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Summary 

Protein complexes are responsible for the bulk of activities within the cell, but how 

their behavior and composition varies across tumors remains poorly understood. By 

combining proteomic profiles of breast tumors with a large-scale protein-protein 

interaction network, we have identified a set of 258 high-confidence protein 

complexes whose subunits have highly correlated protein abundance across tumor 

samples.  We used this set to identify complexes that are reproducibly under- or over-

expressed in specific breast cancer subtypes. We found that mutation or deletion of 

one subunit of a complex was often associated with a collateral reduction in protein 

expression of additional complex members. This collateral loss phenomenon was 

evident from proteomic, but not transcriptomic, profiles suggesting post-

transcriptional control. Mutation of the tumor suppressor E-cadherin (CDH1) was 

associated with a collateral loss of members of the adherens junction complex, an 

effect we validated using an engineered model of E-cadherin loss. 
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Introduction 

Multi-subunit protein complexes are responsible for the bulk of the functionality of 

the cell (Alberts, 1998; Hartwell et al., 1999). Despite their importance to cellular 

function, relatively little is known about how the functionality and composition of 

protein complexes is altered in different cancer subtypes or in individual cancer 

patients. Recent examples in breast cancer suggest that even ‘housekeeping’ 

complexes traditionally thought of as constitutively active and essential in all cell 

types, such as the ribosome and the spliceosome, may become differentially expressed 

or differentially essential in specific contexts (Hsu et al., 2015; Pozniak et al., 2016). 

Consequently there is a great need to characterise the altered behavior of protein 

complexes in cancer.  

 

Largely for technical and economic reasons, the large-scale molecular profiling of 

tumors performed over the past decade has focused on characterising changes at the 

genomic and transcriptomic level. Transcriptomic measurements are often used as a 

proxy measurement for protein expression, but most genes display only a moderate 

correlation between their mRNA and protein expression levels (Liu et al., 2016; 

Vogel and Marcotte, 2012), e.g. an average correlation of ~0.4 between mRNA and 

protein abundance was reported in two recent large-scale studies (Mertins et al., 2016; 

Zhang et al., 2016). Moreover, this correlation varies considerably between genes, 

with members of large protein complexes such as the ribosome and spliceosome 

reported to have significantly lower mRNA-protein correlation than average (Mertins 

et al., 2016; Zhang et al., 2016). Taken together, these observations suggest that 

efforts to understand altered protein complex functionality must rely on more direct 

measurements of protein expression. Reverse-phase protein array (RPPA) analyses 
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have been used to quantify the expression of proteins and phosphoproteins in 

thousands of tumor samples, but typically these analyses only assess the abundance of 

~200 (phospho)proteins and primarily focus on proteins involved in specific signaling 

networks (Akbani et al., 2014), limiting their wider utility for understanding protein 

complex regulation. Recently, advances in mass-spectrometry have enabled the 

quantification of thousands of proteins across large numbers of samples (Mertins et 

al., 2016; Pozniak et al., 2016; Riley et al., 2016; Tyanova et al., 2016; Zhang et al., 

2014). These datasets permit, for the first time, a large-scale assessment of the 

behavior of protein complexes across different tumor samples and between different 

tumor types. 

 

Here, we explore the behavior of protein complexes across 77 breast tumor proteomes 

(Mertins et al., 2016). We find that proteins belonging to the same complex tend to 

display correlated protein expression profiles across tumor samples, significantly 

more so than can be observed using mRNA expression profiles. We exploit this 

phenomenon by integrating a large-scale protein-protein interaction network with 

proteomic profiles of tumor samples to identify a set of protein complexes that are 

coherently expressed across breast tumor proteomes (BrCa-Core). These include 

examples of well-characterised complexes as well as those that are less well studied. 

As compared to a literature-curated set of protein complexes, the BrCa-Core 

complexes display higher correlation across additional proteomic and functional 

datasets. We find a number of instances where these complexes are reproducibly 

over- or under-expressed in specific breast cancer subtypes defined by hormone 

receptor status.  
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In assessing the BrCa-Core complexes, we find multiple instances where loss of one 

protein complex subunit, via gene mutation or homozygous deletion, is associated 

with reduced expression of additional complex subunits. This collateral subunit loss 

phenomenon suggests that recurrent mutations or deletions impact not only individual 

proteins but also the complex that they belong to. In all cases identified, this reduction 

of expression is evident at the protein but not mRNA level, suggesting post-

transcriptional mechanisms are responsible. A notable example of this phenomenon 

involves E-Cadherin (CDH1), a tumor suppressor recurrently mutated in breast cancer 

(Berx et al., 1995). We find that loss of E-cadherin is associated with a reduction in 

protein expression of multiple members of an adherens junction complex to which it 

belongs. In CDH1 mutant tumor samples, the overall expression of E-cadherin 

associated complex members is reduced. We replicate this finding in a CDH1 mutant 

isogenic cell line, which confirms that E-cadherin loss plays a causative and not just 

correlative role in this reduction of expression.  

