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Abstract7

Curvature of biological membranes can be generated by a variety of molecular mechanisms8

including protein scaffolding, compositional heterogeneity, and cytoskeletal forces. These mech-9

anisms have the net effect of generating tractions (force per unit length) on the bilayer that are10

translated into distinct shapes of the membrane. Here, we demonstrate how the local shape of the11

membrane can be used to infer the traction acting locally on the membrane. We show that buds12

and tubes, two common membrane deformations studied in trafficking processes, have different13

traction distributions along the membrane and that these tractions are specific to the molecular14

mechanism used to generate these shapes. Furthermore, we show that the magnitude of an axial15

force applied to the membrane as well as that of an effective line tension can be calculated from16

these tractions. Finally, we consider the sensitivity of these quantities with respect to uncertainties17

in material properties and follow with a discussion on sources of uncertainty in membrane shape.18
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Introduction21

Cell shape plays an important role in regulating a diverse set of biological functions including devel-22

opment, differentiation, motility, and signal transduction (McMahon and Gallop, 2005; Roux et al.,23

2005; Neves et al., 2008; Rangamani et al., 2013; Aimon et al., 2014). Additionally, the ability of24

cellular membranes to bend and curve is critical for a variety of cellular functions such as membrane25

trafficking processes, cytokinetic abscission, and filopodial extension (Mukherjee and Maxfield, 2000;26

Mattila and Lappalainen, 2008). In order to carry out these functions, cells harness diverse mecha-27

nisms of curvature generation like compositional heterogeneity (Baumgart et al., 2003; Römer et al.,28

2007), protein scaffolding (Karotki et al., 2011a; Kirchhausen, 2012), insertion of amphipathic helices29

into the bilayer (Ford et al., 2002; Lee et al., 2005), and forces exerted by the cytoskeleton (Giardini30

et al., 2003; Carlsson, 2018) (Fig. 1). Reconstituted and synthetic membrane systems also exhibit a31

wide range of shapes in response to different curvature-inducing mechanisms as seen from steric pres-32

sure due to protein crowding (Lipowsky, 1995; Stachowiak et al., 2012; Derganc and Čopič, 2016).33

It is well-known that these various mechanisms of curvature generation induce surface stresses;34

expressions for these stresses have been derived using either variational methods (Jenkins, 1977;35

Capovilla and Guven, 2002b, 2004) or by using auxiliary variables that enforce geometric constraints36

(Guven, 2004; Fournier, 2007). These studies have established the physics underlying membrane37

stresses and clearly explained how these traction forces can be interpreted in linear deformations and38

in idealized geometries (Guven, 2004; Fournier, 2007). However, many physiologically relevant mem-39

brane shapes display large curvatures (Farsad and De Camilli, 2003; Kozlov et al., 2014), non-linear40

deformations (Holzapfel et al., 1996; Einstein et al., 2003), and heterogeneous membrane composition41

(Lingwood and Simons, 2010; Busch et al., 2015). How stresses are distributed along such shapes is42

not yet fully understood. In this article, we discuss how theory can help us evaluate membrane stresses43

based on the observed shape.44

Shape as a reporter of force45

Many biomechanics textbooks present the postulate that the relationship between the applied load46

and the resulting deformation can be obtained if a constitutive relationship between the stress and47

strain of a material is given (Mofrad and Kamm, 2010; Phillips et al., 2012; Fung, 2013). Indeed,48

the idea that shape can be considered a reporter of the applied force is an idea as old as continuum49
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mechanics (Todhunter, 1886). A classical example illustrating how shape can be used as a reporter50

of force in biology can be understood by studying the shape of a vesicle or a cell using micropipette51

aspiration (Hochmuth, 2000; Lee and Liu, 2014). This method is used to calculate the tension of52

bilayer membranes in vesicles and cortical tension in cells through Laplace’s law. Since the pressure53

applied by the micropipette is known, tension can be calculated using a force balance at the membrane.54

Lee et al. suggested that membrane shape itself acts as a reporter of applied forces (Lee et al.,55

2008) and calculated the axial force required to form membrane tethers in optical tweezer experi-56

ments based on shape, given the material properties of the membranes (See Fig. 2 in (Lee et al.,57

2008)). They showed that the calculated value of force was in excellent agreement with their experi-58

mental measurements. Separately, Baumgart and colleagues showed that the Gaussian modulus has a59

strong effect on membrane budding in phase-separated vesicles and its magnitude can be obtained by60

analyzing the geometry of the vesicle (Baumgart et al., 2005).61

An additional layer of complexity in how shape and forces are related arises through the hetero-62

geneous composition of the lipid bilayer in cells. Most protein binding to cellular membranes are63

local processes (Kishimoto et al., 2011; Karotki et al., 2011b; Buser and Drubin, 2013). Even in in64

vitro studies, several groups have shown that protein adsorption on lipid domains can alter the lateral65

pressure profile on the bilayer and induce tubulation (Stachowiak et al., 2012; Lipowsky, 2013; Zhao66

et al., 2013). Recently, theoretical studies have shown that adsorbed proteins give rise to spontaneous67

surface tension (Lipowsky, 2013; Rangamani et al., 2014b). Therefore, there is a need to understand68

how applied forces and membrane heterogeneity can regulate the local stresses on the membrane.69

Going beyond the approximation of tension using Laplace’s law, we sought to understand the local70

stresses in tubes and buds – two geometries that are critical to many cellular phenomena. Using the71

well-established Helfrich model (Helfrich, 1973; Bassereau et al., 2014) for membrane bending as a72

framework, we illustrate how local forces can be understood from the shape of the membrane. We73

close with an extended discussion of how advances in image analysis and measurement of material74

properties can aid in our understanding of how traction can be calculated from the curvature of the75

membrane.76
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Local stresses in the membrane: governing equations77

Surface stress tensor and traction calculation78

A general force balance for a surface !, bounded by a curve @!, is (Fig. 2)79

Z

!
pnda+

Z

@!

˜

fdt+ F = 0, (1)

where t = r(s)✓ is the length along the curve of revolution perimeter (see Fig. 2), p is the pressure80

difference across the membrane,˜f is the traction along the curve of revolution t and F is any externally81

applied force on the membrane. Along any circumferential curve on the membrane at constant z, the82

traction is given by (Agrawal and Steigmann, 2009a)83

˜

f =

˜f⌫⌫ +

˜fnn +

˜f⌧⌧ . (2)

The values of f⌫ , fn and f⌧ will depend on the particular form of strain energy we choose to84

depict the membrane properties (See Fig. 2 for definitions of the forces and the vectors). We choose85

the Helfrich Hamiltonian as the constitutive relationship in this case and use a modified version that86

includes spatially-varying spontaneous curvature C (✓↵), (Steigmann, 1999; Agrawal and Steigmann,87

2009a; Hassinger et al., 2017),88

W =  [H � C(✓↵)]2 + GK. (3)

where W is the energy per unit area,  is the bending modulus, H is the local mean curvature, G89

is the Gaussian modulus, K is the local Gaussian curvature and ✓↵ denotes the surface coordinates.90

This form of the energy density accommodates the local heterogeneity in the spontaneous curvature91

C. Note that W differs from the standard Helfrich energy by a factor of 2, which is accounted for92

by using the value of  to be twice that of the standard bending modulus typically encountered in93

the literature (See Table S1 for notation). A more in-depth investigation of the role of anisotropic94

spontaneous curvature using a version of the Helfrich energy that includes deviatoric curvature can be95

found in the Supplement (Eq. S11, (Iglič et al., 2006; Lokar et al., 2012)).96

While Eqs. 1 & 3 are general expressions that are independent of coordinates, for illustrative97

purposes we will restrict further analysis to rotationally symmetric membrane deformations for ease98
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of analysis (Fig. 2). Using principles of force balance one can derive the “shape” equation and the99

tangential balance equation for the Helfrich energy (see Supplement for detailed derivations). The100

traction, which is the force per unit length, across any boundary of constant z is given by101

˜fn|{z}
Normal
traction

= �(H 0 � C 0
)| {z }

curvature
gradient

, (4a)

˜f⌫|{z}
Tangential

traction

= (H � C)(H � C �  0
)| {z }

curvature

+ �|{z}
tension

(4b)

102

where  is the angle the membrane makes with the horizontal (see Fig. 2), � is the local membrane103

tension, and ()

0 denotes a derivative with respect to arc-length s, e.g. H 0
= dH/ds.104

From the above equations, we see that the normal traction, ˜fn, captures the effect of curvature105

gradients while the tangential traction, ˜f⌫ , captures the effect of local membrane tension and curvature.106

A complete derivation of the stress balance and the governing equations of motion is presented in the107

Supplement. Additional derivations of traction including spatially heterogenous bending and Gaussian108

moduli, asymptotic approximations for small radius as well as anisotropic spontaneous curvature are109

presented in the Supplement.110

Interpretation of traction111

Traction, which has the units of force per unit length, was initially introduced by physicists as a re-112

sult of Noether’s theorem (Capovilla and Guven, 2002a; Guven, 2004; Capovilla and Guven, 2004).113

This theorem states that for any elastic surface that is in equilibrium, there exists a unique traction114

distribution such that its divergence is conserved (Guven, 2004). Mechanically, the traction distribu-115

tion gives us information about the response of the membrane to externally applied loading, including116

forces acting on the membrane or protein-mediated bending. Numerous studies have derived these117

equations mathematically and sought to explain them in a biophysical context. Capovilla and Gu-118

ven (Capovilla and Guven, 2002b,a, 2004) invoked the action-reaction law – if one were to cut the119

membrane along any curve, ˜fn and ˜f⌫ are the forces per unit length of the curve in the normal and120

tangential directions respectively that the membrane on one side of the cut exerts on the other. Further-121

more, the expressions for tractions (Eq. 4) reduce to their corresponding fluid analogues for negligible122
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membrane rigidity and pressure difference. Thus, we can interpret the normal and tangential tractions123

as follows – the tangential traction distribution tracks the gradient in ‘effective’ surface tension (dis-124

cussed below) while the normal traction distribution contains information regarding a force balance125

performed normal to the membrane at every point. Further physical interpretations of these quantities126

can be obtained based on the particular biological phenomena, as illustrated below by examining two127

fundamental membrane deformations – tubes and buds.128

Axial force and effective line tension129

We obtain the formulae for traction in the axial and radial directions obtained by projecting the normal130

and tangential tractions onto these axes (Eqs. S28) (full derivation in Supplement). We can then131

calculate the magnitude of an applied axial force on the membrane by integrating the axial component132

of the traction (Eq. S28b) along the circumference of the bounding curve @!, yielding133

˜Fz = 2⇡r
h
(H 0 � C 0

) cos + (H � C)(H � C �  0
) sin | {z }

Bending contribution

+ � sin | {z }
Tension

contribution

i
, (5)

where ˜Fz is the axial force generated in response to an external load.134

An energy per unit length, ⇠, associated with deformations in the radial direction can be found by135

integrating the radial traction along the curve @! (Fig. 2), as136

⇠ = 2⇡r
h
(H � C)(H � C �  0

) cos | {z }
Curvature

contribution

+ � cos | {z }
Tension

contribution

+(H 0 � C 0
) sin | {z }

Curvature gradient
contribution

i
. (6)

⇠ can be interpreted as an “effective” line tension (Seifert, 1997). While line tension denotes the force137

acting at the boundary of two interfaces – e.g. inward force for a liquid droplet on a hydrophobic138

substrate and an outward force on a hydrophilic substrate (Buehrle et al., 2002; Liu et al., 2006), the139

