
 1 

Title: A Bayesian Framework for Multiple Trait Colocalization from Summary 1 

Association Statistics  2 

 3 

Claudia Giambartolomei1, Jimmy Zhenli Liu2, Wen Zhang3, Mads Hauberg3,4, Huwenbo 4 

Shi5, James Boocock1, Joe Pickrell2, Andrew E. Jaffe6, the CommonMind Consortium#, 5 

Bogdan Pasaniuc*1, Panos Roussos*3,7,8  6 

 7 

1Department of Pathology and Laboratory Medicine, University of California, Los 8 

Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of 9 

California, Los Angeles, Los Angeles, CA 90095, United States of America. 10 

2 New York Genome Center, New York, New York, United States of America 11 

3Department of Genetics and Genomic Science and Institute for Multiscale Biology, 12 

Icahn School of Medicine at Mount Sinai, New York, New York, 10029, United States of 13 

America.  14 

4The Lundbeck Foundation Initiative of Integrative Psychiatric Research (iPSYCH), 15 

Aarhus University, Aarhus, 8000, Denmark. 16 

5Bioinformatics Interdepartmental Program, University of California, Los Angeles, 90024 17 

6Lieber Institute for Brain Development, Johns Hopkins Medical Campus; Departments 18 

of Mental Health and Biostatistics, Johns Hopkins Bloomberg School of Public Health 19 

Baltimore, MD, 21205, United States of America. 20 

7Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at 21 

Mount Sinai, New York, New York, 10029, United States of America. 22 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/155481doi: bioRxiv preprint 

https://doi.org/10.1101/155481
http://creativecommons.org/licenses/by/4.0/


 2 

8Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA 23 

Medical Center, Bronx, New York, 10468, United States of America. 24 

 25 

# The members of the CommonMind Consortium are listed under “Consortia”. 26 

 27 

Correspondence: 28 

Dr. Panos Roussos 29 

Icahn School of Medicine at Mount Sinai  30 

Department of Psychiatry and Department of Genetics and Genomic Science and 31 

Institute for Multiscale Biology  32 

One Gustave L. Levy Place, 33 

New York, NY, 10029, USA 34 

Panagiotis.roussos@mssm.edu 35 

 36 

Dr. Claudia Giambartolomei 37 

University of California, Los Angeles, Los Angeles  38 

Department of Pathology and Laboratory Medicine,  39 

Los Angeles, CA 90095, USA 40 

claudia.giambartolomei@gmail.com 41 

 42 

 43 

 44 

 45 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/155481doi: bioRxiv preprint 

https://doi.org/10.1101/155481
http://creativecommons.org/licenses/by/4.0/


 3 

ABSTRACT 46 

Most genetic variants implicated in complex diseases by genome-wide association 47 

studies (GWAS) are non-coding, making it challenging to understand the causative 48 

genes involved in disease. Integrating external information such as quantitative trait 49 

locus (QTL) mapping of molecular traits (e.g., expression, methylation) is a powerful 50 

approach to identify the subset of GWAS signals explained by regulatory effects. In 51 

particular, expression QTLs (eQTLs) help pinpoint the responsible gene among the 52 

GWAS regions that harbor many genes, while methylation QTLs (mQTLs) help identify 53 

the epigenetic mechanisms that impact gene expression which in turn affect disease 54 

risk. In this work we propose multiple-trait-coloc (moloc), a Bayesian statistical 55 

framework that integrates GWAS summary data with multiple molecular QTL data to 56 

identify regulatory effects at GWAS risk loci. We applied moloc to schizophrenia (SCZ) 57 

and eQTL/mQTL data derived from human brain tissue and identified 56 candidate 58 

genes that influence SCZ through methylation. Our method can be applied to any 59 

GWAS and relevant functional data to help prioritize diseases associated genes.  60 

 61 

 62 

 63 
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INTRODUCTION 65 

Genome-wide association studies (GWAS) have successfully identified 66 

thousands of genetic variants associated with complex diseases1. However, since the 67 

discovered associations point to non-coding regions, it is difficult to identify the causal 68 

genes and the mechanism by which risk variants mediate disease susceptibility. 69 

Advancement of high-throughput array and sequencing technology has enabled the 70 

identification of quantitative trait loci (QTLs), genetic variants that affect molecular 71 

phenotypes such as gene expression (expression QTL or eQTL) and DNA methylation 72 

(methylation QTL or mQTL). Integration of molecular QTL data has the potential to 73 

functionally characterize the GWAS results. Additionally, analyzing two datasets jointly 74 

has been a successful strategy to identify shared genetic variants that affect different 75 

molecular processes, in particular eQTL and GWAS integration 2–8,13,19,26,28. Integrating 76 

methylation data20 could help identify epigenetic regulatory mechanisms that potentially 77 

control the identified genes and contribute to disease. 78 

To our knowledge, a statistical approach to integrate multiple QTL datasets with 79 

GWAS is lacking. Therefore, we developed multiple-trait-coloc (moloc), a statistical 80 

method to quantify the evidence in support of a common causal variant at a particular 81 

risk region across multiple traits. We applied moloc to schizophrenia (SCZ), a complex 82 

polygenic psychiatric disorder, using summary statistics from the most recent and 83 

largest GWAS by the Psychiatric Genomics Consortium9, which reported association for 84 

108 independent genomic loci. eQTL data were derived from the CommonMind 85 

Consortium10, which generated the largest eQTL dataset in the dorsolateral prefrontal 86 

cortex (DLPFC) from SCZ cases and control subjects (N=467). Finally, we leveraged 87 
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mQTL data that were previously generated in human DLPFC tissue (N=121) to 88 

investigate epigenetic variation in SCZ11. Integration of multiple phenotypes helps better 89 

characterize the genes predisposing to complex diseases such as SCZ. 90 

 91 

MATHERIALS AND METHODS 92 

Method Description 93 

We extended the model of Pickrell3 and coloc2 to analyze jointly multiple traits. For each 94 

variant, we assume a simple linear regression model to relate the vector of phenotypes 95 

𝑦 or a log-odds generalized linear model for the case-control dataset, and the vector of 96 

genotypes 𝑥. Under this model the expectation of the trait is: 97 

  98 

 99 

We define a genomic region containing Q variants, for example a cis region around 100 

expression or methylation probe. We are interested in a situation where summary 101 

statistics (effect size estimates and standard errors) are available for all datasets in a 102 

genomic region with Q variants.  103 

We make two important assumptions. Firstly, that the causal variant is included in the 104 

set of Q common variants, either directly typed or well imputed. If the causal SNP is not 105 

present, the power to detect a common variant will be reduced depending on the LD 106 

between other SNPs included in the model and the causal SNP (see coloc paper2). 107 

Secondly, we assume at most one causal variant is present for each trait. In the 108 

presence of multiple causal variants per trait, this algorithm is not able to identify 109 

colocalization between additional association signals independent from the primary one.  110 

Methods

Overview of the moloc method

We extended the model from Pickrell (doi: 10.1038/ng.3570) and coloc to analyze jointly more than two traits. We

will use colocalization of three traits, a, b and c, to illustrate how the model can be extended to any number of traits.

