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Abstract

For many neural network models that are based on perceptrons, the number of activity patterns

that can be classified is limited by the number of plastic connections that each neuron receives, even

when the total number of neurons is much larger. This poses the problem of how the biological

brain can take advantage of its huge number of neurons given that the connectivity is extremely

sparse, especially when long range connections are considered. One possible way to overcome this

limitation in the case of feed-forward networks is to combine multiple perceptrons together, as in

committee machines. The number of classifiable random patterns would then grow linearly with the

number of perceptrons, even when each perceptron has limited connectivity. However, the problem

is moved to the downstream readout neurons, which would need a number of connections that is as

large as the number of perceptrons. Here we propose a different approach in which the readout is

implemented by connecting multiple perceptrons in a recurrent attractor neural network. We show

with analytical calculations that the number of random classifiable patterns can grow unboundedly

with the number of perceptrons, even when the connectivity of each perceptron remains finite. Most

importantly both the recurrent connectivity and the connectivity of a downstream readout are also

finite. Our study shows that feed-forward neural classifiers with numerous long range connections

connecting different layers can be replaced by networks with sparse long range connectivity and local

recurrent connectivity without sacrificing the classification performance. Our strategy could be used

in the future to design more general scalable network architectures with limited connectivity, which

resemble more closely brain neural circuits dominated by recurrent connectivity.

1 Introduction

The performance of a neural circuit is often evaluated by determining the number of input-output

functions that can be implemented, or equivalently by the number of inputs that can be classified

correctly by the neural circuit. Theoretical studies on perceptrons [1] and recurrent neural circuits
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(see e.g. [2]) have shown that typically the performance of a neural circuit scales with the number of

synaptic connections that each individual neuron receives, and not with the total number of synapses,

or with the total number of neurons (see e.g. [3]). This is clearly a problem in the biological brain

in which the connectivity is sparse, especially when long range connections are considered [4]. One

striking example is the mammalian hippocampal circuit [5]. According to [6] a typical pyramidal

neuron in the CA3 area of rodent hippocampus receives only 50 synapses from the upstream area,

the dentate gyrus (DG), which contains around 106 neurons. This is even more striking taking into

account that the neural activity in the dentate gyrus is very sparse [7, 8].

One possible way to overcome the limitations of neural circuits with sparse connectivity is to

consider the strategy of what are called ”committee machines” [9], which are basically populations of

classifiers. Each classifier is weak, as a perceptron with limited connectivity would be. However, the

committee machine can read out a large number of these weak classifiers, producing a response based

on a majority vote or on some more sophisticated way of combining the multiple classifiers. The final

classification performance is significantly better than the classification performance of each individual

classifier, provided that the errors committed by the individual classifiers are sufficiently independent.

The term committee machines goes back to 1960-s [9], but they have also been a focus of more recent

studies (see e.g. [10], [11]). In the later reincarnation, they can be seen as a continuation of a more

general idea which is recognized in machine learning as ensemble methods or hypothesis boosting [12, 13]

and has been long known in statistics [14, 15, 16, 17]. Some of the examples include stacking [18, 19],

bagging [20], arcing [21] and adaboost [22, 23].

One class of committee machines are implemented using populations of neurons, each essentially

behaving as a neural classifier, like a perceptron [24, 25, 26, 27]. Each neural classifier can have limited

connectivity, and hence it can be considered as a weak classifier, if taken individually. A particularly

notable study [25] shows that it is possible to compute the classification capacity when each neural

classifier has sparse connectivity. The connections between the N input neurons and the M < N neural

classifiers were assumed to be non-overlapping (N/M connections per ”perceptron”) and plastic. The

final response of the committee machine is obtained by majority vote of the M neural classifiers, which

can be easily implemented by introducing a readout neuron that is connected to all the neural classifiers

with equal weights. The maximum number of inputs that can be correctly classified is proportional to

N
√

logM , whereas each neural classifier would not go beyond N/M inputs. This is a very favorable

scaling and it is similar to the one obtained in other committee machines. However, one has to keep in

mind that the neural classifiers can have sparse connectivity, but the readout neuron performing the

majority vote should have a number of connections that scales with N .

Here we propose a network architecture that overcomes the restrictions imposed by the limited

connectivity, as in the committee machines discussed above, but it replaces the readout neuron that

has extensive connectivity with a more biologically plausible recurrent network in which all the neurons

have a number of connections that remains finite even when the number of classifiable inputs grows

unboundedly. More specifically we show that the number of random inputs that can be correctly
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Figure 1. The architecture of the three network classifiers considered and the scaling regime.

classified scales linearly with the number of input neurons N , even when the number of connections

per neural classifier C does not increase with N . The number of neural classifiers M is assumed to be

proportional to N .

Interestingly, under certain conditions the recurrent scheme has larger classification capacity than

the majority vote scheme. This happens for sparse input representations, the regime that is relevant

for the mammalian hippocampus and that we investigate in detail.

2 Methods

2.1 Fully connected readout

In this section we derive the classification capacity of a single fully connected linear threshold readout,

or perceptron (see figure 1a) achieved with a simple learning rule that we employ throughout this work.

We assume that the input patterns and labels are random and uncorrelated, meaning that the activity

of each input unit as well as the label is chosen independently, which makes calculations analytically

tractable. We use a simple Hebbian-like learning rule, that is not optimal and thus leads to a lower

capacity than Cover’s 2N result [28]. However, the scaling of the maximal number of learned input

patterns P with the number of input units N is still linear, as is shown below.

2.1.1 Input statistics

We assume that pairs (ξµ, ηµ) of a pattern ξµ and a label ηµ are drawn from a random ensemble of

P pairs (pattern, label). The pattern components ξµi on all N input units and labels ηµ are random

mutually independent variables. We assume that each component ξµi (i = 1 . . . N is the unit index and
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µ = 1 . . . P is the patterns index) is activated to 1 with probability f called coding level and otherwise

is 0, and that label ηµ takes one of the two values: ηµ = +1 with probability y, called the output

sparseness, and ηµ = −1 otherwise:

ξµi =

1, with probability f

0, with probability 1− f
ηµ =

1, with probability y

−1, with probability 1− y
(2.1)

2.1.2 Learning rule and the synaptic current

The linear threshold readout, or perceptron, classifies its inputs based on the sign of the weighted sum

of the input components. This sum is sometimes called synaptic current, as it is viewed as modeling

the synaptic current into a biological neuron

h =

N∑
i=1

wiξi

We say that the network has learned the association between P input patterns ξµi and P labels ηµ if

for any pattern µ

sign (hµ − θ) = sign

(
N∑
i=1

wiξ
µ
i − θ

)
= ηµ

Where θ is the threshold, that we further assume to be equal to zero.

Training the network means finding the set of weights wi that satisfies the above expression.

The Hebb-like learning rule, which we use to train the weights {wi} of the classifier is:

wi =
1√
P

 P∑
µ=1

(ξµi − f)(ηµ + 1− 2y)− (1− f)(1− 2y)

 (2.2)

In the case when patterns are equally likely to belong to either class (y = 1
2), the learning rule simplifies

to:

wi =
1√
P

P∑
µ=1

(ξµi − f)ηµ

Here and in all that follows we set the threshold θ to zero.

After training, the synaptic current in response to a test pattern ~ξν is

hν =
N∑
i=1

wiξ
ν
i =

N∑
i=1

1√
P

 P∑
µ=1

(ξµi − f)(ηµ + 1− 2y)− (1− f)(1− 2y)

 ξνi (2.3)

If ~ξν together with its label ην was part of the training set, we can split the sum over patterns into

the contribution from the presented pattern ~ξν and the contribution from other learned patterns to

get

hν =
1√
P

(1− f)ην
N∑
i=1

ξνi +
N∑
i=1

 P∑
µ 6=ν

(ξµi − f)(ηµ + 1− 2y)

 ξνi
 (2.4)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2017. ; https://doi.org/10.1101/157289doi: bioRxiv preprint 

https://doi.org/10.1101/157289
http://creativecommons.org/licenses/by/4.0/


5

Here we used (ξνi )2 = ξνi because ξνi takes value 0 or 1.

We denote the number of active input units for the patterns ν by nν

nν =
N∑
i=1

ξνi (2.5)

The value of nν is in binomial distribution of N trials with probability f , B(N, f). Its expected value

is determined by the number of inputs N and the coding level f

〈nν〉 = Nf (2.6)

(here and throughout this text the angular brackets denote the mean over pattern realizations).

We replace the sum in the square brackets of (2.4) by 2
√
Pf(1− f)y(1− y)nνzν where we have

introduced a noise random variable zν with zero mean and unit variance. The coefficient is concluded

from the fact that each individual term (ξµi − f)(ηµ + 1− 2y) has variance

[f(1− f)2 + (1− f)f2][y(2− 2y)2 + (1− y)4y2] = 4f(1− f)y(1− y) (2.7)

and the fact that the ξµi variables are mutually independent. By the central limit theorem the noise

variable zν can be approximated as Gaussian in the limit P →∞ with finite f and nν .

In terms of zν and nν the synaptic current is written as

hν =
1√
P

(1− f)nνην + 2
√
f(1− f)y(1− y)nνzν (2.8)

If a pattern belongs to either class with equal probability (y = 1
2), this expression simplifies to

hν =
1√
P

(1− f)nνην +
√
f(1− f)nνzν (2.9)

Note that the first term is the one that reflects the correct classification of the input pattern, and

the second one represents the noise caused by the interference from other patterns that were learned

by the perceptron. The important parameter is the ratio of the two, which is proportional to

√
nνk
P

2.2 Committee machine

We now turn to deriving the classification capacity of a committee machine, the network shown on

the figure 1b, where each out of M perceptrons receives feedforward connections from CF input units.

The connectivity CF does not scale when the number of input units N increases.

The final decision is the majority vote of the classifiers. In other words, if classification is accurate

sign

 1

M

M∑
k=1

sign

∑
i∈Ik

wki ξ
µ
i − θ

 = ηµ

Here i ∈ Ik stands for all the input units (there are CF of them) that are connected to the readout k,

and wki is the strength of the connection from the input unit i to the readout k (for the learning rule

we consider wki does not depend on k).
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The synaptic current into the readout unit k when pattern ~ξν is presented is determined by

hνk =
1√
P

(1− f)nνkη
ν +

√
f(1− f)nνkz

ν
k (2.10)

The number of active inputs connected to the perceptron k, nνk is drawn from the binomial distri-

bution B(CF , f) of now CF trials with the success rate f : and its expectation value is

〈nνk〉 = CF f (2.11)

Since the number of connections per readout CF stays constant as the number of patterns P and

the size of the network (N and M) grow, the probability of a single perceptron to classify a pattern

correctly approaches the chance level. Indeed, in contrast to the fully connected perceptron, the

number of active inputs nνk does not change with the size of the network (see (2.11)). Hence, the

first term of the expression (2.9) decreases in the absolute value as the number of patterns P grows,

while the typical value of the second term stays the same. However, there is always a slight tendency

towards the correct answer (〈hνkην〉 > 0), that can be utilized by having a growing number of sparsely

connected classifiers that take a collective decision by majority vote. This scheme is known by the

name of committee machine and has been shown to largely exceed the performance of a single classifier.

It is important to note that in order for the capacity of a committee machine to keep increasing

as new classifiers (committee members) are added, the responses of different classifiers should stay

sufficiently independent from each other. In the case of limited connectivity, which we consider here,

the correlations automatically become smaller and smaller as we increase the number of input units.

This happens because the probability of a typical pair of readouts to have a common input unit,

and thus correlated responses, decreases. In order for the correlations not to be a limiting factor of

the classification capacity, we need to increase the number of input units linearly with the number

of perceptrons. If one introduces some other mechanism of reducing the correlations between the

responses of the classifiers with common input units (like making different perceptrons learn different

sets of patterns), a sublinear scaling of the number of input units N with the number of perceptrons

M might be sufficient.

