	  Subadditivities	  in	  fMRI	  	  
In principle, the subadditivity could arise from the neuronal responses, coupling between neuronal 
processes and the BOLD signal, or a combination of both. There are several reasons to believe that at 
least a significant part of the observed non-linearity is neuronal in origin. First, single unit 
measurements of cortical neurons show temporal sub-additivities (Tolhurst et al., 1980; Motter, 2006), 
and it is more parsimonious to attribute subadditivities in the single unit and BOLD measurements to a 
single cause. Second, we find greater subadditivities in later than earlier visual areas, consistent with a 
cascade architecture in which later areas add additional non-linearities to the outputs from earlier areas 
(Heeger et al., 1996; Simoncelli and Heeger, 1998; DiCarlo et al., 2012; Kay et al., 2013a; Kay et al., 
2013b); in contrast, there is no reason to expect that the coupling between neuronal signals and the 
hemodynamic response would become increasingly compressive along the visual hierarchy. Third, 
because even our longest stimuli were brief (≤ 528ms), thereby eliciting relatively small BOLD signals 
(~0.5%), it is unlikely that saturation of the BOLD signal for longer stimulus durations could explain the 
compressive response. For example, when similar stimuli are presented in a sequence of several 
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images, the fMRI responses are several times larger (1-4%) (Kay et al., 2013a; Kay et al., 2013b), 
indicating that the BOLD signal measured here was well below saturation. Therefore, overall our results 
indicate that the neuronal response underlying the BOLD signal shows significant temporal 
subadditivities, and that the subadditivity is more pronounced in later visual areas.  

Multiple studies are consistent with the possibility that the linear approximation of the neural-to-BOLD 
transform is reasonably good (Boynton et al., 1989; Heeger et al., 2000; Rees et al., 2000). However, 
our interpretation of temporal compressive summation in the neural response does not rely on the 
assumption that the BOLD signal is exactly a linear transform of local neuronal activity. If, for example, 
the coupling reflects an approximately square root compression, as recently suggested by one group 
(Bao et al., 2015), then the stimulus-to-BOLD nonlinearity we observed would still imply a highly 
compressive neural response. This is easiest to appreciate for the power-law implementation of the 
CTS model. For example, the median exponent fit to the BOLD signal across ROIs ranged from 0.1 
(IPS) to 0.28 (V1). If we assume that this includes a neurovascular compressive exponent of 0.5, then 
the stimulus-to-neural response would have exponents ranging from 0.2 (IPS) to 0.56 (V1), still highly 
compressive. This interpretation is supported by preliminary analyses of intracranial data, which show 
substantial temporal non-linearities in the neural response (Zhou et al., 2017). 

4.3	  Spatial	  and	  temporal	  subadditivities	  
Subadditive temporal summation is likely to have important functional consequences. The two ways we 
documented temporal subadditivities, a compressive function of duration for single stimuli, and a 
reduced response for paired stimuli with short ISIs, are consistent with neural adaptation: a reduced 
response to prolonged or repeated stimuli.  These phenomena are thought to reflect adaptive changes 
to the local environment, rather than being a passive by-product of neural responses (Webster, 2015). 
For example, adaptation may serve to prioritize new information or act as gain control (Solomon and 
Kohn, 2014). An interesting consequence of subadditive temporal summation is that responses to 
stimuli of different durations are more similar to one another than they would be if summation were 
linear. This may be thought of as a form of duration or timing tolerance, analogous to size and position 
tolerance in spatial encoding, which are increasingly prominent in higher visual areas (Kay et al., 
2013a).  For example, in V1, as the stimulus size increases or the stimulus duration lengthens, the 
response amplitude increases substantially, whereas in area TO, the response amplitudes increase 
only slightly, indicating greater tolerance for size and duration (Figure 13).  

While spatial and temporal subadditivities share some properties, they are independent findings and 
differ in detail. For example, V2 shows substantially more spatial subadditivity than V1 (fig 9b in (Kay et 
al., 2013b); fig 7b in (Kay et al., 2013a)), but a similar degree of temporal subadditivity (Figures 6 and 
7). Moreover, temporal subadditivities are directional: the future cannot affect the past, whereas 
responses to two spatial locations can affect each other. Further, a system which is space-time 
separable could, in principle, exhibit saturation with space but be linear in time, or vice versa. It will be 
important in future work to develop an integrated model which accounts for spatial and temporal 
nonlinearities. 
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Figure 13. Sub-additive spatial and temporal summation. (A) BOLD responses pooled across voxels in V1 (left) and in TO 
(right) are plotted as a function of stimulus size. Circles and error bars are means and standard errors across bootstrapped 
estimates. A compressive spatial summation model (red), fit to separate data, predicts the responses slightly more accurately 
than a linear model (green) in V1, and substantially more accurately in TO. Adapted from figure 8 in (Kay et al., 2013a).  (B) A 
similar pattern is observed for duration, replotted from Figure 4A.  