For each variant, we assume a simple linear regression model to relate the vector of phenotypes ~y or a log-odds

generalized linear model for the case-control dataset, and the vector of genotypes ~x:

E[yi] = �xi

We define a genomic region containing Q variants, for example a cis region around expression or methylation probe.

We are interested in a situation where summary statistics (e↵ect size estimates and standard errors) are available

for all datasets in a genomic region with Q variants.

We make two important assumptions. Firstly that the causal variant is included in the set of Q common variants,

either directly typed or well imputed. If the causal SNP is not present, the power to detect a common variant will be

reduced depending on the LD between the causal SNP and the included SNPs (see coloc paper). Secondly, we assume

at most one association is present for each trait. Thus, for three traits, there can be up to three causal variants and

15 possible configurations of how they are shared among the traits. In the presence of multiple causal variants per

trait, this algorithm is not able to identify colocalization between additional association signals independent from

the primary one. Although this is a limitation, these cases are rare and the advantage of using more complex models

that require LD is still unclear (Paintor, eCAVIAR, etc) [ in Discussion ].

The algorithm estimates the evidence in support of di↵erent scenarios. In the three-trait situation, we wish to

estimate posterior probabilities for fifteen possible configurations. Four examples of configurations are show in in

Figure X. We are most interested in the scenarios supporting a shared causal variant for two and three traits.

This algorithm requires the definition of prior probabilities at the SNP level. The probability of the data under each

hypothesis is computed by combining the regional Bayes factor with the priors to assess the support for each scenario.

We evaluated the method in simulations and found that the priors with the greatest power are using 1⇥10

�4
for the

prior probability of a SNP being associated with each trait, 1⇥ 10

�7
for the SNP being associated with two traits,

and 1⇥ 10

�7
for a SNP being associated with all three traits. For the WABF, we averaged BF between three prior

variances of (0.01, 0.1, 0.5).

Bayes Factor computation

Bayes factors for association measure the relative support for di↵erent models in which the SNP is associated with

1 or more traits, compared to the null model of no association.

In the three-trait situation, for a single SNP there are eight possible models to consider:

1
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We start by computing a Bayes Factor for each SNP and each of the trait (i.e GWAS, 111 

eQTL, mQTL). Using the Wakefield Approximate Bayes factors12 (WABF), only the 112 

variance and effect estimates from regression analysis are needed, as previously 113 

described2,3. The computation of WABF also includes the shrinkage factor r, the ratio of 114 

the prior variance W (expected effect size under the alternative) and total variance, r = 115 

W/(V + W). The evidence in support of one of the models with more than 1 trait is: 116 

 117 

We next estimate the support for possible scenarios in a given genomic region. We call 118 

“configuration” a possible combination of n set of binary vectors indicating whether the 119 

variant is causal for the selected trait, where n is the number of traits considered. For 120 

instance, if we consider three traits, there can be up to three causal variants and 15 121 

possible configurations of how they are shared among the traits. We combine the Bayes 122 

Factor for each configuration with the priors to assess the support for each scenario. 123 

For each configuration S and observed data D, the likelihood of configuration h relative 124 

to the null (H0) is given by:  125 

 126 

       127 (1) 127 

 128 

 129 

where, P(D|S)/P(D|S0) is the Bayes Factor for each configuration, and P(S)/P(S0) is the 130 

prior odds of a configuration compared with the baseline configuration S0, and the sum 131 

is over all configurations which are consistent with a given hypothesis.  132 

M1: the SNP is associated with trait 1 (but not trait 2 nor trait 3);

M2: the SNP is associated with trait 2 (but not trait 1 nor trait 3);

M3: the SNP is associated with trait 3 (but not trait 1 nor trait 2);

M4: the SNP is associated with both trait 1 and trait 2 (but not trait 3);

M5: the SNP is associated with both trait 1 and trait 3 (but not trait 2);

M6: the SNP is associated with both trait 2 and trait 3 (but not trait 1);

M7: the SNP is associated with all traits.

To compute the Bayes Factors (BFs) for each SNP under one of these models, we make use of the Asymptotic

Bayes Factor derivation ?. Let ˆ� be the maximum likelihood estimator of �, and
p
V be the standard error of that

estimate, in an asymptotic setting

ˆ� ! N(�, V ). If we assume that the e↵ect size � = 0 under the null, while under

the alternative, � ! N(0,W ), to compute the WABF we only need Z-scores from a standard regression output, andp
W , the standard deviation of the normal prior N(0,W) on �. We average over Bayes factors using W = 0.01, W

= 0.1, and W = 0.5.

WABF =

1p
1� r

⇥ exp


�Z2

2

⇥ r

�
(1)

where Z =

ˆ�/
p
V is the usual Z statistic and the shrinkage factor r is the ratio of the variance of the prior and total

variance (r = W/(V +W )).

To simplify computations, following Pickrell2014 we use the reverse regression model where the genotypes and

phenotypes are swapped. The WABF are identical as long as the shrinkage factor r remains the same.

The evidence in support of one of the models with >1 trait is:

BF (m)
=

Y

i2m

WABFi (2)

A key assumption is that the traits do not share overlapping individuals. We could relax this assumption as in

Pickrell2014.

For each SNP, we assign a prior probability according to how many traits that SNP is associated with, and constant

across SNPs (see section below).

Regional Bayes Factors and Posterior computations

We now turn our attention to estimating the support for possible scenarios in a given genomic region. If we consider

three traits, we have 15 possible hypotheses. We can compute the probabilities given the data for each of these

hypothesis by summing over the relevant configurations. For each configuration S and observed data D, The

likelihood of configuration h relative to the null (H0) is given by:

P (Hh | D)

P (H0 | D)

=

X

S2Sh

P (D | S)
P (D | S0)

⇥ P (S)

P (S0)
(3)

2

M0: the SNP is associated with none of the traits;

M1: the SNP is associated with trait 1 (but not trait 2 nor trait 3);

M2: the SNP is associated with trait 2 (but not trait 1 nor trait 3);

M3: the SNP is associated with trait 3 (but not trait 1 nor trait 2);

M4: the SNP is associated with both trait 1 and trait 2 (but not trait 3);

M5: the SNP is associated with both trait 1 and trait 3 (but not trait 2);

M6: the SNP is associated with both trait 2 and trait 3 (but not trait 1);

M7: the SNP is associated with all traits.

To compute the Bayes Factors (BFs) for each SNP under one of these models, we make use of the Asymptotic

Bayes Factor derivation ?. Let ˆ� be the maximum likelihood estimator of �, and
p
V be the standard error of that

estimate, in an asymptotic setting

ˆ� ! N(�, V ). If we assume that the e↵ect size � = 0 under the null, while under

the alternative, � ! N(0,W ), to compute the WABF we only need Z-scores from a standard regression output, andp
W , the standard deviation of the normal prior N(0,W) on �. We average over Bayes factors using W = 0.01, W

= 0.1, and W = 0.5.