2.2.1 Non-overlapping case

The majority vote of M linear threshold classifiers is given by the average vote

rν =
1

M

M∑
k=1

rνk , rνk = sgn(hνk) (2.12)

where hνk is given in (2.10). Positive rνην means that the pattern ν is classified correctly.

The expectation value of rν follows from (2.10) after integrating over the noise variable zνk , which

is approximated to be normally distributed. We make an assumption Pf � nνk, which is justified for
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a large number of patterns, and that allows us to use the approximation of the error function for small

arguments to get

〈rν〉 = 〈sgn(hνk)〉nνk,zνk =

〈
erf

√
(1− f)nνkη

ν

√
2Pf

〉
=

√
2(1− f)

πPf

〈√
nνk
〉
ην (2.13)

The expectation value 〈√nνk〉 is computed over the binomial distribution B(CF , f)

〈
√
nνk〉 =

CF∑
n=0

(
CF
n

)
fn(1− f)CF−n

√
n (2.14)

In the dense regime, CF f � 1, it can be approximated by

〈
√
nνk〉 =

√
CF f (2.15)

and in the extremely sparse case, when CF f � 1 and only nνk = {0, 1} are encountered substantially

often, by

〈
√
nνk〉 = CF f (2.16)

To proceed with deriving the classification capacity, let us start with independent classifiers first.

The independence of the responses can be achieved either by forcing the connections to be non-

overlapping, or by assuming an additional mechanism that, for example, causes different classifiers to

update their incoming connections in response to different subsets of the patterns.

In this case rν can be though of as drawn from a gaussian distribution with the mean given by

(2.13) and the variance

cov(rν , rν) =
1

M
(1 +O(P−1)) (2.17)

The gaussian assumption is justified by the law of large numbers.

Here and from now on we ignore the contributions of the subleading order, O(P−1) in this case.

The probability pcorrect to classify a pattern correctly (rνην > 0) can then be easily computed.

Fixing tolerated error rate ε and requiring pcorrect > 1− ε leads to the expression for the maximal

number of input patterns that can be classified with the accuracy 1− ε.

Pmax =
〈√n〉2
f

1− f
π(erf−1(1− 2ε))2

M (2.18)

This result only holds for the case of non-overlapping connections or in the presence of a decoration

mechanism. In the following section we generalize it to random connectivity.

2.2.2 Correction to classification capacity due to overlap in the connections

To derive an analogous expression for the overlapping case without a decorrelation mechanism we need

to compute the variance

cov(rν , rν) = 〈(rν − 〈rν〉)2〉 (2.19)
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of the average vote rν , defined by (2.12), taking into account the correlations of individual votes rνk .

We start by splitting the covariance into diagonal and non-diagonal contributions:

cov(rν , rν) =
1

M2

M∑
k=1

M∑
l=1

cov(rνk , r
ν
l ) =

=
1

M2

M∑
k=1

cov(rνk , r
ν
k) +

1

M2

M∑
k=1

M∑
l=1

(1− δkl)cov(rνk , r
ν
l )

M→∞
=

=
1

M
+ cov(rνk , r

ν
l )k 6=l (2.20)

We assume that M and N scale linearly with P and M,N,P →∞. The leading terms are thus of the

order 1
M ∼ 1

N ∼ 1
P and we ignore all the subleading contributions.

When the classifiers k and l share input units, the correlation between their responses is positive

and is closely related to the correlation of the input currents hνk and hνl (2.10).

Let nνkl be the number of input units that are connected to both the classifier k and the classifier l

and are active in the pattern ~ξν . For a large number of input units N and finite connectivity CF we

can assume that nνkl can be either 0 or 1, but not more. The probability of nνkl being 1 is given by

Prob(nkl = 1) = f
C2
F

N

The number of active units that are connected to only one of the two classifiers are denoted by ñνk

and ñνl respectively. In the current approximation both of them can be assumed to be distributed

according to a binomial distribution B(CF , f).

Then, the currents can be written as (see 2.10):

hνk =
1√
P

(1− f)(ñνk + nνkl)η +
√
f(1− f)nνklz

ν
kl +

√
f(1− f)ñνkz

ν
k

hνl =
1√
P

(1− f)(ñνl + nνkl)η +
√
f(1− f)nνklz

ν
kl +

√
f(1− f)ñνl z

ν
l

(2.21)

Where zνk , zνl and zνk l are all independent gaussian variables with zero mean and unit variance.

To compute the covariance

cov(rνk , r
ν
l ) = 〈sgn(hνk), sgn(hνl )〉 − 〈sgn(hνk)〉〈sgn(hνl )〉 (2.22)

we start by integrating over the variables zνk and zνl to get

〈sgn(hνk)〉zνk = erf

(
zνkl√

2

√
nνkl
ñk

)

〈sgn(hνl )〉zνl = erf

(
zνkl√

2

√
nνkl
ñνl

)
.

(2.23)
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Then, (2.22) can be evaluated using the table integral 1∫ ∞
0

erf(az)erf(bz)e−c
2z2dz =

1

c
√
π

tan−1 ab

c∆
∆ =

√
a2 + b2 + c2 (2.24)

In the leading order we get:

cov(rνk , r
ν
l )k 6=l = cov(sign (hk) , sign (hl))k 6=l =

1

N
ϕCF ,f

ϕCF ,f =
2fC2

F

π

〈
tan−1 1√

(ñk + 1)(ñl + 1)− 1

〉
ñk,ñl∈B(CF ,f)

(2.25)

In the dense regime ( CF f � 1 ) the expression for (2.25) can be approximated as

ϕCF ,f =
2CF
π

(2.26)

and

cov(rνk , r
ν
l )k 6=l =

2CF
πN

(2.27)

While in the sparse approximation ( CF f � 1),

ϕCF ,f = fC2
F (2.28)

and

cov(rνk , r
ν
l )k 6=l =

fC2
F

N
(2.29)

Plugging this result into (2.20), we get for the variance of the majority vote rν in the overlapping

case

cov(rν , rν) =
1

M
+

1

N
ϕCF ,f ,

which together with (2.13) leads for the maximal number of input patterns that the committee machine

can learn to classify with the accuracy 1− ε

Pmax =
〈√nk〉2
f

1− f
[erf−1(1− 2ε)]2π

M

1 + M
N ϕCF ,f

(2.30)

where ϕCF ,f is in (2.25)(2.26)(2.28).

If both the number of input units N and the number of classifiers M increase in proportion to each

other, the capacity P increases linearly with N and M .

In the case of dense representations, CF f � 1 the last expression simplifies to

Pmax =
1− f

[erf−1(1− 2ε)]2π

CFM

1 + M
N

2CF
π

(2.31)

and in the sparse limit, CF f � 1

Pmax =
1

[erf−1(1− 2ε)]2π

MC2
F f

1 + M
N C

2
F f

(2.32)

1See equation 18 on page 158 in [29]

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2017. ; https://doi.org/10.1101/157289doi: bioRxiv preprint 

https://doi.org/10.1101/157289
http://creativecommons.org/licenses/by/4.0/


10

2.3 Committee machine with recurrent connections

The majority rule scenario already overcomes the limitations of the connectivity of a single perceptron,

but this is not the final answer to constructing a classifier with limited connectivity. The reason is

that we still need to implement the majority rule and bring the classification signal to the level of a

single unit. The naive way to do it would require another final readout that would have to sample the

entire population of M intermediate layer perceptrons. Since M has to scale linearly with the number

of learned patterns P , the connectivity of the final readout would also have to scale linearly with P

(see 2.30) and would exceed any predetermined limit for sufficiently large number of learned patterns.

To implement the majority vote of the intermediate perceptrons while keeping the connectivity of

any unit in the network limited, we introduce the recurrent connectivity in the layer of perceptrons.

Our goal is to have two attractor states of the intermediate layer dynamics, that correspond to the two

classes. The feedforward input through the connections {wki } trained in the same way as before, will

be slightly biased in the positive direction for one class of the input patterns and in the negative for

the other. This slight bias determines which attractor state the network will choose. It is essential that

the attractors are far away and do not become closer when the number of learned patterns P increases

implies that the final readout will be able to discriminate between these states, and thus indicate the

class of the presented pattern, even if its connectivity does not scale with P . It turns out that for

two-way classification it is enough to have random recurrent connectivity with sufficiently large but

not increasing with P number of connections per unit, and the weights of these recurrent connection

do not have to be tuned (no learning required for recurrent connections).

We want to compute the probability of the network of recurrently connected readouts to go to the

correct attractor (the one assigned to the class of the input pattern presented) as a function of the

number of input units N , number of perceptrons M and various parameters of the network.

2.3.1 Network topology

The recurrent readout network shown on the right of figure 1c consists of the input layer (green), the

intermediate layer of perceptrons (orange) and the final readout unit (purple).

As before, the input layer of N neurons is presented with a random and uncorrelated patterns

ξµ = (ξµi )i=1...N from a set of P patterns (ξµ)µ=1...P that the network has learned to classify.

The layer of perceptrons we now call intermediate layer. It consists of M linear threshold readouts,

each of which is connected to a randomly chosen CF out of N input units. Hence, the feedforward

connectivity CF is the number of feedforward inputs that each perceptron receives. The CF is an

important parameter in the problem as it determines the classification capacity of a perceptron consid-

ered in isolation. The intermediate layer is recurrently connected. For the case of binary classification,

the probability that two readouts are connected is the same for each pair. The recurrent connections

are not plastic and can be chosen to be all of equal strength α.

The final layer consists of a single readout unit that is connected to a randomly chosen subset of
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C perceptrons in the intermediate layer, with the strength of all connections taken equal.

The connectivity matrix Jkl, k, l ∈ [1 . . .M ] is assumed to be symmetric

Jkl =

1 if perceptron k and l are connected

0 if perceptron k and l are not connected
(2.33)

Let the CR be the number of recurrent connections per unit

M∑
l=1

Jkl = CR, ∀k ∈ [1 . . .M ] (2.34)

We will keep the connectivity parameters CF , CR and C and coding level f at fixed constant values,

while sending the number of input units N , the number of intermediate perceptrons M and the number

of patterns P to infinity

P,M,N →∞; f, CF , CR, C are constant (2.35)

We want to recover the linear scaling of the maximal number of patterns Pmax that the network

can learn to classify with the number of input units N , which is known to hold for the fully connected

perceptron [28].

2.3.2 Discrete time dynamical model

We model the recurrent dynamics as a probabilistic dynamical process in discrete time t with the

probabilistic transition rule from a network state at time t to a network state at time t + 1. Let

sk(t) ∈ [−1, 1] for k ∈ [1 . . .M ] be the dynamical variable describing the state of unit k at time t in

recurrent network.

Let h̃νk be the total current into the readout unit k

h̃νk(t) =
M∑
l=1

αJkls
ν
l (t) + hνk (2.36)

where the first term corresponds to the recurrent contribution and the second term represents the

feedforward current from the input layer (2.10) that is constant in time.

The probabilistic transition rule from the state at time t to the state to time t+ 1 is

sk(t+ 1) =


1, with probability 1

1+e
−2βh̃ν

k
(t)

−1, with probability e−2βh̃k(t)

1+e
−2βh̃ν

k
(t)

(2.37)

Here β is the inverse temperature parameter for the statistical model of the recurrent dynamics.

We approximate this probabilistic recurrent dynamics with the mean field method.
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2.3.3 Mean field analysis of the recurrent dynamics

To compute the capacity of such a recurrent classifier, we analyze the recurrent dynamics in the mean

field approximation. The activities of the recurrently connected units are represented by the variables

sk = {+1,−1} with k = 1 . . .M . The mean field equation for the average activation of the recurrently

connected intermediate layer in response to the pattern ν,

mν =
1

M

M∑
k=1

sk

reads

mν =
1

M

M∑
k=1

tanh (β (CRαm
ν + hνk)) (2.38)

The average activation mν is close to zero if the amount of active and inactive units is approximately

the same. If the majority of the units is in the active state, mν will be close to 1, and if the majority

is inactive, mν will be close to -1.

