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Abstract		
	
Drowsiness	 varies	 continuously	 during	 daily	 activities,	 influencing	 both	
efficiency	of	daily	behavior	and	sleep	initiation.	Yet,	brain	and	behavioral	
dynamics	 underlying	 wake-sleep	 transitions,	 leading	 to	 the	 loss	 of	
perceptual	 awareness,	 are	 largely	 unknown	 in	 humans.	 Across	 levels	 of	
drowsiness	 we	 measured	 muscle	 and	 brain	 responses	 as	 participants	
attempted	 to	 detect	 their	 own	 hand	 movements	 elicited	 by	 transcranial	
magnetic	stimulation	to	the	motor	cortex.	Sleep	and	loss	of	consciousness	
processes	–motor	reorganization	and	decreased	information	shared	by	the	
brain–	emerged	 through	early	drowsy	states	while	participants	were	still	
conscious	and	able	 to	 take	decisions.	These	 findings	demonstrate	 flexible	
adaption	of	perceptual	processes	to	the	changing	neural	dynamics	of	sleep	
onset	 long	 before	 the	 loss	 of	 responsiveness,	 and	 provide	 a	 mechanistic	
explanation	for	sleepiness	affecting	daily	performance.	
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Drowsiness	frames	our	conscious	 life	–	 from	a	desperate	snoozing	of	the	alarm	
clock	 early	 in	 the	 morning	 to	 an	 unintentional	 head	 nodding	 while	 reading	 a	
book	 in	 the	 late	 evening.	 Importantly,	 drowsiness	 also	 interferes	 with	 our	
daytime	activities,	such	as	when	driving	a	car	for	a	prolonged	period	of	time,	or	
pervasively	in	continuous	tasks	while	at	work,	yielding	huge	economic	and	social	
burden(1–3).	 Such	 intrusions	 of	 sleepiness	 become	 increasingly	 common	 as	
individuals	 develop	 more	 hectic	 lifestyles	 with	 chronic	 sleep	 restriction(4–6).	
Furthermore,	 abnormalities	 in	 the	 control	 of	 drowsiness	 contribute	 to	 sleep	
onset	 disorders	 such	 as	 insomnia(7)	 and	 narcolepsy(8).	 Aforementioned	
examples	 of	 appropriate	 as	 well	 as	 adverse	 natural	 occurrences	 and	 clinical	
conditions	reveal	drowsiness	as	a	transitional	global	state	of	decreased	arousal.	
As	 such,	 drowsiness	 is	 likely	 to	 share	 neural	 processes	 specific	 to	 both	
wakefulness	 and	 light	 sleep;	 these	 are	 marked	 by	 rather	 dissimilar	
neurophysiological	 and	 behavioral	 processes	 that	 are	 poorly	 characterized	
during	 the	 transition(9)	 and	 definitely	 not	 studied	 under	 a	 mechanistic	
framework.		
	
It	is	known	that	tight	control	of	the	motor	system	and	its	continuous	interaction	
with	 sensory	 networks	 in	 the	 awake	 state	 contrasts	 sharply	with	 inhibition	 of	
motor	processing	during	non-rapid	eye	movement	 (NREM)	sleep,	as	evidenced	
by	 reduced	motor	 cortex	 excitability(10)	 and	 the	 lack	 of	 voluntary	movement	
during	 late	 sleep	 stage	 1	 (N1)	 and	 stage	 2	 (N2)(11).	 Furthermore,	 neural	
information	complexity	and	effective	connectivity	diminish	substantially	during	
NREM	 sleep,	while	 cortical	 reactivity	 and	 stereotypical	 processing	 of	 neuronal	
information	 are	 facilitated(12–14).	 Increased	 stereotypical	 local	 reactivity	
alongside	with	decreased	global	connectivity	has	been	suggested	to	have	a	role	
in	the	suppression	of	conscious	awareness	during	sleep(13,	15,	16).	However,	it	
remains	elusive	whether	reorganization	of	these	neural	processes	begins	during	
early	drowsiness	when	participants	are	still	conscious	and	responsive,	or	if	these	
changes	 only	 occur	 once	 they	 reach	 a	 certain	 ‘tipping	 point’	 characterized	 by	
unresponsiveness(9).	We	also	know	little	about	the	effect	of	such	reorganization	
for	sensory	awareness.	We	aimed	to	shed	light	on	these	questions	by	unraveling	
the	 neural	 mechanisms	 and	 behavioral	 dynamics	 of	 drowsiness	 in	 human	
participants	while	 consciously	making	 perceptual	 decisions	 but	 slowly	 drifting	
into	sleep.	
	
In	this	study,	we	developed	a	novel	experiment	to	assess	participants’	capacity	to	
detect	 their	 hand	muscles	 moving	 (kinesthetic	 awareness)	 and	 the	 associated	
neural	 mechanisms	 in	 the	 transition	 from	 wakefulness	 to	 sleep.	 Unlike	 most	
sensory	 detection/discrimination	 tasks	 in	 cognitive	 neuroscience	 where	 the	
stimuli	 are	 directly	 applied	 to	 the	 sensory	 organs,	 in	 this	 case	 we	 applied	 an	
electromagnetic	pulse	to	the	motor	cortex	of	the	participants	for	them	to	detect	if	
their	 hand	 had	 moved.	 Specifically,	 we	 studied	 physiological	 and	 behavioral	
responses	 to	 TMS	 applied	 to	 the	 motor	 cortex	 at	 different	 levels	 of	
spontaneously	 fluctuating	daytime	arousal.	Participants	 (N=20,	mean	age	23.7)	
were	 allowed	 to	 fall	 asleep	 while	 their	 hand	 representation	 area	 in	 the	 right	
motor	 cortex	 received	 single	 pulse	 TMS	 at	 9	 different	 intensities	 centered	 on	
their	 individual	 motor	 thresholds.	 Following	 each	 TMS	 pulse,	 participants	
responded	 with	 the	 non-stimulated	 right	 hand	 to	 indicate	 whether	 they	 felt	
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something	in	the	stimulated	hand	or	not	(Fig.	1A-B)	(see	also	Table	S1).		
	
	

	
	
Fig.	 1.	 Experimental	 design	 and	 key	 stages	 of	 task-related	 neural	 processing	 in	
different	levels	of	drowsiness.	(A)	Temporal	structure	of	an	individual	trial.	Two	EEG	
windows	preceding	 single	 pulse	TMS	were	 used	 to	 assess	 drowsiness.	 Following	TMS	
over	 the	 right	motor	 cortex,	motor	 evoked	potentials	 (MEPs)	were	 recorded	 from	 the	
first	dorsal	interosseous	(FDI)	muscle	of	the	left	hand	(red).	The	participant	reported	if	
they	 felt	 something	 in	 their	 left	 hand	 by	 pressing	 one	 of	 the	 two	mouse	 buttons	with	
their	right	hand.	Individual	medians	of	reaction	times	ranged	from	822ms	in	Drowsiness	
Level	1	 to	1936ms	 in	Level	5	(brown).	TMS-evoked	potentials	 (TEP)	were	analyzed	 in	
the	0-100ms	post-TMS	time	window	(blue	and	black),	whilst	EEG	information-sharing	in	
0-600ms	(green).	(B)	Key	stages	of	TMS-triggered	neurobehavioral	processing	across	5	
levels	of	drowsiness	(grey	bars	in	the	color	insets).	Interpolant	function	is	fitted	to	the	
raw	measurements	at	each	Drowsiness	Level.	Time	window	of	each	stage	of	processing	
is	indicated	on	the	right	side	of	each	inset.	Single	pulse	TMS	over	the	right	motor	cortex	
evoked	motor	 efferent	 signal	 (red	arrow	along	 the	 left	 arm),	measured	as	 a	nonlinear	
MEP	response	from	the	FDI	muscle	(red	inset).	Concurrently,	TEP	was	recorded	at	the	
site	 of	 stimulation	 (blue	 inset).	 An	 FDI	 muscle	 twitch	 in	 the	 left	 hand	 would	 send	
afferent	 kinesthetic	 signals	 (black	 arrow	 along	 the	 left	 arm),	 peaking	 in	 TEP	 brain	
activity	 posterior	 to	 the	 site	 of	 stimulation	 (black	 inset).	 EEG	 channel	 connectivity	
(green	 lines	 across	 the	 scalp,	 0-600ms	 time	 window)	 calculated	 as	 global	 weighted	
symbolic	mutual	information	(wSMI)	index	post-TMS	(green	inset)	showed	a	sigmoidal	
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decrease	 with	 drowsiness.	 Following	 kinesthetic	 awareness	 decision,	 the	 response	
delivered	by	the	contralateral	motor	efferent	signal	(brown-grey	arrow	along	the	right	
arm)	 showed	 different	 dynamics	 between	 median	 RT	 (brown	 inset)	 and	 the	 rate	 of	
kinesthetic	awareness	reports	(grey	inset).	(C)	Group-averaged	rate	of	trials	with	MEPs	
above	 threshold	value	of	50μV	across	9	TMS	 intensities,	 centered	on	 individual	motor	
threshold	 (0%).	 Sigmoidal	 functions	 are	 fitted	 separately	 to	 the	 θ/α-defined	 awake	
(red)	 and	 drowsy	 (blue)	 conditions	 (I-bars	 represent	 standard	 error	 of	 mean,	 SEM).	
Insets	 at	 the	 bottom	 depict	 each	 participant’s	 sigmoid	 threshold	 and	 slope	 difference	
(Awake-Drowsy)	(horizontal	bars	sorted	in	ascending	order).	Only	responsive	trials	are	
included	 in	 the	 analysis	 shown	 in	 this	 and	 other	 subplots.	 Arousal	 states	 are	
distinguished	here	using	EEG	θ/α	measure	of	2000-0ms	pre-TMS	pulse.	(D,	top)	Group-
level	 dynamics	 of	 MEP	 across	 Drowsiness	 Levels	 1-5.	 Horizontal	 red	 dashed	 lines	
delineate	 peaks	 at	 25	 and	 29ms	 post	 TMS	 (0ms)	 in	Drowsiness	 Level	 1.	 (D,	 bottom)	
Change	 of	 the	 MEP	 peak-to-peak	 amplitude	 across	 Drowsiness	 Levels	 1-5;	 I-bars	
represent	SEM.	
	
	
Table	S1.	Subjective	reports	of	TMS-induced	sensations.	
	

Participant	 Please	describe	any	sensations	that	you	felt	in	your	left	hand	from	the	TMS	

1	 Tightness	of	muscle	when	my	thumb	twitched.	

2	 Short	'pins	and	needles'	feeling.	When	thumb	moved	–	sharper	sensation.	

3	 Twitching	and	movement	of	 individual	 fingers	(including	thumb),	movement	of	
the	whole	hand.	Tension	of	the	muscles.	

4	 Normal	reflex.	

7	 Twitching.	

8	 Twitching	of	my	left	hand	and	small	muscle	movements	around	my	fingers.	

9	 Slight	twitch.	

10	 Twisting	and	tingling.	

11	 Moving	by	itself,	like	touching	an	electric	fence.	

12	 Twitch	on	the	fingers	and	forearm.	

14	 Itches,	muscle	movements.	

15	 Mostly	light	muscle	movements.	

16*	 Just	touching	sensations,	very	soft	most	times.	

17	 Twitching.	

18	 Felt	like	my	left	hand	was	sometimes	moving	not	voluntarily.	

19	 Fingers	moving	/	contraction.	

20	 Sometimes	something	like	tension,	movement.	
	
Note.	 *	 Participant	 16	 was	 the	 only	 one	 who	 conceptualized	 their	 experiences	 as	 primarily	
tactile.	 Notably,	 this	 participant	 had	 the	 lowest	 resting	 motor	 threshold	 (34%)	 of	 the	 whole	
sample.	
	
	
By	assessing	the	level	of	arousal	on	a	trial-by-trial	basis	before	each	TMS	pulse,	
we	 were	 able	 to	 track	 how	 instantaneous	 drowsiness	 modulates	 the	 chain	 of	
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neural	 and	 behavioral	 processes	 elicited	 by	 the	 TMS	 perturbation	 (Fig.	 1A-B).	
This	 experimental	 paradigm	 allowed	 us	 to	 follow,	with	mechanistic	 detail,	 the	
path	of	the	neural	information	signal	travelling	from	the	cortex	to	the	hand	and	
back	 to	 the	 cortical	 sensory	 processing,	 followed	 by	 perceptual	 decision	 and	
accuracy	of	kinesthetic	awareness	response.	We	specifically	assessed:	(1)	motor	
excitability	as	measured	by	peripheral	motor	evoked	potentials	(MEPs)	from	the	
stimulated	hand	(25-29ms);	(2)	concurrent	local	cortical	reactivity	as	measured	
by	 TMS-evoked	 potentials	 (TEPs)	 (26-36ms);	 (3)	 somatosensory	 processing	 of	
TMS-triggered	 sensations	 as	 measured	 by	 somatosensory	 evoked	 potentials	
(SEPs)	(51-61ms);	(4)	long	range	cortical	information	sharing	(0-600ms);	(5)	the	
speed	 of	 neurobehavioral	 processing	 as	 measured	 by	 the	 reaction	 times	 (RT;	
>800ms);	 and	 (6)	 kinesthetic	 awareness	 as	measured	by	 the	 rate	 of	 perceived	
movement	reports	(>800ms).		
	
We	 first	 assessed	 motor	 excitability	 as	 a	 function	 of	 drowsiness.	 Motor	
excitability,	 as	 measured	 by	 the	 peripheral	 MEP	 in	 response	 to	 cortical	 TMS,	
tends	 to	decrease	with	 increasing	 sleepiness	due	 to	homeostatic	 and	 circadian	
effects(17,	 18),	 although	 the	 findings	 are	 often	 inconsistent(19,	 20).	 Arguably,	
different	 levels	 of	 arousal	 (the	 complexity	 of	 the	 transition	 to	 sleep),	 averaged	
into	a	single	sleep	state	could	explain	the	lack	of	consistency.	Leaving	behind	the	
assumption	 of	 a	 steady	 state	 of	 arousal,	we	measured	 the	 continuous	 changes	
during	the	transition	to	sleep	at	a	single	trial	level,	allowing	a	more	fine-grained	
measurement	 of	 drowsiness.	 A	 two-fold	 representation	 of	 the	 EEG	 level	 of	
arousal	 was	 applied	 over	 the	 time	 window	 preceding	 TMS:	 (1)	 categorical	
definition	of	awake	and	drowsy	states	following	EEG	spectral	power	signatures	
(θ/α)	averaged	across	all	EEG	electrodes(21),	and	(2)	dynamical	definition	of	5	
levels	 of	 drowsiness	 following	 the	 Hori	 system	 for	 scoring	 of	 sleep	 onset(22)	
(Fig.	S1).	
	