WABF =

1p
1� r

⇥ exp


�Z2

2

⇥ r

�
(1)

where Z =

ˆ�/
p
V is the usual Z statistic and the shrinkage factor r is the ratio of the variance of the prior and total

variance (r = W/(V +W )).

To simplify computations, following Pickrell2014 we use the reverse regression model where the genotypes and

phenotypes are swapped. The WABF are identical as long as the shrinkage factor r remains the same.

The evidence in support of one of the models with >1 trait is:

BF (m)
=

Y

i2m

WABFi (2)

A key assumption is that the traits do not share overlapping individuals. We could relax this assumption as in

Pickrell2014.

For each SNP, we assign a prior probability according to how many traits that SNP is associated with, and constant

across SNPs (see section below).

Regional Bayes Factors and Posterior computations

We now turn our attention to estimating the support for possible scenarios in a given genomic region. If we consider

three traits, we have 15 possible hypotheses. We can compute the probabilities given the data for each of these

hypothesis by summing over the relevant configurations. For each configuration S and observed data D, The

likelihood of configuration h relative to the null (H0) is given by:

P (Hh | D)

P (H0 | D)

=

X

S2Sh

P (D | S)
P (D | S0)

⇥ P (S)

P (S0)
(3)

2
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The Regional Bayes Factor (RBF) is the Bayes Factor for each configuration combined 133 

with the priors to assess the support for each scenario. If priors do not vary across 134 

SNPs under the same hypotheses, we can multiply the likelihoods by one common 135 

prior. For example, if we let the “.” in the subscript denote scenarios supporting different 136 

causal variants, the RBF supporting the scenario for one causal variant shared between 137 

traits G and E (equation 1) is: 138 

 139 

where π is the prior probability according to how many traits the SNP is associated with, 140 

I is an indicator that evaluates to 1 if i,j, or i,j,k, are different and 0 otherwise. 141 

While the RBF summarizing the scenario with one causal variant for traits G and E, and 142 

a different causal variant for trait M, is: 143 

 144 

Notably, the equations for the model with no colocalization can be re-written in terms of 145 

the model with colocalization.  146 

For example,  147 

 148 

In general, the model supporting configuration h with n traits is: 149 

     150 

                       151 (2) 151 

 152 

where,

P (D|S)
P (D|S0)

is the Bayes Factor for each configuration, and

P (S)
P (S0)

is the prior odds of a configuration compared

with the baseline configuration S0.

The Regional Bayes Factors for the 15 possible scenarios using three traits G, E, M, is then:

RBFG =

QX

i=1

⇡(1)WABF
(1)
i (4)

RBFE =

QX

i=1

⇡(2)WABF
(2)
i (5)

RBFM =

QX

i=1

⇡(3)WABF
(3)
i (6)

RBFGE =

QX

i=1

⇡(1,2)WABF
(1)
i WABF

(2)
i (7)

RBFG.E =

QX

i=1

QX

j=1

⇡(1)⇡(2)WABF
(1)
i WABF

(2)
j I[i 6= j] (8)

RBFEM =

QX

i=1

⇡(2,3)WABF
(2)
i WABF

(3)
i (9)

RBFE.M =

QX

i=1

QX

j=1

⇡(2)⇡(3)WABF
(2)
i WABF

(3)
j I[i 6= j] (10)

RBFGM =

QX

i=1

⇡(1,3)WABF
(1)
i WABF

(3)
i (11)

RBFG.M =

QX

i=1

QX

j=1

⇡(1)⇡(3)WABF
(1)
i WABF

(3)
j I[i 6= j] (12)

RBFGE.M =

QX

i=1

QX

j=1

⇡(1,2)⇡(3)WABF
(1)
i WABF

(2)
i WABF

(3)
j I[i 6= j] (13)

RBFG.ME =

QX

i=1

QX

j=1

⇡(1)⇡(2,3)WABF
(1)
i WABF

(2)
j WABF

(3)
j I[i 6= j] (14)

RBFGM.E =

QX

i=1

QX

j=1

⇡(1,2)⇡(3)WABF
(1)
i WABF

(2)
i WABF

(3)
j I[i 6= j] (15)

RBFGEM =

QX

i=1

⇡(1,2,3)WABF
(1)
i WABF

(2)
i WABF

(3)
i (16)

RBFG.E.M =

QX

i=1

QX

j=1

QX

k=1

⇡(1)⇡(2)⇡(3)WABF
(1)
i WABF

(2)
j WABF

(3)
k I[i 6= j, i 6= k, j 6= k] (17)

3

where,

P (D|S)
P (D|S0)

is the Bayes Factor for each configuration, and

P (S)
P (S0)

is the prior odds of a configuration compared

with the baseline configuration S0.

The Regional Bayes Factors for the 15 possible scenarios using three traits G, E, M, is then:

RBFG =

QX

i=1

⇡(1)WABF
(1)
i (4)

RBFE =

QX

i=1

⇡(2)WABF
(2)
i (5)

RBFM =

QX

i=1

⇡(3)WABF
(3)
i (6)

RBFGE =

QX

i=1

⇡(1,2)WABF
(1)
i WABF

(2)
i (7)

RBFG.E =

QX

i=1

QX

j=1

⇡(1)⇡(2)WABF
(1)
i WABF

(2)
j I[i 6= j] (8)

RBFEM =

QX

i=1

⇡(2,3)WABF
(2)
i WABF

(3)
i (9)

RBFE.M =

QX

i=1

QX

j=1

⇡(2)⇡(3)WABF
(2)
i WABF

(3)
j I[i 6= j] (10)

RBFGM =

QX

i=1

⇡(1,3)WABF
(1)
i WABF

(3)
i (11)

RBFG.M =

QX

i=1

QX

j=1

⇡(1)⇡(3)WABF
(1)
i WABF

(3)
j I[i 6= j] (12)

RBFGE.M =

QX

i=1

QX

j=1

⇡(1,2)⇡(3)WABF
(1)
i WABF

(2)
i WABF

(3)
j I[i 6= j] (13)

RBFG.ME =

QX

i=1

QX

j=1

⇡(1)⇡(2,3)WABF
(1)
i WABF

(2)
j WABF

(3)
j I[i 6= j] (14)

RBFGM.E =

QX

i=1

QX

j=1

⇡(1,2)⇡(3)WABF
(1)
i WABF

(2)
i WABF

(3)
j I[i 6= j] (15)

RBFGEM =

QX

i=1

⇡(1,2,3)WABF
(1)
i WABF

(2)
i WABF

(3)
i (16)

RBFG.E.M =

QX

i=1

QX

j=1

QX

k=1

⇡(1)⇡(2)⇡(3)WABF
(1)
i WABF

(2)
j WABF

(3)
k I[i 6= j, i 6= k, j 6= k] (17)

3

The equations for the model with no colocalization can be re-written in terms of the model with colocalization.