 

Results 

Similarity of co-expression profiles is highly predictive of protein complex 

membership 

We first wished to assess whether known protein complexes are coherently regulated 

across tumor proteomes. Using the CORUM manually curated set of human protein 

complexes (Ruepp et al., 2010) and 77 protein expression profiles from the Cancer 

Genome Atlas (TCGA) breast cancer proteomics project (Mertins et al., 2016) we 

found that the average correlation between protein pairs in the same complex was 

significantly higher (Pearson’s r = 0.23) than that between random protein pairs 

(Pearson’s r = 0.03). We used a receiver operating characteristic (ROC) curve to 
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assess the relationship between the similarity of protein-expression profiles and the 

likelihood of two proteins belonging to the same protein complex (Figure 1A). In 

comparison to the correlation observed using mRNA expression profiles, protein 

expression profiles were significantly more predictive of co-complex membership 

(Figure 1A) (Area Under the ROC Curve (AUC) 0.70 vs AUC 0.61). This observation 

is consistent with recent work that found, using tumor profiles, that protein co-

expression was more predictive of general functional similarity than mRNA co-

expression (Wang et al., 2017). Although co-expression calculated over the same 

number of samples suggested a significant advantage of proteomic profiles over 

mRNA profiles, the number of existing tumor with mRNA profiles far exceeds the 

number with proteomic profiles. Consequently it was important to determine whether 

the relatively small number of existing breast tumor proteomes (n = 77) could be used 

to predict co-complex membership with greater accuracy than the full set of TCGA 

tumor samples with mRNA profiles available (n=1,100)(Ciriello et al., 2015). We 

found that even with ~14 times as many mRNA profiles as proteomic profiles the 

proteomic profiles still outperformed mRNA in predicting co-complex membership 

(AUC 0.70 vs 0.64, Figure 1). This suggested that post-transcriptional processes such 

as translation and protein turnover may significantly contribute to maintaining the 

stoichiometry of protein complexes.  

 

While in general the expression of different subunits within the same CORUM 

complex was highly correlated, this was not the case for all complexes examined, 

suggesting that not all complexes are coherently regulated to a similar degree in breast 

cancer (Figure 1B). For example the MCM complex (Ishimi et al., 1996) had an 

average Pearson’s correlation of 0.96 between the protein expression profiles of its 
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subunits, while the GAIT complex (Sampath et al., 2004) had an average correlation 

between subunits of -0.04. Moreover, visual exploration of the expression data 

suggested that there were highly-correlated groups of proteins corresponding to 

known complexes that were absent from the CORUM curated set. With these issues 

in mind, for further analysis we elected to use a data-driven approach to identify 

protein complexes coherently regulated in breast cancer (Figure 2). 

  

A compendium of protein complexes co-regulated in breast tumors 

We hypothesized that by integrating large-scale protein-protein interaction networks 

with proteomic profiling we could identify protein complexes coherently regulated in 

breast tumors. We first constructed a large network of protein-protein interactions by 

integrating literature curated interaction databases (Chatr-Aryamontri et al., 2016; Das 

and Yu, 2012) with recently generated large scale high-throughput protein interaction 

maps (Havugimana et al., 2012; Hein et al., 2015; Huttlin et al., 2015; Wan et al., 

2015). This approach generated an integrated network containing ~83,000 interactions 

between ~12,000 individual proteins (Figure 2). 

 

To identify sets of genes that are densely connected on this network and display 

highly correlated expression profiles across multiple tumor samples we developed a 

machine learning approach that integrated the protein-protein interaction network 

with proteomic expression profiles from 77 breast tumors (Mertins et al., 2016) 

(Figure 2, methods). Using this approach we identified a high-confidence set of 258 

complexes encompassing 1,059 distinct proteins (Figure S1, Table S1). We refer to 

this set of complexes throughout as BrCa-Core 1-258. The identified complexes range 

in size from 2 subunits to 43 subunits (mean size = 4.1) with the largest complex 
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corresponding to the cytosolic ribosome (BrCa-Core 1). Just over half of the BrCa-

Core complexes (n=131) significantly overlap with literature curated complexes 

annotated in CORUM (adjusted p-value < 0.05), including the COP9 signalosome 

(Figure 3A, BrCa-Core 17) (Seeger et al., 1998) and the conserved oligomeric Golgi 

(COG) complex (Figure 3B, BrCa-Core 14) (Ungar et al., 2002). Some of the BrCa-

Core complexes encapsulated protein complexes already annotated in CORUM along 

with additional subunits – for example BrCa-Core 47 included the CORUM annotated 

origin-recognition 2-5 complex (ORC 2-5) (Dhar and Dutta, 2000) with the addition 

of LWRD1 (also known as ORCA); ORCA interacts with the ORC complex and 

stabilizes binding of the complex to chromatin (Shen et al., 2010) (Figure 3C). 

Complexes identified in BrCa-Core but absent from the CORUM human complex set 

include the COPI-vesicle coat complex (Figure 3D, BrCa-Core 25), a variant of the 

endosome-associated recycling protein (EARP) complex that includes all four EARP 

subunits along with the more recently identified EARP interactor TSSC1 (Gershlick 

et al., 2016; Schindler et al., 2015)(Figure 3E, BrCa-Core 48), and a complex 

containing the majority of subunits of the newly identified ‘Commander’ 

(COMMD/CCDC22) complex (Figure 3F, BrCa-Core 26) (Starokadomskyy et al., 

2013) not included in CORUM but recently shown to be highly conserved across 

metazoans (Wan et al., 2015).  