	

	
	
Fig.	 S1.	 Electroencephalography	 (EEG)	 measures	 of	 drowsiness.	 (A)	 Brief	
definitions	and	EEG	examples	of	9	Hori	stages	of	sleep	onset,	progressing	from	relaxed	
wakefulness(Hori	 Stage	 1)	 to	 NREM	 Stage	 2	 sleep	 (Hori	 Stage	 9)	 (modified	 with	
permission	 from(23)).	 In	 the	 current	 study,	Drowsiness	 Levels	 1-5	 (marked	 in	 green)	
correspond	 to	 Hori	 Stages	 1-5.	 These	 were	 manually	 scored	 using	 4-second	 EEG	
segments	preceding	TMS.	(B)	Percentage	of	trials	scored	as	different	Drowsiness	levels	
within	 each	 participant	 (N=20).	 Datasets	 are	 sorted	 here	 from	 the	 most	 alert	
participants	 1-2	 with	 the	 dominance	 of	 Drowsiness	 Level	 1	 (bottom	 lines)	 to	 the	
drowsiest	 participants	 18-20	 with	 the	 dominance	 of	 Drowsiness	 Level	 5	 (top	 lines).	
There	 were	 very	 few	 epochs	 of	 Drowsiness	 Level	 6	 and	 above.	 (C)	 A	 representative	
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dataset	 of	 one	 participant	 with	 good	 agreement	 between	 the	 two	 EEG	 measures	 of	
drowsiness	 across	 the	 whole	 testing	 session.	 The	 top	 subplot	 indicates	 θ/α	 ratio,	
whereas	 the	 bottom	 subplot	 shows	 fluctuation	 of	 Drowsiness	 Levels.	 (D)	 Intra-
individual	 correlations	 between	 θ/α	 power	 and	 Hori	 measures	 of	 drowsiness.	 Cross-
validation	 of	 drowsiness:	 bars	 represent	 intra-individual	 Spearman’s	 rank	 order	
correlation	 coefficients	 for	 20	 participants,	 sorted	 from	 the	most	 to	 the	 least	 positive	
coefficients.	A	strong	convergence	between	θ/α	and	Hori	measures	were	observed	 for	
each	participant.		
	
	
To	examine	the	association	between	muscle	responsiveness	(MEP)	and	arousal	
as	a	 function	of	TMS	 intensity,	we	calculated	 the	proportion	of	 trials	with	MEP	
peak-to-peak	amplitude	above	50μV	threshold	 in	each	of	 the	9	TMS	intensities,	
separately	for	the	θ/α-defined	awake	and	drowsy	trials.	A	sigmoid	function	was	
then	 fitted	 across	 arousal	 conditions	 to	 each	 participant.	 The	 slope	 of	 MEP	
sigmoid	showed	a	small	but	reliable	decrease	in	drowsiness	compared	to	awake	
state	 (Wilcoxon	 signed-rank	 test:	 z-score=2.02,	 p=0.044,	 r=0.32),	 suggesting	
increased	 noise	 and	 instability	 in	 neural	 processing	 (see	 Fig.	 1C	 and	 Fig.	 S2).	
Contrary	 to	 this,	 the	MEP	sigmoid	 threshold	did	not	differ	between	awake	and	
drowsy	 trials	 (t(19)=1.31,	 p=0.21,	 d=0.13,	 Bf	 in	 favor	 of	 the	 null=2.04).	 We	
considered	whether	the	observed	difference	in	slope	was	specifically	related	to	
arousal,	 as	 the	 amplitude	 of	 pre-stimulus	 alpha	 oscillations	 has	 also	 been	
implicated	in	the	fluctuation	of	attention	and	sensory	gating.	However,	given	that	
the	observed	difference	of	slope	as	a	function	of	EEG	θ/α	power	was	temporally	
and	 spatially	 widespread	 (Fig.	 S3),	 contrary	 to	 more	 restricted	 effects	 of	
attention	and	sensory	gating	previously	reported(24–26),	we	concluded	that	our	
results	 were	 mostly	 likely	 due	 to	 the	 shift	 from	 awake	 to	 drowsy	 states	 of	
arousal.		
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Fig.	 S2.	 Individual	 rate	 of	 motor	 evoked	 potentials	 (MEPs)	 as	 a	 function	 of	
transcranial	 magnetic	 stimulation	 (TMS)	 intensity	 in	 θ/α-defined	 awake	 and	
drowsy	states.	Percentage	of	trials	with	MEP	potentials	above	threshold	value	of	50μV	
was	 calculated	 separately	 for	 the	 awake	 and	 drowsy	 trials	 across	 9	 TMS	 conditions	
centered	 on	 individual	motor	 threshold	 (0%).	 Sigmoidal	 functions	were	 then	 fitted	 to	
the	awake	(red)	and	drowsy	(blue)	conditions	separately	for	each	individual	(N=20).	
	
	
	

	
	
Fig.	 S3.	 Temporal	 and	 spatial	 spread	 of	 the	 arousal-dependent	 modulation	 of	
motor	evoked	potentials.	(A)	Difference	of	the	motor	evoked	potential	(MEP)	sigmoid	
thresholds	 (top)	 and	 slopes	 (bottom)	 between	 θ/α-defined	 awake	 and	 drowsy	
conditions.	 Arousal	 states	 are	measured	 and	 contrasted	 separately	 for	 each	 of	 the	 20	
time	 bins	 in	 steps	 of	 100ms	 across	 the	 -2000-0ms	 pre-stimulation	 time	 window.	
Electroencephalography	 (EEG)	 spectral	 power	 is	 averaged	 over	 all	 electrodes.	 (B)	
Difference	 of	 the	 MEP	 sigmoid	 thresholds	 (top)	 and	 slopes	 (bottom)	 between	 θ/α-
defined	 awake	 and	 drowsy	 conditions.	 Arousal	 states	 are	 measured	 and	 contrasted	
separately	 for	 each	 of	 the	 63	 EEG	 electrodes.	 EEG	 spectral	 power	 is	 averaged	 over	 -
2000-0ms	pre-stimulation	time	window.	
	
	
We	next	compared	MEP	peak-to-peak	amplitudes	between	Drowsiness	Level	1,	
depicting	relaxed	wakefulness,	and	subsequent	Levels	2-5,	reflecting	increasing	
levels	 of	 drowsiness.	 A	 reliable	 increase	 in	 MEP	 amplitude	 was	 observed	
between	 Levels	 1	 and	 4	 (t(19)=3.5,	 p=0.0096,	 d=0.64),	 with	 an	 intermediate	
stepped	increase	in	Levels	2	(d=0.15)	and	3	(d=0.23)	and	a	subsequent	decrease	
in	Level	5	(d=0.27)	(see	Fig	1D).	A	linear	trend	of	increasing	MEP	amplitude	was	
observed	across	Drowsiness	Levels	1-4	(F(1,19)=11.55,	p=0.003,	partial	η2=0.38),	
but	 not	 when	 all	 Levels	 1-5	 were	 considered	 (F(1,19)=2.11,	 p=0.165,	 partial	
η2=0.1).	 These	 findings	 indicate	 a	 non-linear	 reorganization	 of	 motor	 cortex	
excitability	 taking	place	at	 a	 time	when	drowsy	participants	 are	 still	 conscious	
and	 responsive.	 The	 most	 noticeable	 change	 in	 dynamics	 occurs	 with	 the	
disappearance	 of	 alpha	waves	 from	 the	 EEG	 (with	 EEG	 flattening	 and	 the	 first	
occurrence	of	EEG	 theta-range	ripples	 -	Levels	4	and	5),	while	participants	are	
still	 responding.	 This	 suggests	 a	 much	 earlier	 modulation	 of	 excitability	 than	
previous	 reports	 of	 increased	 MEP	 with	 sleep	 deprivation	 or	 during	 NREM	
sleep(10,	 17,	 18),	 and	 highlights	 a	 much	 faster	 rate	 of	 cortical	 excitability	
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fluctuations.	
	
We	next	assessed	post-TMS	cortical	reactivity	measured	as	TEP	within	the	first	
40ms.	The	early	TEP	amplitude	is	known	to	increase	in	response	to	homeostatic	
sleep	pressure(27)	and	during	NREM	sleep(14),	likely	reflecting	a	combination	of	
synaptic	 strengthening,	 changes	 in	 neuromodulation,	 and	 impaired	
inhibition(27).	 We	 hypothesized	 that,	 similarly	 to	 MEP	 amplitude,	 cortical	
reactivity	would	also	depend	on	the	trial-per-trial	level	of	arousal	in	drowsy	yet	
responsive	participants.		
	
First,	 TEP	 amplitude	 contrast	 between	 θ/α-defined	 awake	 and	 drowsy	 trials	
showed	 a	 reliable	 increase	 of	 cortical	 reactivity	 (larger	 TEP	 amplitude	 in	
drowsy)	in	the	early	26-36ms	peak	(t(19)=4.02,	p=0.00074,	d=0.49)	(see	Fig	2A)	
(consistent	 in	18/20	participants,	 see	Fig.	 S4).	While	displaying	 a	wide	 fronto-
central	 spread,	 the	 peak	 differences	 between	 awake	 and	 drowsy	 states	was	 in	
the	right	motor	region	right	below	the	TMS	coil	(see	Fig	2B-C).	Additional	control	
analyses	confirmed	that	 the	observed	TEP	 increase	 in	drowsiness	 is	not	due	to	
TMS-evoked	 scalp	 muscle	 artifacts	 (see	 Fig	 S5).	 We	 further	 compared	 TEP	
amplitude	 at	 the	 site	 of	 stimulation	 between	 Drowsiness	 Levels	 1-5.	 As	
hypothesized,	 TEP	 amplitude	 increased	 nonlinearly	 across	 Drowsiness	 Levels	
following	TMS	(Mann-Kendall	trend	test:	z=4.7,	p=0.0000025,	tau=0.77)	(Fig	2D-
E).	 Planned	 comparisons	 revealed	 a	 significant	 increase	 of	 TEP	 amplitude	
between	Drowsiness	Level	1	and	Level	3	(t(19)=4.54,	p=0.00088,		d=0.5),	1	vs.	4	
(t(19)=4.38,	p=0.00099,	d=0.68),	and	1	vs.	5	(t(19)=3.43,	p=0.0056,		d=0.6).	These	
findings	 provide	 the	 first	 direct	 evidence	 of	 an	 inverse	 association	 between	
cortical	 reactivity	and	arousal,	 suggesting	again	 that	 sleep	mechanisms	 intrude	
upon	local	cortical	processing	while	participants	are	still	able	to	make	perceptual	
decisions.	Furthermore,	the	effects	are	early	in	the	sleep	onset	(Level	3),	before	
the	appearance	of	ripples	or	slow	waves(22).	
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Fig.	 	 2.	 Transcranial	 magnetic	 stimulation	 (TMS)-evoked	 cortical	 reactivity	 and	
somatosensory	processing	potentials	in	different	states	of	arousal.	(A)	Time	course	
of	 electroencephalography	 (EEG)	 potentials	 averaged	 over	 4	 EEG	 electrodes	 beneath	
TMS	 coil	 in	 the	 θ/α-defined	 awake	 (red)	 and	 drowsy	 (blue)	 states.	 Vertical	 bars	
highlight	 cortical	 reactivity	 (green,	 26-36ms)	 and	 somatosensory	 processing	 (brown,	
51-61ms)	 time	windows.	Only	 responsive	 trials	 are	 included	 in	 the	 analysis	 shown	 in	
this	 and	other	 subplots.	0ms	 is	TMS	pulse	 time,	 error	 shades	depict	 standard	error	of	
mean	(SEM).	(B)	0-100ms	data-driven	spatiotemporal	clustering	of	EEG	potentials	post	
TMS	 between	 θ/α-defined	 awake	 (red)	 and	 drowsy	 (blue)	 states.	 Reliable	 differences	
where	drowsy	trials	show	higher	positive	TMS-evoked	potentials	(TEP)	amplitude	in	the	
5-67ms	 time	 window	 (cluster	 peak:	 27ms,	 t	 =	 −4884.47,	 p	 =	 0.004).	 The	 green	
horizontal	 line	depicts	 the	 significant	differences’	 time	window.	The	 largest	difference	
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electrode	waveform	between	 arousal	 states	 electrode	 is	marked	 as	 a	 green	dot	 in	 the	
topographical	 voltage	 map.	 The	 black	 contours	 within	 the	 map	 reveal	 the	 electrodes	
with	 reliable	 differences	 (cluster).	 The	 topographical	 voltage	map	 is	 at	 the	 peak	
difference	 between	 states.	(C)	 Topographical	 distribution	 of	 the	 early	 TEP	 reflecting	
cortical	 reactivity	 (top,	 26-36ms)	 and	 later	 somatosensory	 evoked	 potentials	 (SEPs;	
bottom,	51-61ms)	peak	 latencies	 in	 the	θ/α-defined	awake	(left)	and	drowsy	(middle)	
states.	Black	dots	indicate	location	of	three	EEG	electrodes	with	the	maximal	amplitude	
in	 a	 given	map,	with	 a	more	posterior	peak	 location	 in	 the	 somatosensory	processing	
window.	Non-parametric	z	maps	(right)	reveal	regions	reliably	different	between	awake	
and	 drowsy	 states.	 (D)	 Individual-level	 dynamics	 of	 TEP	 cortical	 reactivity	 peak	
amplitude	across	Drowsiness	Levels	1-5	(TEP	amplitude	averaged	over	26-36ms	across	
4	 electrodes	 beneath	 the	 TMS	 coil).	 Normalized	 amplitude	 is	 shown	 relative	 to	
Drowsiness	Level	1	(red	dashed	line).	Black	lines	represent	participants	with	higher	TEP	
amplitude	in	Drowsiness	Level	5	compared	to	Level	1	(N=15);	grey	lines	for	participants	
with	lower	TEP	amplitude	in	Drowsiness	Level	5	compared	to	Level	1	(N=5).	(E)	Group-
level	dynamics	of	TEP	waveforms	across	Drowsiness	Levels	1-5	(TEP	averaged	over	4	
electrodes	 beneath	 the	 TMS	 coil).	 Horizontal	 red	 dashed	 line	 delineates	 TEP	 cortical	
reactivity	peak	at	31ms	post	TMS	in	Drowsiness	Level	1.		
	
	
	
	

	
	
Fig.	 S4.	 Individual	 transcranial	 magnetic	 stimulation	 (TMS)	 evoked	 potentials	
(TEPs)	 in	 θ/α-defined	 awake	 and	 drowsy	 states.	 TEPs	 averaged	 across	 4	 EEG	
electrodes	 within	 a	 region-of-interest	 (ROI)	 beneath	 the	 TMS	 coil.	 Awake	 (red)	 and	
drowsy	(blue)	TEP	waveforms	are	depicted	separately	for	each	individual	(N=20).	
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Fig.	S5.	TMS-evoked	scalp	muscle	activity	in	θ/α-defined	awake	and	drowsy	states.	
Electromyography	(EMG)	waveforms	depicting	TMS-evoked	scalp	muscular	contraction	
artifact	identified	during	independent	component	analysis	(ICA).	After	the	identification	
of	this	component,	trials	were	split	between	awake	(red)	and	drowsy	(blue)	conditions.	
Data	shown	here	are	averaged	across	16	participants	who	had	this	artifact.	Error	shades	
depict	standard	error	of	mean	(SEM).	
	