Here CR is the average number of connections per unit, α is the strength of recurrent synapses (we

assume they are all excitatory and of equal strength), β is the inverse temperature parameter and hνk

is the feedforward input given by (2.10).

We proceed by analyzing the above equation graphically. The plot of the right-hand side is a sigmoid

curve and the left-hand side is a line at 45 degrees. The intersections of these two lines determine the

solutions to the equation. There are two possible situations that correspond to two different scenarios

of the network dynamics.

The first scenario, shown on the figures 2a and 2b, is characterized by having only one point of

intersection of the line and the sigmoid. In this case there is only one solution to the mean field

equation (2.38) and only one stable state of the recurrent network. The right hand side of the equation

is almost but not quite an odd function of its argument mν , so the sigmoidal curve representing it is

slightly shifted to the left if 1
M

∑M
k=1 tanh (βhνk) > 0 and to the right otherwise. If the curve is shifted

to the left, the single point of its intersection with the strait line passing thorough the origin will be in

the right half-plane. So, for the positive input pattern (ην = +1 and hνk is more likely to be positive)

the mean activity of the intermediate layer in the stable state mν will usually be positive, while for

the negative input patterns it will be negative. Even though there is a relation between the sign of the

mean activity of the intermediate layer in the stable state and the class of the input pattern, this is not

helpful for our purposes. The reason is that we encounter exactly the same problem as for the case of

no recurrent connections: the absolute value of the average activity mν will decrease with the number

of learned patterns P , which means that the number of active and inactive units in the intermediate

layer will become more and more similar. Consequently, to sample this small imbalance we would

require larger and larger connectivity of the final readout. In short, the regime with one stable solution

(figures 2a and 2b) is not much different from the case of no recurrent connections. Not surprisingly,

this regime corresponds to relatively weak recurrent connections.
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Figure 2. The graphical representation of the mean field equation 2.38

It is the other situation, shown on the bottom of the figure (figures 2c and 2d), that is actually

of interest. There are three points of intersection of the sigmoid curve of the right hand side of the

equation (2.38) and the straight line of the left hand side. The stable states of the network correspond

to the rightmost and the leftmost solutions, that are both characterized by a large imbalance between

active and inactive units (|mν | ∼ 1). Most importantly, these solutions are virtually insensitive to the

distribution of hνk, and hence to the number of learned patterns P . So, if we postulate that the right

solution corresponds to the positive input patterns and the left solution to the negative ones, it will be

easy for a downstream readout with connectivity that does not increase with P to distinguish between

them.

The middle intersection point mu corresponds to the unstable solution. When the network is

initialized at the state {s0
k} with m0 =

∑M
k=1 s

0
k on the left of the unstable solution m0 < mu, the

recurrent dynamics will most likely evolve to the left stable state, and if initialized at m0 > mu it will

evolve to the right stable state. As shown on the figure 2c,d the point of unstable equilibrium will be

to the left of the origin for a positive input pattern and to the right of the origin otherwise (due to

the difference in the mean of the distributions of hνk). Hence, initiating the network at m0 = 0 will

serve the purpose of biasing the evolution of the network towards the stable state that corresponds

to the class of the input pattern. If the number of learned patterns P is large, the point of unstable

equilibrium is very close to zero |mu| ∼ 1√
P

, this is the manifestation of the same problem as before,

namely the decrease of the signal to noise ratio with the increasing number of learned patterns. Thus,
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the noise in the initial state of the network m0 should also decrease as 1√
P

. This is achieved if all the

units in the intermediate layer are initialized at s0 = ±1 with equal probabilities independently from

each other, and the number of units M is linear in P (the same scaling as for the committee machine

discussed earlier). We use this initialization process to derive the classification capacity and to run the

simulations. In the discussion we suggest a biologically plausible way to initialize the network at the

desired point.

To summarize, the information about the class of the input pattern is contained in the feedforward

input to the intermediate recurrently connected layer. In the case of a single stable state (figures 2a

and 2b), although average activity of the network reflects this information, the signal is very small and

a fully connected downstream readout is required. In the case of two stable states (figures 2c and 2d),

this small signal biases the network to choose the one corresponding to the class of the input pattern,

and by doing so, the network amplifies the feedforward signal making it easy to read out by a sparsely

connected downstream readout.

2.3.4 Number of classifiable inputs

As discussed in the previous section, the requirement for the correct classification of an input pattern

by means of recurrently connected committee machine is that the average activity of the network at

the initial moment mν
0 is on the correct side of the point of unstable equilibrium mν

u, namely

(mν
0 −mν

u)ην > 0 (2.39)

where ην is the required output (ην = {±1}).
In what follows we drop the pattern index ν.

The statistics of m0 over random initializations of the network follows from its definition

m0 =
M∑
k=1

s0
k

where each unit is initialized at sk = +1 or sk = −1 with equal probability:

〈m0〉 = 0

cov(m0,m0) = 〈(m0 − 〈m0〉)2〉 =
1

M

Since M is a large number, we approximate the distribution of m0 by a Gaussian distribution with

these mean and variance.

The position of the unstable equilibrium point mu, corresponding to one of the three solutions (the

one that is close to zero) of the mean field equation (2.38), can not be computed analytically in the

general case. However, there are parameter regimes in which we can compute the approximate first and

second order statistics of mu over random realizations of the input patterns. These parameter regimes

and corresponding approximations are discussed in the following section. Once the mean µu, which
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depends on the number of learned patterns P , and the variance σ2
u of mu are known, the requirement

to classify P input patterns with accuracy 1− ε can be written as (assuming the distribution of mu to

be also Gaussian)

1− ε =
1

2
+

1

2
erf

−µu(P )η√
2
(

1
M + σ2

u

) (2.40)

The expected number P of correctly classified patterns can be found by inverting the above equation.

In the following sections we consider different parameter regimes that lead to different approxima-

tions for µu and σu.

2.3.5 The uniform regime

In the current study, among other issues we are interested in the consequences of the sparsity of input

representations. Since we consider the feedforward connectivity CF to be a constant number and not

to scale with the size of the network, for sparse representations there will be a substantial number

of readouts that receive zero feedforward input. Unless the dynamical noise is very high, these units

should be considered separately, and in the mean field approximation an additional order parameter

should be introduced to describe their average activity. We call these units free units.

Uniform regime is the parameter regime under which it is not necessary to analyze the free units

separately, and the equation (2.38) is valid without modifications. Obviously, when the input repre-

sentations are dense, CF f � 1, the network of the intermediate layer is in the uniform regime, since

there are not enough of free units to make a difference. However, assuming the uniform regime is also

valid independently of the number of free units, when the dynamical noise is very large in comparison

with the feedforward input (see the next section).

The conditions defining the uniform regime are:

Sparse input representations and high noise CF f . 1 β−1 �
√
f

or

Dense input representations CF f � 1

2.3.6 Uniform regime, high noise

One approximation we can make to find the unstable solution mu of the mean field equation (2.38) is

the high noise approximation, which is defined by the requirement

βhνk � 1 for most readouts k and patterns ν (2.41)

It follows from the expression (2.10) for the feedforward current that this requirement is met if

for dense input: CF f � 1 β−1 �
√
f2(1− f)CF

for sparse input: CF f . 1 β−1 �
√
f
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The condition for having three solutions of equation (2.38) rather than one (see figure 2) is

CRα > β−1

Since we are looking for the solution, which is close to zero and (2.41) is satisfied for most of the terms,

the equation (2.38) can be approximated by replacing the hyperbolic tangent by its argument:

mν
u =

1

M

M∑
k=1

β(CRαm
ν
u + hνk),

(note that this approximation is also valid for the terms with hνk = 0).

Solving this equation leads for the mean µu and standard deviation σu of mu:

µu = − 1

CRα− β−1
µh

and

σu =
σh

CRα− β−1

√
1

M
+
CF
N

(2.42)

The mean µh and the standard deviation σh of the feedforward current hνk are computed from

(2.10):

µh =
1√
P
f(1− f)CF η

σh =
√
CF f2(1− f)

(2.43)

The CF /N term in (2.42) comes from the correlations between the feedforward currents hνk into

different readouts k due to overlapping connections (see the Appendix A1).

Now the maximum number of learned patterns for the classifier in the uniform regime for high

noise approximation can be computed from (2.40) and is given by

Pmax =
1− f

2[erf−1(1− 2ε)]2
CFM

1 + M
N CF + (CRα−β−1)2

CF f2(1−f)

(2.44)

2.3.7 Uniform regime, low noise

The other approximation in which the equation (2.38) can be solved is

βhνk � 1, (2.45)

which is true if

β−1 �
√
f2(1− f)CF

Under this condition, assuming the uniform regime is only valid if the input representations are dense

CF f � 1
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The condition for having three solutions to the mean field equation in the low noise approximation

becomes (see (2.49))

σh =
√
f2(1− f)CF <

√
2

π
CRα. (2.46)

In this case the hyperbolic tangent in the equation (2.38) can be approximated by the sign function

mν
u =

1

M

M∑
k=1

sign [β(CRαm
ν
u + hνk)]

Let us denote the right side of this equation by g(mu), where

g(m) =
1

M

M∑
k=1

sign(CRαm+ hνk) (2.47)

is a stochastic function over different realizations of {hνk}.
Note that in this case, having a substantial fraction of terms with hνk = 0 would lead to a disconti-

nuity of the right hand side at mν
u = 0.

The mean 〈g(m)〉 can be found by integrating over the distribution of hνk (see (2.10))

〈g(m)〉 = erf

(
CRαm+ µh√

2σh

)
(2.48)

Where µh and σh are the mean and standard deviation of hνk respectively, which are given by (2.43).

Thus, when averaged over training patterns, the mean field equation becomes

m = erf

(
CRαm+ µh√

2σh

)
(2.49)

and it has three solutions when the derivative of the right-hand side with respect to m at m = 0 is

larger than 1, which for µh � σh immediately leads (2.46).

We now return to estimating the mean and the standard deviation of mu, which is the unstable

solution to the approximated mean field equation

mu = g(mu) (2.50)

where g(m) is defined by (2.47).

For µh � σh, which is always the case if the number of stored patterns P is large enough, we

assume that CRαmu is also small compared to σh and check the self-consistency later. Then, we can

use the approximation for the error function at small arguments to get

〈g(m)〉 =

√
2

π

CRαm+ µh
σh

(2.51)

the variance of g(m) can be written as as sum of the diagonal and the non-diagonal terms

cov(g(m), g(m)) =
1

M
+ cov(sgn(CRαm+ hk), sgn(CRαm+ hl))〉k 6=l (2.52)
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which is similar to the expression (2.20) for the variance of 1
M

∑M
k=1 sgn(hk) computed previously in

(2.25). The only difference that here the distribution of hk is shifted by CRαm. However, because the

mean 〈hνk did not affect the result (2.25) and CRαmu + µh is still negligible compared to σh, we can

write

cov(g(m), g(m)) =
1

M
+
ϕCF ,f
N

(2.53)

where ϕCF ,f is given in (2.25).

As a sum of large number M of weakly correlated terms, g(m) can be assumed to be normally

distributed and can be written as

g(m) =

√
2

π

CRαm+ µh
σh

+

√
1

M
+
ϕCF ,f
N

zν (2.54)

where zν is a Gaussian variable with zero mean and unit variance.

Plugging the expression for g(m) into (2.50), and solving for mu we get

mu = − 1√
2
π
CRα
σh
− 1

√
2

π

µh
σh

+
1√

2
π
CRα
σh
− 1

√
1

M
+

1

N
ϕCF ,fz

ν (2.55)

where ϕCF ,f is (2.25)(2.26).