 

The majority of BrCa-Core complexes have significant overlap with specific Gene 

Ontology Cellular Component and Biological Process terms, suggesting common 

localization and functionality respectively (196 complexes enriched in GO-CC terms, 

218 enriched in GO-BP terms, both at adjusted p-value < 0.05) (Table S1). Like 

known protein complexes, pairs of proteins assigned to the same BrCa-Core complex 
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were significantly more likely than random protein pairs to be frequently mentioned 

together in the literature (Odds-Ratio 176, p < 1x10-16, Fisher’s exact test) and to 

display similar patterns of conservation across species (Odds-Ratio 280, p < 1x10-16, 

Fisher’s exact test). When pairs of proteins annotated to the same CORUM complex 

were excluded from this analysis, i.e. when analyzing only new co-complex pairs 

identified within BrCa-Core set, we still observed a significant enrichment for protein 

pairs to be frequently mentioned together in the literature (Odds-Ratio 95, p < 1x10-16, 

Fisher’s exact test) and to display similar patterns of conservation across species 

(Odds-Ratio 335, p < 1x10-16, Fisher’s exact test). This suggests that the newly 

identified complexes display similar functional cohesion to those in the CORUM 

database. 

 

As our method exploited the correlation between protein expression profiles to 

identify complexes, we expected the average correlation across the TCGA BrCa 

proteomes within the BrCa-Core complexes to be significantly higher than random 

protein pairs. This was indeed the case with an average correlation of 0.62 compared 

to an expected correlation of 0.03. This correlation was significantly higher than the 

average of pairs in our integrated protein interaction network (0.12) or pairs within 

CORUM complexes (0.23). To assess whether the same higher correlation could be 

observed in additional tumor proteomic resources we analyzed two additional breast 

tumor proteomic datasets (Pozniak et al., 2016; Tyanova et al., 2016). Tyanova et al 

contains proteomic profiles of 40 tumor samples from diverse breast cancer subtypes, 

while Pozniak et al contains proteomes of 66 primary luminal-subtype breast tumors 

or metastatic lesions. Again the average within BrCa-Core correlation was 
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significantly higher in these datasets than the correlation observed between CORUM 

complex pairs or among random protein-protein interaction pairs (Table 1). 

 

The tendency of pairs of proteins within the same complex to display similar 

phenotypes when inhibited has been well established in the literature, especially in 

model organisms such as budding yeast and Caenorhabditis elegans (Sharan et al., 

2007; Wang and Marcotte, 2010). This phenomenon has been used to predict novel 

phenotypes for members of protein complexes via the ‘guilt-by-association’ principle 

(Sharan et al., 2007; Wang and Marcotte, 2010). To assess whether the BrCa-Core 

complexes also displayed a similar tendency, we analyzed the results of a recently 

published large-scale shRNA screen in 77 breast tumor cell lines (Marcotte et al., 

2016). This screen measured the cell growth inhibition effects of shRNAs targeting 

~16,000 genes in each cell line. We expected that shRNAs targeting members of the 

same complex would display correlated essentiality profiles (i.e. would inhibit tumor 

cell lines in a similar fashion) and we found that this is indeed the case. Pairs of 

proteins in the same BrCa-Core complex displayed a significantly higher correlation 

(~0.25) than random pairs (~0.0) and than pairs annotated to the same CORUM 

complex (~0.14), suggesting that they are more phenotypically similar (Table 1). 

 

It is reasonable to ask why the majority of CORUM protein complexes were not more 

highly co-expressed across samples. If all members of the complex function as a 

single unit, why would they not display highly correlated protein expression? One 

explanation is that protein complexes exist in multiple isoforms, with the exact 

composition varying across cell types and conditions. Consequently pairs of proteins 

within the same complex may display lower than expected correlation due to one of 
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them functioning in additional protein complexes. Indeed in the CORUM the average 

protein belongs to 3 distinct complexes, while by design in BrCa-Core each protein 

was assigned to a single complex based on highly correlated expression with other 

members. Previous work in yeast has suggested that the subunits of protein complexes 

can be divided into two groups - cores (proteins found in the majority of complex 

isoforms) and attachments (proteins found in a small number of isoforms)(Gavin et 

al., 2006). Some pairs of attachment proteins are often found together in multiple 

complexes, and these have been referred to as ‘modules’(Gavin et al., 2006). One 

explanation for the higher correlation seen within the BrCa-Core complexes is that 

they preferentially identify sets of core proteins or modules. Consistent with this we 

found that pairs of proteins annotated together in two or more CORUM complexes 

(suggesting they resemble ‘modules’) were significantly more likely to be identified 

together in a BrCa-Core complex (Odds-Ratio = 2.2) as were pairs always found in 

the same CORUM complex (consistent with them being either ‘modules’ or 

‘cores’)(Odds-Ratio =1.8). 