“effective” line tension predicts a general resistive force acting at every point opposing any change in140

the membrane length, regardless of a phase boundary. This ‘force’ is not an actual radial force but141

represents the change in energy with respect to the characteristic length scale (McDargh et al., 2016);142

going forward, we refer to it as an energy per unit length.143
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Illustrative examples of traction along the membrane144

For spherical vesicles, where the mean curvature is constant and in the absence of spontaneous cur-145

vature curvature (C = 0) and homogeneous composition, the normal traction ˜fn is zero because146

curvature gradients are zero (Eq. 4a), and the tangential traction, ˜f⌫ , reduces to the membrane tension147

(�) (Eq. 4b). This is consistent with previous discussions of membrane tension (Rangamani et al.,148

2014b). For surfaces with zero mean curvature (minimal surfaces such as catenoids (Powers et al.,149

2002)) and homogeneous composition, ˜fn is zero and ˜f⌫ is equal to �, also consistent with the in-150

terpretation of membrane tension for these surfaces (Powers et al., 2002; Chabanon and Rangamani,151

2018).152

What happens when the mean curvature is not constant or if the membrane is not homogeneous153

in composition? Given a membrane shape and a constitutive relationship, Eqs. 4a and 4b tell us that154

we can calculate the local stresses along the membrane. One way of studying shapes is to use images155

from high resolution microscopy of membrane vesicles of known composition. However, these images156

can be noisy and obtaining the local curvature and curvature gradients requires fitting the curve with157

multiple splines or other functions (Lee et al., 2008). Another way to generate membrane shapes158

is to use simulations. Since our goal is to illustrate the concept of local tractions, we use shapes159

generated from simulations to elucidate how the normal and tangential tractions are distributed along160

the membrane. The traction distributions are not the direct output of these simulations; instead they161

are calculated a posteriori using the output shapes from the simulations and the membrane properties,162

similarly to how one would calculate these distributions from experimentally observed membrane163

shapes.164

Tether formation due to applied load – revisiting a classical membrane deformation165

The formation of membrane tethers in response to a point load is a classic example of force-mediated166

membrane deformation (Roux et al., 2002; Smith et al., 2004) that has been extensively studied both167

experimentally (Waugh, 1982; Heinrich et al., 1999) and theoretically (Derényi et al., 2002; Powers168

et al., 2002; Prévost et al., 2017; Simunovic et al., 2017). This comes as no surprise because a tether169

is a starting point for understanding membrane deformation in a wide variety of biological contexts170

including endocytosis, filopodia formation, tubulation in the endoplasmic reticulum, etc. We used171

this example to validate our method and to identify how normal and tangential tractions contribute172
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to the formation of tethers. We generated a membrane tether by applying a localized force at the173

pole to mimic a point load, and solved the shape equation for homogeneous bilayers in axisymmetric174

coordinates (Eq. S17), for a membrane tension of 0.02 pN/nm (simulation details provided in the175

Supplement).176

The normal and tangential traction distributions along the tether are shown in Fig. 3. The absolute177

value of the normal tractions are highest at the pole as the applied force increases. The membrane178

curves away from the applied force along the region over which it is applied, and conforms to a179

stable cylindrical geometry along the rest of the tether and a flat region at the base. The tangential180

traction has a large positive value along the cylindrical portion of the tether (Fig. 3C) showing that the181

membrane resists stretching as the tube is pulled out. The tether cap has a negative tangential traction182

because of the membrane tension heterogeneity (Eq. S10) induced by the application of the load. The183

corresponding radial and axial traction components (Eqs. S28a, S28b) plotted along the equilibrium184

shapes are shown in Fig. S1.185

As expected, the negative of the axial force (Eq. 5), evaluated at the base of the geometry, exactly186

matches the force-extension relationship for tether formation obtained directly from the simulation187

(see Fig. 3B), showing that the local stresses along a membrane shape can help us evaluate the applied188

forces. We also considered the role of a large turgor pressure that opposes the membrane invagina-189

tion, mimicking the situation in yeast endocytosis. (Basu et al., 2014; Aghamohammadzadeh and190

Ayscough, 2009; Dmitrieff and Nédélec, 2015). Transmembrane pressure results in an additional term191

in the axial traction (see Eq. S29). As seen in Figs. S2 and S3, an excellent match between the applied192

load and the calculated force from the traction distribution is obtained for simulations with pressure by193

modifying our expression for force. We further verified that our results are independent of the system194

constraints (i.e. conserved arc length or surface area), confirming that changes in membrane area does195

not change the validity of our approach (Fig. S7).196

What information do the tangential tractions contain? The tangential tractions play an important197

role in squeezing the membrane neck and holding the cylindrical configuration during membrane elon-198

gation (see Fig. S1). Consequently in Fig. 3D, the point of zero ‘effective’ line tension corresponds199

to the the dotted cylinder, which has a radius of R0 = 1
2

q

�0

(Derényi et al., 2002). This equilibrium200

cylinder has no curvature gradient, leading to zero ‘effective’ line tension. The calculated values of201

energy per unit length inside the cylinder are negative while those outside are positive, suggesting that202

the “effective” line tension indicates the extent of deviation from the idealized cylindrical geometry.203
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A negative energy per unit length here refers to the fact that there exists a negative radial force at that204

point (McDargh et al., 2016). Additionally, the value of ⇠ at the neck is ⇠ 3 pN, providing an estimate205

of the effective line tension required to form a neck in tethers.206

Traction along tubes is highly dependent on mechanisms of membrane deformation and207

on resistive force208

Do all membrane tubes have the same traction distribution? In order to answer this question, we com-209

pared membrane shapes that look superficially similar and calculated the traction profiles along them210

(Fig. 4). We show that different tubes can have very different tractions depending on the mechanism211

of membrane deformation and the resisitive forces that are acting on them. We begin by compar-212

ing electron micrographs of yeast endocytic invaginations in mutant cells lacking the BAR-domain213

proteins Bzz1, Rvs167 and wild-type cells (Kishimoto et al., 2011) (Figs. 4A and 4E respectively).214

Because force from actin assembly is the primary driver of membrane deformation in this process215

(Kukulski et al., 2012), we assume that the deformation in the mutant cell is a result of having only216

an applied force at the tip of the invagination (Fig. 4B). In the wild-type, we assume that the BAR217

domain proteins induce an anisotropic spontaneous curvature locally (e.g. tubulation) (Frost et al.,218

2009) (Fig. 4F, see Fig. S10 and Supplement for implementation and traction calculation). These219

assumptions between the mutant and wildtype cells are simplifications, but serve to illustrate the dif-220

ferences in traction distribution. In particular, the tangential traction in the wild-type case (Fig. 4H)221

is nearly zero near the tip of the bud and highest near the base, in stark contrast to the mutant, which222

lacks additional curvature generation and therefore is high all along the tube (Fig. 4D). These results223

suggest that the BAR domain proteins can act as a barrier to the stresses induced by the axial force,224

which is consistent with recent experimental evidence that points to a potential scission mechanism225

(Simunovic et al., 2017). Indeed, a negative normal traction at the tube base in Fig. 4G demonstrates226

a tendency for the neck to shrink in size.227

The previous simulations were conducted using a membrane tension that is applicable to mam-228

malian cells (Sens and Plastino, 2015). However, turgor pressure is thought to be the primary opposing229

force in yeast endocytosis (Aghamohammadzadeh and Ayscough, 2009). To investigate the role of tur-230

gor pressure, we performed a simulation in which the value of the turgor pressure was set such that the231

radius of the resulting tube (Fig. 4J) would match that of the tube generated using membrane tension232
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(Fig. 4B). The normal traction distribution in this case (Fig. 4K) is strikingly different; there is a233

large negative normal traction at the base of the tube indicating that turgor pressure acts to induce the234

formation of a neck. The tangential traction (Fig. 4L) is no longer uniform on the tube and is again235

greatest just above the narrowing of the tube at the base. Though these simulations are only meant to236

capture the approximate shapes of the membrane in these different cases and not necessarily match237

the length scales or parameter values with respect to the biological situations, they serve to illustrate238

the point that the quantitative differences in the deformations against membrane tension and turgor239

pressure can be realized by the calculating the local tractions along the membrane shape.240

Formation of buds due to spontaneous curvature is characterized by emergent line ten-241

sion242

Phase separation and lipid domains are classical mechanisms of bud formation and vesiculation (Rich-243

mond et al., 2011). Previously, we and others have shown that protein-induced heterogeneity on244

the membrane can be modeled using a spontaneous curvature field (Steigmann, 1999; Agrawal and245

Steigmann, 2009b; Rangamani et al., 2014b). We used this framework to investigate the nature of246

membrane tractions generated during budding due to a spontaneous curvature field. We conducted247

simulations for a constant area of the spontaneous curvature field A = 10, 000 nm2 and varied the ex-248

tent of spontaneous curvature, C, from 0 to 0.032 nm�1 (Fig. 5A). We calculated the value of traction249

for three distinct shapes – a shallow invagination, a U-shaped bud, and a closed ⌦- shaped bud (Fig.250

5B-D).251

The normal traction is negative along the applied spontaneous curvature field indicating a sharper252

change in mean curvature compared to the applied spontaneous curvature (H 0 > C 0 in Eq. 4a). At the253

neck, where  =

⇡
2 , normal traction is maximum and acts purely inward, representing the tendency254

of the membrane to form small necks. The tangential traction shows a change in sign from positive255

to negative as the neck radius becomes smaller. This change in sign highlights the critical role of256

the gradient in tangential traction in the formation of narrow necks (Hassinger et al., 2017) (Figs.257

5B-D). The dashed circles represent the equilibrium spherical vesicles calculated by Helfrich energy258

minimization (Rvesicle =

C
�0+C2 ) (Hassinger et al., 2017). The positive tangential traction in tent-259

like small deformations indicates that the membrane resists the bending deformation; however, in the260

U-shaped and closed buds, the negative tangential traction along the cap acts to pull the membrane261
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inward and favors the adoption of a highly curved shape. The radial and axial tractions distribution262

along all three shapes are shown in Fig. S4 which reveals that bud formation by spontaneous curvature263

is purely driven by radial traction while axial traction is zero everywhere.264

Each equilibrium bud divides the membrane into two domains – (i) the membrane inside the bud265

with negative energy per unit length that bends to form a bud and (ii) the membrane outside the bud266

with positive energy per unit length that resists such a deformation. Previously, both modeling and267

experimental studies have shown that in heterogeneous membranes, line tension can be sufficient for268

scission of endocytic pits (Liu et al., 2006) or the formation of buds in vesicle experiments (Baumgart269

et al., 2003, 2005). In the case of an applied spontaneous curvature field, the expression of energy per270

unit length (Eq. S31) can be interpreted as the actual line tension at the interface of the two phases.271

Through the process of bud formation, line tension undergoes a sign change from positive (acting272

outward) to negative (acting inward), effectively transitioning from a tension-dominated regime to a273

curvature-gradient dominated regime (Fig. 6). This transition from positive to negative line tension274

with increasing value of spontaneous curvature is also observed in other studies (Dan and Safran,275

1998). The value of the energy per unit length at the interface varies between -5 pN to 5 pN, which276

is of the order of the reported interfacial line tension between coexisting phases in lipid bilayers277

(Lipowsky, 1992; Liu et al., 2006).278

There are two other factors that could affect the traction distribution along the bud – (i) a change in279

area of the membrane during budding and (ii) spatial heterogeneity in membrane moduli. To explore280

how the change of membrane area influences bud formation mediated by protein-induced spontaneous281

curvature, we conducted a simulation with a fixed available arc-length instead of area (Fig. S6).282