	
In	 addition	 to	 the	 early	 TEP	 centered	 under	 the	 TMS	 coil	 we	 hypothesized	 a	
somatosensory	 evoked	potential	 (SEP)	 peak	 at	 a	 later	 time	point,	 indicative	 of	
the	 return	 of	 the	 neural	 signal	 to	 the	 cortex	 from	 the	 hand	 (somatosensory	
stimulation	due	to	TMS-induced	muscle	movement).	Considering	the	~27ms	that	
the	efferent	signal	takes	to	arrive	at	the	hand	muscles	and	~20ms	from	the	hand	
to	the	somatosensory	cortex(28),	the	peak	we	observed	at	51-61ms	agrees	with	
the	 arrival	 of	 an	 afferent	 somatosensory	 input	 to	 the	 cortex	 due	 to	 the	
experimental	 stimulation.	 Furthermore,	 the	 signal	 was	 posterior	 to	 the	 motor	
cortex	stimulation	site	and	 following	 temporally	 the	peak	of	 the	MEP	(Fig.	2C).	
Moreover,	 and	 contrary	 to	 the	 early	 TEP,	 this	 SEP	 peak	 emerged	 only	 in	 the	
supra-threshold	 TMS	 conditions	 (+5%	 to	 +20%),	 when	 participants	 report	
awareness	 in	most	of	 the	 trials,	 corroborating	 the	somatosensory	origin	of	 this	
SEP	 component	 (see	 Fig.	 S6).	 Similar	 to	 the	 early	 TEP,	 amplitude	 of	 SEP	
increased	 in	 the	 region-of-interest	 of	 the	 right	 hemisphere	 when	 participants	
became	drowsy	(Wilcoxon	signed-rank	test:	z=2.98,	p=0.003,	r=0.47)	(Fig.	2C).		
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Fig.	 S6.	 Individual	 transcranial	 magnetic	 stimulation	 (TMS)-evoked	 potentials	
(TEPs)	 and	 somatosensory	 evoked	 potentials	 (SEP)	 as	 a	 function	 of	 TMS	 output	
intensity.	TEPs	and	SEPs	averaged	across	4	EEG	electrodes	within	a	region-of-interest	
(ROI)	 beneath	 the	 TMS	 coil.	Waveforms	 are	 shown	 separately	 for	 each	 of	 the	 9	 TMS	
output	intensities	centered	on	the	individual	motor	threshold	(0%	condition).	Green	and	
brown	 vertical	 bars	 depict	 respectively	 cortical	 reactivity	 and	 somatosensory	
processing	windows.	Error	shades	represent	standard	error	of	mean	(SEM).	
	
	
After	 establishing	 effects	 of	 drowsiness	 on	 relatively	 early	 motor	 excitability,	
cortical	reactivity	and	somatosensory	processing,	we	investigated	a	broader	time	
window	 that	 would	 encapsulate	 later	 stages	 of	 task-related	 processing.	 To	
address	 this,	we	 first	 tested	 post	 TMS	 event-related	 potentials	 (ERP)	 and	 EEG	
connectivity	patterns	in	the	time	window	up	to	600ms	post-TMS.	While	a	trend	
towards	 an	 increase	 of	 ERP	 amplitude	 was	 noticed	 in	 the	 left	 frontal	 region	
(around	200ms)	and	in	the	parietal	region	(around	300ms)	during	θ/α-defined	
drowsy	compared	to	wake	(Fig.	S7),	data-driven	spatio-temporal	ERP	clustering	
in	the	100-600ms	time	window	revealed	no	reliable	differences	between	awake	
and	drowsy	states.		
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Fig.	S7.	Late	TMS-locked	event-related	potentials	(ERP)	in	θ/α-defined	awake	and	
drowsy	 states.	 (A)	 Time	 course	 of	 ERP	 waveforms	 averaged	 over	 4	 EEG	 electrodes	
beneath	 the	 TMS	 coil	 in	 the	 θ/α-defined	 awake	 (red)	 and	 drowsy	 (blue)	 states.	 TMS	
pulses	were	delivered	at	0	ms.	Error	shades	depict	standard	error	of	mean	(SEM).	(B)	
Topographic	distribution	of	TMS-locked	ERP	in	the	θ/α-defined	awake	(left)	and	drowsy	
(right)	states.	
	
To	 assess	 how	arousal	modulates	 neural	 information	processing	we	 computed	
weighted	 symbolic	 mutual	 information	 index	 (wSMI),	 a	 measure	 of	 nonlinear	
information	 exchange	 between	 cortical	 sites,	 originally	 developed	 to	
discriminate	 between	 global	 states	 of	 consciousness(29,	 30)	 and	 recently	
adapted	 to	 study	 perceptual	 and	 cognitive	 processing(31,	 32).	 Given	 that	 EEG	
effective	connectivity	and	coherence	decrease	during	NREM	sleep(9,	12–14,	16),	
we	hypothesized	that	a	similar	decrease	will	occur	in	drowsiness,	implying	that	
wake-related	long-range	neural	 information	sharing	would	start	to	disintegrate	
while	drowsy	participants	are	still	conscious	and	responsive.		
	
Clear	 global	 neural	 information	 exchange	 differences	 were	 observed	 between	
awake	and	drowsy	 trials	 in	 the	post-TMS	 time	window	(Fig	3A	and	Fig	S8).	 In	
particular,	TMS	perturbations	triggered	a	sharp	decrease	in	global	wSMI	on	the	
ipsilateral	motor	 region,	which	 seemed	 sharper	 in	drowsy	 compared	 to	 awake	
trials	 (0-200ms:	 t(19)=2.02,	 p=0.057,	 d=0.4).	 Following	 the	 initial	 dip,	 the	
recovery	from	the	informational	disconnection	was	more	efficient	in	awake	than	
drowsy	 trials	 (200-400ms:	 t(19)=2.73,	 p=0.026,	 d=0.63).	 Furthermore,	 global	
wSMI	exceeded	baseline	levels	in	awake	but	not	drowsy	state	in	the	late	period	
(400-600ms:	 t(19)=3.21,	 p=0.0138,	 d=0.94),	 indicating	 the	 facilitation	 of	
information	sharing.	Importantly,	global	wSMI	was	not	different	between	states	
of	 arousal	 in	 the	 pre-TMS	 baseline	 period	 (-200-0ms)	 (t(19)=1.48,	 p=0.16,	
d=0.11),	 confirming	 that	 arousal-specific	 information	 sharing	 differences	
emerged	in	response	to	TMS	perturbation	(Fig	3A).		
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Fig.3.	 Transcranial	 magnetic	 stimulation	 (TMS)	 perturbation	 of	
electroencephalography	 (EEG)	 connectivity	 as	 weighted	 symbolic	 mutual	
information	(wSMI)	in	different	states	of	arousal.	(A)	Time	course	of	wSMI	(baseline	
corrected	-400ms	to	0ms)	averaged	over	4	electrodes	beneath	the	TMS	coil	in	the	θ/α-
defined	awake	 (red)	 and	drowsy	 (blue)	 states.	Each	waveform	point	 represents	wSMI	
calculated	 over	 the	 preceding	 200ms	 time	 window.	 A	 small	 bar	 inset	 on	 the	 left	
represents	 raw	wSMI	 values	 over	 the	 baseline	 period	 in	 the	 awake	 (red)	 and	 drowsy	
(blue)	states	of	arousal.	Only	responsive	trials	are	included	in	the	analysis	shown	in	this	
and	 other	 subplots.	 Error	 shades	 and	 bars	 depict	 standard	 error	 of	mean	 (SEM).	 (B)	
Data-driven	spatiotemporal	clustering	of	wSMI	in	the	0-600ms	time	window	post	TMS	
between	 θ/α-defined	 awake	 (red)	 and	 drowsy	 (blue)	 states	 shows	 significant	
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differences	between	states	at	92-596ms	time	window	(cluster	peak:	584ms,	t	=	13409,	p	
=	0.002).	Green	horizontal	line	depicts	significant	differences.	The	waveforms	are	from	
the	largest	difference	between	arousal	states	electrode	(green	dot).	The	black	contours	
within	 the	map	 reveal	 electrodes	with	 a	 significant	difference	 (cluster).	Green	vertical	
line	 shows	 peak	 time	 of	 the	 largest	 difference	 between	 awake	 and	 drowsy	 states	 and	
matches	the	topographical	voltage	map.		 (C)	Time	series	of	 topographic	distribution	of	
TMS-locked	 global	wSMI	 values	 in	 the	 θ/α-defined	 awake	 (top)	 and	 drowsy	 (middle)	
states,	and	their	 t-maps	difference	(bottom).	(D)	Dynamics	of	wSMI	waveforms	across	
Drowsiness	Levels	1-5	 (wSMI	 averaged	over	4	 electrodes	beneath	 the	TMS	 coil	 in	 the	
right	 hemisphere	 (black),	 as	 well	 as	 in	 the	 corresponding	 electrodes	 in	 the	 non-
stimulated	 left	hemisphere	 (green)).	Horizontal	 red	dashed	 lines	delineate	wSMI	peak	
minimum	and	maximum	in	Drowsiness	Level	1.	Error	shades	depict	SEM.	
	

	
	

	
	

Fig.	 S8.	 Individual	 transcranial	magnetic	 stimulation	 (TMS)-perturbed	weighted	
symbolic	 mutual	 information	 (wSMI)	 waveforms	 in	 θ/α-defined	 awake	 and	
drowsy	states.	wSMI	waveforms	averaged	across	4	EEG	electrodes	within	a	region-of-
interest	 (ROI)	 beneath	 the	 TMS	 coil.	 Awake	 (red)	 and	 drowsy	 (blue)	 conditions	 are	
depicted	separately	for	each	individual	(N=20).	
	
	
Complementary	 data-driven	 spatio-temporal	 clustering	 revealed	 higher	 global	
wSMI	in	awake	compared	to	drowsy	state	in	all	regions	except	occipital,	with	a	
cluster	peak	in	the	contralateral	motor	region	(Fig	3B).	While	a	complex	pattern	
of	simultaneous	 inhibition	and	 facilitation	of	connectivity	emerged	 in	 the	wake	
state,	global	informational	disconnection	was	observed	in	drowsy	trials	(Fig	3C).	
Higher	information	exchange	in	the	contralateral	motor	region	could	be	related	
to	the	preparatory	activity	of	the	networks	engaged	to	respond(33,	34),	and/or	
to	TMS-triggered	changes	in	interhemispheric	excitability(35,	36).	Analysis	of	the	
Drowsiness	 Levels	 showed	 the	 decrease	 starts	 in	 Level	 3,	 with	 even	 lower	
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information	 sharing	 in	 Level	 4	 (Fig	 3D).	 Thus,	 our	 results	 demonstrate	
substantial	 decrease	 of	 cortical	 information	 connectivity,	 previously	 linked	 to	
unconscious	states(30),	 in	 individuals	who	remained	conscious	and	responsive.	
In	 other	 words,	 sleep-related	 decrease	 of	 global	 information	 sharing	 begins	
earlier	than	previously	thought.	
	
After	 establishing	 arousal-dependent	 modulation	 of	 neurophysiological	
processes	 (MEP,	 TEP,	wSMI),	we	 addressed	 the	 behavioral	 response	 dynamics	
and	related	neural	processes.	A	lack	of	behavioral	reactivity	is	a	classic	hallmark	
of	 sleep(37),	 with	 a	 slowing	 of	 reaction	 times	 (RT)	 indexing	 the	 change	 of	
alertness(21,	22,	38).	As	predicted,	RT	 lengthened	 in	θ/α-defined	drowsy	 trials	
(Mmedian	 =1290	 ms,	 SD=254	 ms)	 compared	 to	 awake	 trials	 (Mmedian=1170	 ms,	
SD=216	ms)	 in	19	out	of	20	participants	 (t(19)=6.11,	p=0.000007,	d=0.89)	 (Fig	
4A).	Drowsiness	Level	analysis	revealed	a	clear	RT	increase	(Mann-Kendall	trend	
test:	z=4.28,	p=0.000018,	 tau=0.7)	(Fig	4B).	The	speed	of	processing	decreased	
when	 spontaneous	 awake	 α	 oscillatory	 activity	 became	 minimal	 (Drowsiness	
Level	 3),	 coinciding	 with	 a	 decrease	 of	 information	 sharing	 (wSMI),	 thereby	
suggesting	a	common	pattern	of	behavior	and	information	sharing	dynamics	 in	
the	process	of	falling	asleep.	
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Fig.	4.	Behavioral	 findings	in	different	states	of	arousal.	(A)	Median	reaction	times	
(RT)	in	θ/α-defined	awake	(red)	and	drowsy	(blue)	conditions.	Inset	depicts	individual	
median	RT	difference	(Awake-Drowsy)	with	participants	as	 individual	bars	(ascending	
order	 of	 difference).	 (B,	 left)	 Group-level	 change	 of	 median	 RT	 across	 Drowsiness	
Levels	 1-5,	 error	 bars	 are	 standard	 error	 of	 mean	 (SEM).	 Horizontal	 red	 dashed	 line	
delineates	 median	 RT	 in	 Drowsiness	 Level	 1.	 (B,	 right)	 Individual-level	 dynamics	 of	
median	 RT	 across	 Drowsiness	 Levels	 1-5.	 Black	 lines	 represent	 participants	who	 had	
longer	RT	in	Drowsiness	Level	5	compared	to	Level	1	(N=19),	grey	line	the	participant	
with	 shorter	 (N=1).	 (C)	 Group-averaged	 rate	 of	 trials	 with	 reported	 kinesthetic	
awareness	 across	 9	 TMS	 conditions	 centered	 on	 individual	 motor	 threshold	 (0%).	
Sigmoidal	functions	fitted	separately	to	the	θ/α-defined	awake	(red)	and	drowsy	(blue)	
conditions.	 Error	 shades	 represent	 SEM.	 Insets	 show	 individual	 threshold	 and	 slope	
differences	 (Awake-Drowsy),	 each	 bar	 is	 a	 participant.	 Threshold	 difference	 between	
θ/α-awake	 and	 drowsy	 states	 not	 associated	 with	 slope	 difference	 between	 states	
(r=0.06,	 p=0.81),	 suggesting	 possible	 independent	 variance	 of	 these	 two	 behavioral	
measures	 of	 awareness	 reports.	 (D,	 left)	 Group-level	 change	 of	 the	 percentage	 of	
“aware”	trials	in	supra-threshold	TMS	conditions	(see	C)	across	Drowsiness	Levels	1-5.	
Horizontal	red	dashed	line	delineates	awareness	rate	in	Drowsiness	Level	1.	(D,	 right)	
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Individual-level	dynamics	of	the	percentage	of	“aware”	trials	across	Drowsiness	Levels	
1-5.	Black	lines	for	participants	with	lower	rate	of	“aware”	trials	in	Drowsiness	Level	5	
vs.	 Level	 1	 (N=12),	 grey	 lines	 for	 those	 with	 higher	 (N=5).	 (E)	 Scatter	 plots	 depict	
regressions	between	median	RT	and	information-sharing	(wSMI)	of	the	stimulation	site	
in	 the	401-600ms	 time	window,	with	all	 trials	 (black),	 only	θ/α-awake	 trials	 (red),	 or	
only	 θ/α-drowsy	 trials	 (blue)	 analyzed.	 Topographical	 maps	 represent	 the	 same	
regression	 analysis	 repeated	 separately	 for	 each	 electrode.	 (F)	 Mean	 motor	 evoked	
potential	 (MEP)	amplitude	difference	between	 “aware”	 (green)	 and	 “unaware”	 (black)	
reports.	 Inset	 depicts	 individual	 MEP	 peak-to-peak	 amplitude	 difference	 (Aware-
Unaware)	 with	 participants	 represented	 as	 individual	 bars	 that	 are	 sorted	 in	 the	
ascending	order.	Error	shades	represent	SEM.	
	