 

Differential expression of protein complexes in breast cancer subtypes 

At the molecular level breast cancer is a very heterogenous disease, with each tumor 

displaying a unique genetic and epigenetic profile. Despite this heterogeneity, 

molecular biomarkers can be used to classify tumors with similar molecular profiles 

into subtypes (Onitilo et al., 2009; Perou et al., 2000; Sorlie et al., 2001). These 

molecular subtypes, to some extent, display different survival outcomes and different 

responses to targeted therapies (Onitilo et al., 2009; Perou et al., 2000; Sorlie et al., 

2001). Although a variety of subtypes have been defined using mRNA expression 

profiles and/or genomic classifiers, the biomarkers used most commonly in the clinic 
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are the estrogen receptor (ER), progesterone receptor (PR) and human epidermal 

growth factor receptor 2 (ERBB2/HER2), often measured using 

immunohistochemistry (IHC) (Onitilo et al., 2009). The status of these markers can be 

used to classify breast tumors into four broad subtypes – triple negative (TNBC, ER-

/PR-/HER2-), HER2 positive (ER-/PR-/HER2+), ER+/PR+/HER2- and ER+/PR+/HER2+ 

(Onitilo et al., 2009). Respectively, these subtypes somewhat overlap with Basal, 

HER2+, Luminal A and Luminal B “intrinsic” subtypes defined using mRNA 

expression profiles (Onitilo et al., 2009; Perou et al., 2000; Sorlie et al., 2001). To 

better understand how breast cancer subtypes might influence protein complexes (and 

vice-versa) we assessed the relationship between BrCa-Core protein complex 

expression and IHC-defined subtypes.  To enable the identification of reproducible 

associations between subtypes and protein complex abundance we focused on those 

subtypes with reasonable representation in both the TCGA Mertins et al (Mertins et 

al., 2016) resource and the dataset of Tyanova et al(Tyanova et al., 2016). As 

Tyanova et al has only 2 samples that are ER+/PR+/HER2+ we excluded samples of 

this subtype from our analysis, and focussed on three subtypes common to both 

resources – HER2+ (ER-/PR-/HER2+), ER+ (ER+/PR+/HER2-) and triple negative (ER-

/PR-/HER2-). 

 

Using the TCGA dataset and the BrCa-Core complexes, we discovered 82 

associations between subtype and complex abundance at a false discovery rate (FDR) 

of 10% (Table S2, Figure S2). At the same FDR threshold we found 7 associations 

using the CORUM complex set, highlighting the advantage of using BrCa-Core for 

this analysis. Due to differences in coverage of protein complex subunits, not all of 

the 82 associations could be tested in the Tyanova et al dataset (Tyanova et al., 2016). 
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Of the 59 associations that could be tested 27 were observed in the Tyanova et al 

dataset at the same FDR of 10% (Table S2). In general the effect sizes and directions 

across the two datasets were highly correlated (Spearman’s r = 0.69, p < 1x10-8) 

suggesting that with larger sample sizes additional associations between subtype and 

complex abundance could be replicated. Examples of differentially expressed 

complexes replicated in the Tyanova et al dataset are presented in Figure 4. Triple-

negative breast tumors were associated with increased expression of a number of 

complexes involved in DNA replication including the replication factor C complex 

(BrCa-Core 21) and the MCM complex (BrCa-Core 28) (Figure 4). Different 

members of the MCM complex (MCM2 and MCM4) have previously been identified 

as markers of proliferation, associated with poorer survival outcomes in breast cancer 

and shown to have higher expression in ER negative breast tumors (Joshi et al., 2015; 

Kwok et al., 2015). ER+ tumors were associated with decreased expression of two 

complexes involved in antigen processing (BrCa-Core 59 and 193) consistent with 

data suggesting that expression of antigen presentation human leukocyte 

antigen (HLA) molecules is lower in the ER+ subtype (Chung et al., 2017; Lee et al., 

2016). HER2+ tumors were associated with increased expression of two complexes 

involved in Golgi transport associated vesicle coating (BrCa-Core 25 and 42). It is not 

immediately obvious why HER2 amplification would be associated with an increased 

expression of complexes involved in vesicle transport, but the association is evident 

across both patient cohorts (Figure 4, Figure S2, Table S2). 

 

The impact of subunit loss on protein complex expression 

An implication of highly correlated protein expression within a protein complex is 

that loss of protein expression of one subunit might frequently be associated with 
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reduced protein expression of other complex subunits (Figure 5A). Such a reduction 

in expression may occur through reduced transcription, reduced translation, or an 

increase in protein degradation. Consequently genetic events that reduce protein 

expression of one subunit, such as mutation or homozygous deletion, may be 

associated with a collateral reduction (in trans) of protein expression of other subunits 

or indeed the entire complex (Figure 5A). To test whether this is the case we 

identified five genes that are members of BrCa-Core complexes whose mutation or 

deletion is associated with a nominally significant (p < 0.05, Mann Whitney U test) 

reduction in expression of their encoded proteins (CDH1 (E-cadherin), PBRM1, 

CYFIP2, GLUD1, EXOC2). We then asked whether mutation or deletion of these 

genes was also associated with overall reduction in protein expression of the complex 

that they belong to. In all five cases we found that loss of one subunit was associated 

with a reduction in the protein expression of additional complex subunits. For 

instance homozygous deletion or mutation of EXOC2 was associated with decreased 

proteomic abundance of EXOC2 and an overall reduction in the protein expression of 

multiple members of the exocyst complex (Matern et al., 2001) to which it belongs 

(including EXOC3, EXOC6, EXOC7, and EXOC8) (Figure 5B, BrCa-Core 27). 