Similar to the case of a homogenous membrane with fixed area, the energy per unit length at the283

interface changes sign from positive to negative in a range of -5 pN to 5 pN. However, protein284

segregation on the membrane can lead to heterogeneity in material properties such as bending moduli285

(Jin et al., 2006). In order to investigate the effect of this spatial heterogeneity in the bending moduli286

along the membrane surface, we repeated the budding simulation from Fig. 5, assuming that the287

bending rigidity along the spontaneous curvature field is 7.5 times larger than the bending rigidity288

of the bare membrane (Fig. S5) (Jin et al., 2006). Because the membrane is stiffer and harder to289

bend, a wider neck is formed at C = -0.032 nm�1 compared to the case of a uniform membrane (Fig.290

S5A) (Hassinger et al., 2017). This membrane resistance to deformation is observed as a uniform291

positive normal traction everywhere along the membrane (Fig. S5A). To compare the behavior of the292
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line tension at the edge of the spontaneous curvature field, we ran the budding simulation with the293

spatially heterogeneous bending moduli up to a larger value of spontaneous curvature (C = -0.035294

nm�1), in order to have the same range of neck radii as the uniform membrane (Fig. 5E). We can295

see that the trend of line tension variation versus the spontaneous curvature is almost the same in296

both cases (Fig. S5E), changing sign from positive to negative followed by a critical point indicating297

the transition from a U to an ⌦-shaped bud. However, the magnitude of line tension is different298

in the two cases. For small magnitudes of spontaneous curvature (tent shaped buds), the average299

difference in line tension is ⇠ 1 pN. But for large magnitudes of spontaneous curvature (C � -0.0275300

nm�1, ⌦ shaped buds), the average line tension for a rigid coat is ⇠ 4 pN larger than the line tension301

in a homogeneous membrane. This larger value of line tension in a heterogeneous membrane has302

been reported in various experimental measurements (Lipowsky, 1992; Tian et al., 2007), and other303

theoretical studies (Kuzmin et al., 2005; Semrau and Schmidt, 2009).304

Traction distribution is a signature of distinct budding mechanisms305

Conceptually, there are two primary means by which membrane buds can be maintained: an accumula-306

tion of protein or lipid-induced spontaneous curvature favoring a spherical geometry, or a constriction307

force that pinches the membrane into a budded shape. In Fig. 7, we illustrate the traction distribu-308

tion in these two cases. The upper row represents spontaneous curvature-induced budding, meant to309

resemble vesicle coat protein (such as the coatomer COPII) mediated budding from the endoplasmic310

reticulum ((Robinson et al., 2015), Fig. 7A) and the lower row represents budding due to a local311

constriction force via a contractile ring in budding yeast ((Mozdy et al., 2000), Fig. 7E). Although312

the two simulated shapes are superficially similar, the traction distributions are quite different. The313

normal traction distribution for spontaneous curvature budding (Fig. 7C) is similar to the one seen in314

Fig. 5 where there is a large negative traction at the bud neck, indicating forces acting to minimize315

the neck radius. Conversely, for the constriction force budding, the normal traction is highly positive316

at the neck (Fig. 7G), indicating a resistance by the membrane to the applied force. The tangential317

tractions (Fig. 7D and H) are also quite different. For example, moving from the top to the bottom of318

the vesicle, the tangential traction in the case of the protein-induced spontaneous curvature budding319

is initially negative and then positive after the neck (Fig. 7D). However, for the constriction force320

mediated budding, the tangential traction is positive at first and then negative after the neck (Fig. 7D).321
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This difference in the gradient of tangential traction at the membrane neck serves as a signature for322

spontaneous curvature mediated vs force mediated bud formation. Thus, the mechanism of curvature323

generation can be related to the computed traction profile, and some a priori knowledge can help324

uncover these differences (see Figs. 4 and 7).325

Another mechanism of maintaining membrane buds (specific to endocytosis) is through actin-326

mediated forces where an actin network polymerizes in a ring at the base of the plasma membrane327

(PM) invagination and is connected to the coat, driving inward movement (Picco et al., 2015; Walani328

et al., 2015). We have previously considered these cytoskeletal effects in (Hassinger et al., 2017) and329

show here that the applied forces can be matched to axial forces calculated from traction (Figs. S8,330

S9) for two orientations of the applied force.331

Sensitivity analysis and sources of errors332

In principle, calculating force from shape is at the heart of stress-strain relationships. However, there333

are some fundamental challenges associated with sources of errors in such a calculation. There are two334

main sources of errors – error in the measurement of material properties (membrane bending modulus335

and membrane tension), and error in the measurement of shape. We present some simple analysis of336

these sources of error in what follows.337

Parametric sensitivity analysis of material properties338

Ideally, one would like to define a sensitivity index similar to the parametric sensitivity conducted for339

systems of chemical reactions, where the sensitivity of a quantity Fi with respect to a parameter kj is340

given by Si,j =
@Fi
@kj

(Varma et al., 2005). However, since we wish to simultaneously explore the effect341

of both the bending modulus and tension, we use a simple linear calculation of error. Uncertainties in342

either of these quantities will result in an uncertainty in the traction as well as the calculated axial force343

and energy per unit length (Eqs. 5 and 6) Here, we assume that the bending modulus and membrane344

tension can be written as  = mean ± error and � = �mean ± �error respectively. Then, by virtue of345

the relationships in Eqs. 5 and 6, we can estimate the error in the axial force and the energy per unit346

length as347
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Fz,error = ±2⇡r
�
error(H

0 � C 0
) cos( ) + error(H � C)(H � C �  0

) sin( ) + �error sin( )
�
,

(7a)

⇠error = ±2⇡r
�
error(H � C)(H � C �  0

) cos( ) + error(H
0 � C 0

) sin( ) + �error cos( )
�

(7b)
348

These equations allow us to interrogate how errors in both membrane moduli and membrane ten-349

sion affect the error in forces. We took our control to be the output of tubulation and budding simula-350

tions described in Figs. 3 and 5, respectively. Then, we conducted the same simulations over a range351

of bending moduli and membrane tensions to reflect a range in error of these two quantities. From352

these simulations, we (i) calculated the applied force using Eq. 5 for the tube pulling simulations at353

the peak of the force displacement plot and (ii) the energy per unit length at the phase boundary using354

Eq. 6 for the budding simulations at the same value of spontaneous curvature. Fig. 8A and 8C show355

the result of this procedure for a force and energy per unit length respectively that have been normal-356

ized to the output from the initial simulations (as indicated by X.) As expected, separately varying357

either bending modulus or membrane tension is translated into an error in the force and energy per358

unit length, though the magnitude of the final error does not match that of the input error due to the359

coupling to shape (Eq. 5 and 6). Next, we investigate the nonlinear effect of varying bending modulus360

and membrane tension simultaneously on the computed errors. Interestingly, we see that in some cases361

the error in one parameter is compensated for by the error in the other, as highlighted by the dashed362

lines which indicate a band of less than 10% total error. This is due to the intrinsic scaling in both363

tubulation (Derényi et al., 2002; Dmitrieff and Nédélec, 2015) and budding (Hassinger et al., 2017)364

with respect to bending modulus and membrane tension. Overall, we observe that the final error is not365

simply a sum of the errors in the two material properties and compensatory behaviours can result (Eq.366

7, Fig. 8A, C).367

In the previous calculation, when the membrane modulus and tension were varied, both the char-368

acteristic length of the membrane and its shape were affected. We conducted another analysis, where369

the shape of the membrane was fixed to the control and an error was introduced in the values of bend-370

ing modulus and membrane tension during the calculation of tractions (Figs. 8B and D). Interestingly,371

we found that the error in the axial force is independent of the error in membrane tension (Fig. 8B).372

This is a consequence of calculating the axial force at a point at the base of the deformation where373
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the angle  is almost zero and so, the tension term contributes less. If one were to instead perform374

the force balance at a point on the membrane where  is not zero, the error in the force would again375

depend on the error in both bending modulus and tension (Fig. S11). This, in principle could be376

beneficial in the sense that one could minimize the error in determining the axial force by evaluating377

it at a location where the total error is minimized (e.g. if uncertainty in membrane tension is large,378

calculate the applied force at the base of the invagination since the calculation is insensitive to error in379

membrane tension at this location).380

In contrast, the phase boundary is located at a particular position on the membrane curve and so381

must be evaluated at that point. We observe that the dependence of the error in the energy per unit382

length on bending modulus and membrane tension is no longer non-linear (Fig. 8D) as we fix the383

shape of the membrane and vary the material properties. Further, we see that the primary dependence384

of the error in the energy per unit length comes from the error in the bending modulus. Finally, we385

once again see that the total error is less than the sum of its two contributions due to the coupling to386

the local membrane shape, as expected from Eq. 7.387

Errors in quantification of shape metrics388

One of the largest source of errors in calculating forces arises from imaging modalities for shape itself.389

Uncertainty in the shape of the membrane will depend on the method used to extract shapes from390

microscopy images. Additionally, the high curvatures at endocytic sites means that a higher imaging391

resolution is required. Live-cell light microscopy is limited in resolution (even in superresolution392

methods (Wäldchen et al., 2015; Sydor et al., 2015)), and traditional electron microscopy following393

chemical fixation may not fully preserve the shape of the bilayer (Bozzola and Russell, 1999; Stephens394

and Allan, 2003). To this end, cryo-electron tomography may provide the best preservation, but it395

suffers from anisotropic resolution as a result of the “missing wedge” effect (Lučić et al., 2013).396

As a result, error can be introduced into the fundamental position and geometric variables of the397

constitutive equations associated with the membrane deformation. Errors in the position and shape398

coordinates, coupled with non-axisymmetric geometries can result in non-linear error propagation in399

the calculations and their effects are not yet understood.400
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Discussion401

In this study, we presented a framework for the calculation of axial and radial tractions for non-linear402

deformations of the membrane in the absence and in the presence of heterogeneities, solely based403

on the membrane geometry and material properties. From these calculations, we summarize that (a)404

tether formation requires both axial and radial tractions (Fig. 3) and (b) line tension can be calculated405

between two phases as an energy per unit length (Fig. 6). Importantly, using different examples of406

critical membrane shapes that occur in endocytosis and exocytosis, we have demonstrated that the407

local tractions are directly related to deviations from idealized geometries and can be generated by408

membrane heterogeneity. Moving forward, this procedure can be useful for the analysis of forces409

acting on membranes, both in reconstituted systems and in cells.410

Using the analysis presented here and having some knowledge of the shape and material properties411

will allow us to estimate the local stresses acting on the membrane. It is important to note that the412

tractions calculated here depend on the knowledge of the membrane strain energy and the material413

properties.414

It has been demonstrated that PEGylation of lipids (Lee and Pastor, 2011), amphiphilic block415

copolymers (Lim et al., 2017), and protein crowding (Snead et al., 2017) can curve and even induce416

scission of artificial lipid bilayers. Additional energy terms such as adhesion energy, entropic contri-417

butions from proteins, protein crowding, tilt, and cytoskeletal interactions will alter the expressions418

for tractions and introduce more material properties (Rangamani et al., 2014a; Snead et al., 2017;419

Carlsson, 2018). We also demonstrate that the knowledge of the underlying biophysical mechanism420

becomes important because the shape of the membrane, particularly in cells, is a many-to-one function421