	
	
The	assessment	of	 the	 relationship	between	cortical	 information	exchange	and	
the	 speed	 of	 response	 revealed	 that	 wSMI	 decrease	 predicts	 RT	 increase	
(F(1,18)=6.02,	p=0.0245,	R2=0.251,	β=-0.501;	Fig.	4E).	Strikingly,	when	trials	were	
split	between	θ/α-defined	arousal	conditions,	wSMI	successfully	predicted	RT	in	
drowsy	 (F(1,18)=12.79,	 p=0.0022,	 R2=0.415,	 β=-0.645)	 but	 not	 in	 awake	 trials	
(F(1,18)=0.003,	 p=0.959,	 R2=0.0001,	 β=-0.012)	 (Fig.	 4E).	 Furthermore,	 the	
association	between	RT	and	wSMI	was	stronger	in	drowsy	than	awake	states	at	a	
single	 trial	 level	 within	 individual	 participants	 (Fig.	 S9).	 Linear	 regression	
performed	 separately	 for	 each	 EEG	 sensor	 revealed	 the	 predictive	 wSMI-RT	
association	 mainly	 across	 frontal	 and	 central	 regions	 (Fig.	 4E).	 In	 short,	 the	
fronto-central	 global	 disconnection	 preceded	 and	 predicted	 the	 response	
dynamics	as	drowsiness	progressed.		
	
	
	

	
	
Fig.	S9.	Intra-individual	regression	between	single-trial	weighted	symbolic	mutual	
information	(wSMI)	and	reaction	times	(RT).	Regression	coefficients	β	of	individual	
participants	 represented	 as	 bars	 sorted	 in	 ascending	 order.	 Analysis	 was	 carried	 out	
separately	for	the	θ/α-defined	awake	(red)	and	drowsy	(blue)	conditions.	One-sample	t	
tests	were	carried	out	using	individual	β	values.	
	
	
Finally,	we	assessed	the	arousal-dependent	modulation	of	kinesthetic	detection	
reports.	 Sigmoidal	 fitting	 of	 kinesthetic	 awareness	 reports	 across	 9	 TMS	
intensities	revealed	that	detection	threshold	increased	in	θ/α-drowsy	compared	
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to	awake	states	(t(16)=3.68,	p=0.002,	d=0.65),	that	is,	a	higher	TMS	intensity	was	
required	 to	 reach	 the	 same	 rate	 of	 kinesthetic	 awareness	 reports	 when	
participants	became	drowsy	(Fig.	4C).	Furthermore,	a	lower	slope	of	sigmoid	fit	
was	 observed	 in	 drowsiness	 (t(16)=4.96,	 p=0.00014,	 d=1.05),	 indicating	 that	
kinesthetic	 detection	 became	 “noisier”	 in	 the	 transition	 from	 wakefulness	 to	
sleep(39,	40)	(Fig.	4C).	Threshold	and	slope	findings	were	highly	consistent	with	
15	out	of	17	participants	showing	the	same	direction	of	effects	(Fig.	4C	and	Fig.	
S10).	 The	 regional	 and	 temporal	 dynamics	 of	 θ/α	 power	 revealed	widespread	
arousal-specific	 modulation	 of	 threshold	 and	 slope	 (Fig.	 S11),	 again	
differentiating	our	findings	from	the	α	oscillatory	activity	commonly	associated	
with	attention	and	sensory	gating(24–26).	
	
	
	

	
	
Fig.	 S10.	 Individual	 rate	 of	 kinesthetic	 detection	 as	 a	 function	 of	 transcranial	
magnetic	 stimulation	 (TMS)	 intensity	 in	 θ/α-defined	 awake	 and	 drowsy	 states.	
Percentage	of	 trials	with	reported	kinesthetic	awareness	was	calculated	separately	 for	
the	awake	and	drowsy	trials	across	9	TMS	conditions	centered	on	the	individual	motor	
threshold	 (0%).	 Sigmoidal	 functions	were	 then	 fitted	 to	 the	 awake	 (red)	 and	 drowsy	
(blue)	conditions	separately	for	each	individual	(N=20).	Kinesthetic	detection	rate	was	
too	 low	for	participants	5,	6	and	13	to	 fit	 individual	sigmoidal	 functions	(indexed	with	
pink	background).	
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Fig.	 S11.	 Temporal	 and	 spatial	 spread	 of	 the	 arousal-dependent	modulation	 of	
behavioral	 markers.	 (A)	 Difference	 of	 the	 behavioral	 sigmoid	 thresholds	 (top)	 and	
slopes	(bottom)	between	θ/α-defined	awake	and	drowsy	conditions.	Arousal	states	are	
measured	 and	 contrasted	 separately	 for	 each	 of	 the	 20	 time	 bins	 in	 steps	 of	 100	ms	
across	 the	 -2000-0	 ms	 pre-stimulation	 time	 window.	 Electroencephalography	 (EEG)	
spectral	power	is	averaged	over	all	electrodes.	(B)	Difference	of	the	behavioral	sigmoid	
thresholds	 (top)	 and	 slopes	 (bottom)	 between	 θ/α-defined	 awake	 and	 drowsy	
conditions.	 Arousal	 states	 are	measured	 and	 contrasted	 separately	 for	 each	 of	 the	 63	
EEG	electrodes.	EEG	spectral	power	 is	averaged	over	 -2000-0	ms	pre-stimulation	time	
window.	
	
	
Our	 findings	 thus	 reveal	 the	 breakdown	 of	 neural	 cognitive	 mechanisms	
supporting	 conscious	 awareness	when	 transitioning	 from	 an	 awake	 to	 drowsy	
state	of	arousal.	In	particular,	individuals	lose	monitoring	sensitivity,	as	indexed	
by	 the	 increased	 detection	 threshold,	 and	 their	 responses	 become	 less	
predictable,	 revealed	 by	 shallower	 detection	 slope.	 Furthermore,	 the	 rate	 of	
“aware”	 responses	 declines	 across	 increasing	 levels	 of	 drowsiness.	 A	 mean	
detection	rate	in	supra-threshold	TMS	conditions	revealed	a	robust	linear	trend	
of	detection	decrease	with	increasing	levels	of	drowsiness	(F(1,16)=9.59,	p=0.007,	
partial	η2=0.38)	(Fig.	4D).		
	
MEP	 amplitude	 differentiated	 “aware”	 and	 “unaware”	 reports	 both	 at	 a	 group	
and	a	single	participant	level	(Fig.	4F).	The	same	relationship	held	in	both	awake	
and	 drowsy	 trials,	 pointing	 to	 some	 degree	 of	 commonality	 between	 neural	
mechanisms	underlying	kinesthetic	 awareness	 in	different	 states	 of	 arousal.	 In	
addition,	there	was	a	tendency	towards	differential	TEP	responses	as	a	function	
of	 kinesthetic	 awareness	 reports	 (Fig.	 S12).	 Thus,	 in	 broad	 terms,	 early	
electrophysiological	 responses	 (MEP,	TEP)	predict	awareness	 reports,	whereas	
late	 information	 sharing	 (wSMI)	 predicts	 response	 dynamics,	 revealing	 a	
differential	association	between	specific	behavioral	and	neural	measures	of	task	
processing.	
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Fig.	 S12.	 Transcranial	 magnetic	 stimulation	 (TMS)-locked	
electroencephalography	 (EEG)	 potentials	 in	 “aware”	 and	 “unaware”	 reports.	
Topographical	 distribution	 of	 cortical	 reactivity	 (top,	 26-36	 ms)	 and	 somatosensory	
processing	(bottom,	51-61	ms)	peak	latencies	in	the	aware	(left)	and	unaware	(middle)	
trials.	 Exploratory	 t	 maps	 (right),	 i.e.	 uncorrected	 for	 multiple	 comparisons,	 indicate	
regions	significantly	different	between	aware	and	unaware	trials	(p<0.05).	However,	no	
significantly	 different	 clusters	 were	 identified	 during	 data-driven	 spatiotemporal	
clustering	of	TMS-locked	EEG	potentials	between	aware	and	unaware	trials	in	the	0-100	
ms	time	window	(not	shown	here).		
	
Our	fine-grained	analyses	revealed	the	complex	dynamics	of	falling	asleep	while	
performing	a	task	(summarised	in	Fig.	1B	and	Fig.	S13),	with	each	of	the	assessed	
neurobehavioral	processing	stages	 showing	a	distinct	 trajectory	 towards	sleep.	
In	particular,	MEP	amplitude	is	highest	in	Drowsiness	Level	4	with	a	subsequent	
decrease	in	Level	5,	whereas	TEP	cortical	reactivity	peaks	and	remains	stable	in	
Levels	 4-5.	 The	 amplitude	 of	 somatosensory	 potentials	 increases	 with	 each	
subsequent	stage	of	drowsiness,	whereas	RT	shows	a	linear	increase	from	Level	
2.	The	 rate	of	 awareness	 reports	 continuously	decreases	 across	 all	 drowsiness	
stages,	 whereas	 wSMI	 shows	 a	 non-linear	 pattern	 of	 decrease	 between	
intermediate	Levels	2-4.	These	multidimensional	findings	confirm	that	the	brain	
transitions	from	one	global	state	(awake)	towards	another	(sleep)	as	a	complex	
dynamical	system;	and	that	the	detailed	characterization	of	these	processes	form	
the	 bases	 to	 understand	 the	mechanisms	 underlying	 how	we	 fall	 asleep	when	
doing	tasks	(driving,	typing,	monitoring,	etc.).	
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Fig.	 S13.	 Dynamical	 processing	 of	 TMS	 perturbation-kinesthetic	 detection	
signatures	as	a	function	of	Drowsiness	Levels.	(Left)	Key	stages	of	neurobehavioral	
processing	 are	 shown	 across	 5	 Levels	 of	 Drowsiness.	 Each	 measure	 is	 standardized	
between	 its	 minimum	 and	 maximum	 values.	 Interpolant	 function	 is	 fitted	 to	 raw	
measurements	 using	 shape-preserving	 piecewise	 cubic	 interpolation	 (PCHIP).	 (Right)	
The	 same	 neurobehavioral	 summary	measures	 plotted	within	 each	Drowsiness	 Level.	
Exemplary	EEG	scalp	recordings	(4	sec)	indicate	electrophysiological	patterns	typical	to	
a	specific	level	of	drowsiness.	
	
	
Furthermore,	we	demonstrate	that	perturbational	markers	of	sleep	–	facilitation	
of	 local	 cortical	 reactivity	 and	 inhibition	 of	 global	 connectivity	 –	 arise	 in	 a	
drowsy	state	of	arousal	before	participants	fall	asleep.	These	findings	provide	a	
more	complex	picture	for	the	neural	markers	indexing	absence	of	consciousness,	
challenging	 previous	 interpretations(14–16,	 41).	 Contrary	 to	 previous	 reports,	
we	 show	 that	 participants	 can	 remain	 seemingly	 conscious	 and	 responsive	
despite	 a	 dramatic	 increase	 in	 local	 reactivity	 and	 decrease	 in	 global	 brain	
connectivity	(information-sharing).	Thus,	local	reactivity	and	global	connectivity	
primarily	 reflect	 different	 levels	 of	 arousal	 and	 neural	 capacity	 to	 process	
information	 and	 respond	 rather	 than	 the	 presence	 or	 absence	 of	 sensory	
awareness.	While	 the	participants	were	able	to	report	 feeling	a	movement	or	a	
muscle	 twitch	 in	 their	 stimulated	hand	 (Table	S1),	decreasing	 levels	of	 arousal	
substantially	modulated	 the	processing	of	perceptual	decisions.	Reaction	 times	
lengthened,	sensory	detection	thresholds	increased	and	detection	slope	became	
shallower.	Arguably,	 such	neurocognitive	disintegration	 is	 one	 step	 away	 from	
the	loss	of	responsiveness,	as	we	observed	the	last	stages	of	the	fragmentation	of	
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consciousness	and	cognition	preceding	behavioral	onset	of	sleep.	
	
We	 conclude	 that	 sleep-related	 reconfiguration	 of	 cortical	 mechanisms	 begins	
while	participants	are	still	actively	engaged	 in	the	monitoring	of	sensory	 input.	
We	followed	the	signal	from	stimuli	to	responses	in	brain	and	behavior	creating	
a	 strategy	 to	 learn	 about	mechanism	 underlying	 cognitive	 fragmentation.	 This	
constitutes	 a	 proposal	 of	 an	 experimental	 framework	 to	 study	 performance	 in	
daily	 arousal	 changes.	 While	 previous	 research	 showed	 complex	 cognitive	
processes	 to	 persist	 across	 drowsiness(21)	 and	 even	 in	 unresponsive	 NREM	
sleep(11,	 42),	 we	 demonstrate	 some	 dependencies	 between	 physiology	 and	
behavior	that	can	guide	future	endeavor	into	the	mechanism	of	decision	making	
under	 arousal	 stress.	 Complex	 neural	 dynamics	 indicate	 that	 both	 two	 global	
states	 of	 consciousness,	 wake	 and	 sleep,	 are	 largely	 overlapping	 in	 time.	
Perceptual	 processing	 can	 thus	 survive	 a	 rapid	 decrease	 of	 arousal,	 with	
supporting	 neural	 networks	 flexibly	 adapting	 to	 the	 rapidly	 fluctuating	
background	micro-states	shifting	towards	sleep.		
	
	
References	
	
1.		 T.	Akerstedt	et	al.,	Sleepiness	at	the	Wheel:	White	Paper	(ASFA	&	INSV,	2013).	
2.		 D.	 Leger,	 The	 cost	 of	 sleep-related	 accidents:	 A	 report	 for	 the	 National	

Commission	on	Sleep	Disorders	Research.	Sleep.	17,	84–93	(1994).	
3.		 M.	 E.	 Wells,	 B.	 V	 Vaughn,	 Poor	 sleep	 challenging	 the	 health	 of	 a	 Nation.	