So, the expectation value of mu is given by

µu = − 1√
2
π
CRα
σh
− 1

√
2

π

µh
σh

= − 1√
2
π

CRα√
CF f2(1−f)

− 1

√
2

π

√
CF (1− f)√

P
η

and the standard deviation is:

σu =
1√

2
π

CRα√
CF f2(1−f)

− 1

√
1

M
+

1

N
ϕCF ,f

Because uniform regime and low noise implies dense input representation, we can use the dense ap-

proximation for ϕCF ,f given by (2.26). Plugging these results into (2.40) leads the capacity for the

uniform regime, low noise

Pmax =
1− f

[erf−1(1− 2ε)]2π

CFM

1 + M
N

2
πCF +

(√
2
π

CRα√
CF f2(1−f)

− 1

)2

2.3.8 Non-uniform regimes

When the input representation is sparse

CF f . 1, (2.56)

there is a substantial fraction of readouts for which all inputs are silent, we call them the free units. If

the noise is not very high β
√
f & 1, these readouts are statistically different from those that do receive

a non-zero input. To analyze such a system in the mean-field approximation, two order parameters
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and two coupled mean-field equations should be introduced. To avoid this complication we consider

a simpler case, to which we refer to as the two-subnetworks regime. This regime is characterized by

the recurrent connections that are relatively weak when compared to the feedforward ones, so that

the state of those readouts that do receive non-zero feedforward input is determined by this input

only. Neither recurrent input nor noise can flip them. Only the free units participate in the recurrent

dynamics and their mean activity in the final state reflects the class of the input pattern. Which of the

two stable states the subnetwork of free units will go to is biased by the input from the input receiving

units, which do have the information about the class of the input pattern from the feedforward input.

This approximation is valid if

α
√
CR �

√
f (2.57)

β−1 �
√
f (2.58)

To be more precise, the former condition does not guarantee that the recurrent input will not be able

to flip the input receiving units close to the final state, when most of the free units are synchronized.

However, if this is the case, their activity already reflects the correct classification of the input pattern,

and the input receiving units will flip in the right direction.

The mean field equation (2.38) should now be seen as describing the subnetwork of free units, and

should be modified in several ways.

First, the number of units in the network is

Mf = Me−CF f (2.59)

(since for small f the probability of all CF independent inputs to be silent is (1 − f)CF ≈ e−CF f ).

Second, only CRe−CF f out of CR recurrent connections per unit come from other free units. Also, the

external input to the network now comes from other (input receiving) units in the intermediate layer,

rather than from the input layer.

The modified mean-field equation reads:

m̃ν =
1

Mf

Mf∑
k=1

tanh
(
β
(
CRαe

−CF fm̃ν +Hν
k

))
(2.60)

where m̃ν is the average activity of the subnetwork of free readouts. The index k runs over all the free

units.

Hν
k =

MIR∑
l=1

αJklsign (hνl ) (2.61)

the summation is over the input receiving units and hνk is the feedforward current of (2.10) with nνl 6= 0.

MIR is the number of these units

MIR = M(1− e−CF f )

On average, the free unit k receives CR inputs, and (1 − e−CF f )CR of them come from input

receivers. So (2.61) will have on average CR(1− e−CF f ) non-zero terms. Assuming that this is a large

number, Hν
k is a Gaussian variable with the mean given (in the leading order) by
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µH = αCR(1− e−CF f )〈sign (hνl )〉nk 6=0 = αCR〈sign (hνl )〉 (2.62)

which using (2.13) becomes

µH =

√
2

π

〈√n〉√
Pf

CRαη
ν (2.63)

(assuming 1− f ≈ 1). The number of active inputs nνl connected to the intermediate unit comes from

the binomial distribution, n ∼ B(N, f).

The standard deviation of Hν
k is

σH = α
√
CR(1− e−CF f ) (2.64)

(the corrections to due to correlations between different input receiving units are suppressed as 1/N

and will become negligible for large networks when CR does not scale with N).

To find the statistics of m̃u, the point of unstable equilibrium, we again consider high and low noise

approximations, but now we should compare the inverse temperature parameter β to the standard

deviation of Hν
k .

What we further call intermediate noise is the noise which is small on the scale of the feedforward

input (2.58) but large when compared to the typical values of Hν
k .

2.3.9 Two-subnetworks regime, intermediate noise

The following analysis is valid if in addition to the conditions (2.56), (2.57) and (2.58) the dynamical

noise is high in comparison to the typical external input to the subnetwork of the free units:

βσH = βα
√
CR(1− e−CF f )� 1

The condition for three solutions to the mean field equation (2.60) in this case reads

βαCRe−CF f > 1

The former inequality allows us to approximate the hyperbolic tangent in (2.60) by its argument when

looking for the unstable solution m̃u, which is close to zero:

m̃ν
u = βCRαe

−CF fm̃u + β
1

Mf

Mf∑
k=1

MIR∑
l=1

Jklα sign (hνl ) (2.65)

Each input receiving unit l has CR outgoing connections and approximately e−CF fCR of them terminate

on a free unit. Hence, the double sum can be rewritten to get

m̃ν
u = βCRαe

−CF fm̃ν
u + βCRαe

−CF f 1

Mf

MIR∑
l=1

sign (hνl ) (2.66)

Solving this equation for m̃u leads (see 2.59)

m̃ν
u = − βCRα

βCRαe−CF f − 1
(1− e−CF f )r̄ν (2.67)
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where we have introduced r̄ν : the sign of the feedforward current averaged over the units for which

this current is non-zero

r̄ν =
1

MIR

MIR∑
l=1

sgn(hνl )

The statistics of r̄ν is closely related to previously computed statistics of rν (see (2.12)), which is the

sign of the feedforward current averaged over all the intermediate units. Namely,

〈r̄ν〉 =
1

1− e−CF f
〈rν〉.

(2.68)

The expression for 〈rν〉 is given in (2.13), which leads (we approximate 1− f ≈ 1)

〈r̄ν〉 = 〈sgn(hν)〉nν 6=0 =
1

1− e−CF f

√
2

π

〈√n〉√
Pf

ην (2.69)

To compute the second order statistics of r̄ν , we use the relation

cov(sign (hνk) , sign (hνl ))k 6=l;nνk,n
ν
l 6=0 =

1

(1− e−CF f )2
cov(sign (hνk) , sign (hνl ))k 6=l

The covariance on the right-hand side was also computed in (2.25), which allows us to write

cov(r̄ν , r̄ν) =
1

MIR
+

ϕCF ,f
(1− e−CF f )2

1

N
(2.70)

Plugging in (2.69) and (2.70) to (2.67) leads the expressions for the mean and the standard deviation

of m̃ν
u:

µu = −
√

2

π

βCRα

βCRαe−CF f − 1

〈√n〉√
Pf

η,

(the mean 〈√n〉 is computed assuming a binomial distribution for the number of active inputs n

connected to a readout n ∼ B(N, f)), and

σu =
βCRα

βCRαe−CF f − 1

√
1

M
(1− e−CF f ) + ϕCF ,f

1

N
(2.71)

Now we can use (2.40) to compute the maximum number of learned patterns in the two-subnetworkd

regime under intermediate noise. The number of units in the network M in (2.40) should be replaced

by the number of free units Me−CF f . The result is

P =
〈√n〉2
f

1

π
[
erf−1(1− 2ε)

]2 M

γ + M
N ϕCF ,f

where

γ = 1− 2βCRα− eCF f
(βCRα)2

, 1− e−CF f < γ < 1

It is helpful for analyzing this result to rewrite the expression for γ in terms of ∆ = e−CF fβCRα− 1,

which is the measure of how far the current parameters are from the transition to the one solution

scenario (figures 2a and 2b), at which the current framework breaks down.

γ = 1− e−CF f
(

1− ∆2

(∆ + 1)2

)
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When the approximation is very sparse

CF f � 1

we can use (2.16) and (2.28) to get

P =
1

π
[
erf−1(1− 2ε)

]2 MC2
F f

γ + M
N C

2
F f

2.3.10 Two-subnetworks regime, low noise

We now consider the low noise approximation to the mean field equation for the subnetworks of free

units (2.60). This approximation is valid when in addition to (2.56), (2.57) and (2.58)

βσH = βα
√
CR(1− e−CF f )� 1 (2.72)

In this approximation, the mean field equation has three solutions if√
2

π

CRαe−CF f

σH
=

√
2

π

√
CRe−CF f√
1− e−CF f

> 1

This condition is derived analogously to (2.45).

Under the assumption (2.72), the mean field equation (2.60) can then be approximated as

m̃ν =
1

Mf

Mf∑
k=1

sign
(
β
(
CRαe

−CF fm̃ν +Hν
k

))
(2.73)

As in the section 2.3.7, let us introduce a stochastic function g(m̃)

g(m̃) =
1

Mf

Mf∑
k=1

sign
(
CRαe

−CF fm̃+Hν
k

)
For small values of the argument m̃, the mean of g(m̃) over different realizations of Hν

k is approximated

as

〈g(m̃)〉 =

√
2

π

CRαe−CF fm̃+ µH
σH

where µH and σH are given by (2.63) and (2.64).

To compute the variance of g(m̃) we need to know

cov
(

sign
(
CRαe

−CF fm̃+Hk

)
, sign

(
CRαe

−CF fm̃+Hp

))
k 6=p
≈ cov (sign (Hk) , sign (Hp))k 6=p ,

which is calculated in the Appendix A2, and for large absolute values of the recurrent connectivity,

CRe−CF f � 1 is approximated by

cov(g(m̃), g(m̃)) =
2

π
CR

(
1

M
+
ϕCF ,f
N

1

1− e−Cff
)

(2.74)

Assuming Hν
k to be Gaussian, we can write

g(m̃) =

√
2

π

CRαe−CF fm̃+ µH
σH

+

√
2

π
CR

(
1

M
+
ϕCF ,f
N

1

1− e−Cff
)
zν (2.75)
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where zν is a Gaussian variable with zero mean and unit variance.

The statistics of the unstable, close to zero, solution of (2.73) can now be found by plugging in

(2.75) as the right hand side of (2.73), and solving for m̃ν .

After substituting (2.63) and (2.64) for µH and σH , we get for the mean and the variance of the

unstable solution m̃u (assuming
√
CRe−CF f � 1):

µu = −
√

2

π
eCF f

〈√n〉√
Pf

σ2
u = e2CF f (1− e−CF f )

(
1

M
+
ϕCF ,f
N

1

1− e−CF f
)

Using these expressions and (2.40) with M replaced by the number of free units Mf = Me−CF f , we get

for the maximal number of classifiable inputs in the low noise approximation of the two-subnetworks

regime:

Pmax =
〈√n〉2
f

1

π[erf−1(1− 2ε)]2
M

1 + M
N ϕCF ,f

Note, that this is the same expression as (2.30) for the majority vote scenario (see Results section for

an intuitive explanation).

For very sparse representations

CF f � 1

the expression simplifies to

Pmax =
1

π[erf−1(1− 2ε)]2
MC2

F f

1 + M
N C

2
F f

3 Results

3.1 The task and the network architecture

To evaluate the performance of different network architecture we consider a task in which the neural

network is trained to associate a specific response to each input. The response is expressed by the

activity of one output neuron, which could represent a decision, the expected value of an input stimulus

or an action. Each input, for example a sensory stimulus, is a pattern of activity acrossN input neurons.

Both, input and output neurons, are either active or inactive and hence the variables representing their

activity are binary. Moreover, we assume that the inputs and the outputs are random and uncorrelated.

Input neurons are active with probability f , whereas the output neuron is active on average for half

of the inputs. Performing this task is equivalent to solving a binary classification problem in which

each input is assigned to belong to one of two possible classes. As a measure of the performance of

the network we introduce the classification capacity, the maximum number of input patterns that can

be correctly classified, and determine how it scales with the total number of neurons of the network.