(multiple processes can give rise to a similar shape). However, the fundamental principle that shape422

contains information about the underlying forces will apply regardless of the exact form of the energy423

used to perform the analysis.424

There can be multiple sources of error in the quantification of forces – error in the measurement425

of material properties, errors in the measurement of the shape itself due to imaging, and finally error426

in the assumptions about stress-strain relationships themselves. While many of the measurements of427

material properties are conducted in vitro, recently, some studies have begun to measure the in vivo428

structure of lipids and their material properties (Nickels et al., 2017). Interestingly, recent works also429

suggest that there is no long range propagation of membrane tension in cells, seemingly reducing the430
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uncertainty in calculating tension (Shi et al., 2018). Additionally, efforts will need to focus on the431

development of image analysis methods to extract the shape of the membrane while reducing noise.432

There are already quite a few efforts in this direction, although these are focused on tension-based433

mechanisms in epithelial sheets. Curvature-dependent effects are harder to discern from imaging data434

(Brodland et al., 2014; Veldhuis et al., 2015). There is also a need for the development of algorithms435

that do not a priori assume symmetry of the shape and can handle irregular geometries. Then, imaging436

data, which are abundant in the literature (Frost et al., 2009; Dannhauser and Ungewickell, 2012;437

Snead et al., 2017), can potentially be analyzed and used to populate a database/machine-learning438

framework. This can then be extended to analyze the shapes of complex structures in cells, which439

likely include contributions from multiple mechanisms. Finally, an assumption that we have made in440

this study is to neglect the surrounding fluid flow or inertial dynamics and assume that the membrane441

is at mechanical equilibrium at all times (Steigmann et al., 2003; Naghdi, 1973; Deserno, 2015).442

This assumption is commonly used in the modeling of membrane curvature to keep the mathematics443

tractable (Steigmann, 1999; Deserno, 2015). While the Helfrich model has been used by us and others444

with great success, the role of these dynamics of deformations, thermal fluctuations (Monzel and445

Sengupta, 2016; Steinkühler et al., 2018), and multiscale models will be needed to truly appreciate446

different spatial and temporal scales of forces. As a small step in this direction, we have implemented a447

modified form of the Helfrich energy including deviatoric effects to consider the anisotropic nature of448

spontaneous curvature (Fig. S10). While our current focus has been on explaining the mathematical449

and physical basis of local tractions and how these tractions can be used to understand important450

experimental systems and biological processes, to close the gap between modeling and experiments,451

future efforts will need to focus on relaxing the assumption of rotational symmetry and the ability to452

estimate local tractions in experimentally observed membrane shapes.453
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Figure 1: Curvature generation in biological membranes (Chabanon et al., 2017). Membrane curvature

is controlled by different physical inputs including (A) protein-induced spontaneous curvature and (B)

forces exerted by the cytoskeleton.
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Figure 2: A schematic representing the axisymmetric coordinate system used for calculating curvature

and traction. Inset shows that pressure opposes traction and external force in both the radial and axial

directions.
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Figure 3: Analysis of normal and tangential traction for membrane tethers. (A) Normal traction distri-

bution along four membrane tether shapes obtained by applying a point load of the specified magnitude

at the pole, �0 = 0.02 pN/nm,  = 320 pN · nm. (B) Magnitude of axial force as a function of tether

height, showing an exact match between the force (Eq. 5) calculated from the traction distribution

and obtained directly from the simulation. (C) Tangential traction distribution along the membrane

shapes for conditions shown in (A). (D) Energy per unit length calculated using Eq. 6 along the four

membrane shapes shown in (A). The dashed lines outline the equilibrium geometry for a membrane
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Figure 4: Comparison of normal and tangential tractions between multiple mechanisms of membrane

tether formation.

(4 continued...)
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(...4 continuation))

Figure 4 (cont.): (A) EM image of an endocytic PM invagination in a bzz1�rvs167� yeast cell

(Kishimoto et al., 2011). Top inset – Original EM image, Bottom inset – EM image with traced

membrane shape (white). (B) Simulation membrane shape obtained by application of a point force

(brown), �0 = 0.02 pN/nm,  = 320 pN · nm. (C) Normal traction distribution along the membrane

shape in (B). (D) Tangential traction distribution along the membrane shape in (B). (E) EM image of

an endocytic PM invagination in a wild type (WT) yeast cell (Kishimoto et al., 2011). Top inset –

Original EM image, Bottom inset – EM image with traced membrane shape (white). (F) Simulation

membrane shape obtained by application of an anisotropic spontaneous curvature (green) along the

tubular section of a membrane tether, �0 = 0.02 pN/nm,  = 320 pN · nm, C = �0.01 nm�1,

D = 0.01 nm�1. (G) Normal traction distribution along the membrane shape in (F). (H) Tangential

traction distribtuion along the membrane shape in (F). (I) ET (electron tomography) image of an

endocytic invagination in budding yeast (Kukulski et al., 2012). Top inset – Original EM image,

Bottom inset – EM image with traced membrane shape (white). (J) Simulation membrane shape

obtained by application of a point force (brown) against an equivalent pressure to the membrane

tension in (B), �0 = 0pN/nm,  = 320 pN · nm, p = 0.3 kPa. (K) Normal traction distribution

along the membrane shape in (J). (L) Tangential traction distribution along the membrane shape in (J).
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Figure 5: Analysis of budding due to protein-induced spontaneous curvature and calculation of line

tension. Simulations were conducted with (A =10,053 nm

2) spontaneous curvature at the center

of an initially flat patch increasing from C = 0 to C = 0.032 nm�1, �0 = 0.02 pN/nm,  =

320 pN · nm, p = 0pN/nm2 (Hassinger et al., 2017). (A) Membrane shapes for three different

spontaneous curvature distributions with the value of C indicated in the red region and zero in the

black region. (B) Normal traction along the membrane for the shapes shown in (A). (C) Tangential

traction distribution along the shapes shown in (A); (D) Energy per unit length distribution for the

three different shapes. The dashed line circles outline spheres with mean curvatures H = 0.032 nm�1

(smaller circle) and H = 0.025 nm�1 (larger circle).
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Figure 6: Change in energy per unit length and its components at the interface with increasing spon-

taneous curvature. Two regimes are observed: a surface tension-dominated regime for small values

of spontaneous curvature and a curvature gradient-dominated regime for large vales of spontaneous

curvature. The membrane configurations are shown for two spontaneous curvature C = �0.02 nm�1,

where energy per unit length at interface is zero and C = �0.025 nm�1, where energy per unit length

is maximum. The red domains show the region of spontaneous curvature for the corresponding shapes.
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C = 0.046 nm-1

Fr = 6.2 pN

(A)

Figure 7: Comparison of normal and tangential tractions between two different mechanisms of mem-

brane budding. (A) EM image of COPII budding from the endoplasmic reticulum (ER) in green

algae (Robinson et al., 2015). Left inset – Original EM image, Right inset – EM image with traced

membrane shape. Red - COPII coat, white - bare membrane (B) Simulation of bud formation on a

hemispherical cap using a constant spontaneous curvature (C= -0.046 nm�1, red) (C) Normal traction

distribution along the membrane shape in (B). A large negative normal traction can be seen at the neck

of the formed vesicle. (D) Tangential traction distribution along the membrane shape in (B). There

is a change in the sign of the tangential traction before and after the bud neck. (E) Brightfield mi-

croscopy image of a budding yeast (Mozdy et al., 2000). Left inset – Original EM image, Right inset

– EM image with traced membrane shape. brown - contractile ring at the bud neck. (F) Simulation of

bud formation on a hemispherical cap with a constant radial force (Fr = 6.2 pN, yellow) that locally

constricts the hemisphere to form a bud. (G) Normal traction distribution along the membrane shape

in (F). There is a positive normal traction at the vesicle neck in response to the applied force. (H)

Tangential traction distribution along the membrane shape in (F).
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Figure 8: Parametric sensitivity analysis to material properties. Axial force (Eq. 5) and energy per unit

length (Eq. 6) were calculated for a variation in the bending rigidity  and membrane tension �0 both

in membrane tubes (A-B) and buds (C-D). Dashed lines indicate 10 % error. �mean = 0.02 pN/nm,

mean = 320 pN · nm, �(Fz)mean = 18.0167pN (corresponding to a tube of height 300 nm in Fig. 3),

⇠mean � 6.13pN (corresponding to a spontaneous curvature of 0.0276 nm�1 in Fig. 5). The sensitivity

analysis was performed in two ways – (i). Sensitivity to shape and material property by running

multiple simulations corresponding to the different parameter values (A, C) followed by an error

calculation with respect to the mean value, (ii). Sensitivity to only material property by using a range

of parameter values during calculation of axial force (Eq. 5) and energy per unit length (Eq. 6)

for a single simulation (mean). (A) Sensitivity to shape and material property in a membrane tube.

(B) Sensitivity to only material property in a membrane tube. (C) Sensitivity to shape and material

property in a membrane bud. (D) Sensitivity to only material property in a membrane bud.
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J. Steinkühler, B. Różycki, C. Alvey, R. Lipowsky, T. R. Weikl, R. Dimova, and D. E. Discher.666

Membrane fluctuations and acidosis regulate cooperative binding of “marker of self” cd47 with667

macrophage checkpoint receptor sirp↵. J Cell Sci, pages jcs–216770, 2018.668

D. J. Stephens and V. J. Allan. Light microscopy techniques for live cell imaging. Science, 300(5616):669

82–86, 2003.670

33

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2018. ; https://doi.org/10.1101/157313doi: bioRxiv preprint 

https://doi.org/10.1101/157313
http://creativecommons.org/licenses/by/4.0/


A. M. Sydor, K. J. Czymmek, E. M. Puchner, and V. Mennella. Super-resolution microscopy: from671

single molecules to supramolecular assemblies. Trends in cell biology, 25(12):730–748, 2015.672

A. Tian, C. Johnson, W. Wang, and T. Baumgart. Line tension at fluid membrane domain boundaries673

measured by micropipette aspiration. Physical review letters, 98(20):208102, 2007.674

I. Todhunter. A History of the Theory of Elasticity and of the Strength of Materials: Galilei to Saint-675

Venant, 1639-1850.-v. 2. pt. 1-2. Saint-Venant to Lord Kelvin, volume 1. University Press, 1886.676

A. Varma, M. Morbidelli, and H. Wu. Parametric sensitivity in chemical systems. Cambridge Univer-677

sity Press, 2005.678

J. H. Veldhuis, D. Mashburn, M. S. Hutson, and G. W. Brodland. Practical aspects of the cellular force679

inference toolkit (cellfit). In Methods in cell biology, volume 125, pages 331–351. Elsevier, 2015.680

N. Walani, J. Torres, and A. Agrawal. Endocytic proteins drive vesicle growth via instability in high681

membrane tension environment. Proceedings of the National Academy of Sciences, 112(12):E1423–682

E1432, 2015.683
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1 Table of notation31

Table 1: Notation used in the model
Notation Description Units
E Strain energy pN · nm
p Pressure difference across the membrane pN/nm2

C Spontaneous curvature nm�1

✓↵ Parameters describing the surface
W Local energy per unit area pN/nm
r Position vector
n Normal to the membrane surface unit vector
⌫ Tangent to the membrane surface in direction of increasing arc length unit vector
⌧ Rightward normal in direction of revolution unit vector
a↵ Basis vectors describing the tangent plane
� Membrane tension, �(W + �) pN/nm
H Mean curvature of the membrane nm�1