Model with i traits

P (Hh|D)

P (H0|D)

=

Y

i2m

⇡(i)
QX

j=1

BF
(i)
j �

Q
i2m ⇡(i)

⇡(1,2,...M)

QX

j=1

⇡(1,2,...M)BF
(1,2,...m)
j (18)

For example, using three traits G, E, M, the RBF for non-colocalized signals above would be:

RBFG.E = RBFG ⇥RBFE � ⇡(1) ⇥ ⇡(2)

⇡(1,2)
⇥RBFGE (19)

RBFE.M = RBFE ⇥RBFM � ⇡(2) ⇥ ⇡(3)

⇡(2,3)
⇥RBFEM (20)

RBFG.M = RBFG ⇥RBFM � ⇡(1) ⇥ ⇡(3)

⇡(1,3)
⇥RBFGM (21)

RBFGE.M = RBFGE ⇥RBFM � ⇡(1,2) ⇥ ⇡(3)

⇡(1,2,3)
⇥RBFGEM (22)

RBFG.EM = RBFG ⇥RBFEM � ⇡(1) ⇥ ⇡(2,3)

⇡(1,2,3)
⇥RBFGEM (23)

RBFGM.E = RBFGM ⇥RBFE � ⇡(1,3) ⇥ ⇡(2)

⇡(1,2,3)
⇥RBFGEM (24)

RBFG.E.M = RBFG ⇥RBFE ⇥RBFM � ⇡(1) ⇥ ⇡(2) ⇥ ⇡(3)

⇡(1,2,3)
⇥RBFGEM (25)

If priors do not vary across SNPs under the same hypotheses, we can multiply the likelihoods by one common prior.

We set ⇡(1)
= ⇡(2)

= ⇡(3)
, i.e. we set the prior probability that SNP i is the causal one for each trait, to be identical,

and refer to this as p1. We also set ⇡(1,2)
= ⇡(1,3)

= ⇡(2,3)
, i.e. the prior probability that SNP i the causal one for

two traits, to be identical and refer to this as p2. We refer to the prior probability that SNP i the causal for all traits

as p3.

Then, the posterior probability supporting configuration h among H possible configurations, is:

PPh = P (Hh|D) =

P (Hh|D)

PH
i=0 P (Hi)

=

P (Hh|D)
P (H0|D)

1 +

PH
i=1

P (Hi|D)
P (H0|D)

(26)

4

The equations for the model with no colocalization can be re-written in terms of the model with colocalization.

For example, the RBF for non-colocalized signals above would be:

RBFa.b = RBFa ⇥RBFb �
⇡(1) ⇥ ⇡(2)

⇡(1,2)
⇥RBFab (18)

RBFb.c = RBFb ⇥RBFc �
⇡(2) ⇥ ⇡(3)

⇡(2,3)
⇥RBFbc (19)

RBFa.c = RBFa ⇥RBFc �
⇡(1) ⇥ ⇡(3)

⇡(1,3)
⇥RBFac (20)

RBFab.c = RBFab ⇥RBFc �
⇡(1,2) ⇥ ⇡(3)

⇡(1,2,3)
⇥RBFabc (21)

RBFa.bc = RBFa ⇥RBFbc �
⇡(1) ⇥ ⇡(2,3)

⇡(1,2,3)
⇥RBFabc (22)

RBFac.b = RBFac ⇥RBFb �
⇡(1,3) ⇥ ⇡(2)

⇡(1,2,3)
⇥RBFabc (23)

RBFa.b.c = RBFa ⇥RBFb ⇥RBFc �
⇡(1) ⇥ ⇡(2) ⇥ ⇡(3)

⇡(1,2,3)
⇥RBFabc (24)

If priors do not vary across SNPs under the same hypotheses, we can multiply the likelihoods by one common prior.

We set ⇡(1)
= ⇡(2)

= ⇡(3)
, i.e. we set the prior probability that SNP i is the causal one for each trait, to be identical,

and refer to this as p1. We also set ⇡(1,2)
= ⇡(1,3)

= ⇡(2,3)
, i.e. the prior probability that SNP i the causal one for

two traits, to be identical and refer to this as p2. We refer to the prior probability that SNP i the causal for all traits

as p3.

Then, the posterior probability supporting configuration h among H possible configurations, is:

PPh = P (Hh|D) =

P (Hh|D)

PH
i=0 P (Hi)

=

P (Hh|D)
P (H0|D)

1 +

PH
i=1

P (Hi|D)
P (H0|D)

(25)

Model with n traits

P (Hh|D)

P (H0|D)

=

Y

h2H

⇡(n)
QX

j=1

WABF
(n)
j �

Q
h2H ⇡(n)

⇡(1,2,...H)

QX

j=1

⇡(1,2,...H)WABF
(1,2,...h)
j (26)

Correlation in the e↵ect sizes

This is at page 5 of Pickrell’s paper:

Cor(Z1, Z2) = E


n0

n1n2
⇢g +

Np
N1N2

⇢

�
⇡ E


Np
N1N2

⇢

�
(27)
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 8 

where n is the number of traits considered, h is the configuration of interest out of the H 153 

possible configurations and π is the prior probability according to how many traits the 154 

SNP is associated with. 155 

We set the prior probability that a SNP is the causal one for each trait, to be identical 156 

(π(1) = π(2) = π(3)) and refer to this as p1. We also set the prior probability that a SNP is 157 

associated with two traits, to be identical (π(1,2) = π(1,3) = π(2,3)) and refer to this as p2. 158 

We refer to the prior probability that a SNP is causal for all traits as p3.  159 

Finally, the posterior probability supporting configuration h among H possible 160 

configurations, is computed: 161 

                                 162 

                          163 (3) 163 

 164 

 165 

GWAS dataset 166 

Summary statistics for genome-wide SNP association with Schizophrenia were 167 

obtained from the Psychiatric Genomics Consortium-Schizophrenia Workgroup (PGC-168 

SCZ) primary meta-analysis (35,476 cases and 46,839 controls) 9. 169 

 170 

Expression QTL (eQTL) analysis 171 

This analysis used RNA sequence data on individuals of European-ancestry (N = 172 

467) from post-mortem DLPFC (Brodmann areas 9 and 46), and imputed genotypes 173 

based on the Phase 1 reference panel from the 1,000 Genomes Project as previously 174 

described10. MatrixEQTL14 was used to fit an additive linear model between the 175 

The equations for the model with no colocalization can be re-written in terms of the model with colocalization.