While loss of EXOC2 was also associated with a reduction of EXOC2 mRNA 

expression, no reduction was observed for other protein complex subunits at the 

mRNA level (Figure S3A) suggesting that the reduction in protein expression levels is 

caused by post-transcriptional mechanisms. Furthermore, the correlation between 

complex subunits was significantly higher at the protein expression than mRNA level 

(Figure S4A) suggesting these post-transcriptional mechanisms may contribute to the 

coherent protein expression of the complex. Similarly we found that mutation/deletion 

of PBRM1, a component of the PBAF chromatin remodeling complex most frequently 
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mutated in renal carcinoma (Varela et al., 2011), was associated with a reduction of 

the expression of a complex containing the additional PBAF subunits SMARCC2, 

ARID2 and BRD7 (Kaeser et al., 2008) (Figure 5A, BrCa-Core 60). Again this 

reduced expression was evident at the protein but not mRNA level (Figure S3B) and 

the within complex correlation was significantly higher using protein rather than 

mRNA expression profiles (Figure S4B). Most intriguingly we found that mutation of 

the tumor suppressor CDH1 (E-cadherin) was associated with a decreased abundance 

of both the E-cadherin protein and additional members of an adherens junction 

complex to which it was assigned in BrCa-Core (BrCa-Core 30). All proteins in this 

complex have highly correlated protein expression with E-cadherin (average 

Pearson’s correlation 0.65, Figure S4C) and four of the complex subunits (E-cadherin, 

CTNNA1, CTNNB1, and CTNND1) have a significant (Mann-Whitney p < 0.05) 

decrease in expression in CDH1 mutant samples (Figure 5D). In contrast, the average 

mRNA correlation of all subunits with CDH1 was low (Pearson’s correlation 0.08, 

Figure S4C) with one subunit (CTNNB1) displaying weakly negative correlation with 

E-cadherin (Pearson’s correlation -0.16, Figure S4C). None of the subunits other than 

E-cadherin itself display a significant relationship between CDH1 mutation status and 

mRNA expression. As loss of E-cadherin is a major driver event in breast cancer, 

mutated in ~11% of all breast tumors and over 50% of invasive lobular breast tumors 

(Berx et al., 1995; Ciriello et al., 2015; Michaut et al., 2016), we focused on the 

consequences of CDH1 loss for further analysis.  

 

E-cadherin loss causes reduced expression of adherens junction complex 

members 
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Our initial analysis of the 77 tumor samples with mass-spectrometry derived 

proteomic profiles available suggested that CDH1 mutation is associated with a 

decrease in the proteomic abundance of E-cadherin itself and additional members of 

the adherens junction complex to which it is assigned in BrCa-Core (BrCa-Core 30). 

Three of the proteins in this complex (E-cadherin / CTNNA1 / CTNNB1) have also 

been measured using the RPPA method permitting us to assess the impact of CDH1 

mutation on protein abundance measured using an orthogonal approach. RPPA 

measurements were available for E-cadherin and CTNNB1 in 760 tumor samples and 

CTNNA1 for 64 tumor samples. We found that CDH1 mutation was associated with a 

significant reduction in abundance of all three proteins (Figure 6A). In contrast, when 

looking at mRNA expression, we found that CDH1 mutation was associated with 

reduced expression of CDH1 itself but no reduction in mRNA expression of CTNNA1 

or CTNNB1. This suggests that E-cadherin loss is associated with a reduction in the 

abundance of other complex subunits via post-transcriptional mechanisms (e.g. 

reduced translation or increased degradation).  

 

One limitation of this analysis is that it identifies correlative rather than causal 

associations – it demonstrates that loss of one subunit is associated with reduced 

expression of other subunits, but it does not demonstrate a causal effect. It is of course 

possible that some additional factor causes reduction in expression of the entire 

adherens junction complex rather than the mutation of a single subunit such as CDH1. 

To establish causality we used mass spectrometry to measure differential protein 

expression in a pair of isogenic breast cancer cell lines (MCF7) with CRISPR-Cas9 

engineered CDH1 loss (Bajrami et al, submitted). CDH1 mutations in breast tumors 

frequently occur in lobular breast tumors, which tend to be ER+, have a luminal A 
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intrinsic subtype and often harbor PIK3CA mutations (Ciriello et al., 2015). We 

therefore inactivated CDH1 in the MCF7 cell line, which is ER+, luminal A, and 

PIK3CA mutant (Bajrami et al, submitted). We performed label-free protein 

quantification of whole protein lysates in parental (CDH1 wild type) and CDH1 

defective daughter cells. This resulted in the quantification of ~5,100 proteins (Table 

S3). We found 91 proteins with significantly lower protein abundance in the E-

cadherin defective model (p < 0.005, FDR = ~8%) including five of the six adherens 

junction complex subunits (E-cadherin, CTNNA1, CTNNB1, CTNND1, JUP) (Figure 

6B), suggesting that CDH1 mutation plays a causative role in the reduction of their 

protein abundance. In contrast to what we observe in the tumor proteomes, in the 

MCF7 E-cadherin null model we observed an increase in the expression of CDH3 (P-

cadherin) (Figure 6B), perhaps an example of ‘cadherin switching’ specific to this 

model(Cavallaro et al., 2002; Wheelock et al., 2008). 