K Gaussian curvature of the membrane nm�2

D Deviator curvature of the membrane nm�2

 Bending modulus pN · nm
G Gaussian modulus pN · nm
s Arc length nm
✓ Azimuthal angle
 Angle between er and as
r Radial distance nm
z Elevation from base plane nm
er(✓) Radial basis vector unit vector
e✓ Azimuthal basis vector unit vector
k Altitudinal basis vector unit vector
F External force pN
f Applied force per unit area pN/nm2

⌧ Transverse curvature nm�1

⌫ Tangential curvature nm�1

⌧ Surface twist nm�1

˜f Traction (force per unit length) pN/nm
˜fr Component of traction in radial direction pN/nm
˜fz Component of traction in axial direction pN/nm
˜fn Component of traction in normal direction pN/nm
˜f⌫ Component of traction in transverse direction pN/nm
˜Fz Calculated force in axial direction pN
⇠ Energy per unit length pN
M Bending couple pN · nm
t Arc length around curve of revolution nm
a Membrane area in mapped coordinate nm

2

A Membrane area in referenced frame nm

2

� unit vector representing the one-dimensional orientation of a protein coat
µ unit vector normal to � and n
coat Bending modulus along protein coat pN · nm
D

0

Spontaneous membrane curvature deviator nm�1

2
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Table 2: Notation used in the model
Notation Description Units
mean Mean value of bending modulus pN · nm
error Error in bending modulus pN · nm
�mean Mean value of membrane tension pN/nm
�error Error in membrane tension pN/nm
V Confined volume by membrane area nm

3

smax Maximum arc length at the base nm
R

0

Patch radius nm
 Bending rigidity of bare membrane pN · nm
�
0

Surface tension at boundary pN/nm
L Shape equation variable nm

�1

x Dimensionless radial distance
y Dimensionless height
h Dimensionless mean curvature
c Dimensionless spontaneous curvature
l Dimensionless L
�⇤ Dimensionless surface tension
p⇤ Dimensionless pressure
f⇤ Dimensionless force per unit area
⇤ Dimensionless bending modulus
⇤G Dimensionless Gaussian modulus
K⇤ Dimensionless Gaussian curvature
⇣ Dimensionless area
A Area of spontaneous curvature field nm

2

⇣
force

Area of the applied force nm

2

✏ Small parameter
X Rescaled parameter or dimensions for x
Y Rescaled parameter or dimensions for y
P Rescaled parameter or dimensions for  

2 Model development32

2.1 Assumptions33

• Membrane curvature generated due to forces or protein-induced spontaneous curvature is much34

larger than the thickness of the bilayer. Based on this assumption, we model the lipid bilayer as35

a thin elastic shell with a bending energy given by the Helfrich-Canham energy, which is valid36

for radii of curvatures much larger than the thickness of the bilayer [1, 2].37

• We neglect the surrounding fluid flow or inertial dynamics and assume that the membrane is in38

mechanical equilibrium at all times [3]. This assumption is commonly used in the modeling of39

membrane curvature to keep the mathematics tractable [4].40

• The membrane is incompressible because the energetic cost of stretching the membrane is high41
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[5]. This constraint is implemented using a Lagrange multiplier [6, 7].42

• Finally, for simplicity in the numerical simulations, we assume that the membrane in the region43

of interest is rotationally symmetric (Fig. 2).44

2.2 Equations of motion45

At equilibrium, the integration of local energy density (W) over the total membrane surface area !46

gives the strain energy of the system written as [8–10]47

E =

Z

!
W (H,K,D; ✓↵)da, (S1)

where E is total strain energy, H is the mean curvature of the surface, K is the Gaussian curvature, D48

is the curvature deviator, and ✓↵ {↵ = 1, 2} denotes the surface coordinate.49

To impose the area incompresibility condition, we can rewrite the energy equation Eq. S1 using a50

Lagrange multiplier51

E =

Z

!
[JW (H,K,D; ✓↵) + �(✓↵)(J � 1)]dA, (S2)

where � is a Lagrange multiplier and52

J =

p
a/A, (S3)

is the local areal stretch due to mapping from a reference frame to the actual surface.53

Minimization of the energy Eq. S2 by usage of the variational approach gives the governing shape54

equation and the incompressibility condition in a heterogeneous membrane55

p+ f · n = �

1

2

WH + (WK)

;↵�
˜b↵� +WH(2H2 �K) + 2H(KWK �W )� 2�H

+

1

2

[WD(�
↵�� � µ↵µ�

)]

;�↵ +

1

2

WD(�
↵�� � µ↵µ�

)b↵⇠b
⇠
� ,

(S4)

and56

(

@W

@x↵ |exp
+ �,↵ +WD[b↵�(�

↵��)
;⌘])a

�↵
= f · as. (S5)

where �(·) is the surface Laplacian, p is the pressure difference across the membrane, f is any ex-57

ternally applied force per unit area on the membrane, n is the normal vector to the surface, as is the58

tangent vector on surface, a↵� is the dual metric, b↵� are the coefficients of the second fundamental59

form, b↵� are the mixed components of the curvature, ˜b↵� is the co-factor of the curvature tensor, and60

()|exp denotes the explicit derivative with respect to coordinate ✓↵. Also, �↵ and µ↵ are the projections61

of � and µ along the tangential vectors with62
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�↵ = � · a↵,
µ↵

= µ · a↵
(S6)

where � is a unit vector representing the orientation of a protein coat tangential to the one-dimensional63

curve on the surface, and µ is a unit vector defined by64

µ = n ⇥ � (S7)

In what follows, we explore different commonly used forms of energy as follows65

(i). Helfrich energy for isotropic spontaneous curvature66

(ii). Helfrich energy for anisotropic spontaneous curvature67

2.2.1 Helfrich energy for isotropic spontaneous curvature68

For a lipid bilayer membrane, we use a modified version of the Helfrich energy to account for the69

spatial variation of spontaneous curvature [7, 11, 12],70

W = (✓↵)(H � C(✓↵))2 + G(✓
↵
)K, (S8)

C is the spontaneous curvature, and  and G are bending and Gaussian modulii respectively, which in71

general case of heterogeneous membrane can vary along thesurface coordinate. It should be mentioned72

that Eq. S8 is different from the standard Helfrich energy by a factor of 2. We take this net effect into73

consideration by choosing the value of the bending modulus to be twice that of the standard value of74

bending modulus typically used for lipid bilayers [1].75

Substituting the Helfrich energy function Eq. S8, in Eqs. S4 and S576

� [(H � C)] + 2H�G � (G);↵� + 2 (H � C)

�
2H2 �K

�
� 2H (H � C)

2

| {z }
Elastic Effects

= p+ 2�H| {z }
Capillary

effects

+ f · n|{z}
Force induced

variation

,

(S9)

and77

�,↵|{z}
Gradient of

surface tension

= � @

@✓↵
(H � C)

2

| {z }
bending modulus
-induced variation

+ 2 (H � C)

@C

@✓↵| {z }
Protein-induced variation

� @G
@✓↵|{z}

Gaussian modulus
-induced variation

� f · a↵| {z }
Force induced

variation

. (S10)

2.2.2 Helfrich energy for an anisotropic curvature78

In order to represent anisotropic curvature generated due to membrane-proteins interactions, we con-79

sider the local energy density function as [9, 10]80

W = (✓↵)(H � C(✓↵))2 + (✓↵)(D �D
0

)

2

+ G(✓
↵
)K, (S11)
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where D
0

is spontaneous membrane curvature deviator. Substituting this form of energy density Eq.81

S11 in Eqs. S4 and S5 give82

� [(H � C)] + 2H�G � (G);↵� + 2 (H � C)

�
2H2 �K

�
� 2H (H � C)

2

| {z }
Elastic Effects

+ [(D �D
0

)(�↵�� � µ↵µ�
)]

;�↵ + (D �D
0

)(�↵�� � µ↵µ�
)b↵⇠b

⇠
�| {z }

Deviotoric effects

= p+ 2�H| {z }
Capillary effects

+ f · n|{z}
Force induced

variation

,

(S12)

and83

�,↵|{z}
Gradient of

surface tension

= � @

@✓↵
(H � C)

2

| {z }
bending modulus
-induced variation

+ 2 (H � C)

@C

@✓↵| {z }
Protein-induced variation

� @G
@✓↵|{z}

Gaussian modulus
-induced variation

� f · a↵| {z }
Force induced

variation

+2(D �D
0

)[b↵�(�
↵��)

;⌘]| {z }
Deviatoric effects

.

(S13)

2.3 Axisymmetric coordinates84

2.3.1 Equations of motion for isotropic curvature85

We parameterize a surface of revolution (Fig. 1B) by86

r(s, ✓) = r(s)er(✓) + z(s)k. (S14)

We define  as the angle made by the tangent with respect to the horizontal. This gives r0(s) =87

cos( ), z0(s) = sin( ), which satisfies the identity (r0)2+(z0)2 = 1. Using this, we define the normal88

to the surface as n = � sin er(✓) + cos k, the tangent to the surface in the direction of increasing89

arc length as ⌫ = cos er(✓) + sin k, and unit vector ⌧ = e✓ tangent to the boundary @! in the90

direction of the surface of revolution (see Fig. 1B).91

This parameterization yields the following expressions for tangential (⌫) and transverse (⌧ )92

curvatures, and twist (⌧):93

⌫ =  
0
, ⌧ = r�1

sin , ⌧ = 0. (S15)

The mean curvature (H) and Gaussian curvature (K) are obtained by summation and multiplica-94

tion of the tangential and transverse curvatures95

H =

1

2

(⌫ + ⌧ ) =
1

2

( 
0
+ r�1

sin ), K = ⌧⌫ =

 
0
sin 

r
. (S16)

Defining L =

1

2r(WH)

0, we write the system of first order differential equations governing the96

problem as [13],97
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r0 = cos , z0 = sin , r 0
= 2rH � sin ,

rH 0
= L+ rC 0 � r0


(H � C), �0 = 2 (H � C)C 0 � 0(H � C)

2 � 0GK � f · as,

L0

r
=

p

k
+

f · n


+ 2H


(H � C)

2

+

�



�
� 2 (H � C)

h
H2

+

�
H � r�1

sin 
�
2

i

�
0



L

r
� 

00
G



sin 

r
� 0G



cos 

r
(2H � sin 

r
).

(S17)

The applied boundary conditions are98

r(0+) = 0, L(0+) = 0,  (0+) = 0,

z(smax) = 0,  (smax) = 0, �(smax) = �
0

.
(S18)

In asymmetric coordinates, the manifold area can be expressed in term of arc length [14, 15]99

a(s) = 2⇡

Z s

0

r(⇠)d⇠ ! da

ds
= 2⇡r. (S19)

Eq. S19 allows us to convert Eq. S17 to an area derivative and prescribe the total area of the100

membrane.101

We non-dimensionalized the system of equations as102

⇣ =

a

2⇡R2

0

, x =

r

R
0

, y =

y

R
0

, h = HR
0

, c = CR
0

, l = LR
0

,

�⇤ =
�R2

0


0

, p⇤ =
pR3

0


0

, f⇤
=

fR3

0


0

, ⇤ =



0

, ⇤G =

G
k0

, K⇤
= KR2

0

,

(S20)

where R
0

is the radius of the initially circular membrane patch.103

Rewriting Eq. S17 in terms of Eq. S19 and the dimensionless variables Eq. S20, we get [13]104

xẋ = cos , xẏ = sin x2 ˙ = 2xh� sin , x2 ˙h = l + x2ċ� x2
·⇤

⇤
(h� c)

˙l =
p⇤

⇤
+

f⇤ · n
⇤

+ 2h


(h� c)2 +

�⇤

⇤

�
� 2 (h� c)

h
h2 +

�
h� x�1

sin 
�
2

i

�
˙⇤

⇤
l � x

̈⇤G
⇤

sin � ̇⇤G


cos (2h� sin 

x
),

˙�⇤ = 2⇤ (h� c)� ˙⇤(h� c)2ċ� ̇⇤GK
⇤ � f⇤ · as

x
.