For example, the RBF for non-colocalized signals above would be:

RBFa.b = RBFa ⇥RBFb �
⇡(1) ⇥ ⇡(2)

⇡(1,2)
⇥RBFab (18)

RBFb.c = RBFb ⇥RBFc �
⇡(2) ⇥ ⇡(3)

⇡(2,3)
⇥RBFbc (19)

RBFa.c = RBFa ⇥RBFc �
⇡(1) ⇥ ⇡(3)

⇡(1,3)
⇥RBFac (20)

RBFab.c = RBFab ⇥RBFc �
⇡(1,2) ⇥ ⇡(3)

⇡(1,2,3)
⇥RBFabc (21)

RBFa.bc = RBFa ⇥RBFbc �
⇡(1) ⇥ ⇡(2,3)

⇡(1,2,3)
⇥RBFabc (22)

RBFac.b = RBFac ⇥RBFb �
⇡(1,3) ⇥ ⇡(2)

⇡(1,2,3)
⇥RBFabc (23)

RBFa.b.c = RBFa ⇥RBFb ⇥RBFc �
⇡(1) ⇥ ⇡(2) ⇥ ⇡(3)

⇡(1,2,3)
⇥RBFabc (24)

If priors do not vary across SNPs under the same hypotheses, we can multiply the likelihoods by one common prior.

We set ⇡(1)
= ⇡(2)

= ⇡(3)
, i.e. we set the prior probability that SNP i is the causal one for each trait, to be identical,

and refer to this as p1. We also set ⇡(1,2)
= ⇡(1,3)

= ⇡(2,3)
, i.e. the prior probability that SNP i the causal one for

two traits, to be identical and refer to this as p2. We refer to the prior probability that SNP i the causal for all traits

as p3.

Then, the posterior probability supporting configuration h among H possible configurations, is:

PPh = P (Hh|D) =

P (Hh|D)

PH
i=0 P (Hi)

=

P (Hh|D)
P (H0|D)

1 +

PH
i=1

P (Hi|D)
P (H0|D)

(25)

Model with i traits

P (Hh|D)

P (H0|D)

=

Y

i2m

⇡(i)
QX

j=1

BF
(i)
j �

Q
i2m ⇡(i)

⇡(1,2,...M)

QX

j=1

⇡(1,2,...M)BF
(1,2,...m)
j (26)

Correlation in the e↵ect sizes

This is at page 5 of Pickrell’s paper:

Cor(Z1, Z2) = E


n0

n1n2
⇢g +

Np
N1N2

⇢

�
⇡ E


Np
N1N2

⇢

�
(27)
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expression of 15,791 genes and imputed SNP genotypes within a 1 Mb window around 176 

the transcription start site for each gene, including covariates for ancestry, diagnosis, 177 

and known and hidden variables detected by surrogate variable analysis, as described 178 

elsewhere10. Overall, the model identified 2,154,331 significant cis-eQTL, (i.e., SNP–179 

gene pairs within 1 Mb of a gene) at a false discovery rate (FDR) ≤ 5%, for 13,137 180 

(80%) genes.  181 

 182 

Methylation QTL (mQTL) analysis 183 

DNA methylation of postmortem tissue homogenates of the dorsolateral 184 

prefrontal cortex (DLPFC, Brodmann areas 9 and 46) from non-psychiatric adult 185 

Caucasian control donors (age > 13, N=121) was measured using the Illumina 186 

HumanMethylation450 (“450k”) microarray (which measures CpG methylation across 187 

473,058 probes covering 99% of RefSeq gene promoters). DNA for genotyping was 188 

obtained from the cerebella of samples with either the Illumina Human Hap 650v3,1M 189 

Duo V3, or Omni 5M BeadArrays and merged across the three platforms following 190 

imputation to the 1000 Genomes Phase 3 reference panel as previously described11. 191 

The mQTL analyses was then conducted using the R package MatrixEQTL14, fitting an 192 

additive linear model up to 20kb distance between each SNP and CpG analyzed, 193 

including covariates for ancestry and global epigenetic variation.  194 

 195 

Moloc Analysis 196 

Previous to running the analyses, the GWAS and eQTL datasets were filtered by 197 

poorly imputed SNPs (kept only SNPs with Rsq > 0.3). The Major Histocompatibility 198 
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 10 

(MHC) region (chr 6: 25 Mb - 35 Mb) was excluded from all co-localization analyses due 199 

to the extensive linkage disequilibrium. We applied a genic-centric approach, defined 200 

cis-regions based on a 50kb upstream/downstream from the start/end of each gene, 201 

since our goal is to link risk variants with changes in gene expression. We evaluated all 202 

methylation probes overlapping the cis-region. The number of cis-regions/methylation 203 

pairs is higher than the count of genes because, on average, there are more than one 204 

methylation sites per gene. Common SNPs were evaluated in the colocalization 205 

analysis for each gene, and each methylation probe, and GWAS. In total, 14,115 cis-206 

regions and 534,962 unique cis-regions/methylation probes were tested. Genomic 207 

regions were analyzed only if 50 SNPs or greater were in common between all the 208 

datasets. Across all of the analyses, a posterior probability equal to, or greater than, 209 

80% for each configuration was considered evidence of colocalization. 210 

In order to compare existing method for colocalization of two trait analyses with 211 

three traits, we applied moloc using the same region definitions, but with two traits 212 

instead of three, as well as a previously developed method (coloc2). Effect sizes and 213 

variances were used as opposed to p-values, as this strategy achieves greater 214 

accuracy when working with imputed data2.  215 

 216 

Simulations 217 

We simulated genotypes from sampling with replacement among haplotypes of 218 

SNPs with a minor allele frequency of at least 5% found in the phased 1000 Genomes 219 

Project within 49 genomic regions that have been associated with type 1 diabetes (T1D) 220 
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susceptibility loci (excluding the major histocompatibility complex (MHC) as previously 221 

described15. These represent a range of region sizes and genomic topography that 222 

reflect typical GWAS hits in a complex trait. For each trait, two, or three “causal 223 

variants” were selected at random, and a Gaussian distributed quantitative trait for 224 

which each causal variant SNP explains a specified proportion of the variance was 225 

simulated. All analyses were conducted in R.226 
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 12 

RESULTS  227 

Overview of the moloc method 228 

In this study, we demonstrate the use of moloc on three traits that have been 229 

measured in distinct datasets of unrelated individuals, GWAS (defined as G), eQTL 230 

(defined as E) and mQTL (defined as M). If we consider three traits, there can be up to 231 

three causal variants and 15 possible scenarios summarizing how the variants are 232 

shared among the traits. We can compute a probability of the data under each 233 

hypothesis by summing over the relevant configurations. Four examples of 234 

configurations are show in Figure 1. The “.” In the subscript denotes scenarios 235 

supporting different causal variants. For instance, GE summarizes the scenario for one 236 

causal variant shared between traits GWAS and eQTL (Figure 1 - Right plot top panel); 237 