 

The decreased abundance of five of the six BrCa-Core adherens junction complex 

members in the MCF7 model was a significant enrichment over random expectation 

(Odds Ratio=280, p-value=10-8 Fishers Exact Test).  To test whether our approach 

missed additional collateral loss events associated with CDH1 mutation we assembled 

a list of 95 E-cadherin protein-protein interaction partners from CORUM (18 co-

complexed subunits), BioGRID (89 protein-protein interaction partners) and HINT 

(15 co-complex interaction partners). Aside from the five members of the adherens 

junction complex in BrCa-Core, none of the known E-cadherin interaction partners 

displayed a significant reduction in protein abundance in the E-cadherin defective 

model. This suggested that our data-driven approach effectively identified the specific 
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subunits of the adherens-junction complex whose expression is reduced by CDH1 

mutation in breast cancer.  

 

Discussion 

Here we have used a data-driven approach to identify BrCa-Core, a set of 258 protein 

complexes coherently regulated across breast tumor proteomes. We found that, 

compared to literature curated complexes, BrCa-Core complexes are more coherently 

expressed in additional proteomics experiments and are also more likely to be co-

essential in breast tumor cell lines. BrCa-Core includes known and potentially novel 

complexes, and provides additional supporting evidence for protein complexes 

recently identified in the literature (such as the inclusion of the TSSC1 subunit in the 

EARP complex)(Gershlick et al., 2016).  

 

Using the TCGA breast tumor proteomics data (Mertins et al., 2016) we found that 

certain BrCa-Core complexes appear differentially expressed in particular breast 

tumor subtypes defined according to hormone receptor and HER2 status. We were 

able to reproduce a number of these associations in an additional breast tumor 

proteomic dataset (Tyanova et al., 2016). These two datasets were generated using 

different experimental platforms and different computational analysis pipelines. 

Furthermore they contain different proportions of the different molecular subtypes, 

and consequently the reproduction of associations was far from guaranteed. 

Nonetheless, our initial analysis suggests that a significant fraction of the subtype-

specific complex associations observed in one cohort can also be replicated in the 

other.   
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We did not assess whether the expression of specific BrCa-Core complexes could be 

used to stratify patients to predict survival outcomes or response to specific therapies. 

Whilst this may be a possibility, the total number of patients with proteomic profiling 

available is still relatively small and precludes meaningful survival analysis. For 

example, eight of the 77 patients profiled in the TCGA Mertins et al resource had 

died at the time of publication (Mertins et al., 2016), a number which does not 

provide sufficient statistical power to establish relationships between protein 

expression and clinical outcome. 

 

We found that in general, correlation between protein expression profiles predicts co-

complex membership better than correlation between mRNA expression profiles. One 

factor that contributes to this improved correlation is the collateral loss phenomenon 

we observe - when one subunit of a complex is lost via deletion or mutation, a 

collateral loss in the protein expression of additional complex members is observed. 

This collateral loss is not observed at the mRNA level, and consequently complexes 

that experience collateral loss display higher correlation at the protein than mRNA 

level. There are likely many other factors that contribute to maintaining the coherent 

expression of protein complexes across tumors, including dosage compensation of 

copy number amplified genes, a phenomenon that has been observed in cancer cell 

lines and in models of aneuploidy in yeast (Dephoure et al., 2014; Geiger et al., 2010; 

Ishikawa et al., 2017; Stingele et al., 2012).  

 

We have focused primarily on how deletions or mutations of protein complex 

subunits may impact the abundance of their associated complexes. Recently, by 

analyzing protein quantitative trait loci (pQTLs) in outbred mice, Chick et al (Chick 
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et al., 2016) identified genetic variants that alter the abundance of a protein in cis and 

its interaction partners in trans. A notable example of this involved the CCT complex 

– a non-coding variant in the promoter region of CCT6A was associated with a 

reduction in the expression of the CCT6A protein and additional members of the CCT 

complex. This suggests that genetic alterations more subtle than the mutations and 

deletions analysed here may also cause collateral loss effects on protein complex 

members. A number of tumor suppressors, including CDH1, are subject to recurrent 

hypermethylation and therefore it would be worth testing if this mechanism of gene 

silencing can result in the collateral loss of complex subunits. Visual inspection of 

Figure 5D suggests that samples with reduced E-cadherin protein expression, even in 

the absence of CDH1 mutation, have reduced expression of the entire adherens 

junction complex. This suggests that alternative gene silencing effects may also cause 

collateral loss events.  