Neurodiagn.	J.	52,	233–49	(2012).	
4.		 J.	Owens,	Insufficient	sleep	in	adolescents	and	young	adults:	An	update	on	causes	

and	consequences.	Pediatrics.	134,	e921–e932	(2014).	
5.		 K.	R.	Rossa,	S.	S.	Smith,	A.	C.	Allan,	K.	A.	Sullivan,	The	effects	of	sleep	restriction	on	

executive	inhibitory	control	and	affect	 in	young	adults.	 J.	Adolesc.	Heal.	55,	287–
292	(2014).	

6.		 T.	Shochat,	M.	Cohen-Zion,	O.	Tzischinsky,	Functional	consequences	of	inadequate	
sleep	in	adolescents:	A	systematic	review.	Sleep	Med.	Rev.	18,	75–87	(2014).	

7.		 K.	Cervena	et	al.,	Spectral	analysis	of	the	sleep	onset	period	in	primary	insomnia.	
Clin.	Neurophysiol.	125,	979–987	(2014).	

8.		 C.	R.	Burgess,	T.	E.	Scammell,	Narcolepsy:	Neural	mechanisms	of	 sleepiness	and	
cataplexy.	J.	Neurosci.	32,	12305–12311	(2012).	

9.		 L.	Goupil,	T.	A.	Bekinschtein,	Cognitive	processing	during	the	transition	to	sleep.	
Arch.	Ital.	Biol.	150,	140–154	(2012).	

10.		 P.	Grosse,	R.	Khatami,	F.	Salih,	A.	Kuhn,	B.	U.	Meyer,	Corticospinal	excitability	 in	
human	 sleep	 as	 assessed	 by	 transcranial	 magnetic	 stimulation.	 Neurology.	 59,	
1988–1991	(2002).	

11.		 S.	Kouider,	T.	Andrillon,	L.	S.	Barbosa,	L.	Goupil,	T.	A.	Bekinschtein,	Inducing	task-
relevant	 responses	 to	 speech	 in	 the	 sleeping	 brain.	 Curr.	 Biol.	 24,	 2208–2214	
(2014).	

12.		 J.	 L.	 Cantero,	 M.	 Atienza,	 J.	 R.	 Madsen,	 R.	 Stickgold,	 Gamma	 EEG	 dynamics	 in	
neocortex	and	hippocampus	during	human	wakefulness	and	sleep.	Neuroimage.	
22,	1271–1280	(2004).	

13.		 A.	 G.	 Casali	 et	 al.,	 A	 theoretically	 based	 index	 of	 consciousness	 independent	 of	
sensory	processing	and	behavior.	Sci.	Transl.	Med.	5,	1–10	(2013).	

14.		 M.	 Massimini	 et	 al.,	 Breakdown	 of	 cortical	 effective	 connectivity	 during	 sleep.	
Science.	309,	2228–2232	(2005).	

15.		 M.	Massimini,	F.	Ferrarelli,	 S.	 Sarasso,	G.	Tononi,	Cortical	mechanisms	of	 loss	of	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2017. ; https://doi.org/10.1101/155754doi: bioRxiv preprint 

https://doi.org/10.1101/155754
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
24	

consciousness:	Insight	from	TMS/EEG	studies.	Arch.	Ital.	Biol.	150,	44–55	(2012).	
16.		 G.	Tononi,	M.	Massimini,	Why	does	consciousness	 fade	 in	early	sleep?	Ann.	N.	Y.	

Acad.	Sci.	1129,	330–334	(2008).	
17.		 L.	 De	 Gennaro	 et	 al.,	 Neurophysiological	 correlates	 of	 sleepiness:	 A	 combined	

TMS	and	EEG	study.	Neuroimage.	36,	1277–1287	(2007).	
18.		 P.	 Manganotti,	 G.	 Fuggetta,	 A.	 Fiaschi,	 Changes	 of	 motor	 cortical	 excitability	 in	

human	 subjects	 from	 wakefulness	 to	 early	 stages	 of	 sleep:	 A	 combined	
transcranial	magnetic	 stimulation	 and	 electroencephalographic	 study.	Neurosci.	
Lett.	362,	31–34	(2004).	

19.		 P.	 Manganotti,	 L.	 G.	 Bongiovanni,	 G.	 Fuggetta,	 G.	 Zanette,	 A.	 Fiaschi,	 Effects	 of	
sleep	 deprivation	 on	 cortical	 excitability	 in	 patients	 affected	 by	 juvenile	
myoclonic	 epilepsy:	 a	 combined	 transcranial	 magnetic	 stimulation	 and	 EEG	
study.	J.	Neurol.	Neurosurg.	Psychiatry.	77,	56–60	(2006).	

20.		 P.	Manganotti,	 A.	 Palermo,	 S.	 Patuzzo,	 G.	 Zanette,	 A.	 Fiaschi,	 Decrease	 in	motor	
cortical	excitability	in	human	subjects	after	sleep	deprivation.	Neurosci.	Lett.	304,	
153–156	(2001).	

21.		 C.	A.	Bareham,	T.	Manly,	O.	V	Pustovaya,	S.	K.	Scott,	T.	A.	Bekinschtein,	Losing	the	
left	side	of	the	world:	rightward	shift	in	human	spatial	attention	with	sleep	onset.	
Sci.	Rep.	4,	5092	(2014).	

22.		 T.	Hori,	M.	Hayashi,	T.	Morikawa,	in	Sleep	Onset:	Normal	and	Abnormal	Processes,	
R.	D.	Ogilvie,	 J.	R.	Harsh,	Eds.	 (American	Psychological	Association,	Washington,	
DC,	1994),	pp.	237–253.	

23.		 R.	D.	Ogilvie,	The	process	of	falling	asleep.	Sleep	Med.	Rev.	5,	247–270	(2001).	
24.		 P.	Capotosto,	C.	Babiloni,	G.	L.	Romani,	M.	Corbetta,	Frontoparietal	cortex	controls	

spatial	 attention	 through	modulation	 of	 anticipatory	 alpha	 rhythms.	 J.	Neurosci.	
29,	5863–5872	(2009).	

25.		 H.	 van	 Dijk,	 J.-M.	 Schoffelen,	 R.	 Oostenveld,	 O.	 Jensen,	 Prestimulus	 oscillatory	
activity	 in	 the	 alpha	 band	 predicts	 visual	 discrimination	 ability.	 J.	Neurosci.	28,	
1816–23	(2008).	

26.		 V.	Romei	et	al.,	Spontaneous	fluctuations	in	posterior	α-band	EEG	activity	reflect	
variability	 in	 excitability	 of	 human	 visual	 areas.	 Cereb.	 Cortex.	 18,	 2010–2018	
(2008).	

27.		 R.	 Huber	 et	 al.,	 Human	 cortical	 excitability	 increases	 with	 time	 awake.	 Cereb.	
Cortex.	23,	332–338	(2013).	

28.		 R.	C.	Josiassen,	C.	Shagass,	R.	A.	Roemer,	S.	Slepner,	B.	Czartorysky,	Early	cognitive	
components	 of	 somatosensory	 event-related	 potentials.	 Int.	 J.	 Psychophysiol.	 9,	
139–149	(1990).	

29.		 J.	 R.	 King	 et	 al.,	 Information	 sharing	 in	 the	 brain	 indexes	 consciousness	 in	
noncommunicative	patients.	Curr.	Biol.	23,	1914–1919	(2013).	

30.		 J.	 D.	 Sitt	 et	 al.,	 Large	 scale	 screening	 of	 neural	 signatures	 of	 consciousness	 in	
patients	 in	 a	 vegetative	 or	 minimally	 conscious	 state.	 Brain.	 137,	 2258–2270	
(2014).	

31.		 A.	 Canales-Johnson	 et	 al.,	 Integration	 and	 differentiation	 of	 neural	 information	
dissociate	 between	 conscious	 percepts.	 bioRxiv	 (2017)	 (available	 at	
https://doi.org/10.1101/133801).	

32.		 E.	Hesse	et	al.,	Early	detection	of	intentional	harm	in	the	human	amygdala.	Brain.	
139,	54–61	(2016).	

33.		 M.	P.	Deiber,	V.	Ibañez,	N.	Sadato,	M.	Hallett,	Cerebral	structures	participating	in	
motor	 preparation	 in	 humans:	 a	 positron	 emission	 tomography	 study.	 J.	
Neurophysiol.	75,	233–247	(1996).	

34.		 K.	Sakai,	R.	E.	Passingham,	Prefrontal	 interactions	reflect	 future	task	operations.	
Nat.	Neurosci.	6,	75–81	(2002).	

35.		 A.	 Salerno,	M.	Georgesco,	 Interhemispheric	 facilitation	and	 inhibition	 studied	 in	
man	 with	 double	 magnetic	 stimulation.	 Electroencephalogr.	 Clin.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2017. ; https://doi.org/10.1101/155754doi: bioRxiv preprint 

https://doi.org/10.1101/155754
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
25	

Neurophysiol.	-	Electromyogr.	Mot.	Control.	101,	395–403	(1996).	
36.		 Z.	 Ni	 et	 al.,	 Two	 phases	 of	 interhemispheric	 inhibition	 between	 motor	 related	

cortical	areas	and	 the	primary	motor	cortex	 in	human.	Cereb.	Cortex.	19,	1654–
1665	(2009).	

37.		 N.	Kleitman,	Sleep.	Physiol.	Rev.	9,	624–665	(1929).	
38.		 W.	 T.	 Liberson,	 C.	 W.	 Liberson,	 in	 Recent	 Advances	 in	 Biological	 Psychiatry,	 Vol	

VIII,	J.	Wortis,	Ed.	(Plenum	Press,	New	York,	1966),	pp.	295–302.	
39.		 G.	E.	Legge,	D.	Kersten,	A.	E.	Burgess,	Contrast	discrimination	in	noise.	J.	Opt.	Soc.	

Am.	A.	4,	391–404	(1987).	
40.		 K.	A.	May,	J.	A.	Solomon,	Four	theorems	on	the	psychometric	function.	PLoS	One.	8	

(2013),	doi:10.1371/journal.pone.0074815.	
41.		 C.	 Koch,	 M.	 Massimini,	 M.	 Boly,	 G.	 Tononi,	 Neural	 correlates	 of	 consciousness:	

progress	and	problems.	Nat.	Rev.	Neurosci.	17,	307–321	(2016).	
42.		 T.	Andrillon,	A.	T.	Poulsen,	L.	K.	Hansen,	D.	Léger,	S.	Kouider,	Neural	markers	of	

responsiveness	 to	 the	 environment	 in	 human	 sleep.	 J.	Neurosci.	36,	 6583–6596	
(2016).	

	
	
	
	

Online	Methods	and	Materials	
	
	
Participants	
	
20	 participants	 (7	 male;	 mean	 age	 23.7;	 age	 range	 21-33)	 signed	 informed	
consent	 and	 took	 part	 in	 the	 study.	 All	 participants	 were	 screened	 for	
contraindications	to	 transcranial	magnetic	stimulation	(TMS)(43)	and	 inclusion	
criteria	 included	 being	 18	 to	 40	 years	 old,	 having	 no	 history	 of	 hearing	
impairment	 or	 injury	 and	 no	 neurological	 or	 psychiatric	 disorders.	 All	
participants	 were	 right	 handed,	 which	 was	 assessed	 with	 the	 Edinburgh	
Handedness	 Scale(44).	 The	mean	 handedness	 index	was	 0.79	 (SD=0.19;	 range	
0.3	to	1).	Aiming	to	recruit	volunteers	who	are	likely	to	become	drowsy	and	fall	
asleep	in	a	laboratory	environment	during	daytime,	potential	participants	were	
also	screened	with	the	Epworth	Sleepiness	Scale	(ESS)(45).	The	mean	ESS	score	
was	9.4	(SD=4.3),	which	indicates	that	most	of	the	participants	were	very	likely	
to	fall	asleep	in	a	situation	of	prolonged	inactivity.		
	
The	 experimental	 protocol	 was	 approved	 by	 the	 Medical	 Research	 Ethics	
Committee	 of	 the	 University	 of	 Queensland	 and	 the	 study	 was	 carried	 out	 in	
accordance	with	the	Declaration	of	Helsinki.	Participants	were	recruited	through	
the	 electronic	 volunteer	 database	 of	 the	 School	 of	 Psychology,	 University	 of	
Queensland.	 They	 received	 $30	 for	 taking	 part	 in	 the	 study.	 There	 were	 no	
adverse	reactions	to	TMS.	
	
For	the	analysis	of	kinesthetic	reports,	three	participants	were	excluded	because	
of	very	low	rate	of	“aware”	trials	(3.8-17.2	%)	even	at	the	highest	TMS	intensities	
(Fig.	S10),	which	prevented	individual	sigmoidal	fit	to	their	behavioral	data.	
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Electromyography	(EMG)	
	
Surface	EMG	was	recorded	from	the	first	dorsal	interosseous	(FDI)	of	the	left	and	
right	 hand	 using	 disposable	 24	 mm	 Ag-AgCl	 electrodes	 (Kendall	 H124SG	 by	
Covidien;	MA,	USA).	The	electrodes	were	placed	in	a	belly-tendon	montage	with	
the	 reference	 over	 the	 proximal	 phalanx	 of	 the	 index	 fingers	 and	 a	 common	
reference	 on	 the	 right	 elbow.	 Raw	 EMG	 signals	 were	 amplified	 (×1000)	 and	
filtered	 (20-2000	 Hz;	 50	 Hz	 notch	 filter)	 using	 a	 Digitimer	 NeuroLog	 system	
(Digitimer;	Hertfordshire,	UK).	The	data	were	digitised	at	5000	Hz	using	a	Power	
1401	 and	 Signal	 (v5)	 software	 (Cambridge	 Electronic	 Design;	 Cambridge,	 UK)	
and	stored	for	offline	analysis	on	a	PC.	Throughout	the	experiment	EMG	activity	
was	 monitored	 on-line	 using	 a	 digital	 oscilloscope	 with	 a	 high	 gain	 and	
participants	were	prompted	to	relax	if	activity	was	observed.	