GE.M summarizes the scenario with one causal variant for traits GWAS and eQTL, and 238 

a different causal variant for trait mQTL (Figure 1 - Left plot bottom panel). We then 239 

estimate the evidence in support of different scenarios using equation (3). The algorithm 240 

outputs 15 posterior probabilities. We are most interested in the scenarios supporting a 241 

shared causal variant for two and three traits, involving the eQTL trait.  242 

 243 

Sample size requirements  244 

We explored the posterior probability under different sample sizes. Figure S1 245 

illustrate the posterior probability distribution across all of the possible scenarios that 246 

includes three traits: GWAS, eQTL and mQTL.  With a GWAS sample size of 10,000 247 
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and eQTL and mQTL sample sizes of 300, the method provides reliable evidence to 248 

detect a shared causal variant behind the GWAS and another trait (median posterior 249 

probability of any hypothesis >50%). Although in this paper we analyze GWAS, eQTL 250 

and mQTL, our method can be applied to any combinations of traits, including 2 GWAS 251 

traits and an eQTL dataset. We explored the minimum sample size required when 252 

analyzing two GWAS datasets (GWAS1, GWAS2) and one eQTL (Figure S2).  The 253 

method provides reliable evidence for all hypotheses when the two GWAS sample sizes 254 

are 10,000 and eQTL sample size reaches 300.  255 

It is instructive to observe where evidence for other hypotheses is distributed. Figure 256 

2A illustrates the accuracy of our approach under different scenarios where two or three 257 

causal variants are shared. For example, under simulations of one shared variant for 258 

GWAS and eQTL and a second variant for mQTL (GE.M), on average 60% of the 259 

evidence points to the simulated scenario, while 12% point to GE, 12% to G.E.M and 260 

7.2% to GEM.   261 

We examined whether the inclusion of a third trait increases power to detect 262 

colocalization in comparison to running analysis with two traits on the same data. For 263 

the colocalization of three traits, we consider any scenarios where there is evidence of 264 

colocalization between the GWAS and eQTL datasets, i.e. GE, GE.M, GEM. We note 265 

that using only eQTL data recovers fewer colocalizations with GWAS loci when there is 266 

truly one single causal variant across the datasets (Figure 2B), providing additional 267 

support for increasing power by adding mQTLs. In this study we focus on the 268 

colocalization of GWAS with eQTL (GEM, GE.M or GE scenarios), due to smaller 269 
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sample size and limited power in the mQTL dataset.  270 

 271 

Choice of priors 272 

The algorithm requires the definition of prior probabilities at the SNP level for the 273 

association with one (p1), two (p2), or three traits (p3). We set the priors to p1 = 1 x 10-274 

4, p2 = 1 x 10-6, p3 = 1 x 10-7 based on simulations and exploratory analysis of genome-275 

wide enrichment of GWAS risk variants in eQTLs and mQTLs. We set the prior 276 

probability that a variant is associated with one trait as 1 x 10-4 for GWAS, eQTL and 277 

mQTL, assuming that each genetic variant is equally likely a priori to affect gene 278 

expression or methylation or disease. This estimate has been suggested in the literature 279 

for GWAS16 and used in similar methods6. In Figure S3, we find eQTLs and mQTLs to 280 

be similarly enriched in GWAS, justifying our choice of the same prior probability of 281 

association across the two traits. These values are also suggested by a crude 282 

approximation of p2 and p3 from the common genome-wide significant SNPs across the 283 

three dataset. 284 

We varied the prior probability that a variant is associated with all three traits in 285 

simulations (Table S1). We find that our choice of priors has good control of false 286 

positive rates under the GEM scenario (<1%) and the smallest sum across our 287 

scenarios of interests. We ran our real data analyses using different priors, and report 288 

our results under the most restrictive set of priors tested (Table S4). We note that our R 289 

package implementation allows users to specify a different set of priors.  290 
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 291 

Co-localization of eQTL, mQTL and risk for Schizophrenia 292 

We applied our method to SCZ GWAS using eQTLs derived from 467 CMC 293 

samples and mQTL from 121 individuals. Our aim is to identify the genes important for 294 

disease through colocalization of GWAS variants with changes in gene expression and 295 

DNA methylation. We analyzed associations genome-wide, and report results both 296 

across previously identified GWAS loci, and across potentially novel loci. While we 297 

consider all 15 possible scenarios of colocalization, here we focus on gene discovery 298 

due to higher power in our eQTL dataset, by considering the combined probabilities of 299 

cases where the same variant is shared across all three traits GWAS, eQTLs and 300 

mQTLs (GEM > 0.8) or scenarios where SCZ risk loci are shared with eQTL only (GE > 301 

0.8 or GE.M > 0.8) (Table 1).  We identified 1,173 cis-regions/methylation pairs with 302 

posterior probability above 0.8 that are associated with all three traits (GEM), or eQTLs 303 

alone (GE or GE.M). These biologically relevant scenarios affect overall 97 unique 304 

genes. Fifty-six out of the 97 candidate genes influence SCZ, gene expression and 305 

methylation (GEM>=0.8). One possible scenario is that the variants in these genes 306 

could be influencing the risk of SCZ through methylation, although other potential 307 

interpretations such as pleiotropy should be considered. 308 

 309 

Addition of a third trait increases gene discovery 310 

We examined whether moloc with 3 traits enhance power for GWAS and eQTL 311 

colocalization compared to using 2 traits. Colocalization analysis of only GWAS and 312 
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eQTL traits identified 11 genes with GE >= 0.8 and two genes within a previously 313 

associated SCZ LD block (FURIN and PCCB), which indicates a ~9 fold increase in the 314 

genes discovered when we consider an additional trait. The 97 genes identified with a 315 

high probability of influencing SCZ (GEM, GE, GE.M>=0.8) are listed in Table S3. The 316 

89 additional genes that were found by adding methylation include genes such as 317 

AS3MT that would have been missed by only GWAS and eQTL colocalization.  318 

 319 

Loci overlapping reported SCZ LD blocks 320 

Psychiatric Genomics Consortium (PGC) identified 108 independent loci and 321 

annotated LD blocks around these, 104 of which are within non-HLA, autosomal regions 322 

of the genome9. In Table 1 we report the number of identified gene-methylation pairs 323 

and unique genes under each scenario that overlap one of these previously defined 324 

SCZ LD blocks. We examined associations for 79 out of the 104 SCZ LD blocks. We 325 

found colocalizations in 22 (or 28%) of the SCZ LD blocks examined with an average 326 

gene density per block of 2. 12,856 gene-methylation pairs overlap the SCZ LD regions, 327 

and Figure 3A illustrates the average distribution of the posteriors across these regions. 328 

Cumulatively, 12.3% of the evidence points to shared variation with an eQTL (GE, 329 

GE.M and GEM). The majority of the evidence within these regions (62.2%) did not 330 

reach support for shared variation across the three traits, with 19% not reaching 331 

evidence for association with any traits, and 43.2% with only one of the three traits (35% 332 

with GWAS; 6.4% with eQTL, 1.8% with mQTLs). The lack of evidence in these regions 333 

could be addressed with greater sample sizes. Figure 3B shows the evidence for 334 

colocalization of GWAS with eQTL or mQTL across the forty-four candidate genes. We 335 
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provide illustrative examples of SCZ association with expression and regulatory DNA 336 

region in the FURIN locus (Figure 4 and Figure S4). 337 

 338 

Potentially novel SCZ loci 339 

We found 53 unique genes in below genome-wide significant regions (novel SCZ 340 

associations). All genes were far from a SCZ LD block (more than 50kb, Table S4), and 341 

contained SNPs with p-values for association with SCZ ranging from 10-4 to 10-9. These 342 

genes will likely be identified using just the GWAS signal if the sample size is increased. 343 