We now consider architectures with increasing complexity and we eventually show that it is possible

to design a network in which the number of classifiable inputs is large and it scales linearly with the
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number of neurons while each neuron has limited connectivity (i.e. the number of connections is fixed

in the sense that it does not have to scale with the number of neurons).

3.1.1 Single readout.

The most basic network that we can consider is the one in which the input neurons are directly

connected to the output, which is basically the classical perceptron [1] (see figure 1a). The network

is trained by modifying the weights wi that connect each input neuron i to the output. The output

activity oµ in response to stimulus µ is determined by thresholding the weighted sum of the inputs:

oµ = sign

(
N∑
i=1

wiξ
µ
i − θ

)
where θ is a threshold and ξµi is the activity of neuron i when input pattern µ is selected. The weights

wi and the threshold θ are learned to impose that oµ = ηµ, where ηµ is the desired output in response to

stimulus µ. We know from many studies (see e.g. [28, 30]) that the maximum number of random inputs

that can be correctly classified scales linearly with the number of input units when f = 1/2. This is a

very favorable scaling, and actually the optimal one in the benchmark that we consider. Unfortunately,

the number of connections of the output neuron is equal to the number of input neurons, and hence

when the number of classifiable inputs grows, also the connectivity has to increase accordingly. This

is true also in the case of sparse input representations. Indeed, for an arbitrary f , when we used a

simple learning rule inspired by [31]

wi =
1√
P

P∑
µ=1

(ξµi − f)ηµ, (3.1)

we obtained in the limit for large number of input neurons N and large number of input patterns P

that

P =
1− f

2[erf−1(1− 2ε)]2
N (3.2)

where ε is the maximum tolerated error.

Notice that the factor containing the coding level of the patterns f cannot change the scaling

properties of P , even in the case in which the inputs become very sparse (i.e. when f → 0 as 1/N).

This seems to be in contradiction with the results of [31, 32] in which P can scale as N2 when the

inputs are sparse. However, it is important to remind that the N2 scaling can be achieved only when

both the input and output are sparse and in the cases that we analyzed here the output is dense (i.e.

active in half of the cases).

We now consider a different architecture that partially overcome the limitation imposed by the

limited connectivty assumption.
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3.1.2 Committee machines

Consider now the architecture of Figure 1b in which multiple perceptrons are combined together.

We assume that each perceptron has limited connectivity, or more precisely, that when the number

of input neurons becomes large (mathematically we consider the limit for N → ∞), the number of

input connections per perceptron, CF , does not increase (i.e. CF remains finite when N →∞). As a

consequence, each perceptron will sample only a small fraction of the input neurons, and for this reason,

it will misclassify most of the inputs when P becomes large (P →∞). More quantitatively, the fraction

of correctly classified inputs will be slightly above chance level (1/2), approximately 1/2 +a/
√
P when

P is large, a is a constant.

In this situation, each perceptron is said to be a weak classifier. However, if the responses of dif-

ferent perceptrons are sufficiently independent they can be combined together to perform significantly

better than any individual perceptron. Multiple perceptrons combined together make what is called a

committee machine. Typically the class of an input is decided by the committee using a majority vote

rule: if the majority of perceptrons are active then the output neuron should also be active, otherwise

it should be inactive. The majority rule can be easily implemented by summing with equal weights

the outputs of all perceptrons.

As mentioned in section 1, adding new readouts without increasing the number of input units N

can not increase the classification capacity indefinitely, unless an additional mechanism is introduced

to decorrelate the responses of different readouts. Such mechanisms may very well exist in the real

brain. For example, one could imagine some local changes of synaptic plasticity during the learning

phase, that make different readouts update their connections during presentation of different subsets

of patterns. However, in this paper we stick to the simple learning rule (3.1), and do not consider any

decorrelation mechanisms. So, in the present contexts, the only way of increasing the classification

capacity of the network without reaching the saturation is to increase the number of input units N .

Also, in order to satisfy the requirement of limited connectivity, the number of connections converging

onto the same readout, CF can not increase with N , and we need to add new readouts to connect to

the newly added input units. We denote the number of readouts (number of committee members) by

M and we derive the classification capacity Pmax under the assumption that N , M and Pf are large

numbers and the CF connections of every readout are chosen randomly and independently of any other

(there will be a random overlap).

If we use the simple local learning rule (3.1), the maximum number of classifiable inputs is:

P =
〈√nk〉2
f

1− f
[erf−1(1− 2ε)]2π

M

1 + M
N ϕCF ,f

(3.3)

where ϕCF ,f is of the order of CF , and depends on CF and the coding level f , but not on N or M .

〈√n〉 is the mean of
√
n over the binomial distribution B(CF − 1, f), which is approximately

√
CF f

in the case CF f � 1 (dense regime), and CF f in the case CF f � 1 (ultra-sparse regime). Using also
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the approximations for ϕCF ,f in these two cases we get

P =
1− f

[erf−1(1− 2ε)]2π

CFM

1 + 2
πCF

M
N

for CF f � 1 (3.4)

and

P =
1

[erf−1(1− 2ε)]2π

C2
F fM

1 + C2
F f

M
N

for CF f � 1 (3.5)

So, the dependence of P on the coding level f is weak, unless CF f becomes smaller than 1. For

sparser representations, the capacity becomes proportional to CF f . This is not too surprising because

when CF f < 1 a significant proportion of perceptrons will read out only inactive neurons, which are

not informative about the input. However, even for very sparse representations the capacity can be

restored by increasing the expansion ratio M/N (see figures 4c and 4f).

When N and M grow at the same rate, the number of classifiable patterns increases linearly with

N , as in the case of the fully connected single perceptron that we previously considered. However, now

the connectivity of each perceptron is just CF , which does not scale with N or M . This means that it

is possible to overcome the limitations of sparse connectivity. Unfortunately, this is not a satisfactory

solution as it just moves the problem of limited connectivity to the readout output neuron, which

now has to count the votes of all M perceptrons, and hence needs to be connected to M neurons.

So again, we will need a number of connections per neuron that grows linearly with N . We will now

propose an alternative way of implementing a commitee machine, which is based on the use of recurrent

connections and it will not require a fully connected output neuron (see figure 3).

3.2 Committee machines with recurrent connections

One way to count the votes of all perceptrons while respecting the limited connectivity constraint,

would be to introduce additional layers of neurons: each neuron in the first layer would count the votes

of different CF perceptrons. The neurons in the second layer would then count the votes of the first

layer neurons, and so on. For this architecture, the number of neurons would decrease by a factor CF

in every new layer, leading to total number of neurons which would scale as log(M) or, equivalently,

as log(N). It is also possible to set up a multi-layer network with the same number of layers in which

every layer contains the same number of neurons M . This network would require more neurons, though

it would be functionally equivalent to the first one that we considered. An interesting aspect of this

architecture is that it can be interpreted as a recurrent network unfolded in time: if one assumes that

the network dynamics is discrete in time, then every layer could be seen as the same recurrent network

at a different time step. Importantly, the weights of the synaptic connections should be the same for

every layer, as it is always the same network but at different time steps. As this network would also
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Figure 3. Summary of their scaling properties of the three architectures considered in the study
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be functionally equivalent to the first multi-layer network that we discussed, a recurrent network can

in principle replace a complex multi-layer readout which would require significantly more neurons.

These considerations induced us to study the architecture represented in Fig.1c: each perceptron

of the committee machine is now connected to a randomly chosen set of the others through recurrent

connections, whose weights are all the same and equal to α. The number of recurrent connections per

perceptron is CR.

The recurrent dynamics has basically the role of stabilizing only two attractor states of the network:

one in which all perceptrons are in the active state, and one in which they are all in the inactive state.

These two states represent the two possible responses of the output and correspond to the two classes

the input could belong to. The system is equivalent to a spin glass in the ferromagnetic state, or for

a more biologically relevant analogy, to the recent decision making network of spiking neurons [33]

in which only the two states corresponding to the possible decisions become stable when a sensory

stimulus is presented.

Once the network has relaxed into one of the two stable states, it becomes easy to determine the

class to which the input belongs, as in principle it is sufficient to read out a single perceptron. However,

a single neuron readout would not be robust to noise, and hence we will consider the situation in which

a number of different perceptrons are read out. We will show that this number remains finite when N

and M become large, which is equivalent to saying that it is possible to construct a network, in which

all the neurons, including the output neuron, have limited connectivity and the number of classifiable

inputs grows linearly with N .

The number of classifiable inputs is derived analytically in the Methods (section 2) using a mean

field approach. This number depends on the parameters that characterize the network architecture (i.e.

the number and the connectivity of the different type of neurons), and on the statistics of the inputs

that have to be classified. Depending on the assumptions about the parameters, there are different

regimes that lead to different analytical expressions.

There are two distinct regimes that depend on whether all the recurrently connected neurons can

be considered statistically equivalent or not. We call uniform the regime in which all the neurons

can be assumed to be equivalent. This is a reasonable assumption in many situations that we discuss

below, but it might not be when the number of neurons that receive no feed-forward input, which can

behave differently from the others, is sufficient large. This number is negligible when CF f � 1. The

uniform regime is the first one that we will study systematically. Then we will discuss the non-uniform

regime.

3.2.1 The uniform regime

Another factor that determines the parameter regime is the amount of noise that is injected in the

neurons. It is important to test the neural system in realistic conditions and to show that it is robust

to noise. We introduced noise as in the Hopfield model: the state of each neuron is stochastic and its
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total synaptic current determines the probability distribution of the states. The noise is characterized

by a parameter β, which in the language of statistical mechanics would be the inverse temperature

parameter. When β is large, the noise is small and the neurons are basically deterministic. As β goes

to zero, the neurons become more noisy and less dependent on the total synaptic input.

As we know from previous studies on attractor neural networks (see e.g. [2]), the noise cannot

be too large, otherwise the attractor states remain stable only for a short time. More specifically,

the noise should be smaller than the recurrent input when the network already settled in one of the

two attractors and most of the presynaptic neurons are in the right state. In the uniform regime,

this requirement is expressed as β−1 < CRα. Moreover, in order to guarantee attractor stability, the

recurrent input should also dominate over the feed-forward one. More formally this condition can be

expressed as A < CRα, where A is approximately the range in which the feed-forward synaptic input

varies when different inputs are presented. It basically determined the selectivity to the inputs in the

absence of the recurrent connections (see Methods for more details).

The relation between A and β is less constrained: the network architecture that we are discussing

can work in different regimes that depend on how large the noise is compared to the typical amplitude

of the feed-forward input.

In the high noise regime the noise is so large compared to the feed-forward input (β−1 � A) that

all the different recurrent neurons can behave similarly (uniform regime) even when the feed-forward

input is so sparse (CF f . 1) that many neurons receive zero input. It is important to remind that

in this regime the noise is large compared to A, but still small compared to the recurrent input. The

number of classifiable patterns P for the high noise, always uniform regime is given by

P =
1− f

2[erf−1(1− 2ε)]2
CF

M
N

1 + CF
M
N + (CRα−β−1)2

CF f2(1−f)

N (3.6)

As in the committee machine case, if the number of input units N and the number of intermediate

readouts M are increased in the same proportion, the number of classifiable inputs scales linearly

with M or N (see figure 4a). However, now there is not a single neuron that is required to have

a connectivity that scales with N , the connectivity of each neuron can remain a finite number even

when N and M become arbitrarily large. α is the strength of the recurrent connections and ε is the

maximum tolerated error rate.

The rate at which P grows with the number of input neurons N (we define P/N as the capacity

of the system) depends on the expansion ratio M/N (the number of intermediate readouts per input

neuron), the coding level f and the parameters of the recurrent dynamics, β and α. The slope of the

curves in Figure 4a, which represents the capacity, increases with the expansion ratio, but only up

to a certain point. For f = 0.5 (dense representations) the capacity already saturates at M/N ≈ 1

(see the dashed lines on figure 4a). It saturates at larger M/N for sparser representations (f = 0.03).