	
Transcranial	magnetic	stimulation	
	
TMS	was	applied	to	the	right	motor	cortex	using	a	Magstim	2002	stimulator	and	
70	mm	 figure-eight	 coils	 (#9925-00;	The	Magstim	Company;	 Carmarthenshire,	
UK).	The	 site	 for	 stimulation	was	 the	point	on	 the	 scalp	over	 the	motor	 cortex	
that	elicited	 the	 largest	and	most	consistent	amplitude	MEPs	 from	the	 left	FDI.	
This	‘hotspot’	was	found	by	initially	placing	the	TMS	coil	tangentially	on	the	scalp	
with	 the	handle	pointing	posteriorly	 and	 laterally	 at	~45°	 to	 the	 sagittal	plane	
and	stimulating	at	a	slightly	suprathreshold	intensity.	Once	the	hotspot	had	been	
identified	 it	was	marked	using	an	 infrared	neuronavigation	system	(Visor	2	by	
ANT	Neuro;	Enschede,	The	Netherlands).	A	small	piece	of	foam	(~	5)	mm	thick	
was	then	placed	under	the	centre	of	 the	TMS	coil	so	that	 it	was	not	 in	physical	
contact	with	 any	 EEG	 electrodes.	 The	 hotspot	was	 re-marked	 and	 the	 location	
and	orientation	of	 the	TMS	coil	was	maintained	 throughout	 the	 testing	session	
with	the	aid	of	the	navigation	system.	The	navigation	accuracy	was	kept	within	5	
mm	 and	 5	 degrees,	 but	 was	 typically	 less	 than	 3	 mm	 and	 3	 degrees.	 Resting	
motor	 threshold	 was	 determined	 using	 the	 relative	 frequency	 method	 with	 a	
criterion	 of	 ≥50	 µV	 (peak-to-peak)	 MEP	 amplitude	 in	 at	 least	 five	 out	 of	 ten	
consecutive	 trials(46–48).	A	 two-down,	one-up	staircase	was	used	starting	at	a	
suprathreshold	 intensity.	 The	 mean	 motor	 threshold	 was	 53.1	 %	 (Min=34,	
Max=74)	of	the	maximal	TMS	output	intensity.	

	
Electroencephalography	
	
Continuous	data	were	acquired	using	a	64	channel	BrainAmp	MR	Plus	amplifier,	
TMS	 BrainCap	 and	 Brain	 Vision	 Recorder	 (v1)	 software	 (Brain	 Products;	
Gilching,	 Germany).	 A	 high	 chloride	 abrasive	 electrolyte	 gel	was	 used	 (Abralyt	
HiCl	by	Easycap;	Herrsching,	Germany)	and	electrode	placement	 corresponded	
with	 the	 International	 10-10	 system.	 Data	 were	 sampled	 at	 5	 kHz	 with	 a	
bandpass	 filter	 of	 DC-1000	 Hz	 and	 resolution	 of	 0.5	 mV	 (±	 16.384	 mV).	
Recordings	were	referenced	online	to	the	left	mastoid,	and	electrode	impedance	
was	typically	kept	below	5	kΩ.			
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Experimental	procedure	
	
Participants	 were	 seated	 in	 a	 reclining	 chair	 with	 a	 leg	 support.	 After	 placing	
EMG	and	EEG	electrodes,	their	eyes	were	blindfolded,	the	lights	in	the	lab	were	
dimmed,	and	they	were	instructed	to	relax	for	a	few	minutes	while	estimation	of	
individual	 resting	 motor	 threshold	 was	 performed.	 Participants’	 hands	 were	
comfortably	 supported	with	 pillows.	 After	 threshold	 estimation	 the	main	 TMS	
experiment	was	carried	out	and	participants	were	reminded	to	stay	relaxed	and	
keep	 their	eyes	closed.	This	 time,	 they	were	also	 instructed	 to	pay	attention	 to	
their	left	hand	and	to	respond	by	clicking	one	of	the	two	mouse	keys	with	their	
right	hand	 if	 they	 felt	something,	such	as	a	 twitch	or	a	 touch,	 in	 their	 left	hand	
after	 each	 TMS	 pulse	 (see	 Fig	 1A).	 Aiming	 to	 unify	 the	 response	 criterion,	
participants	 were	 instructed	 to	 avoid	 guessing	 and	 respond	 positively	 only	 if	
they	were	certain	they	felt	a	sensation;	that	is,	they	were	guided	towards	a	more	
conservative	response	style.	Participants	were	assured	that	there	are	no	right	or	
wrong	 answers	 as	we	 are	 interested	 in	 learning	 about	what	 they	 felt.	 Further,	
participants	were	explicitly	allowed	and	encouraged	to	fall	asleep	if	they	wanted	
to.	 In	 a	 case	 of	 3-5	 consecutive	 unresponsive	 trials,	 defined	 as	 no	 response	
within	 6	 seconds	 following	 TMS,	 they	 were	 gently	 awakened	 verbally	 and	
reminded	to	continue	the	task.	Half	of	the	participants	responded	with	the	right	
mouse	key	if	they	felt	something	in	their	left	hand,	and	with	the	left	mouse	key	if	
they	 felt	 nothing.	 For	 the	 other	 half	 of	 participants	 this	 button	 mapping	 was	
reversed.	
	
During	stimulation,	nine	TMS	intensities	centred	on	the	individual	resting	motor	
threshold	 (-20%,	 -15%,	 -10%,	 -5%,	0%,	+5%,	+10%,	+15%,	+20%)	were	used.	
Given	that	TMS	stimulator	output	intensity	is	measured	in	whole	numbers	from	
1	to	100,	the	calculated	percentage	from	threshold	intensity	was	rounded.	This	
yielded	 slightly	different	 sized	 steps	 from	 -20%	 to	+20%	 for	 some	 individuals,	
and	this	was	taken	into	consideration	when	fitting	sigmoidal	functions	at	a	single	
participant	level.	520	trials	of	single	pulse	TMS	were	carried	out	with	an	average	
inter-pulse	interval	of	9.5	sec	and	a	uniformly	distributed	random	jitter	of	±1000	
msec;	 that	 is,	 the	 inter-pulse	 interval	 lasted	 anywhere	between	8.5-10.5	 sec.	A	
relatively	long	inter-pulse	interval	was	set	to	facilitate	a	natural	development	of	
drowsiness	as	well	as	to	give	sufficient	time	for	a	return	of	tonic	EMG	activity	to	
its	 baseline	 level.	 Aiming	 to	 obtain	 more	 data	 around	 the	 TMS	 threshold	
intensity,	the	following	number	of	trials	were	delivered	at	each	TMS	intensity:	40	
trials	(7.7%	of	a	total)	at	each	of	the	-20%,	-15%,	-10%,	+10%,	+15%	and	+20%	
intensities;	 80	 trials	 (15.4%	of	 a	 total)	 at	 each	of	 the	 -5%	and	 -5%	 intensities;	
120	trials	(23.1%	of	a	total)	at	0%	intensity	(i.e.,	at	the	individual	resting	motor	
threshold).	Trial	order	was	randomized	throughout	the	experiment.	TMS	pulses	
were	delivered	in	8	blocks	of	65	trials,	with	two	experimenters	holding	the	coil	
and	monitoring	EEG	switching	their	places	after	each	block.	A	longer	break	was	
held	after	4	blocks	 in	order	 to	give	 resting	 time	 for	participants,	 to	 change	 the	
heated	 TMS	 coil,	 and	 to	 reduce	 impedance	 of	 EEG	 electrodes	 if	 needed.	 Data	
collection	 lasted	 about	 90	 minutes.	 Aiming	 to	 control	 for	 a	 possible	 circadian	
fluctuation	 of	 cortical	 excitability(49),	 all	 experiments	 started	 at	 1	 pm	 when	
participants	 tend	 to	be	 relatively	 sleepy	after	having	had	 their	 lunch.	After	 the	
experiment,	 participants	 filled	 in	 the	 Feedback	 form	 asking	 to	 report	 any	
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sensations	they	felt	in	their	left	hand	following	TMS.			
	
Data	analyses	
	
Behavioral	analysis	
	
We	aimed	 to	 investigate	 state-modulation	of	kinesthetic	awareness,	which	was	
defined	as	positive	behavioral	responses	or	hits,	by	fitting	two	different	models,	
a	 sigmoid	 function	 and	 a	 linear	 function,	 and	 comparing	 threshold	 and	 slope	
measures	 in	awake	and	drowsy	 trials	 in	each	participant	separately.	A	sigmoid	
function	was	fitted	to	the	ratio	of	hits	to	misses	(constrained	from	0	to	1	on	the	y	
axis)	across	9	TMS	intensities	as:	
	

𝐹 =
1

1+ 𝑒!
!!!
!
	

	
where	F	is	the	hits	ratio,	x	is	the	TMS	condition,	µ	is	the	threshold	value	(the	TMS	
condition	at	the	inflection	point),	and	s	 is	 inversely	proportional	to	the	slope	at	
the	 threshold.	The	actual	 slope	of	 the	 fitted	sigmoid	was	calculated	by	 fitting	a	
straight	line	between	a	point	0.1	above	the	inflection	point	and	a	point	0.1	below	
it,	and	finding	the	slope	of	this	line.	
	
In	 addition,	 whilst	 data	 from	 the	 awake	 trials	 had	 a	 clear	 non-linear	 sigmoid	
trend,	it	was	noted	that	this	was	not	always	the	case	for	drowsy	trials.	In	order	to	
investigate	whether	 kinesthetic	 awareness	 remained	 non-linear	 in	 the	 drowsy	
state,	the	data	were	also	fitted	to	a	linear	function:	
	
𝐹 = 𝑚𝑥 + 𝑐	
	
where	F	is	the	predicted	hits	ratio,	x	is	the	TMS	condition,	m	is	the	slope,	and	c	is	
the	point	at	which	the	line	crosses	the	y	axis.		
	
The	goodness	of	fit	was	compared	for	each	model	in	each	state	of	consciousness.	
As	both	 fitting	 functions	contained	 the	same	number	of	 free	parameters,	2,	 the	
models	can	be	compared	using	the	R2	values	given	by:	
	

𝑅! = 1−  
𝛾! − 𝑓! !

!

𝛾! − 𝑓
!

!

	

	
where	𝛾!	is	the	hits	ratio	measured	for	each	TMS	condition	x,	𝑓! is	the	predicted	
hit	ratio	given	by	the	model,	and	𝑓	is	the	mean	hits	ratio	measured	over	all	TMS	
conditions.	R2	varies	from	0	to	1	with	1	indicating	a	perfect	fit	to	the	data.		
	
MEP	analysis	
	
Peak-to-peak	 amplitude	 of	 motor	 evoked	 potentials	 (MEP)	 after	 TMS	 was	
calculated	 for	each	single	 trial	within	20-45	ms	 time	window	using	Signal	 (v5)	
software	(Cambridge	Electronic	Design;	Cambridge,	UK).	Trials	containing	phasic	
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muscle	activity	in	the	left	FDI	channel	in	the	100	ms	before	TMS	were	discarded	
from	 the	 analyses.	 To	 assess	 dynamics	 of	MEP	 peak-to-peak	 amplitude	 across	
Hori	Stages	1-5,	responsive	trials	with	MEP	amplitude	at	least	twice	higher	than	
the	 peak-to-peak	 distance	 in	 the	 -100-0	 ms	 baseline	 window	 were	 averaged	
separately	 for	 each	 Hori	 stage	 and	 each	 participant.	 Furthermore,	 aiming	 to	
control	 for	 MEP	 variance	 as	 a	 function	 of	 TMS	 intensity,	 only	 three	 TMS	
conditions	(-5%,	0%,	+5%)	around	individual	motor	threshold	were	included	in	
the	 analysis	 of	 MEP	 changes	 across	 Hori	 stages.	 A	 50	 μV	 cut-off	 threshold	 of	
peak-to-peak	 amplitude(46–48)	 was	 used	 to	 define	 the	 “presence”	 of	 MEP	
response	for	the	sigmoid	and	linear	modelling	of	data	across	all	9	TMS	intensities	
(-20%,	-15%,	-10%,	-5%,	0%,	+5%,	+10%,	+15%,	+20).		
	
	
EEG	pre-processing	and	analysis:	pre-TMS	spectral	power	
	
EEG	data	pre-processing	was	 carried	out	 using	EEGlab	 toolbox	 for	Matlab(50),	
with	 two	 separate	 pre-processing	 pipelines	 developed	 for	 the	 analysis	 of	 EEG	
activity	 before	 and	 after	 TMS.	 Aiming	 to	 calculate	 EEG	 spectral	 power	 before	
TMS,	 the	recordings	were	downsampled	to	500	Hz,	and	then	epoched	 in	 -4000	
ms	to	-10	ms	time	segments	preceding	each	TMS	pulse.	The	noisiest	epochs	were	
manually	 deleted,	 and	 the	most	 deviant	 EEG	 channels	were	 detected	with	 the	
‘spectopo’	 function	 before	 running	 the	 independent	 component	 analysis	 (ICA)	
for	 further	 removal	 of	 artefacts	 (such	 as	 eye	 blinks	 and	 saccades,	 heart	 beat,	
muscle	noise).	ICA	was	carried	out	on	relatively	clean	channels	only,	whereas	the	
noisy	 channels	 were	 recalculated	 by	 spherical	 spline	 interpolation	 of	
surrounding	 channels	 after	 deleting	 ICA	 components	with	 artifacts.	 Data	were	
again	manually	inspected	and	several	remaining	noisy	epochs	were	deleted.	On	
average,	58	trials	(11.2%)	were	discarded	per	single	participant	during	EMG	and	
EEG	 pre-processing,	 and	 there	 were	 on	 average	 462	 trials	 per	 participant	
(SD=38,	Min=348,	Max=513)	left	for	the	following	analyses.		
	
Spectral	 power	 of	 EEG	 oscillations	 during	 4	 sec	 preceding	TMS	was	 computed	
using	Hilbert	 transform,	set	 from	1.5	Hz	to	48.5	Hz	 in	steps	of	1	Hz.	Given	that	
estimation	 of	 spectral	 power	 of	 slow	 oscillations	 can	 be	 difficult	 close	 to	 the	
edges	 of	 EEG	 segments,	 and	 we	 were	 particularly	 interested	 in	 the	 spectral	
power	 just	 before	 TMS	 pulse,	 a	 dummy	 copy	 of	 EEG	 epochs	 was	 created	 by	
flipping	the	left	and	the	right	sides	of	pre-TMS	recordings	along	time	axis	and	the	
obtained	“mirror”	data	were	concatenated	with	 the	original	pre-TMS	data;	 that	
is,	the	time	axis	of	the	obtained	7.976	sec	EEG	epochs	was	from	-4000	ms	to	-12	
ms	 (original)	 and	 then	 back	 from	 -8	 ms	 to	 -4000	 ms	 (mirror).	 This	 way,	 an	
abrupt	discontinuity	was	avoided	in	the	time	window	just	before	TMS,	enabling	a	
more	 stable	 estimate	 of	 spectral	 power.	 After	 Hilbert	 transform,	 the	 “mirror”	
part	of	EEG	epochs	was	deleted,	 retaining	 the	original	pre-TMS	window	from	-
4000	ms	to	-12	ms.	To	reduce	data	size,	EEG	recordings	were	downsampled	to	
250	Hz	before	running	Hilbert	transform.	
	
EEG	measures	of	drowsiness	
	
Two	complementary	EEG	measures	were	used	to	assess	the	depth	of	transition	
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from	waking	 to	 sleep	before	 each	TMS	pulse:	 (1)	Hori	 scoring	 system	of	 sleep	
onset	EEG(22),	and	(2)	a	ratio	between	EEG	spectral	power	of	pre-TMS	theta	and	
alpha	oscillations,	which	will	be	referred	to	as	the	‘θ/α’	measure	of	drowsiness.	
	