 

We have not addressed here the mechanisms responsible for the collateral loss 

phenomenon, although the observation that the reduction in protein expression levels 

is not evident at the mRNA level suggests posttranscriptional mechanisms must be 

responsible. Perhaps the simplest explanation is that loss of one subunit prevents a 

complex from assembling, and consequently there is an increase in the proteasomal 

degradation of unbound subunits. However, the specific example of the E-cadheren 

containing adherens junction complex suggests that the story may be more 

complicated. In the MCF7 E-cadherin null model we observe a decrease in the 

abundance of most adherens junction members, but an increase in abundance of the 

CDH1 paralog CDH3. CDH1 (E-cadherin) and CDH3 (P-cadherin) are both members 

of the cadherin family, and this is potentially a case of ‘cadherin switching’ – where 
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loss of one cadherin is associated with a compensatory increase in the expression of 

an alternative cadherin(Cavallaro et al., 2002; Wheelock et al., 2008). The reduction 

in expression of other members of the adherens junction complex suggests that if 

cadherin switching is occurring in the MCF7 line it does not completely compensate 

for E-cadherin loss and perhaps results in a less stable adherens junction complex. 

Although cadherin switching between E-cadherin and P-cadherin has been observed 

in breast tumors previously (Palacios et al., 1995), recent work suggests that in 

lobular breast tumors (where CDH1 mutation is most common) expression of P-

cadherin is a rarity (Turashvili et al., 2011). It is possible that alternative cadherin 

switching (such as between E-cadherin and N-cadherin) is more common in breast 

tumors but we have not addressed that here due to the absence of N-cadherin from the 

tumor proteomics dataset. 

 

Generally we have focused on the behavior of coherently expressed protein 

complexes across breast tumor samples. This approach has a number of advantages - 

in particular it allows us to see how different complexes behave as a single unit within 

molecularly defined groups of tumors. We can identify instances where an entire 

protein complex is up or down regulated in the presence of specific molecular 

markers. A disadvantage of this approach is that we cannot identify when different 

variants / isoforms of a protein complex become more or less abundant in specific 

conditions. We have overlooked such events here, but recent work in cancer cell lines 

and mouse fibroblasts suggest that they may be relatively common and merit further 

investigation (Ori et al., 2016). 
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We expect that the BrCa-Core complexes will be useful for the analysis of additional 

proteomic and functional datasets and make the full list of complexes available in 

Table S1. We also anticipate that the complex identification approach described here 

will be useful for the analysis of other large-scale proteomic datasets, such as those 

from other tumor or cell line profiling projects (Lawrence et al., 2015; Zhang et al., 

2014; Zhang et al., 2016), and we make our code available to facilitate such efforts. 

 

Materials and Methods: 

Identifiers in all protein-protein interaction networks, protein expression datasets, and 

validation sets were converted to ENTREZ gene IDs. In cases where a particular gene 

or protein could not be matched to an ENTREZ gene ID it was discarded from further 

analyses. 

 

Protein Expression Datasets 

For the primary analysis we used the breast tumor proteomics dataset from the TCGA 

CPTAC project (Mertins et al., 2016). Only samples that passed the authors’ quality 

control (77 samples, 3 replicates, 3 controls) were used in our analysis. For validation 

we used two additional datasets – Tyanova et al (Tyanova et al., 2016) containing 40 

tumor proteomes from diverse breast cancer subtypes, and Pozniak et al (Pozniak et 

al., 2016) containing 66 proteomes from primary luminal-type breast tumors or 

metastases. The dataset of Tyanova et al contains SILAC ratios which we converted 

using a log2 transformation prior to calculating correlations. For all proteomics 

datasets proteins absent in more than 40% of samples were discarded. Multiple 

proteins mapping to the same gene were averaged into a single gene-level score. The 
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resulting datasets contained profiles for 9,833 proteins (Mertins et al., 2016), 5,248 

proteins (Tyanova et al., 2016) and 4,361 proteins (Pozniak et al., 2016).  

 

Protein Interaction Network 

We assembled an integrated protein interaction network from multiple sources. From 

the HINT database (Das and Yu, 2012) we included all co-complex interactions that 

were reported in at least two publications. From the BioGRID database (Chatr-

Aryamontri et al., 2016) we included all protein-protein interactions in the multi-

validated interactome – a network of interactions that were either observed in two 

experimental systems or in two separate publications. We augmented this set of high-

confidence interactions with the result of four recent large-scale protein interactome 

mapping efforts (Havugimana et al., 2012; Hein et al., 2015; Huttlin et al., 2015; Wan 

et al., 2015). The resulting integrated network contained 83,656 interactions between 

11,930 proteins.  

 

Identifying Protein Complexes 

Our goal was to identify sets of proteins (complexes) such that each complex 

consisted of a set of proteins whose expression profiles were highly similar across 

tumor profiles and that were densely connected on the protein interaction network. 

Other formulations are possible, but we chose to focus on disjoint complexes, such 

that each protein could only belong to a single complex. We did not require that every 

protein be assigned to a complex. 

 

There are three components to our approach 1) choosing a score to evaluate the 

similarity of the expression profiles of a set of proteins 2) the identification of a 
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similar score to evaluate the connectivity of a set of proteins on an interaction 

network, and 3) the identification of sets of proteins that score well on both datasets. 