Changing the coding level while keeping the expansion ratio fixed can either increase or decrease the

capacity. The dependence of the capacity P/N on the coding level for different values of the expansion
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ratio is illustrated in figure 4d.

When the noise is low compared to both the recurrent and the feedforward input, the density of the

input representations starts playing a crucial role in determining whether the network is in a uniform or

non-uniform regime. If the input representation is dense CF f � 1, the network is in a uniform regime.

As before, all the neurons have the same average activity, but the main source of inhomogeneity is the

feedforward input rather than the noise. The number of classifiable inputs in this uniform low noise

regime is:

P =
1− f

[erf−1(1− 2ε)]2π

CF
M
N

1 + 2
πCF

M
N +

(√
2
π

CRα√
CF f2(1−f)

− 1

)2N (3.7)

This formula is similar to one for the high noise regime. One obvious difference is that the inverse

temperature parameter β does not appear because we assumed to be in the low noise limit β → ∞.

The dependence of the capacity on the expansion ratio M/N is similar to one for the high noise regime.

The dependence of capacity P/N on the coding level is summarized by the parts of the plots in which

f is large in Figures 4e,f.

When compared to the dense limit (CF f � 1) of the majority vote result (3.4), the low noise regime

formula (3.7) entails a smaller capacity. The difference comes from the last term at the denominator,

which reduces the capacity. This term can be made small by tuning the parameters of the recurrent

dynamics CR or α, but it cannot become zero, because this would correspond to the case in which the

recurrent dynamics has only one stable state, which is not suitable for performing a classification task.

3.2.2 Non-uniform regimes

When the noise is small compared to the feed-forward input and the representations are sparse, the

uniform approximation is not valid and the recurrent network behaves in a qualitatively different way:

for each input pattern, there would be two distinct populations of neurons: the free neurons, which

receive zero feed-forward input, and hence are not constrained (free) by the input, and all the others,

the input-receivers. The two populations would be different for different inputs, they would have

different activity distributions and would evolve in time differently, although they constantly interact.

In the general case such a regime is intractable with the mean field method, so we need to make the

additional assumption that the feed-forward synapses are sufficiently strong relative to the recurrent

ones, so that, the non-zero feed-forward inputs are typically larger than the total recurrent inputs in

the initial state (before the network reaches the final state when most of the neurons have the same

activity). Furthermore, we need to assume that these feed-forward inputs are also much larger than the

noise. Under all these assumptions, the state of the input-receivers is determined by the feed-forward

input, at least in the initial stages of the dynamics, while the network is deciding which stable state

to choose. We then need only to consider the dynamics of the sub-network of free units, treating the

recurrent input from the input receivers as a fixed external input. It is this input, that contains the

information about the correct classification.
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We refer to the described scenario as to the two-subnetworks regime. The classification capacity in

two-subnetworks scenario depends also on the noise. The noise has to be small in comparison to the

feed-forward input, but it can be either small or large when compared to the amplitude of the recurrent

input coming from the input-receivers. This comparison distinguishes between the two-subnetwork low

noise and the two-subnetwork intermediate noise regimes.

A third, two-subnetwork intermediate noise regime is realized when the representations are sparse

(CF f . 1) and the noise is small relative to the feed-forward input but large in the subnetwork of free

neurons, namely relative to the input into free neurons from the input-receivers. This regime leads to

the classification capacity of

P =
〈√n〉2
f

1

π[erf−1(1− 2ε)]2
M/N

γ + M
N ϕCF ,f

N (3.8)

where ϕCF ,fM/N comes from the correlations between the input-receivers, ϕCF ,f is of the order of CF ,

and depends on CF and on the coding level f . 〈√n〉 is the mean of
√
n over the binomial distribution

B(CF − 1, f) and γ is a quantity given by:

γ = 1− 2βCRα− eCF f
(βCRα)2

1− e−CF f < γ < 1 (3.9)

which is the smallest (highest capacity) when the network is close to transitioning from three fixed

points (2c,d) to one fixed point (2a,b).

In the sparse limit, CF f � 1 the expression for P becomes

P =
1

π[erf−1(1− 2ε)]2

M
N C

2
F f

γ + M
N C

2
F f

N (3.10)

Figure 4b shows the linear dependence of P on the number of input neurons N for different expan-

sion ratios. We can see that unless the expansion ratio is very high, even for very sparse representations

(f = 0.004, CF f = 0.2) the capacity grows at a similar rate or even faster compared to the case of

dense representations (f = 0.5, CF f = 25) in the high noise regime. The dependence of the capacity

on the coding level is summarized in figure 4e, where the curves in the low f region correspond to the

two-subnetworks intermediate noise regime (3.8), and the segments at high values of f - to the uniform

low noise regime (3.7). Apart from the coding level, the only parameter that differs between the two

discontinuous parts of the plot for a given expansion ratio is the strength of the recurrent connections

α. We decided to choose different αs for two parts because keeping all the parameters the same while

satisfying all the conditions for the two-subnetworks intermediate noise regime at low f and uniform

low noise regime at high f would have required unrealistically high values of the recurrent connectivity

CR. The dotted lines on the plot represent the results for committee machine with same expansion

ratios.

The minimal possible value of γ in 3.9 is 1− e−CF f To see this we rewrite the expression 3.9 as

γ = 1− e−CF f
(

1− ∆2

(∆ + 1)2

)
(3.11)

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2017. ; https://doi.org/10.1101/157289doi: bioRxiv preprint 

https://doi.org/10.1101/157289
http://creativecommons.org/licenses/by/4.0/


32

where

∆ = e−CF fβCRα− 1

∆ must be positive in order to have three fixed points (figure 2c,d). This implies that the expression

in the paranthesis of 3.11 is positive and less than 1, from where it follows that 1− e−CF f < γ < 1.

The lower bound for γ is approximately equal to CF f in the sparse limit. Plugging this value into

3.8 leads to a capacity that is basically independent from f . This would mean that one can decrease the

coding level way below 1/CF without sacrificing the classification performance. However, keeping γ of

the order of CF f requires having ∆ of the order of
√
CF f or smaller, which entails a progressively finer

adjustment of the inverse temperature parameter β as f decreases. In order to have a capacity that

does not become infinitesimal when f goes down to fmin, β should be adjusted with the a maximum

error
√
CF fmin/CRα.

Figure 6 (dashed lines) shows the capacity P/N as a function of CF f for a different number of

feed-forward connections per input unit c = MCF /N . Along these curves, ∆ is kept at a fixed value

∆ = 0.2 by choosing a new β for every value of f . Note that the curves are almost flat as long as

CF f > CF fmin where CF fmin ≈ ∆2 = 0.04

Clearly, the capacity in the two-subnetwork intermediate noise regime is larger than in the case of

a majority vote committee machine when one assume that the sparseness of the representations is the

same (see 3.3). This result is counterintuitive, but it can be explained: in the majority vote scenario,

both the input receiving units and the free units contribute to a collective decision, even though the

free units carry no information about the class of the input pattern and they actually generate noise

as we assume that initially they are in a random state. In contrast, in the recurrent case, the collective

state of the network is initially determined mostly by the input receiving units, which then drive the

free units to the right state. The noise contained in the initial state of the free units does not affect

much the initial relaxation dynamics provided that the noise is sufficient large (relatively low β).

In the case of the majority vote committee machine, the class is decided in only one time step and

the initially random free units generate a certain amount of noise that depends on their number. In

the case of the recurrent dynamics, the connectivity is sparse and each neuron that participates in it

samples the noisy neurons a number of times that depends on the relaxation time. If these neurons

can flip randomly at every time step, then their noise is averaged out and the final effect of the free

units can be smaller than in the majority vote committee machine.

In the two-subnetwork low noise regime, the capacity is identical to the sparse limit of the majority

vote scenario (see 3.3)

Pmax =
〈√n〉2
f

1

π[erf−1(1− 2ε)]2
M/N

1 + M
N ϕCF ,f

N (3.12)

And in the sparse limit, CF f � 1:

Pmax =
1

π[erf−1(1− 2ε)]2

M
N C

2
F f

1 + M
N C

2
F f

N (3.13)
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This result is summarized graphically on the figures 4c and 4f. The low f curve segments on the

figure 4f correspond to the two-subnetwork low noise regime (identical to the result for the committee

machine), and the high f segments - to the uniform low noise regime 3.7. The only parameter that

differs between the segments of the same color is the strength of the recurrent connections α.

Another way to visualize the results for the two-subnetwork regime is presented in Figure 6 where

we plot the capacity as a function of the product CF f , for the two-subnetwork low noise regime in the

sparse limit 3.13 (solid curves) and the same quantity for the two-subnetwork intermediate noise 3.10

(dashed curves). For the intermediate noise regime we tune the amount of noise so that βCRαe−CF f

is always equal to 1.2. The closer this value is to 1, the larger the advantage of the intermediate noise

regime over the low noise regime (majority vote). The different colors represent different values of

the number of feed-forward connections per input neuron c = CFM/N . The dotted lines show the

maximum possible capacity for a given value of c, which is achieved for the dense limit of majority

vote 3.4, assuming that CF is large and f is small, so that f � 1, while CF f � 1.

It can be seen from Figure 6 that, as discussed before, being in the intermediate noise regime allows

for very sparse input representation without sacrificing much the classification capacity, which is only

slightly smaller than in the dense case (this ratio increases with c but saturates at Pdense/Psparse = π/2).

This means that the representations can be very sparse, despite the limited connectivity. If there

is any other computational reason for preferring sparse representations, then the readout system that

we propose can still be used because it can tolerate a high degree of sparseness. This might be the

case of the network architecture in the hippocampus in which the representations in the dentate gyrus

(DG) are extremely sparse, and the downstream readout neurons in CA3, which would be analogous

to the neurons in our intermediate layer, have very sparse connectivity. Although we know that

moderate sparseness (f ∼ 0.1) can be highly beneficial for generalization [34], we do not know why the

representations in the DG are so sparse (f ∼ 0.01). However, our study shows that this elevated degree

of sparseness does not necessarily impair the ability of the readout to perform efficiently a classification

task.

3.3 Simulation Results

Figures 5 show the results of numerical simulations run to verify the predictions of the above calcula-

tions. The two plots correspond to two different regimes characterized by different coding level of the

input patterns representation. Figure 5a corresponds to dense input representation CF f = 10 � 1.

The theoretical predictions for the majority vote scheme (committee machine) and the recurrent read-

out are represented by the two dashed lines, and the solid lines with the error bars depict the results

of the simulations in the two scenarios. The case of sparse input representations CF f = 1 is presented

on Figure 5b. Paradoxically, the recurrent readout scenario leads to higher classification capacity

compared to the majority vote, which is confirmed by the simulation.

The simulation plots were obtained as follows. We fix the required accuracy of the classification
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Figure 4. a) The dependence of the classification capacity of the recurrent readout on the number of input

units N , when the number of readouts M is increased proportionally to N . High noise regime, see equation

(3.6). Solid curves correspond to sparse input representation, coding level f = 0.03 (CF f = 1.5) and dashed

curves - to dense representation, f = 0.5. Different colors represent different expansion ratios M/N . The other

parameters the same as in (d). b). Same as (a) but for the case of intermediate noise and sparse input

(two-subnetworks intermediate noise regime), see formula (3.8). Solid curves: f = 0.004 (CF f = 0.2), dashed

curves: f = 0.03. The parameters are the same as for the low f segment of (e). c) Same for the low dynamical

noise. Solid curves correspond to sparse input representation, f = 0.03, two-subnetwork low noise regime, see

3.12. Dashed curves are for dense representations f = 0.4 (CF f = 20� 1) in the uniform low noise regime, see

3.7. The parameters are the same as in (f), the values of α differ for the solid and dashed curves. d) The

dependence of the rate of the capacity growth on the coding level of input representation f . High noise regime,

see equation (3.6). Different curves correspond to different expansion ratios M/N . The other parameters are

CF = 50, CR = 700, α = 0.035, β = 0.05 and ε = 0.05 e) Same for the intermediate noise regime. Different

colors correspond to different expansion ratios M/N , the curves are discontinuous because different formulas

are valid for sparse and dense representations. See (3.8) and (3.7). The parameters are CF = 50, CR = 700,

α = 0.000075 for f < 0.03 and α = 0.006 for f > 0.1, β = 100 and ε = 0.05. The dotted curves show the

committee machine result. f) Same as d) and e) for low noise regime. See equations (3.12) and (3.7).