KCNN3 is among these genes which encodes an integral membrane protein that forms 344 

a voltage-independent calcium-activated channel. It regulates neuronal excitability by 345 

contributing to the slow component of synaptic afterhyperpolarization17.   346 

 347 

Comparison with previous findings 348 

Our gene discovery analysis replicate several previous results10,18–20 (Table 2). 349 

One recent study20 performed mQTL analysis on 1714 individuals from three 350 

independent sample cohorts, and used colocalization between mQTLs and SCZ GWAS 351 

to identify genomic regions associated with both schizophrenia and methylation. From 352 

their analysis, 32 methylation probes have a posterior probability of colocalizing with 353 

SCZ >=0.8. We analyzed 15 out of these methylation probes, and reproduced 7 for 354 

colocalization of GWAS and methylation (combined GEM, GM, GM.E >=0.8, 355 

cg00585072, cg02951883, cg08607108, cg08772003, cg19624444, cg26732615). 356 

Hannon et al.20 annotated these regions with 26 genes. Since we integrate eQTL 357 

information, our analysis points to specific genes responsible for these associations. 358 
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 359 

Association of gene expression with methylation 360 

DNA methylation is one the best studied epigenetic modifications. Methylation 361 

can alter gene expression by disrupting transcription factor binding sites (with variable 362 

consequences to expression depending on the TF), or by attracting methyl-binding 363 

proteins that initiate chromatin compaction and gene silencing. Therefore methylation 364 

can be associated with both increased or decreased gene expression21,22. Increased 365 

CpG methylation in promoter regions is usually associated with silencing of gene 366 

expression23. However, in genome-wide expression and methylation studies, the 367 

correlation of methylation and gene expression is low or the pattern of association is 368 

mixed, even for CpG methylation within promoter22. One challenge of examining DNA 369 

methylation with expression is the uncertainty of linking the CpG site with a specific 370 

gene, especially for CpG sites that are distal to any coding genes. To overcome this 371 

challenge, we sought to explore direction of effects of methylation and expression, for 372 

gene expression and DNA methylation that colocalize with posterior probability above 373 

0.8 (GEM, EM, and G.EM scenarios) (Table 1). Overall, we tested 2,227 DNA 374 

methylation and gene expression pairwise interactions and found a significant negative 375 

correlation between the effect sizes of methylation and expression in the proximity of 376 

the transcription start site (Figure 5).  377 
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DISCUSSION 378 

In this paper, we propose a statistical method for integrating genetic data from 379 

molecular quantitative trait loci (QTL) mapping into genome-wide genetic association 380 

analysis of complex traits. The proposed approach requires only summary-level 381 

statistics and provides evidence of colocalization of their association signals. To our 382 

knowledge, a method integrating more than two traits is lacking. In contrast to other 383 

methods that attempt to estimate the true genetic correlation between traits such as LD 384 

score regression24 and TWAS5, moloc focuses on genes that are detectable from the 385 

datasets at hand. Thus, if the studies are underpowered, most of the evidence will lie in 386 

the null scenarios.  387 

We expose one possible application of this approach in SCZ. In this application, 388 

we focus on scenarios involving eQTLs and GWAS, alone or in combination with 389 

mQTLs. Other scenarios are also biologically important. For example, colocalization of 390 

GWAS and mQTL excluding eQTLs (GM.E scenario) could unveil important methylation 391 

mechanisms affecting disease but not directly influencing gene expression in cis. We 392 

report these and other scenarios in our web resource and encourage further 393 

examination of these cases in future analyses. The GEM scenario provides evidence 394 

that SCZ risk association is mediated through changes in DNA methylation and gene 395 

expression. While our method does not detect causal relationships among the 396 

associated traits, i.e. whether risk allele leads to changes in gene expression through 397 

methylation changes or vice versa, there is evidence supporting the notion that risk 398 

alleles might affect transcription factor binding and epigenome regulation that drives 399 

downstream alterations in gene expression21,25. 400 
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We provide posterior probabilities supporting respective hypotheses for each 401 

gene-methylation pair analyzed, and the SNP for each trait with the highest probability 402 

of colocalization with any other trait. For example, the SNP with the highest posterior 403 

probability of GWAS colocalization with eQTL or mQTL will be computed from PPA of 404 

GE + GE.M + GM + GM.E + GEM. However, the aim of this method is not fine-mapping 405 

of SNPs and we encourage researchers to further analyze the identified local 406 

associations with methods better suited for fine-mapping. 407 

We assign a prior probability that a SNP is associated with one trait (1 x 10-4), to 408 

two (1 x 10-6), and to three traits (1 x 10-7). We have shown with simulations that these 409 

are reasonable choices for the particular datasets at hand. Moreover, we prove that 410 

eQTL enrichment in GWAS has a similar enrichment to mQTL in GWAS, however the 411 

choices are arguable. One solution is to estimate priors for the different combinations of 412 

datasets. Pickrell et al.3 proposed estimation of enrichment parameters from genome-413 

wide results maximizing a posteriori estimates for two traits. For multiple traits, another 414 

possibility is using deterministic approximation of posteriors26. We leave these 415 

explorations to future research. 416 

We note that this approach can be extended to more than three traits. However, 417 

the number of possible combinations increases exponentially as the number of traits 418 

increases, therefore computation time is a limiting factor and realistically it works well for 419 

up to four traits. Owing to the increasing availability of summary statistics from multiple 420 

datasets, the systematic application of this approach can provide clues into the 421 

molecular mechanisms underlying GWAS signals and how regulatory variants influence 422 

complex diseases.  423 
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WEB RESOURCES 462 

We developed a web site to visualize the colocalization results of SCZ GWAS, eQTL, 463 

mQTLs under all possible scenarios (icahn.mssm.edu/moloc).  The browser allows 464 

searches by gene, methylation probe, and scenario of interest. The moloc method is 465 

available as an R package from https://github.com/clagiamba/moloc.  466 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2017. ; https://doi.org/10.1101/155481doi: bioRxiv preprint 

https://doi.org/10.1101/155481
http://creativecommons.org/licenses/by/4.0/


 23 

FIGURE TITLES AND LEGENDS 467 

 468 

Figure 1. Graphical representation of four possible configurations at a locus with 8 469 

SNPs in common across three traits. The traits are labeled as G, E, M representing 470 

GWAS (G), eQTL (E), and mQTL (M) datasets, respectively. Each plot represents one 471 

possible configuration, which is a possible combination of 3 sets of binary vectors 472 

indicating whether the variant is associated with the selected trait. Left plot top panel 473 