Hori	 system	 relies	 on	 visual	 scoring	 of	 4	 sec	 segments	 of	 continuous	 EEG	
recording(22).	 Its	 9	 stages	 of	 the	 gradual	 progression	 of	 sleep	 onset	 and	 the	
slowing	 down	 of	 dominating	 EEG	 frequencies	 range	 from	Hori	 Stage	 1,	 which	
refers	 to	 the	 alpha-dominated	 relaxed	 wakefulness,	 to	 Hori	 Stage	 9,	 which	 is	
defined	by	the	occurrence	of	complete	spindles	that	coincide	with	a	classic	Stage	
2	 NREM	 sleep	 (see	 Fig	 1B).	 Hori	 system	 has	 been	 used	 previously	 to	 map	
dynamic	 wake-sleep	 changes	 in	 ERP(51),	 EEG	 spectral	 power(52),	 reaction	
times,	and	the	rate	of	subjective	reports	of	being	asleep(22).	In	the	present	study,	
Hori	 stages	were	visually	 assessed	over	4	 sec	 epochs	of	 pre-TMS	period	by	 an	
experienced	sleep	researcher,	who	was	blind	to	the	response	type	(hit,	miss,	or	
unresponsive)	 and	 the	 TMS	 intensity	 of	 each	 particular	 trial.	 For	 scoring	
purposes,	 only	 19	EEG	 channels	 of	 the	 standard	 20-10	 system	were	 used,	 and	
EEG	 recordings	were	 low	 pass	 filtered	 (20	 Hz).	 In	 the	 present	 study,	 “awake”	
trials	were	defined	as	Hori	Stages	1	and	2,	and	trials	scored	as	Hori	Stages	4	and	
5	were	regarded	as	“drowsy”.		
	
Given	 that	Hori	 Stages	1	 to	4	are	marked	by	a	decreasing	alpha	 range	activity,	
whereas	 Hori	 Stages	 4	 to	 8	 have	 an	 increasing	 theta	 range	 activity(22),	
progression	of	drowsiness	can	be	quantified	by	a	ratio	of	spectral	power	of	these	
EEG	frequency	bands.	That	is,	drowsiness	can	be	defined	as	a	period	of	time	with	
an	increased	θ/α	ratio	of	spectral	power(21).	To	apply	this	measure,	theta	(4.5-
7.5	Hz)	and	alpha	(8.5-11.5	Hz)	power	was	first	averaged	in	time	from	-2000	ms	
to	 -12	 ms,	 and	 a	 θ/α	 ratio	 was	 then	 calculated	 for	 each	 trial	 and	 electrode.	
Finally,	 θ/α	 ratio	 was	 averaged	 across	 all	 electrodes,	 resulting	 in	 a	 single	
“sleepiness”	number	per	 trial.	Trials	were	 then	 split	between	45%	of	 the	most	
“awake”	 and	 45%	 of	 the	 most	 “drowsy”	 trials,	 excluding	 10%	 of	 the	
“intermediate”	trials.	
	
Importantly,	 in	 addition	 to	 spontaneous	 arousal	 fluctuation,	 spectral	 power	 of	
EEG	 pre-stimulus	 oscillations	 can	 reflect	 attentional	 sampling	 and/or	 sensory	
gating(24–26).	 In	 these	 cases,	 EEG	 alpha	 effects	 are	 typically	 restricted	 to	 a	
relatively	 short	 pre-stimulus	 time	 period	 of	 several	 hundreds	 of	
milliseconds(26),	 and	 to	 the	 sensory	 and/or	 fronto-parietal	 regions(24,	 25).	
Expecting	 that	 an	 arousal-related	 effect	 would	 be	 spatially	 and	 temporally	
widespread	 and	 consistent,	 we	 repeated	 analyses	 by	 splitting	 data	 between	
awake	and	drowsy	trials	separately	for	each	EEG	electrode	and	in	20	short	pre-
TMS	time	bins	of	100	ms	in	the	-2000-0	ms	window.			
	
Pre-TMS	level	of	drowsiness	
	
All	 participants	 completed	 the	 task	 and	 reached	 the	 expected	 level	 of	
drowsiness,	 that	 is	 Hori	 stage	 5	 or	 higher,	 marked	 by	 the	 occurrence	 and	
dominance	of	 theta	waves.	At	a	group	 level,	a	comparable	proportion	of	awake	
and	drowsy	 trials	were	obtained	 (Hori	 stages	1-2:	M=45.17	%,	SD=19.92;	Hori	
stages	4-5:	M=35.68	%,	SD=16.44).	However,	a	 large	inter-individual	variability	
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was	 observed	 with	 several	 participants	 staying	 mostly	 in	 Hori	 stage	 1	 and	
several	 other	 participants	 spending	 most	 of	 the	 time	 in	 Hori	 stage	 5	 (see	
Supplementary	Fig	1).	
	
Thus,	 even	 though	 the	 Hori	 measure	 provides	 absolute	 electrophysiological	
signatures	of	the	depth	of	wake-sleep	transition,	the	θ/α	measure	was	followed	
aiming	 to	 identify	 equal	 proportion	 of	 awake	 and	 drowsy	 trials	 within	 each	
participant.	However,	given	that	the	θ/α	measure	is	relative,	there	was	a	risk	of	
mislabelling	 trials	 for	 some	 participants,	 as	 it	 would	 make	 a	 split	 between	
“awake”	and	“drowsy”	trials	even	if	all	of	 them	would	be	of	Hori	Stage	1.	Thus,	
aiming	to	verify	the	use	of	θ/α	data	splits,	we	compared	these	two	measures	at	
an	individual	as	well	as	at	a	group	level.	First,	we	carried	out	correlation	analyses	
between	 the	 two	measures	 of	 drowsiness	within	 each	 participant.	 Second,	 we	
compared	correlation	coefficients	against	zero,	aiming	to	assess	a	consistency	of	
an	 association	between	 the	Hori	 and	 the	 θ/α	measures	 at	 a	 group	 level.	 At	 an	
individual	level,	Hori	and	θ/α	scores	were	positively	and	significantly	correlated	
for	all	20	participants	 (individual	 rho	 ranged	 from	0.66	 to	0.9).	Group	analysis	
confirmed	 a	 very	 strong	 association	 between	 these	 two	 electrophysiological	
measures	 of	 the	 wake-sleep	 transition	 (one	 sample	 t	 test:	 t(19)=51.99,	
p<0.000005),	 confirming	 that	 θ/α	 could	 be	 used	 reliably	 to	 assess	 the	 level	 of	
drowsiness	in	the	tested	sample	(see	Fig	1C-D).		
	
EEG	pre-processing	and	analysis:	TMS-EEG	reactivity		
	
Analysis	of	EEG	reactivity	 to	TMS	perturbation	 in	 the	 first	50	ms	 time	window	
requires	 a	perfect	 alignment	of	TMS	markers	with	 the	onset	of	 the	actual	TMS	
pulses.	Given	that	some	delay	and	jittering	was	occurring	between	a	TMS	marker	
and	a	pulse	(M=9.6	ms,	SD=1.7	ms),	EEG	markers	indicating	TMS	intensity	were	
automatically	adjusted	to	the	time	point	of	the	actual	TMS.	For	this,	raw	EEG	data	
were	 segmented	 ±200	 ms	 around	 each	 TMS	 marker,	 and	 global	 field	 power	
(GFP)	 was	 calculated	 as	 a	 standard	 deviation	 of	 voltage	 across	 all	 electrodes,	
resulting	 in	 a	 single	 time	 waveform	 per	 each	 TMS	 marker.	 Each	 obtained	
waveform	was	 baseline	 corrected	 to	 the	 -200	ms	 to	 -50	ms	 time	window	 and	
each	 time	 sample	 was	 transformed	 to	 its	 absolute	 value.	 The	 remaining	 time	
window	 of	 -49	ms	 to	 +200	ms	was	 scanned	 searching	 for	 the	 first	 time	 point	
where	a	GFP	value	 five	 times	exceeded	 the	maximal	baseline	GFP	value,	which	
indicated	the	onset	of	TMS	artifact.	The	TMS	marker	was	then	reallocated	to	this	
point	in	the	continuous	EEG	recording.	
	
The	EEG	data	were	processed	following	ICA-based	approach	of	TMS-EEG	artifact	
cleaning(53).	First,	EEG	data	were	segmented	from	-1000	ms	to	1000	ms	around	
the	onset	of	TMS	artifact.	Afterwards,	 the	segments	were	baseline	corrected	 to	
the	mean	of	-500	ms	to	-100	ms	time	window.	A	line	was	then	fitted	to	the	data	
from	 -2	 ms	 to	 15	 ms,	 this	 way	 deleting	 the	 initial	 TMS-EEG	 artifact,	 and	 the	
epochs	were	downsampled	to	1000	Hz.	The	most	deviating	EEG	channels	were	
then	 detected	with	 the	 ‘spectopo’	 function	 and	 the	 first	 round	 of	 independent	
component	 analysis	 (ICA)	 was	 carried	 without	 using	 noisy	 channels.	 After	
deleting	 a	 very	 distinctive	 early	 high	 amplitude	 component	 that	 reflects	 TMS-
evoked	 contraction	 of	 scalp	 muscles,	 EEG	 data	 were	 filtered	 (1-80	 Hz)	 and	
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epoched	from	-400	ms	to	600	ms	around	the	onset	of	TMS	marker.	Once	again,	
the	 deviating	 EEG	 channels	 were	 identified	 and	 the	 second	 round	 of	 ICA	 was	
carried	 out	 without	 using	 noisy	 channels.	 Independent	 components	 reflecting	
TMS-EEG	decay	artifact,	eye	movements,	auditory	evoked	potentials,	50	Hz	line	
noise,	 and	 other	 sources	 of	 noise,	were	 deleted,	 following	which	 bad	 channels	
were	recalculated	using	spherical	spline	 interpolation.	The	EEG	segments	were	
again	 baseline	 corrected	 (-100	ms	 to	 -3	ms),	 and	manually	 inspected	 deleting	
several	epochs	that	still	contained	a	visible	residual	TMS	artifact.	To	account	for	
a	within-trial	variance,	raw	voltage	of	each	individual	trial	was	transformed	to	z-
scores	using	the	mean	and	standard	deviation	of	the	baseline	period	(-100	to	-3	
ms).	Trials	were	then	split	into	different	levels	of	arousal,	following	Hori	as	well	
as	θ/α	measures	of	drowsiness.		
	
To	 assess	 changes	 of	 EEG	 reactivity	 to	 TMS	 perturbation	 in	 the	 transition	
wakefulness	to	sleep,	voltage	of	four	electrodes	beneath	the	TMS	coil	as	a	region	
of	 interest	 (ROI)	 was	 averaged	 within	 each	 participant.	 The	 group-level	
waveform	was	then	plotted	revealing	an	early	TEP	peak	at	31	ms	post	TMS.	The	
data	were	 then	 split	 between	Hori	 stages	 and	 the	mean	 amplitude	 (±5	ms)	 of	
around	the	peak	(26-36	ms)	was	calculated	for	each	participant	and	each	level	of	
arousal.		
	
ERP	 dynamics	 were	 additionally	 studied	 using	 data-driven	 spatiotemporal	
clustering	 analysis	 similar	 to	 what	 we	 previously	 described(54).	 Awake	 and	
drowsy	 trials	were	 compared	 in	 the	 time	windows	 of	 interest	 (15-100	ms)	 by	
averaging	single-subject	data	and	running	group	level	clustering.	Using	modified	
functions	 of	 FieldTrip	 toolbox(55,	 56),	 we	 compared	 corresponding	
spatiotemporal	 points	 in	 individual	 awake	 and	 drowsy	 trials	 with	 an	
independent	samples	t	test.	Although	this	step	was	parametric,	FieldTrip	used	a	
nonparametric	 clustering	 method(57)	 to	 address	 the	 multiple	 comparisons	
problem.	t	values	of	adjacent	spatiotemporal	points	whose	p	values	were	<0.05	
were	clustered	together	by	summating	their	t	values,	and	the	largest	such	cluster	
was	 retained.	 A	 minimum	 of	 two	 neighboring	 electrodes	 had	 to	 pass	 this	
threshold	 to	 form	 a	 cluster,	 with	 neighborhood	 defined	 as	 other	 electrodes	
within	a	4	cm	radius.	This	whole	procedure,	that	is,	calculation	of	t	values	at	each	
spatiotemporal	 point	 followed	by	 clustering	of	 adjacent	 t	 values,	was	 repeated	
1000	 times,	 with	 recombination	 and	 randomized	 resampling	 before	 each	
repetition.	This	Monte	Carlo	method	generated	a	nonparametric	estimate	of	the	
p	 value	 representing	 the	 statistical	 significance	 of	 the	 originally	 identified	
cluster.	 The	 cluster-level	 t	 value	was	 calculated	 as	 the	 sum	 of	 the	 individual	 t	
values	at	the	points	within	the	cluster.		
	
We	 considered	 a	 possibility	 that	 a	 hypothetical	 arousal-modulation	 of	 the	
contraction	of	scalp	muscles	following	TMS	may	have	contributed	to	the	arousal-
modulation	 of	 TEP	 amplitude.	 To	 address	 this	 hypothesis,	 we	 compared	
amplitude	of	ICA	component	of	scalp	muscle,	which	was	removed	during	the	first	
stage	 of	 ICA	 cleaning(53),	 between	 θ/α-defined	 awake	 and	 drowsy	 states.	 No	
amplitude	 difference	was	 observed	 between	 awake	 and	 drowsy	 trials	 (see	 Fig	
S4),	ruling	out	a	possibility	that	TEP	cortical	reactivity	changes	between	awake	
and	 drowsy	 states	were	 due	 to	 a	 hypothetical	 change	 in	 the	 intensity	 of	 scalp	
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muscle	contraction.	
	
EEG	analysis:	weighted	Symbolic	Mutual	Information	(wSMI)	
	
In	 order	 to	 quantify	 the	 coupling	 of	 information	 flow	 between	 electrodes	 we	
computed	the	weighted	symbolic	mutual	information	(wSMI)(29,	30).	It	assesses	
the	 extent	 to	 which	 the	 two	 signals	 present	 joint	 nonrandom	 fluctuations,	
suggesting	that	they	share	information.	It	has	three	main	advantages:	(i)	it	allows	
for	 a	 rapid	 and	 robust	 estimation	 of	 the	 signals'	 entropies;	 (ii)	 it	 provides	 an	
efficient	 way	 to	 detect	 non-linear	 coupling;	 and	 (iii)	 it	 discards	 the	 spurious	
correlations	between	signals	arising	from	common	sources,	favoring	non-trivial	
pairs	of	symbols	
	
For	 each	 trial,	 wSMI	 is	 calculated	 between	 each	 pair	 of	 electrodes	 after	 the	
transformation	 of	 the	 EEG	 and	 LFPs	 signals	 into	 sequence	 of	 discrete	 symbols	
that	 are	 defined	by	 the	 ordering	 of	 k	 time	 samples	 separated	 in	 time(29).	 The	
symbolic	transformation	depends	on	a	fixed	symbol	size	(k	=	3,	that	is,	3	samples	
represent	 a	 symbol)	 and	 a	 variable	 τ	 between	 samples	 (temporal	 distance	
between	 samples)	 which	 determines	 the	 frequency	 range	 in	 which	 wSMI	 is	
estimated.	In	our	case,	we	choose	τ	=	8	ms	corresponding	to	the	gamma	band	(at	
250	Hz	sampling	rate).	
	