Parameters: CF = 50, CR = 700, α = 0.00075 for f < 0.03 and α = 0.006 for f > 0.1, β = 9000 and ε = 0.05.

The dotted curves show the committee machine result.
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Figure 5. a. Simulation results (solid lines) and theoretical predictions (dashed lines) for the case of dense

input representations, CF f = 10. The green curves correspond to majority vote scenario (committee machine)

and the orange - to the recurrent readout in the uniform regime with relatively high noise. b. Same for the

case of sparse input representation, CF f = 1. The recurrent dynamics of the intermediate layer is in

two-subnetwork regime with relatively high noise.

at 1 − ε = 0.9 and compute the predicted classification capacity. We fix the number of feedforward

connections per readout at CF = 50. For each number of the input units N , we chose the corresponding

number of the intermediate readouts M = N/30, and train the network with the set of P1 random

and uncorrelated patterns, where P1 is equal to the theoretically predicted classification capacity.

We then test the classification performance on the subset of 500 learned patterns and recorde the

obtained accuracy 1− ε̌. At the next step we train the network with the same number of input units

and recurrent readouts (and the same structure of the feedforward connectivity) on the new set of

P2 = P1

[
erf−1(1−2ε̌)

erf−1(1−2ε)

]2
random patterns. Here 1− ε̌ is the classification accuracy achieved for the set of

P1 patterns, and 1− ε is the required accuracy. We repeat the procedure 10 times, and keep only those

runs, where the accuracy differed from the required one by no more then 2 percent (|ε̌− ε| < 0.02). We

then compute the mean and the standard error of the corresponding values of P . For the recurrent

readout scenario, the recurrent connectivity was random with all the connections having of the same

strength, and the number of connections per unit being fixed at CR = 200. The connectivity matrix

was chosen to be symmetrical and the recurrent dynamics run for 30 steps of synchronous update.

The parameters of the recurrent dynamics for the plot of figure 5a (dense input) were β = 0.5 and

α = 0.015, and for the figure 5b (sparse input): β = 33 and α = 0.0005
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3.4 Optimizing the architecture

3.4.1 Optimizing the architecture under the constraint on the total number of long-range

connections

One interesting question to ask, given the capacity results (3.6) - (3.13) is how to maximize the

classification capacity given the constraint on the total number of feedforward connections, that are

seen as corresponding to the long-range connections in the biological brain. To address this question

we can think of the number of inputs N and the total number of long-range connections CFM as fixed

and ask what value of CF (or M) will maximize the classification capacity Pmax.

For the majority vote scenario, the separate dependence of the capacity on CF disappears once

CF f becomes much larger than 1 (see 3.4). So, for a fixed value of the coding level f , once CF f � 1,

regrouping feedforward connections, i.e. changing CF while keeping c = CFM/N constant does not

affect the classification capacity.

The same is true for the uniform low noise regime 3.7, which is valid only if CF f � 1. Even though

CF enters the formula in the last term of the denominator without being multiplied by M , it enters in

combination with the parameters of the recurrent dynamics CRα that can be adjusted to achieve the

optimal performance for any CF .

In the case of high noise and uniform regime 3.6, which is applicable for both dense and sparse

representations, increasing CF , while keeping CFM constant increases the capacity unless the last term

in the denominator is already negligible, which happens later for low values of f and faster for large

values of c.

To see what happens for smaller values of CF , when CF f � 1, we can look again at the figure

6 (see section 3.2 and figure captions), but think of f as being fixed and CF as changing along the

horizontal axis. The dotted lines now represent the limit of the ratio P/N as CF → ∞ for different

numbers of feedforward connections per input neuron, c, assuming the majority vote scheme (3.4 if f is

negligible compared to 1). One can see that in the low noise regime for low values of c as long as CF is

large enough to expect one active input per readout, the classification capacity is already only slightly

smaller than the high CF limit. Going to intermediate noise regime with tuned β (βCRαe−CF f & 1)

decreases this difference and allows to decrease CF without sacrificing the performance. For high values

of c the decrease in performance at CF f = 1 compared to large CF limit is more profound, and the

advantage of the intermediate noise regime becomes apparent only at even lower values of CF f .

3.4.2 Optimizing the architecture under the constraint on the total number of units

Another biologically expired constraint that we analyze is the constraint on the total number of units.

The question, which we can answer given the results (3.6) - (3.13), is how to divide the units between

input and readout layers in order to maximize the classification capacity. Asking this question one

should keep in mind, however, that the analysis is valid only for random and uncorrelated input

patterns, so by formulating the problem like this, we have assumed that there is enough external
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Figure 6. The coefficient P/N as a function of sparsity of the input representation, expressed as CF f for the

sparse limit of two-subnetwork low and intermediate noise regimes, 3.13 and 3.10, ε = 0.05. Different colors

correspond to different values of c = MCF /N , which is the number of outgoing connections per input neuron.

Solid curves correspond to the low noise regime, which is equivalent to the sparse limit of the majority vote

result (see 3.13 and 3.5), dashed lines represent the result for the intermediate amount of noise 3.10. The

inverse temperature parameter β is different for different values of CF f so as to keep βαKe−CF f = 1.2. The

dotted lines show the maximum capacity possible for given c. This is computed from the dense limit of the

majority vote result 3.4, assuming that CF is large enough so that when f is small enough to be neglected in

comparison 1 in the numerator of 3.4, we are still in the dense regime CF f � 1.
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information to generate N uncorrelated input components.

It is straightforward to derive the optimal expansion ratio M/N from the formulas (3.6) - (3.13)

under the constraint M + N = const. In the uniform regime (see equations (3.6) and (3.7)), if the

parameters of the recurrent dynamics are not too far from the optimal ones, the expansion ratio that

maximizes the capacity can be approximated up to the factors of order one by

M

N
≈ 1√

CF

This corresponds to more readouts than one readout per every CF inputs in non-overlapping design.

To be more precise, a typical input is connected to approximately CFM/N ≈ √CF readouts. However,

the number of readouts M is still much smaller than the number of inputs N .

For the two-subnetwork low noise regime in the sparse limit CF f � 1, the optimal expansion ratio

is approximated by
M

N
≈ 1√

CF
√
CF f

This corresponds to 1/
√
f connections per input unit. For sparser representataions the optimal pro-

portion of units in the readout layer increases.

For intermediate noise
M

N
≈ 1√

CF

√
γ

CF f

where γ is given by 3.9

3.5 Multinomial Classification

We now turn to a more difficult problem of classifying the inputs into more than two categories. The

scheme presented above can be generalized in a straightforward way to serve as multinomial classifier.

We first present straightforward method and show that changing to the case of multiple classes does not

substantially change the classification capacity of the network. We later discuss a more realistic scenario

for which we can not compute the capacity analytically, but we demonstrate with the simulations that

decrease in the capacity is less than two-fold and, most importantly, the linear scaling with the network

size is preserved.

3.5.1 Structured output

The immediate generalization of the recurrent readout scheme to multinomial classification task is

to introduce several population of the intermediate readouts, each of which would correspond to one

class. The recurrent connectivity within a population would be as described before, while no recurrent

connections would exist between the units belonging to distinct populations. The desired output for

each class is then structured so that the population corresponding to the given class is active while the

others are inactive. The final readout has now to be replaced by multiple final readout, one for each

class. Their connectivity can still be sparse and random, but the sign of the connections would have
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to be adjusted based on whether it comes from the population selective for the same class as the given

final readout or not.

The classification capacity can now be computed in the same way as above, by noticing that each

population is now doing a binary classification, selecting for one out of L classes. The only difference

is that the proportion of ’positive’ patterns (the output sparseness) is now y = 1/L instead of 1/2.

The capacity formula for the case of sparse output is derived in the Methods section 2 and it differs

from the capacity for a dense case by a factor, that depends on y.

Py(N,M) =
1

4y(1− y)
P0.5(N,M)

It should be noted, that the number of intermediate readouts M , entering this formula is the number

of units in the population selective for a particular class. So, if total number of intermediate readouts

is Mtotal, and all population have equal size, it is M = Mtotal/L = yMtotal, that should enter the

formulas for the capacity. So, in terms of the total number of intermediate units, in the regime in

which formula (3.8) was derived, we have

P =
L

4(L− 1)

1

π[erf−1(1− 2ε)]2
MtotalC

2
F f

γ + Mtotal
LN C2

F f

Where γ is given by (3.9). There are two differences of this result compared to the binary classification

(3.8). The first is the prefecture, which is equal to 1/2 for the case of two classes (L = 2). This is

the reflection of the fact, that when only two classes are possible, the current scheme is redundant -

when the first population is active, the other is not, and vice versa. In the limit of large number of

classes, the prefactor is equal to 1/4. The other difference is in the second term in the denominator

which rescales N , the number of the input units. Namely, given the number of intermediate readouts

and all other parameters, the number of input units in the multinomial classification scheme, required

to achieve the same capacity as in the binary classification, is L times smaller. This is because there

is no interference between the readouts belonging to different classes.

For the case of two classes (L = 2), the result is the same as (3.8) if γ is small.

3.5.2 Random output

Another, more realistic scenario is to assign the output patterns that correspond to each of L classes

randomly and train the existing recurrent connections with a plausible learning rule.

Jkl = ζakζ
a
l (3.14)

Where ζak is the output patterns corresponding to the class a, (a = 1 · · ·L).

We do not analyze this scenario analytically, but we present the results of the simulations that

show the linear scaling of the classification capacity with the number of input neurons N .

Figure 7 shows the results of the simulation for 5-way classification (L = 5) of dense input patterns

with high dynamical noise (the parameter values are given in the figure caption). The dashed line
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Figure 7. The results of the simulation for multinomial classification. The output patterns

corresponding to L = 5 classes are chosen randomly with the coding level y = 1/2. The recurrent

connectivity is sparse and the strength of the synapses are trained with the learning rule 3.14. The

network of recurrently connected intermediate readouts is in the high noise regime with dense input

representations (CF = 50, f = 0.2, CR = 200, α = 0.015, β = 0.5). The dashed line is the estimation of

the capacity from the formula (3.6) assuming two equal size subpopulations of the readouts.

on the figure indicates the capacity given by the formula (3.6) assuming that the population of M

intermediate readouts is split into two segregated subpopulations, whose activity is opposite in all the

output patterns.

4 Discussion

We presented a model network based on perceptrons that satisfies the limited connectivity constraint

but whose classification capacity still scales linearly with the size of the network. The limitations on

classification capacity of the individual perceptrons imposed by the limited connectivity are overcome

by means of collective decision mechanism that is similar to the majority vote in committee machines.

The difference from the standard committee machine is that the voting procedure is implemented

through recurrent attractor dynamics of the network of intermediate classifiers (committee members).

This allows to bring the collective decision to the level of single unit activity without violating the

limited connectivity constraint.