(GEM scenario): points to one causal variant behind all of the associations; Right plot 474 

top panel (GE scenario): represent the scenario with the same causal variant behind the 475 

GE and no association or lack of power for the M association; Left plot bottom panel 476 

(GE.M scenario): represents the case with two causal variants, one shared by the G 477 

and E, and a different causal variant for M; Right plot bottom panel (G.E.M. scenario): 478 

represents the case of three distinct causal variants behind each of the datasets 479 

considered. 480 
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 481 

 482 

Figure 2. A. Results from simulations under colocalization/non-colocalization scenarios 483 

using a sample size of 10,000 individuals for GWAS trait (denoted as G), 300 for eQTL 484 

trait (denoted as E), and 300 for mQTL trait (denoted as M). X-axis shows all 15 485 

simulated scenarios, e.g. G.E.M, three different causal variants for each of the three 486 

traits; G.EM, 2 different causal variants, one for G and one shared between E and M; 487 

GE, 1 shared causal variant for G and E; GE.M, 2 different causal variants, one shared 488 

between G and E and one for M; GEM, one causal variant shared between all the three 489 

traits. The x-axis shows the distribution of posterior probabilities under the simulated 490 

scenario. B. Venn diagram comparing number of colocalization of two traits (coloc PPA 491 

>=80%) with three traits (moloc PPA GE + GE.M + GEM) in simulations with one causal 492 

variant shared between all the three traits (GEM). Results include 887 out of 1,000 493 

simulations passing 80% threshold for colocalization. The variance explained by the trait 494 

is 0.01 for GWAS (1%), and 0.1 (10%) for the eQTL and mQTL. 495 
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 496 

  497 

 498 

Figure 3. Summary of genes identified using three-trait colocalization within the SCZ LD 499 

blocks. A. Mean posterior probability for each hypotheses computed using the cis-500 

regions overlapping the SCZ LD blocks. Sections of the pie chart represent the 15 501 

scenarios representing the possible combination of the three traits. The “.” between the 502 

traits denotes scenarios supporting different causal variants. The combined scenarios 503 

GE, GE.M, GE account for 12.3%. B. Heatmap displaying the maximum posterior 504 
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probabilities reached by the 44 regions overlapping known SCZ LD blocks (gene, 505 

number of methylation probes). 506 

 507 

Figure 4. Illustration of one example of colocalization results with GWAS-eQTL-mQTL. 508 

FURIN gene and cg24888049; Shown are Z-scores (regression coefficients/standard 509 

errors) from association of expression (x-axis) and association of methylation (y-axis) at 510 

the FURIN locus. The red point shows the SNP with the strongest evidence for eQTL, 511 

mQTL, GWAS (rs4702).  512 
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 514 

Figure 5. Spearman correlation of eQTL and mQTL effect estimates by distance from 515 

transcription start site of the gene. Intervals of methylation probe distance from TSS 516 

were estimated based on 10 equal size bins.    517 
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 524 

TABLE TITLES AND LEGENDS 525 

Table 1. Number of genes with evidence of colocalization (PPA>=0.8) under each 526 

scenario. 527 

Scenarios Sharing of variant Unique gene-
methylation pairs 

Unique genes 
 

  Total 
PPA>=80% 

Total 
PPA>=80% 

Overlapping 
SCZ LD 
blocks 

Number of 
LD blocks 

Null No associations 290,850 10,667 92 56 

G GWAS only 4,445 222 149 63 

E eQTL only 116,674 4,427 16 13 

M mQTL only 23,662 6,150 41 28 

G.E GWAS not eQTL (2 
causals) 

1,501 77 54 27 

E.M eQTL not mQTL (2 
causals) 

8,713 2,324 7 6 

G.M GWAS not mQTL (2 
causals) 

241 81 54 26 

GE GWAS,eQTL 389 34 19 15 

EM eQTL,mQTL 1,724 893 3 3 

GM GWAS,mQTL 38 23 18 10 

GM.E GWAS,mQTL not eQTL 
(2 causals) 

21 12 8 5 

G.EM eQTL,mQTL not GWAS 
(2 causals) 

24 12 8 4 

GE.M GWAS,eQTL not mQTL 
(2 causals) 

35 18 10 7 

G.E.M not GWAS not eQTL not 
mQTL (3 causals) 

72 33 26 15 

GEM GWAS,eQTL,mQTL 127 56 27 12 

GEM or GE.M 
or GE 

combined scenarios for 
GWAS,eQTL 

1,173 97 44 22 

total total 534,962 14,115 291 78 

 528 

Table 2. Summary of Previous Findings integrating SCZ GWAS, CMC eQTL and 529 

methylation datasets.  530 
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Method Used CMC10 SMR27 SMR 28 TWAS18 COLOC20 
Scenarios 

examined in our 
analysis 

22 9 GWAS+eQTL: 26 GWAS+eQTL: 35 
GWAS+eQTL+mQTL: 8 

GWAS+
mQTL: 

15 
Validated 

scenarios (%) at 
PPA 0.8 

13 (59%) 4 (44.4%) 22 (85%) GWAS+eQTL: 21 (60%) 
GWAS+eQTL+mQTL: 6 (75%) 

7 (46%) 

Genes validated SF3B1, 
C2orf47, 
CNTN4, 
CLCN3, 

ENSG00000
253553, 

PPP1R13B, 
EFTUD1P1, 
ENSG00000

225151, 
FURIN, 
INO80E, 
TOM1L2, 

DRG2, 
MAU2, 

GATAD2A, 
WBP2NL 

SF3B1, 
PCCB, 

C17ORF3
9, IRF3 

AL022476.2, 
ALMS1P, CLCN3, 
DOC2A, DRG2, 

EFTUD1P1, 
ELAC2, EMB, 
FAM86B3P, 

FURIN, 
GATAD2A, 

GOLGA2P7, 
INO80E, JRK, 

PCCB, PCDHA7, 
RBBP5, RP11-

45P15.4, SF3B1, 
SLC9B1, 

SLCO4C1, 
VPS37A 

GWAS+eQTL: 
ALMS1P ,C2orf47, CPNE7, 
DOC2A, DRG2, ELOVL7, 
EMB, FURIN, GATAD2A, 
MAU2, MCHR1, NDUFA2, 
NT5C2, PCCB, PCDHA2, 
PRMT7, SEPT10, SF3B1, 

SLC45A1, TMEM81, ZMAT2 
GWAS+eQTL+mQTL: 

SLC45A1,PCCB,NDUFA2,PC
DHA2,ZMAT2,PRMT7 

 

cg005850
72 and 

PCDHA8, 
PCDHA2, 
PCDHA7; 
cg012626

67 and 
ENSG00
0002676

29; 
cg029518

83 and 
MAD1L1;  
cg086071

08 and 
MAD1L1; 
cg196244

44 and 
MAD1L1; 
cg087720

03 and 
AS3MT,C
10orf32; 

cg267326
15 and 

GATAD2
A, 

YJEFN3 
 531 

 532 

  533 
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