(S21)

The spontaneous curvature field is modeled by a hyperbolic tangent functional as105

C =

1

2

[tanh(g(⇣ � a
0

))], (S22)

where a
0

is the area of applied spontaneous curvature and g = 20 is a constant that ensures a sharp106

but smooth transition.107

7

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2018. ; https://doi.org/10.1101/157313doi: bioRxiv preprint 

https://doi.org/10.1101/157313
http://creativecommons.org/licenses/by/4.0/


2.3.2 Force balance along the membrane for isotropic spontaneous curvature108

(i) Constant bending and Gaussian moduli109

110

A general force balance for a surface !, bounded by a curve @!, is (Fig. 2)111

Z

!
pnda+

Z

@!

˜fdt+ F = 0, (S23)

where t = r(s)✓ is the length along the curve of revolution perimeter, p is the pressure difference112

across the membrane, ˜f is the traction along the curve of revolution t and F is any externally applied113

force on the membrane. Along any circumferential curve on the membrane at constant z, the traction114

is given by [6, 11]115

˜f = ˜f⌫⌫ +

˜fnn +

˜f⌧⌧ , (S24)

where116

˜fn = (⌧WK)

0 � 1/2(WH),⌫ � (WK),�
˜b↵�⌫↵,

˜f⌫ = W + �� ⌫M,

˜f⌧ = �⌧M, (S25)

and ˜fn, ˜f⌫ and ˜f⌧ are force per unit length acting along the normal n, tangent ⌫ to the surface, and117

transverse tangent e✓ respectively. In Eq. S25, M is the bending couple given by118

M =

1

2

WH + ⌫WK . (S26)

Because ⌧ = 0 (no twist) in asymmetric coordinates, the normal and tangential tractions become119

˜fn = �(H 0 � C 0
), (S27a)

˜f⌫ = (H � C)(H � C �  0
) + �. (S27b)

Projecting Eq. S24 onto the orthogonal bases er and k gives us the equation for axial and radial120

tractions [6, 11],121

˜fr = (H 0 � C 0
) sin | {z }

Curvature gradient
contribution

+(H � C)(H � C �  0
) cos | {z }

Curvature
contribution

+ � cos | {z }
Tension

contribution

, (S28a)

˜fz = �(H 0 � C 0
) cos | {z }

Curvature gradient
contribution

+(H � C)(H � C �  0
) sin | {z }

Curvature
contribution

+ � sin | {z }
Tension

contribution

. (S28b)

122

Because
R
@! dt = 2⇡r, the applied force in the axial direction can be evaluated by substituting123

Eqs. S28a,and S28b into Eq. S23,124
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�Fz = 2⇡r
�
�(H 0 � C 0

) cos 
�
+ (H � C)(H � C �  0

) sin + � sin 
| {z }

Force due to traction

+2⇡

Z s

0

pr(⇠) cos d⇠

| {z }
Force due to pressure

.

(S29)
This can be rewritten in terms of tractions as125

�fz =
�
�(H 0 � C 0

) cos 
�
+ (H � C)(H � C �  0

) sin + � sin 
| {z }

axial traction

+

R s
0

pr(⇠) cos d⇠

r| {z }
Traction due to pressure

,

(S30)
where fz =

Fz
2⇡r . The energy per unit length ⇠, or “effective line tension,” can be found by126

integrating Eq. S28a along the perimeter boundary @!,127

⇠ = 2⇡r
h
(H � C)(H � C �  0

) cos | {z }
Curvature

contribution

+ � cos | {z }
Tension

contribution

+(H 0 � C 0
) sin | {z }

Curvature gradient
contribution

i
. (S31)

(ii)Spatially heterogenous bending and Gaussian moduli128

129

For a membrane with a spatially heterogenous bending and Gaussian moduli, the normal and130

tangential tractions in Eqs. S27a, S27b become131

˜fn = �(H 0 � C 0
)� 0(H � C)� sin 

r
0G, (S32a)

˜f⌫ = (H � C)(H � C �  0
) + �. (S32b)

The radial and axial tractions in Eqs. S28a and S28b can be rewritten for the general case as132

˜fr = (H 0 � C 0
) sin + (H � C)(H � C �  0

) cos + � cos 

+0(H � C) sin | {z }
Variable bending

modulus

+

sin 2

r
0G

| {z }
Variable Gaussian

modulus

, (S33a)

˜fz = �(H 0 � C 0
) cos + (H � C)(H � C �  0

) sin + � sin 

�0(H � C) cos | {z }
Variable bending

modulus

� sin cos 

r
0G

| {z }
Variable Gaussian

modulus

. (S33b)

Similarly, the axial force and energy per unit lengths in Eqs. S29, S31 can be rewritten as133
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Fz =

h
2⇡r(�(H 0 � C 0

) cos + (H � C)(H � C �  0
) sin + � sin � 0(H � C) cos � sin cos 

r
0G

| {z }
Force due to traction

)

i

+2⇡

Z s

0

pr(⇠) cos d⇠

| {z }
Force due to pressure

,

(S34a)

⇠ = 2⇡r
h
(H � C)(H � C �  0

) cos | {z }
Curvature

contribution

+ � cos | {z }
Tension

contribution

+(H 0 � C 0
) sin | {z }

Curvature gradient
contribution

+0(H � C) sin | {z }
Variable bending

contribution

+

sin 2

r
0G

| {z }
Variable Gaussian

contribution

i
. (S35a)

2.3.3 Equation of motion for anisotropic spontaneous curvatures134

By using the surface parametrization Eq. S14, we are able to define the curvature deviator (D) as135

D =

1

2

(⌧ � ⌫) =
1

2

(r�1

sin �  
0
) = r�1

sin �H, (S36)

Here, we need to revise our defined L as L =

1

2r[(WH)

0�(WD)
0
], therefore for uniform bending136

and Gaussain modulii, the system of first order differential equations modify as [8],137

r0 = cos , z0 = sin , r 0
= 2rH � sin ,

2rH 0
= L+ rC 0 � rD

0

0
+ 2H cos( )� 2 cos( ) sin( )

r
,

�0 = 2 (H � C)C 0
+ 2(

sin( )

r
�H �D

0

)D0
0

� f · as,

L0

r
=

p

k
+

f · n


+ 2H
h
(H � C)

2

+

�


+ (

sin( )

r
�H �D0)

2 � 2(

sin( )

r
�H �D

0

)(

sin( )

r
�H)

i

�2 (H � C)

h
H2

+

�
H � r�1

sin 
�
2

i
� 2

cos( )

r

hH cos( )

r
� sin( ) cos( )

r2
� D0

0

2

� C 0

2

i
+

L cos( )

r2
.

(S37)

2.3.4 Force balance along the membrane for anisotropic spontaneous curvatures138

By considering the anisotropic spontaneous curvature contribution to the strain energy S11, the trac-139

tion components in Eq. S25 and bending couple in Eq. S26 are modified140
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˜fn = (⌧WK)

0 � 1/2(WH),⌫ � (WK),�
˜b↵�⌫↵ +

1

2

(WD),⌫ � (WD�
↵��)

;�⌫↵ � (WD�
↵��⌫�⌧↵)

0,

˜f⌫ = W + �� ⌫M,

˜f⌧ = �⌧M,
(S38)

and141

M =

1

2

WH + ⌫WK +WD�
↵��⌫�⌫↵ � 1

2

WD. (S39)

In asymmetric coordinates, the normal and tangential tractions simplify as142

˜fn = �(H 0 � C 0 �D0
+D0

0

) = �(2H 0 �  0
cos( )

r
+

sin( ) cos( )

r2
� C 0

+D0
0

), (S40a)

˜f⌫ = (H � C)(H � C �  0
) + �+ (D �D

0

)(D �D
0

+  0
) (S40b)

= (H � C)(H � C �  0
) + �+ (

sin( )

r
�H �D

0

)(

sin( )

r
�H �D

0

+  0
).

Using Eqs. S38 to simplify the traction equations143

˜fn = �L
r
, (S41a)

˜f⌫ = (H � C)(

sin( )

r
�H � C) + �+ (

sin( )

r
�H �D

0

)(H �D
0

). (S41b)

Axial force can then be written as144

Fz = 2⇡r
⇣

L

r
sin( )+((H�C)(

sin( )

r
�H�C)+�+(

sin( )

r
�H�D

0

)(H�D
0

)) cos( )
⌘
.

(S42)

2.4 Asymptotic approximation for small radius145

To ensure continuity at the poles, we use L = H 0
= 0 as a boundary condition in our simulations.146

However, this boundary condition reduces the expressions for tractions (Eqs. S28b, S28a) to zero147

at the pole. To avoid this discrepancy, we derive an asymptotic expression for tractions at small arc148

length. We proceed by assuming that the pole in Eq. S21 is at x = 0 and choose a rescaled variable149

given by150

X =

x

✏
. (S43)

Here, ✏ is a small parameter, so that X is order of one. We can extend this to other small variables151

in Eq. S21 near the pole to get152

y = y
0

+ Y ✏,  = P ✏, s = S✏, (S44)
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where Y , P , S are the corresponding rescaled parameters and y
0

is membrane height at the pole.153

In the simple case with no spontaneous curvature (C = 0), no external force f = 0 and no pressure154

difference p = 0, we substitute Eqs. S44 and S43 into Eq. S21 and use a Taylor expansion to get155

˙X = 1� (P ✏)2

2

, ˙Y = P ✏� (P ✏)3

3!

, ˙P = 2h� P

X
+

✏2

3!

P 3

X
, X ˙h = l,

˙l = ✏22Xh

"
�⇤

k⇤
�
✓
h� P

X
+

P 3✏2

X3!

◆
2

#
,

˙�⇤
= 0. (S45)

We look for a solutions with form of156

h = h0 + ✏h1 + ord(✏2), X = X0

+ ✏X1

+ ord(✏2), Y = Y 0

+ ✏Y 1

+ ord(✏2),

l = l0 + ✏l1 + ord(✏2), P = P 0

+ ✏P 1

+ ord(✏2), �⇤
= �⇤0

+ ✏�⇤1
+ ord(✏2). (S46)

The leading order terms in Eq. S46 are157

˙X0

= 1, ˙Y 0

= 0, ˙P 0

= 2h0 � P 0

X0

, ˙h0 =
l0

X0

, ˙l0 = 0, ˙�⇤0
= 0. (S47)

Integrating the differential equations in Eq. S47, we get158

X0

= S, Y ⇤0
= Y

0

, P 0

= S

✓
H

0

+ L
0

log(S)� L
0

2

◆
,

h0 = L
0

log(S) +H
0

, l0 = L
0

, �0

= �
0

, (S48)

where Y
0

, H
0

and L
0

, �
0

are integration constants. We then look at order ✏1 terms in Eq. S45159

˙X1

= 0, ˙Y 1

= P, ˙P 1

= 2h1 +
P 0X1

X0

2

, X0

˙h1 +X1

˙h0 = l1, ˙l1 = 0, ˙�⇤1
= 0. (S49)

The first order terms are thus given by160

X1

= X
1

, Y 1

= P
1

S + Y
1

, l1 = L
1

, �⇤1
= �

1

, h1 = L
1

log(S) +
X

1

L
0

S
+H

1

,

P 1

= 2S(L
1

log(S)� L
1

+H
1

) +X
1

L
0

log(S)(
3

2

+

log(S)

2

+

H
0

L
0

). (S50)

Combining the leading order and first order terms and substituting into Eq. S46, our system of161

variables can be written as162
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X = S + ✏X
1

, Y = Y
0

+ ✏(P
1

S + Y
1

), l = L
0

+ ✏L
1

, �⇤ = �
0

+ ✏�
1

,

P = S

✓
H

0

+ L
0

log(S)� L
0

2

◆
+ ✏

⇣
2S(L

1

log(S)� L
1

+H
1

) +X
1

L
0

log(S)(
3

2

+

log(S)

2

+

H
0

L
0

)

⌘
,

h = H
0

+ L
0

log(S) + ✏
⇣
L
1

log(S) +
X

1

L
0

S
+H

1

⌘
.