Interestingly, the proposed recurrent readout scheme can outperform the majority vote of the

committee machine of sparsely connected perceptrons for the case of sparse input representations (see

sections 3.2.2 and 2.3.9). For the majority vote scheme, the classification capacity drops drastically
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when the input representations become very sparse because the fraction of classifiers whose inputs are

all silent becomes substantial (the difference from the results of [31] is explained by the fact that the

output is still dense in the present case). However, for the recurrent readout in the certain parameter

regime, the classification capacity can be kept high even for very sparse representations. The lower

limit on the coding level f , below which the capacity drops is determined by the amount of noise in the

recurrent dynamics, the expansion ration and the number of feedforward connections per perceptron

(see figure 4).

This work was largely motivated by the question of what is the advantage of sparse representations,

posed by the observations in the mammalian dentate gyrus. We show, that for the recurrent readout

under intermediate noise condition (see sections 3.2.2 and 2.3.9), the classification capacity stays within

a reasonable range even when the expected number of active units per perceptron is less than 1 (see

figures 4e, 4f and 6). This result is complimentary to [34], where the authors show that correlated

input patterns are more efficiently separated by introducing a randomly connected intermediate layer

with sparse activity. We show that the resulted sparse representations can be read out while respecting

the limited connectivity constraint.

A crucial aspect that allows to implement the majority vote by means of recurrent dynamics, which

was omitted so far, is how the network of the recurrently connected perceptrons can be initiated at

the state with unbiased average activity m0 = 0 before every classification (see section 2.3.3). Here we

propose one of the ways this initialization can be realized in a biological network.

We assume that before the input pattern for classification is presented to the input layer, the input

layer is spontaneously active. This spontaneous activity generates a feedforward input hspk to the layer

of recurrently connected perceptrons that is chosen from a distribution other than hµk , which is the

feedforward current when an input pattern is presented (see 2.10). Consequently, it is possible to have

the disordered state (m = 0) as the only stable state of the recurrent network (see figure 2a) before the

presentation of the pattern. There are two conditions on the statistics of hspk that are required to have

m = 0 as the only stable state of the system in the mean field approximation. The first requirement is

that hspk has zero expectation value, which is satisfied if the patterns of spontaneous activity are not

correlated with the training patterns. The second requirement is that the standard deviation of the

distribution is large enough, to make the slope of the sigmoidal curve of figure 2 smaller than 1. For

instance, in the uniform regime (see section 2.3.5), the latter requirement is σsph >
√

2
πCRα, where σsph

is the standard deviation of the feedforward current due to spontaneous activity. This requirement is

opposite to the condition (2.46) of having three solutions when an input pattern is presented.
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6 Appendix

6.1 A1

In this section we derive the variance of the feedforward current, averaged over the intermediate units

h̄ν =
1

M

M∑
k=1

hνk (6.1)

which is used to obtain (2.42).

The variance of h̄ν is contributed by the diagonal terms and the non-diagonal terms, in the limit

M →∞ approximated by

cov(h̄ν , h̄ν) =
1

M
cov(hνk, h

ν
k) + cov(hνk, h

ν
l )k 6=l (6.2)

For the non-diagonal terms, neglecting 1
P corrections coming from the signal and using representa-

tion (2.21), we find

cov(hνk, h
ν
l )k 6=l = f(1− f)〈nkl〉 (6.3)

Here 〈nkl〉 is the expectation value of the number of common active input neurons for readouts k and

l (see details in section 2.2.2).

Therefore, comparing with (2.9) we find

cov(hνk, h
ν
l )k 6=l = cov(hk, hk)

〈nkl〉
〈nk〉

(6.4)

The 〈nkl〉 in the limit N,M →∞ and finite CF , f can be estimated as

〈nkl〉 = fN

(
CF
N

)2

=
C2
F

N
f (6.5)

which gives
〈nkl〉
〈nk〉

=
CF
N

(6.6)

and therefore

cov(hνk, h
ν
l )k 6=l =

CF
N

cov(hk, hk) (6.7)

Hence (6.2) reduces to

cov(h̄ν , h̄ν) =

(
1

M
+
CF
N

)
σ2
h (6.8)

and implies (2.42).

6.2 A2

In this section we derive the formula (2.74) for the covariance of the signs of the external (from input

receiving units) currents into two different free units in the two-subnetworks regime

cov
(

sign
(
CRαe

−CF fm̃+Hk

)
, sign

(
CRe

−CF fm̃+Hp

))
k 6=p

. (6.9)
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Figure 8. Two sources of input correlations for the subnetwork of free units (orange circles),

referred in the text as case I and case II. On the left diagram two free units are connected to the

same input receiving unit in the intermediate layer (red circle). On the right diagram there is no

input receiving unit that is connected to both free units, but the correlation arises from an active

unit in the input layer (green circle), which is connected to the two free units indirectly.

Following the section 2.3.10, we introduce a notation

gk(m̃) = sign
(
CRαe

−CF fm̃+Hk

)
and without loss of generality assume α = 1.

There are two cases of contributions to the correlation, that we will call case I and case II, see

figure 8.

The case I contribution to this correlation comes from the free units k and p being connected to

the same input receiving unit r. We neglect the probability that the overlap will be over more than

one input receiving unit since we keep connectivity CR fixed when we scale the number of units M .

To the leading order in CR/M , the probability of this situation to occur for a randomly chosen pair of

free units is

pI =
CR
M

CR(1− e−CF f ) (6.10)

This is because a typical free unit is connected to CR(1− e−CF f ) out of M(1− e−CF f ) input receiving

units.

The case II contribution comes from the possibility that there is an input layer unit that is active

and connects to both free units in a randomly chosen pair via different input receiving units. The

approximate robability of this to happen, assuming CF /N is small, is given by

pII = f
C2
F

N
C2
R (6.11)

To derive this probability, recall that the probability of any two intermediate units to be connected

to the same active input unit is fC2
F /N , and there are C2

R pairs of intermediate units (red units on

figure 8) connected to the given pair of free units (orange units). The probability that both units in

this pair are input receiving units is already taken into account by the factor fC2
F /N .
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In the case I the relevant correlation is

covI(gk(m̃), gp(m̃)) = cov

(
sign

(
CRe

−CF fm̃+ sign (hr) +
√
CR(1− e−CF f )zk

)
,

sign

(
CRe

−CF fm̃+ sign (hr) +
√
CR(1− e−CF f )zp

))
k 6=p

=

=
2

π
cov

(
CRe

−CF fm̃+ sign (hr)√
CR(1− e−CF f )

,
CRe

−CF fm̃+ sign (hr)√
CR(1− e−CF f )

)
=

2

π

1

CR(1− e−CF f )

(6.12)

The indices of the units correspond to those on figure 8. The number of recurrent connections per unit

is assumed to be large, so that CR − 1 ≈ CR. zk and zp are independent Gaussian variables with zero

means and unit variances. The Gaussian assumption is valid if CR is a large number. We also assumed

CRe−CF fm̃+ sign (hr)�
√
CR(1− e−CF f ) to get from the first line to the second.

In the case II the relevant correlation

covII(gk(m̃), gp(m̃)) =

=

cov

(
sign

(
CRe

−CF fm̃+ sign (hr) +
√
CR(1− e−CF f )zk

)
,

sign

(
CRe

−CF fm̃+ sign (hs) +
√
CR(1− e−CF f )zp

))
k 6=p,r 6=s

=

=
2

π

〈
CRe

−CF fm̃+ sign (hr)√
CR(1− e−CF f )

CRe
−CF fm̃+ sign (hs)√
CR(1− e−CF f )

〉
=

=
2

π

1

CR(1− e−CF f )

2

π

〈
tan−1

√
1

(nr + 1)(ns + 1)− 1

〉
nr,ns∈B(CF−1,f)

=

=
2

π

1

CR(1− e−CF f )

ϕCF ,f
fC2

F

(6.13)

where nr and ns are from binomial distribution on CF − 1 trials with probability f . The correlation

〈sign (hr) sign (hs)〉 was computed in (2.25).

Now we can compute (6.9) in the leading order as pI, pII probability weighted sum of the contribu-

tions from case I and case II:

cov(gk(m̃), gp(m̃)) = pIcovI(gk(m̃), gp(m̃)) + pIIcovII(gk(m̃), gp(m̃)) =

=
2

π

CR
M

+
2

π

ϕCF ,f
N

CR

1− e−Cff (6.14)

At the diagonal terms we have simply

cov(gk(m̃u), gk(m̃u)) = 1 (6.15)

Alltogether, combining the contribution from diagonal and non-diagonal terms as in (6.2) we find

cov(g(m̃), g(m̃)) =
1

Mf
+

2

π
CR

(
1

M
+
ϕCF ,f
N

1

1− e−Cff
)

(6.16)
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We will assume that CF f . 1 so that Mf ' M and that even though CR does not scale linearly

with M,N,P still

CRe
−CF f � 1 (6.17)

then we can, in fact, drop the diagonal term in (6.16) and take the approximation

cov(g(m̃), g(m̃)) =
2

π
CR

(
1

M
+
ϕCF ,f
N

1

1− e−Cff
)

(6.18)
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[5] Liam J Drew, Stefano Fusi, and René Hen. Adult neurogenesis in the mammalian hippocampus:

why the dentate gyrus? Learning & Memory, 20(12):710–729, 2013.

[6] David G Amaral, Norio Ishizuka, and Brenda Claiborne. Neurons, numbers and the hippocampal

network. Progress in brain research, 83:1–11, 1990.

[7] MW Jung and BL McNaughton. Spatial selectivity of unit activity in the hippocampal granular

layer. Hippocampus, 3(2):165–182, 1993.

[8] MK Chawla, JF Guzowski, V Ramirez-Amaya, P Lipa, KL Hoffman, LK Marriott, PF Worley,

BL McNaughton, and CA Bavs. Sparse, environmentally selective expression of arc rna in the

upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus, 15(5):579–586,

2005.

[9] Nils J Nilsson. Learning machines: foundations of trainable pattern-classifying systems. McGraw-

Hill, 1965.

[10] Bambang Parmanto, Paul W Munro, and Howard R Doyle. Reducing variance of committee

prediction with resampling techniques. Connection Science, 8(3-4):405–426, 1996.

[11] C Bishop. Pattern recognition and machine learning (information science and statistics), 1st edn.

2006. corr. 2nd printing edn. Springer, New York, 2007.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2017. ; https://doi.org/10.1101/157289doi: bioRxiv preprint 

https://doi.org/10.1101/157289
http://creativecommons.org/licenses/by/4.0/


46

[12] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC Press, 2012.

[13] Michael Kearns. Thoughts on hypothesis boosting. Unpublished manuscript, 45:105, 1988.

[14] JNK Rao and Kathleen Subrahmaniam. Combining independent estimators and estimation in

linear regression with unequal variances. Biometrics, pages 971–990, 1971.

[15] Bradley Efron and Carl Morris. Combining possibly related estimation problems. Journal of the

Royal Statistical Society. Series B (Methodological), pages 379–421, 1973.

[16] Donald B Rubin and Sanford Weisberg. The variance of a linear combination of independent

estimators using estimated weights. Biometrika, 62(3):708–709, 1975.

[17] Edwin J Green and William E Strawderman. A james-stein type estimator for combining unbiased

and possibly biased estimators. Journal of the American Statistical Association, 86(416):1001–

1006, 1991.

[18] Leo Breiman. Stacked regressions. Machine learning, 24(1):49–64, 1996.

[19] David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

[20] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[21] Leo Breiman. Bias, variance, and arcing classifiers. 1996.

[22] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In ICML,

volume 96, pages 148–156, 1996.

[23] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

[24] GJ Mitchison and RM Durbin. Bounds on the learning capacity of some multi-layer networks.

Biological Cybernetics, 60(5):345–365, 1989.

[25] C Kwon and JH Oh. Storage capacities of committee machines with overlapping and non-

overlapping receptive fields. Journal of Physics A: Mathematical and General, 30(18):6273, 1997.
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