4.4	  Temporal	  window	  length	  
Our finding that time scales lengthen across the visual hierarchy is consistent with measurements of 
temporal dynamics at a larger scale. For example, temporal receptive window length was studied by 
measuring response reliability to scrambled movie segments (Hasson et al., 2008; Honey et al., 2012): 
In visual cortex, responses depended on information accumulated over ~1s, whereas in anterior 
temporal, parietal and frontal areas the time scale ranged from ~12-36s. Similarly, in event-related 
fMRI, the influence of prior trials was modeled with an exponential decay, with longer time constants in 
later areas: Boynton et al (1996) reported a time constant of ~1s in V1 for contrast reversing 
checkerboards, and Mattar et al (2016), using static face images, reported short time constants in V1 
(~0.6s) and much longer constants in face areas (~5s). In macaque, the timescale of autocorrelations in 
spike counts was longer for areas higher in the hierarchy (~300ms) compared to sensory areas (~ 75-
100ms; Murray et al., 2014). These studies used very different methods and resulted in a wide range of 
time-scale estimates. It will be important in future work to ask whether a forward model can account for 
the range of values.   

Analyzing visual information at multiple temporal scales has benefits. First, accumulating information in 
the past is necessary for predicting the future, and a hierarchy of temporal windows may be useful for 
predictions over different time-scales (Heeger, 2017). Second, signal-to-noise ratios are optimized 
when the temporal scale of analysis is matched to the temporal scale of the event of interest (a 
“matched filter”); different visual areas extract information about different image properties, which in turn 
are likely to have different temporal (or spatiotemporal) distributions in natural viewing. For example, V1 
cells are highly sensitive to the spatially local orientation, contrast, and spatial frequency in an image. 
These properties are likely to change with even small eye movements, such that integrating over too 
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long a time period will blur the dimensions of interest. In contrast, higher order image statistics may be 
stable over larger image regions and longer viewing durations, and hence an area sensitive to such 
properties may benefit from longer periods of integration. Whether or not the time scales of the different 
cortical areas are fixed, or adjust based on the ongoing statistics of visual input, is an important 
question for future work. 

Just as understanding natural image statistics may lead to better theories of neural coding (Schwartz 
and Simoncelli, 2001; Olshausen and Field, 1996), understanding neural coding can help us 
understand behavior. For example, the time-scale of cortical areas may set the time-scale of integration 
for behavior. Words, faces, and global motion patterns are integrated over periods 5-10 times longer 
than textures and local motion patterns (Holcombe, 2009). These effects have not been connected to a 
neural model; modeling the time-scale of cortical areas critical for these tasks may help explain these 
large behavioral effects.  

4.6	  Generalization	  and	  future	  directions	  
The CTS model parameters estimated from our main experiment are similar to those from the second 
experiment (self-replication), in which we used different stimulus images. Yet, just as with spatial pRF 
models, it is likely that our model will fail for certain tasks or stimuli (Wandell and Winawer, 2015). For 
example, sustained attention to the stimulus (Self et al., 2016), presence of a surround (Bair et al., 
2003), non-separable spatiotemporal patterns (motion), and stimulus history of many seconds or more 
(Weiner et al., 2010), can all affect the time course, hence subadditivity of the response. By formulating 
a forward model of responses to large-field contrast stimuli during passive viewing, we provide a 
quantitative benchmark that can be used to guide interpretation of how other factors influence response 
dynamics, and a platform upon which to extend the model to new stimulus or task features. An 
important goal for future work is to develop a space-time model that simultaneously accounts for 
nonlinearities in spatial (Kay et al., 2013a) and temporal summation. Finally, our fMRI model contains a 
static nonlinearity. Measurements with finer temporal resolution such as intracranial EEG will be 
informative for understanding the time scale of the nonlinearities.  
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