(S51)

We are interested in the asymptotic expansion of mean curvature near the pole, which is given by163

h = H
0

+ L
0

log(S) + ✏
⇣
L
1

log(S) +
X

1

L
0

S
+H

1

⌘
. (S52)

This can be rewritten as164

h = H
0

+ L
0

log(A+ S �A) + ✏H
1

,

h = H
0

+ L
0

log(A) + L
0

log(1 +

S �A

A
) + ✏

⇣
L
1

log(S) +
X

1

L
0

S
+H

1

⌘
, (S53)

where A is a constant. If S�A
A is small, we can perform a Taylor expansion around S = A to get165

the leading order166

h = H
0

+ L
0

log(A) + L
0

✓
S �A

A
� 1

2

(

S �A

A
)

2 . . .

◆

h ⇠ H
0

+ L
0

log(A)� L
0

+ L
0

✓
S

A

◆

h ⇠ H
0

+ L
0

✓
log(A)� 1 +

S

A

◆

h ⇠ H
0

+ L
0

log(A)� L
0

+ L
0

⇣ s

A✏

⌘

h ⇠ C
1

+ C
2

s, (S54)

where C
1

and C
2

are constants. This shows that the mean curvature can be approximated as a linear167

solution near the pole for S ⇠ A or s ⇠ A✏. In our image analysis, inaccuracies near the pole begin at168

orders of magnitude of 10�2. At this range, we can approximate a linear solution for mean curvature.169

Similarly, we consider an asymptotic expansion for  near the pole at leading order170

P = S

✓
H

0

+ L
0

log(S)� L
0

2

◆
, (S55)

which can be rewritten as171

 = s

✓
H

0

+ L
0

log(s)� L
0

✏� L
0

2

◆
!  = s (D

1

+D
2

log(s)) , (S56)

13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2018. ; https://doi.org/10.1101/157313doi: bioRxiv preprint 

https://doi.org/10.1101/157313
http://creativecommons.org/licenses/by/4.0/


where D
1

and D
2

are constants. We can now substitute the approximation for mean curvature and  172

near the pole into Eq. S28a and S28b to get173

˜fr ⇠ �(C
1

+ C
2

s� C)(C
1

+ C
2

s� C �D
2

�D
1

�D
2

log(s))� �, (S57a)
˜fz ⇠ �(C

2

� C 0
). (S57b)

Using log(s) = log(s + A � A) = log(A) + log(1 +

s�A
A ) and expanding around s ⇠ A, Eq.174

S57b can be simplified to175

˜fr ⇠ �(F
1

s2 + F
2

s+ F
3

)� �, (S58a)
˜fz ⇠ �(C

2

), (S58b)

where F
1

, F
2

are constants. We can thus approximate radial traction as quadratic in arc length near the176

pole, while axial traction can be correspondingly approximated as constant. In this work, we choose177

to start the asymptotic solution at the local minimum of mean curvature near the pole, which is ✏ ⇠178

0.1.179

3 Additional tether and bud formation simulations180

3.1 Tubes pulled against pressure181

In Fig. 3, we set p = 0 and �
0

= 0.02 pN/nm. However, pressure plays an important role in tether182

formation in certain biological contexts and thus cannot be ignored [16]. We investigated the role183

pressure plays during tether formation by finding pressure that produces a tube of similar radius to184

that obtained in Fig. 3. To do this, we first define a natural length scale for the system, R
0

, by the185

expected equilibrium radius of a membrane tube obtained by minimization of the free energy of the186

membrane [17].187

In absence of the pressure, external force, spontaneous curvature and Gaussian modulus, we can188

write the free energy of the membrane as189

E =

Z

!
(H2

+ �)da. (S59)

For a tube of length L and radius R, the free energy, ignoring the mean curvature of the cap190

(H =

1

2R ), can be written as191

Wtube =

⇣ 

4R2

+ �
⌘
2⇡RL. (S60)

The balance between the surface tension, which acts to reduce the radius, and the bending rigidity192

sets the equilibrium radius R
0

. Taking @Wtube/@R = 0 we obtain193

R
0

⌘ 1

2

r


�
. (S61)

We can perform a similar analysis with pressure replacing surface tension. The free energy of the194

membrane Eq. S59 can be rewritten as195
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E =

Z

!
H2

da+ pV. (S62)

Again for a tube of length L and radius R, the free energy can be written as196

Wtube =

⇣ 

4R2

⌘
2⇡RL+ p⇡R2L. (S63)

Here, the balance between pressure, which acts to reduce the radius, and the bending rigidity sets197

the equilibrium radius R
0

. Taking @Wtube/@R = 0 we obtain198

R
0

⌘ 3

r


4p
. (S64)

Comparing Eq. S64 and Eq. S61, we can find an equivalent pressure to the surface tension needed199

for achieving a tube of radius R
0

,200

3

r


4p
=

1

2

r


�
,

p =

2�
p
�p


. (S65)

Eq. S65 gives an equivalent pressure p = 0.3 kPa for a surface tension of 0.02 pN/nm. We201

perform the tether pulling simulation for this value of pressure, such that the pressure acts inward for202

every non-zero height. Surface tension is set to zero at the base. Using the expressions for traction203

incorporating pressure (Eqs. S4, S5, S28), we can plot the axial, radial (Fig. S2A and B), normal and204

tangential tractions (Fig. S2D and E ). The traction distributions show similar behaviour to Fig. 3 in205

the main text. Using Eq. S29, the applied force matches the difference between pressure force in the206

axial direction and the force due to the axial traction (Fig. S2F). Panel C shows that energy per unit207

length has a similar behavior to the trend in Fig. 3D of the main text.208

3.2 Tubes pulled against pressure and surface tension209

Yeast endocytic buds experience a very large pressure on the order of 1MPa [16, 18]. This large210

hydrostatic pressure intrinsically represents the effect of the matrix during endocytosis. In Fig. S3,211

we perform a tether pulling simulation for pressure 1MPa, surface tension 0.02 pN/nm and bending212

modulus of 32000 pN · nm, suggested by [16]. Fig. S3A and B show the axial and radial tractions for213

four membrane shapes as the tether is pulled out. Because of the large pressure, the radius of the tether214

is very small. A consequence of the small radius is a positive radial traction at the neck, where the215

membrane wants to push out. Axial and radial traction are both constant over cylindrical parts of the216

tether. Energy per unit length (seen in Fig S3C) shows large negative values at the neck and near the217

pole, similar to cases before. The normal and tangential traction distributions (Fig. S3D and E ) along218

the membrane and are also qualitatively similar to the previous cases, but differ in magnitude due to219

larger bending modulus, with tractions being almost two orders of magnitude larger. In Fig. S3F, the220

external force is plotted vs the height of the tether and matches the difference between pressure force221

and axial force (Eq. S34a). In the presence of pressure, a much larger force is required to pull out the222

tube – the maximum force is almost 600 times larger than the case without pressure.223
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3.3 Axial and radial tractions in bud formation224

The axial and radial tractions for the budding simulation, Fig. 5 of the main text, are shown in Fig225

S4. The axial traction along the membrane is negligible in all the stages of bud formation (Fig. S4A).226

The axial force due to traction Eq. S29 depends on three different terms, curvature, curvature gradient227

and surface tension. The calculated axial force at the interface is zero because tension term cancels228

out the force due to curvature gradient and the force associated with curvature is zero by itself (Fig.229

S4B). This means that neck formation is purely regulated by radial stresses (Fig. S4C). For small230

deformations, the radial traction is positive throughout, which shows that the membrane works to231

oppose the deformation. However, with the formation of U-shaped caps, radial traction changes sign232

and acts inward, representing the membrane’s tendency to form small necks.233

3.4 Bud formation with a rigid protein coat234

In Fig.5, we assumed the bending rigidity is homogeneous all along the membrane. However, various235

force microscopy measurements have shown that bending rigidity along the protein coat is much larger236

than the bare membrane [19]. To investigate the effect of spatial heterogeneity in the bending moduli237

on bud morphology and traction distributions, we repeated the simulation in Fig. 5, assuming that238

the bending rigidity along the spontaneous curvature field is 7.5 times larger than the bare membrane239

(coat = 7.5 ⇥  = 2400 pN/nm (Fig. S5A)). Comparing these shapes to those in main text (Fig.240

5), we see that in this case, a larger spontaneous curvature is required to form a narrow neck because241

the membrane is stiffer and harder to bend. Using Eqs. S32a, S32b and S35a, the normal, tangential242

tractions and energy per unit length distributions are plotted along the shapes (Fig. S5B, C and D).243

The positive normal traction distribution indicates the resistance of the membrane to bending. Similar244

to the case of a homogeneous membrane, the line tension can be divided into two sections. In the245

first section (small spontaneous curvature), tent shaped buds form and the line tension changes sign246

from positive to negative. Here, the average difference in the line tension magnitude between the two247

cases is less than 1 pN. However, in the second section (large spontaneous curvature), the line tension248

magnitude decreases with the formation of an ⌦-shaped bud, and the average difference in the line249

tension magnitude is signifcantly larger (⇠ 4 pN) (Fig. S5E).250

3.5 Bud and tube formation in arc length251

In Figs.5 and 3, we fixed the total area of the membrane and increased the magnitude of the spon-252

taneous curvature and applied force respectively (Eqs. S21). However, in active non-equilibrium253

processes such as endocytosis, the available membrane area can vary. One possible way to consider254

the impact of the membrane area adjustment is solving the equations in arc length (Eqs. S17) instead255

of area. Here, we repeated the simulations of Figs. 5 and 3 for a fixed arc length of membrane. In the256

case of the bud, we fixed the arc length coverage of the coat and increased the spontaneous curvature257

from 0 to C=-0.032 nm�1 (Fig.S6A). The tractions and energy per unit length distribution along dif-258

ferent shapes are shown in Fig. S6B-D. Evidently, independent of whether the available area of the259

membrane is fixed or not, the energy per unit length at the interface is between 6 to -6 pN and changes260

sign from positive to negative with formation of a neck (Fig. S6E). In the case of a tube simulation261

for a fixed arc-length (Fig. S7), we can replicate the force-displacement curve in the main text (Fig.262

S7B and Fig. 3B), which is for a fixed membrane area . The tractions and energy per unit length263

distribution along a few shapes are shown in Fig. S7A,C,D.264
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3.6 Bud formation with cytoskeleton forces265

We consider the effects of the cytoskeleton during endocytosis as previously described in [13]. In266