Then,	wSMI	was	estimated	for	each	pair	of	transformed	EEG	and	LFPs	signals	by	
estimating	 the	 joint	 probability	 of	 each	 pair	 of	 symbols.	 The	 joint	 probability	
matrix	 was	 multiplied	 by	 binary	 weights	 to	 reduce	 spurious	 correlations	
between	 signals.	 The	 weights	 were	 set	 to	 zero	 for	 pairs	 of	 identical	 symbols,	
which	could	be	elicited	by	a	unique	common	source,	and	 for	opposed	symbols,	
which	could	 reflect	 the	 two	sides	of	a	 single	electric	dipole.	wSMI	 is	 calculated	
using	the	following	equation:	
	

𝑤𝑆𝑀𝐼 𝑋,𝑌 =  
1

log(𝑘!) 𝑤 𝑥,𝑦  𝑝 𝑥,𝑦 log
𝑝(𝑥,𝑦)
𝑝 𝑥 𝑝(𝑦)

! ∈!! ∈!

	

	
where	x	and	y	are	all	symbols	present	in	signals	X	and	Y	respectively,	 	w(x,y)	 is	
the	weight	matrix	and	p(x,y)	is	the	joint	probability	of	co-occurrence	of	symbol	x	
in	signal	X	and	symbol	y	in	signal	Y.	Finally	p(x)	and	p(y)	are	the	probabilities	of	
those	symbols	in	each	signal	and	k!	the	number	of	symbols	-	used	to	normalize	
the	 mutual	 information	 (MI)	 by	 the	 signal's	 maximal	 entropy.	 Temporal	
dynamics	of	wSMI	was	calculated	using	a	400	ms	moving	window	with	2	ms	time	
step	and	96%	overlapping,	from	-400	ms	to	+600	ms	around	TMS.	Global	wSMI	
was	calculated	by	averaging	all	electrode	pairs	 for	each	single	electrode,	which	
yielded	 63	 values	 that	 were	 subjected	 to	 spatio-temporal	 clustering	 that	
compared	 awake	 and	 drowsy	 states.	 For	 statistical	 analyses,	wSMI	waveforms	
were	baseline	corrected	 to	 -400	ms	 to	0	ms	 time	window	preceding	TMS.	As	a	
control	analysis,	 raw	global	wSMI	values	averaged	across	4	electrodes	beneath	
TMS	coil	were	compared	between	θ/α-defined	awake	and	drowsy	states.		
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Statistical	analysis	
	
Paired	 samples	 t	 test	 was	 used	 to	 compare	 behavioral	 and	 neural	 summary	
measures	between	θ/α-defined	awake	and	drowsy	states.	Pooled	variance	was	
used	 to	 calculate	 Cohen’s	 d,	 with	 0.2	 indicating	 a	 small	 effect	 size,	 0.5	 –	 a	
medium,	and	0.8	–	a	large	effect	size(58).	For	a	similar	comparison	of	summary	
measures	across	Drowsiness	Levels	1-5,	one	way	repeated	measures	ANOVA	was	
carried	 out	with	 linear	 as	well	 as	 non-linear	 contrasts.	Huynh-Feldt	 correction	
was	 used	 when	 Mauchly’s	 test	 indicated	 violation	 of	 the	 assumption	 of	
sphericity.	Partial	η2	was	calculated	as	an	effect	size	 in	ANOVA	tests,	with	0.01	
indicating	a	small	effect	size,	0.06	–	a	medium,	and	0.14	–	a	large	effect	size	(58).	
Linear	 regression	 was	 carried	 out	 to	 assess	 predictive	 interaction	 between	
measures	of	interest,	such	as	wSMI	and	RT.	Shapiro-Wilk’s	test	was	used	assess	
normality	 of	 distribution	 before	 running	 parametric	 tests.	 Square-root	 or	 lg10	
transform	 was	 used	 to	 normalize	 skewed	 data.	 When	 transformations	 failed,	
non-parametric	 statistical	 test	 were	 used,	 such	 as	 Wilcoxon	 signed-rank	 test	
instead	of	a	paired	samples	t	test,	and	Mann-Kendall	trend	test	instead	of	a	one-
way	repeated	measures	ANOVA	for	linear	contrast	across	Drowsiness	Levels	1-5.	
In	a	case	of	significant	main	effect,	Bonferroni–Holm	multiplicity	correction(59)	
of	 p	 values	 was	 carried	 out	 to	 account	 for	 multiple	 follow	 up	 comparisons	
between	 baseline	 Drowsiness	 Level	 1	 and	 following	 levels.	 Statistical	 analyses	
were	carried	out	using	Matlab	and	IBM	SPSS	(v22)	software	packages.	 
	
	
Supplementary	results	
	
	
RT	across	Drowsiness	Levels:	Significant	trend	of	RT	increase	across	5	Drowsiness	
Levels	(Mann-Kendall	trend	test,	see	the	Main	text)	was	further	inspected	by	the	
planned	comparisons	between	Level	1	and	each	of	 the	 subsequent	Drowsiness	
Levels.	A	significant	lengthening	of	RT	was	observed	between	Drowsiness	Level	
1	and	Level	3	(t(19)=5.03,	p=0.00015,	d=0.57),	Level	4	(t(19)=5.72,	p=0.000048,	
d=0.97),	 and	 Level	 5	 (t(19)=7.37,	 p=0.0000024,	 d=1.4),	 with	 no	 difference	
between	Drowsiness	Levels	1	and	2	(d=0.05).		
	
Sigmoidal	vs.	linear	models	of	kinesthestic	awareness	reports	in	awake	and	drowsy	
trials:	To	compare	sigmoidal	vs.	 linear	models	of	kinesthetic	awareness	reports	
between	 θ/α-awake	 and	 drowsy	 conditions,	 coefficient	 of	 determination	 R2	 of	
sigmoidal	 and	 linear	 functions	 fitted	 to	 the	 individual	 rate	 of	 aware	 responses	
across	TMS	conditions	was	calculated	separately	for	the	θ/α-awake	and	drowsy	
trials.	 Two-way	 repeated	 measures	 ANOVA	 was	 carried	 out	 with	 Models	
(sigmoidal,	linear)	and	States	(awake,	drowsy)	as	independent	factors,	and	R2	as	
a	dependent	measure.	There	was	no	main	effect	of	States	 (F(1,16)=0.86,	p=0.37,	
partial	 η2=0.05),	 whereas	 a	 significant	 main	 effect	 of	 Models	 (F(1,16)=22.99,	
p=0.0002,	 partial	 η2=0.59)	 and	 a	 significant	 Models	 x	 States	 interaction	
(F(1,16)=8.71,	p=0.0094,	partial	η2=0.35)	were	observed. While	R2	of	sigmoidal	fit	
was	 significantly	 higher	 than	 R2	 of	 linear	 fit	 in	 both	 awake	 (t(16)=5.43,	
p=0.000056,	 d=0.86)	 and	 drowsy	 (t(16)=3.03,	 p=0.008,	 d=0.34)	 states,	 an	 R2	
difference	 between	 sigmoidal	 and	 linear	 fits	 was	 larger	 in	 awake	 trials	
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(t(16)=2.95,	p=0.0094,	d=0.64),	indicating	that	interaction	between	detection	rate	
and	signal	intensity	became	relatively	more	linear	in	the	transition	to	sleep.	
	
Temporal-hemispheric	global	wSMI	differences	between	awake	and	drowsy	states:	
To	assess	whether	hemispherical	differences	in	the	dynamics	of	global	wSMI,	i.e.	
an	 initial	 post-TMS	 decrease	 and	 a	 subsequent	 recovery	 an	 increase,	 are	
dependent	on	the	level	of	drowsiness,	three-way	repeated	measures	ANOVA	was	
carried	out	with	Hemispheres	(left	ROI,	right	ROI),	Time	(1-200	ms,	201-400	ms,	
401-600	 ms)	 and	 Drowsiness	 Levels	 (1-5)	 as	 independent	 factors,	 and	 global	
wSMI	 as	 a	 dependent	 measure.	 We	 observed	 significant	 main	 effects	 of	
Hemispheres	 (F(1,19)=20.61,	 p=0.00022,	 partial	 η2=0.52),	 Time	 (F(2,38)=14.84,	
p=0.000017,	 partial	 η2=0.44),	 and	 Drowsiness	 Levels	 (F(3.15,59.88)=9.49,	
p=0.000024,	 partial	 η2=0.33).	 Global	 wSMI	 was	 significantly	 lower	 in	 the	
stimulated	 right	 hemisphere	 site	 compared	 to	 the	 non-stimulated	 left	
hemisphere	(p=0.00022).	Quadratic	contrast	of	Time	conditions	indicated	a	non-
linear	 temporal	 dynamics	 of	 post-TMS	 global	 wSMI	 (F(1,19)=17.31,	 p=0.00053,	
partial	η2=0.48).	Pairwise	comparisons	revealed	a	higher	wSMI	in	the	latest	401-
600	 ms	 time	 window	 compared	 to	 1-200	 ms	 (p=0.0074)	 and	 201-400	 ms	
windows	 (p=0.000032).	 A	 significant	 two-way	 interaction	 was	 observed	
between	 Time	 and	 Drowsiness	 Levels	 (F(8,152)=7.49,	 p=0.00000002,	 partial	
η2=0.28).	Pairwise	comparisons	showed	that	global	wSMI	did	not	differ	between	
1-200	ms	and	201-400	ms	time	windows,	but	increased	in	401-600	ms	window	
compared	to	1-200	ms	window	in	Drowsiness	Levels	1-3.	A	contrary	effect	was	
observed	in	Drowsiness	Levels	4-5,	with	a	significant	decreased	of	global	wSMI	
between	1-200	ms	and	201-400	ms	time	windows,	but	no	differences	between	1-
200	ms	and	401-600	ms	time	windows.	
	
	
Supplementary	references	
	
43.		 S.	Rossi	et	al.,	Safety,	ethical	considerations,	and	application	guidelines	for	the	use	

of	 transcranial	 magnetic	 stimulation	 in	 clinical	 practice	 and	 research.	 Clin.	
Neurophysiol.	120	(2009),	pp.	2008–2039.	

44.		 R.	 C.	 Oldfield,	 The	 assessment	 and	 analysis	 of	 handedness:	 The	 Edinburgh	
inventory.	Neuropsychologia.	9,	97–113	(1971).	

45.		 M.	 W.	 Johns,	 A	 new	 method	 for	 measuring	 daytime	 sleepiness:	 the	 Epworth	
sleepiness	scale.	Sleep.	14	(1991),	pp.	540–545.	

46.		 K.	 Ikoma,	A.	 Samii,	B.	Mercuri,	 E.	M.	Wassermann,	M.	Hallett,	Abnormal	 cortical	
motor	excitability	in	dystonia.	Neurology.	46,	1371–6	(1996).	

47.		 A.	Samii,	E.	M.	Wassermann,	K.	Ikoma,	B.	Mercuri,	M.	Hallett,	Characterization	of	
postexercise	 facilitation	 and	 depression	 of	 motor	 evoked	 potentials	 to	
transcranial	magnetic	stimulation.	Neurology.	46,	1376–1382	(1996).	

48.		 P.	M.	Rossini	et	al.,	Non-invasive	electrical	and	magnetic	stimulation	of	the	brain,	
spinal	 cord	 and	 roots:	 basic	 principles	 and	 procedures	 for	 routine	 clinical	
application.	Report	of	an	IFCN	committee.	Electroencephalogr.	Clin.	Neurophysiol.	
91,	79–92	(1994).	

49.		 M.	V.	Sale,	M.	C.	Ridding,	M.	A.	Nordstrom,	Factors	influencing	the	magnitude	and	
reproducibility	of	corticomotor	excitability	changes	induced	by	paired	associative	
stimulation.	Exp.	Brain	Res.	181,	615–626	(2007).	

50.		 A.	Delorme,	S.	Makeig,	EEGLAB:	An	open	source	toolbox	for	analysis	of	single-trial	
EEG	 dynamics	 including	 independent	 component	 analysis.	 J.	Neurosci.	Methods.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2017. ; https://doi.org/10.1101/155754doi: bioRxiv preprint 

https://doi.org/10.1101/155754
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
36	

134,	9–21	(2004).	
51.		 H.	Nittono,	D.	Momose,	 T.	Hori,	 Gradual	 changes	 of	mismatch	 negativity	 during	

the	sleep	onset	period.	Sleep	Res.	Online.	2(Suppl.1),	287	(1999).	
52.		 H.	 Tanaka,	 M.	 Hayashi,	 T.	 Hori,	 Topographical	 characteristics	 and	 principal	

component	structure	of	the	hypnagogic	EEG.	Sleep.	20,	523–534	(1997).	
53.		 N.	 C.	 Rogasch	 et	 al.,	 Removing	 artefacts	 from	 TMS-EEG	 recordings	 using	

independent	component	analysis:	Importance	for	assessing	prefrontal	and	motor	
cortex	network	properties.	Neuroimage.	101,	425–439	(2014).	

54.		 S.	Chennu	et	al.,	Expectation	and	attention	 in	hierarchical	auditory	prediction.	 J.	
Neurosci.	33,	11194–205	(2013).	

55.		 E.	Maris,	R.	Oostenveld,	Nonparametric	statistical	testing	of	EEG-	and	MEG-data.	J.	
Neurosci.	Methods.	164,	177–190	(2007).	

56.		 R.	Oostenveld,	P.	Fries,	E.	Maris,	J.	M.	Schoffelen,	FieldTrip:	Open	source	software	
for	 advanced	 analysis	 of	 MEG,	 EEG,	 and	 invasive	 electrophysiological	 data.	
Comput.	Intell.	Neurosci.	156869	(2011),	doi:10.1155/2011/156869.	

57.		 E.	T.	Bullmore	et	al.,	Global,	voxel,	and	cluster	 tests,	by	theory	and	permutation,	
for	a	difference	between	 two	groups	of	 structural	MR	 images	of	 the	brain.	 IEEE	
Trans.	Med.	Imaging.	18,	32–42	(1999).	

58.		 J.	Cohen,	Statistical	Power	Analysis	for	the	Behavioral	Sciences	(Lawrence	Erlbaum	
Associates,	New	York,	NY,	ed.	2nd,	1988).	

59.		 S.	Holm,	A	simple	sequentially	rejective	multiple	test	procedure.	Scand.	J.	Stat.	6,	
65–70	(1979).	

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2017. ; https://doi.org/10.1101/155754doi: bioRxiv preprint 

https://doi.org/10.1101/155754
http://creativecommons.org/licenses/by-nc-nd/4.0/