Fig. S8, we apply actin-mediated forces on a U-shaped bud such that actin polymerizes in the form267

of a ring at the base of the endocytic pit with the network attached to the protein coat [13, 20]. Fig.268

S8B-D show the tractions and energy per unit length distributions along the initial and final shapes as269

the membrane is pulled out. Fig. S8E shows the match obtained between the applied force and axial270

force calculated at the edge of the protein coat. Here, we note that calculating the axial force at the271

base predicts zero applied force – a consequence of the actin ring acting at the base that integrates to272

zero. To further emphasize this point, we repeated the simulation without this downward force at the273

base (Fig. S9) and show that the match between applied force and axial force can be obtained both at274

the base of the membrane and at the edge of the protein coat. Fig S9B shows that the large tangential275

traction along the neck is limited to a smaller region (red) compared to Fig. S8B, because without276

considering the actin ring force at the base, there is lesser axial stretch along the bud neck.277

3.7 Bud formation with anisotropic spontaneous curvature278

Proteins induce a highly anisotropic local spontaneous curvature [9, 10]. To model this effect, we used279

a modified energy functional (Eq. S11) that includes deviatoric curvature effects. This then can be280

written as the shape equation (Eq. S12) and tangential variation equation (Eq. S13). We solve this281

system of equations for a deviatoric curvature field applied over the cylindrical portion of a membrane282

tube (Fig. S10, [20]). Fig S10A shows neck formation in a membrane tube with increasing deviatoric283

curvature. The membrane invagination obtained resembles the PM shape seen during assembly of284

rvs proteins at the neck of a tube [20]. We note here that we apply both a spontaneous curvature285

and deviatoric curvature with opposite signs. Fig. S10D shows that the energy per unit length at286

both interfaces matches the trend seen in Fig. 6 leading up to neck formation. Fig. S10E shows287

that the axial forces can be matched to applied forces. Axial forces decrease as a consequence of the288

membrane height being constrained.289

3.8 Additional sensitivity analysis290

Fig. 8B shows that the axial force (Fz) is not sensitive to error in membrane tension for a fixed shape of291

a membrane tether. This is because the calculation of axial force was performed at the base of the PM292

invagination where the membrane is nearly flat ( = 0). In Fig. S11, we perform the same analysis293

by repeating the calculation at two other locations – (1) at the edge of the area of applied force, (2)294

at the point of zero mean curvature. Fig. S11A shows these points (1) and (2) along the membrane295

shape corresponding to the peak of the force-displacement graph in Fig. 3B. The error in (Fz) due to296

membrane tension increases for calculations at regions of larger tangent angle  (Fig. S11B, C). Thus,297

to minimize error in axial force, we choose to perform traction calculations at base of the membrane.298
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4 Supplementary figures299

Outward

Inward

External force

Inward

(A) (B)

Figure S1: Axial and radial traction (Eqs. S28b, S28a) distribution plotted along the same membrane
shapes as in Fig. 3A–C. (A) Axial traction distribution. The axial traction is constant along the tube.
(B) Radial traction distribution. The dotted line is the stable cylindrical geometry.
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Figure S2: Tether pulling simulation for the pressure of 0.3 kPa, bending modulus 320 pN · nm, no
surface tension at the boundary (�

0

= 0), and a point force. (A) Axial traction distribution along the
tether. (B) Radial traction distribution. We find a negative value at the neck and a positive value at the
base. (C) Energy per unit length (Eq. 6) plotted along the shapes. We observe a large value at the neck
- predicting an ‘effective’ line tension of 11 pN for a tether of height 700 nm. (D) Normal traction
distribution. It is large and negative over the area of applied force. (E) Tangential traction distribution.
(F) Applied force and the difference between the calculated pressure and axial force (Eq. S29) plotted
as a function of tether height.
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Figure S3: Tether pulling simulation for a pressure of 1MPa, bending modulus 32000 pN · nm, sur-
face tension at the boundary (�

0

= 0.02pN/nm), and a point force. (A) Axial traction distribution
along the tether for four chosen membrane shapes. (B) Radial traction distribution along the mem-
brane shapes in (A). (C) Energy per unit length (Eq. S31) plotted along the membrane shapes in (A).
We observe a large value at the neck. (D) Normal traction distribution along the membrane shapes
in (A). It is large and negative over the area of applied force and at the neck. (E) Tangential trac-
tion distribution along the membrane shapes in (A). (F) Applied force and the difference between the
calculated pressure and axial force (Eq. S29) plotted as a function of tether height.
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(A)

Inward
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Figure S4: Bud formation from a flat membrane for increasing spontaneous curvature and a constant
area of spontaneous curvature field A = 10, 053 nm2. The spontaneous curvature magnitude increases
from C = 0 to C = �0.034 nm�1, the bending modulus is  = 320 pN · nm and surface tension
at the edge is �

0

= 0.02 pN/nm. Axial traction does not play any role in invagination. (A) Axial
traction along the membrane is negligible for all shapes. (B) Axial force at the interface is almost
zero. Terms due to tension and curvature gradient cancel each other and force due to curvature is
automatically zero. (C) Radial traction distribution for three shapes. A large negative radial traction
at the neck should favor membrane scission.
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(B)

(D)

(A)

C= -0.02 nm-1
C= -0.025 nm-1
C= -0.032 nm-1

�coat = 2400 pN/nm

�bare = 320 pN/nm

(C)

(E)

�coat = 2400 pN/nm

�bare = 320 pN/nm

Figure S5: Analysis of membrane budding due to protein-induced spontaneous curvature with a rigid
coat. Simulations for Fig. 5 is repeated for coat = 2400 pN/nm and  = 320 pN/nm. (A)
Membrane shapes for same three spontaneous curvature as Fig. 5 A. (B) Normal traction along the
membrane for the shapes shown in (A). (C) Tangential traction distribution (D) Energy per unit length
distribution for the chosen shapes. (E) Energy per unit length at the edge of the edge of the spontaneous
curvature field as a function of spontaneous curvature for the homogeneous membrane in Fig. 5 (blue
solid line) and a rigid protein coat (red dashed line). In large values of spontaneous curvature (⌦-
shaped bud) the average difference between the line tension magnitudes is almost 4 pN.
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Figure S6: Budding simulation with protein-induced spontaneous curvature for a fixed arc length
instead of a fixed membrane area. (A) Three different membrane shapes with increasing spontaneous
curvature. (B-D) Normal traction, tangential traction and energy per unit length distribution along the
observed shapes in panel (A). (E) Energy per unit length at the edge of the protein coat. Blue solid
line is for the fixed membrane area (Fig. 6) and the red dashed line represents the case with constant
arc length.

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2018. ; https://doi.org/10.1101/157313doi: bioRxiv preprint 

https://doi.org/10.1101/157313
http://creativecommons.org/licenses/by/4.0/


Figure S7: Tether pulling simulation with a point force for a fixed arc length instead of a fixed mem-
brane area. Bending modulus  = 320 pN · nm, surface tension at the boundary (�

0

= 0.02pN/nm).
(A) Normal traction distribution along four chosen membrane shapes. (B) Match obtained between
applied force and axial force calculated from Eq. S29 plotted vs height of the tether. (C) Tangential
traction distribution along the membrane shapes in (A). (D) Energy per unit length (Eq. S31) along
the membrane shapes in (A).
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Figure S8: Application of axial forces (brown) onto a U-shaped bud covered by a protein coat
(red). Spontaneous curvature magnitude C = �0.02 nm�1, area of spontaneous curvature field A =

17, 593 nm2, bending modulus  = 320 pN · nm and surface tension at the edge �
0

= 0.02 pN/nm.
Here, axial forces are applied such that there is an upward force over the protein coat and a downward
force acting as a ring at the base [13]. (A) Initial and final membrane shapes obtained. (B) Tangential
traction distribution along the membrane shapes in (A). (C) Normal traction distribution along the
membrane shapes in (A). (D) Energy per unit length along the membrane shapes in (A). (E) Force
match obtained between applied force and negative of axial force calculated using Eq. S29. Here,
axial force is calculated at the edge of the protein coat. Axial force at the base is zero since the upward
and downward forces balance each other out.
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Figure S9: Application of axial forces (brown) onto a U-shaped bud covered by a protein coat
(red). Spontaneous curvature magnitude C = �0.02 nm�1, area of spontaneous curvature field A =

17, 593 nm2, bending modulus  = 320 pN · nm and surface tension at the edge �
0

= 0.02 pN/nm.
Here, axial forces are applied such that there is only an upward force over the protein coat. (A) Initial
and final membrane shapes obtained. Force required is smaller than Fig. S8. (B) Tangential traction
distribution along the membrane shapes in (A). (C) Normal traction distribution along the membrane
shapes in (A). (D) Energy per unit length along the membrane shapes in (A). (E) Force match ob-
tained between applied force and negative of axial force calculated using Eq. S29. Here, axial force
is calculate at the base of the membrane. The same match can be obtained at the edge of the protein
coat.

26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 10, 2018. ; https://doi.org/10.1101/157313doi: bioRxiv preprint 

https://doi.org/10.1101/157313
http://creativecommons.org/licenses/by/4.0/


0 2 4 6
Deviatoric curvature (nm-1) 10-3

-25

-20

-15

-10

-5

En
er

gy
 p

er
 u

ni
t l

en
gt

h 
(p

N
) Interface 1

Interface 2

(A) (B) (C)Normal traction  
(pN/nm)

Tangential traction  
(pN/nm)

(D) (E)

0 2 4 6
Deviatoric curvature (nm-1) 10-3

4

6

8

10

12

14

Fo
rc

e 
(p

N
)

Applied force
- (Axial force
calculated from
Eq. 10)S42)

-200 -100 0 100 200
Radius (nm)

0

50

100

150

200

250

300

H
ei

gh
t (

nm
)

Figure S10: Application of a deviatoric spontaneous curvature along the cylindrical portion of a mem-
brane tube leads to neck formation [20]. The simulation was performed by first pulling out a membrane
tube of fixed arc length, followed by application of both spontaneous curvature and deviatoric curva-
ture for a fixed height of membrane tube. Arc length of the deviatoric spontaneous curvature field
s = 5 nm, bending modulus  = 320 pN · nm and surface tension at the edge �

0

= 0.02 pN/nm.(A)
Membrane shapes at a spontaneous curvature C = 0nm

�1, C = �0.004 nm�1, C = �0.01 nm�1

and deviatoric spontaneous curvature D = 0nm

�1, D = 0.004 nm�1, D = 0.01 nm�1 respectively.
(B) Normal traction distribution along the membrane shapes in (A). (C) Tangential traction distribu-
tion along the membrane shapes in (A). (D) Energy per unit length at both interfaces with increasing
deviatoric curvature. The trend of energy per unit length resembles the trend leading up to neck for-
mation in Fig 5. (E) Match between applied force and axial force calculated using Eq. S42. Axial
force relaxes with membrane neck formation.
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Figure S11: Location dependence of the sensitivity analysis to axial force calculation from a single
simulation of a membrane tube. Dashed lines indicated 10 % error. (A) Membrane shape at a mean
value of = 320 pN.nm, �

0

= 0.02 pN/nm, �Fz (brown)= 18.0167 pN (corresponding to a tube of
height 300 nm in Fig. 3). The cross marks (labeled 1 and 2) indicate the locations where axial force
is calculated. (B) Error in Fz calculated at point 1 (edge of the area of applied force). (C) Error in Fz

calculated at point 2 (location of zero mean curvature). Error in Fz due to error in membrane tension
� increases near the curved portions of the PM invagination.
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