 

1) Scoring complexes using expression profiles 

We calculate the Pearson’s correlation coefficient between each pair of expression 

profiles (A, B) and use this to compute a log-likelihood ratio that A and B belong 

to the same protein complex versus the likelihood that they are unrelated. This can 

formalized as follows: 

 

LLRexpression(A, B) = Pwithin(A, B) / Pbackground(A, B) 

 

Pwithin is calculated using logistic regression trained on CORUM co-complexed pairs 

(Ruepp et al., 2010) as true positive examples. To prevent bias resulting from the 

large number of co-complex pairs falling within extraordinarily large complexes (e.g. 

Spliceosome, Proteasome, Ribosome) we exclude CORUM complexes containing 

more than 30 proteins from our training set. We assume a ratio of 300 negatives for 

every true positive, consistent with estimates of the size of the human interactome 

(Stumpf et al., 2008). Negative training examples are chosen randomly from the set of 

proteins with measured protein expression. Pbackground is the probability of observing 

the measured correlation between A and B in the set of all pairwise correlations. 

 

For each set of proteins (S) we calculate the total LLRexpression(S) as the sum of all 

LLRexpression(A,B) scores for all unordered pairs (A,B) in the set S.  

 

2) Scoring complexes using the protein-protein interaction network 
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For the protein-protein interaction network we sought to score each pair of proteins 

based on how likely they are to form part of the same complex. While direct protein-

protein interaction provides an indication that two proteins may be part of a protein 

complex, previous work has demonstrated that taking into account the fraction of 

interaction partners shared by two proteins can provide additional support of co-

complex membership (Bader et al., 2004; Goldberg and Roth, 2003). Based on this 

principle we assigned a weighted score to every pair of interacting proteins in our 

integrated network accounting for the proportion of interaction partners they share. 

This score was equal to a –log10 transformed p-value calculated from a 

hypergeometric test that assessed the significance of the number of interaction 

partners they shared. An advantage of this approach is that two proteins that interact 

with each other directly and share all of their interaction partners will be given a 

higher score than two proteins that interact with each other but have no other 

interaction partners in common.  

 

As with the protein expression correlation, this score was transformed into log-

likelihood ratio (LLRinteraction) by comparing the probability of observing a particular 

score within a protein complex to the probability of observing it among all pairs of 

proteins. For each set of proteins (S) we calculate the total LLRinteraction(S) as the sum 

of all LLRinteraction(A,B) scores for all unordered pairs (A,B) in the set S.  

 

3) Identifying complexes supported by both data sources 

For each set of proteins we can assign a score LLRintegrated(S), which is equal to the 

sum of LLRexpression(S) and LLRinteraction(S). Our challenge is the identification of sets 

of proteins with high LLRintegrated scores. As we are only interested in sets of proteins 
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that score well on both resources we can restrict our search to those sets that have a 

positive LLRinteraction and a positive LLRexpression (i.e. we are only interested in sets of 

proteins that have highly correlated protein expression and are densely connected on 

the protein interaction network, not one or the other).  

 

We identify high-scoring sets of proteins using an approach resembling agglomerative 

hierarchical clustering. Similar approaches have been used previously to identify 

complexes supported by genetic interaction and protein interaction networks in 

budding yeast (Bandyopadhyay et al., 2008) and also to identify complexes supported 

by the genetic interaction networks of two distinct yeast species (Ryan et al., 2012).  

 

To initialize our clusters we first evaluate LLRintegrated for all pairs of proteins that 

directly interact in the protein-protein interaction network. We also evaluate scores 

for all possible 3-cliques (sets of three proteins that all interact with each other) in the 

protein-protein interaction network. The highest scoring pair or 3-clique is taken as an 

initial cluster, and all overlapping pairs or 3-cliques are then removed from 

consideration. The second highest scoring pair or 3-clique is then assigned as a 

cluster, and any overlapping pairs or 3-cliques removed from consideration. This 

continues until no pairs or 3-cliques with positive LLRintegrated scores remain. At the 

end of the process proteins that have not been assigned to any cluster are assigned to 

their own single element cluster. We then apply an iterative approach to improve 

these clusters. At each iteration we consider three possible moves – merging, removal 

and switching. Each pair of clusters (m1,m2) is evaluated for merging into a single 

cluster (m1 U m2) and assigned a score LLRintegrated(m1,m2). For every protein in every 

cluster with multiple proteins we also calculate a LLRremove score that reflects the 
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change in the log likelihood resulting from removing that protein from the cluster, and 

an LLRswitch score that calculates the change in likelihood from switching a protein 

from one cluster to another. At each iteration max(LLRmerge, LLRremove, LLRswitch) is 

taken as the next move. To prevent the identification of clusters supported by only 

one data source (e.g. highly correlated expression but not densely connected on the 

protein interaction network) we only permitted moves in cases where the move 

resulted in an increase in the LLR score for both the expression and the protein 

interaction networks. Iterations continue until no move that increases the LLR score 

on both sources is identified. The end result is a list of clusters with an associated 

LLR score.  

 

Estimating a protein complex false discovery rate  

We assume that by chance some proteins that interact on the protein interaction 

network would have high co-expression scores and consequently we could identify 

clusters with positive LLRexpression and LLRinteraction scores. To remove potentially 

spuriously detected clusters we compared the clusters we identified to those identified 

using 10 randomized versions of the input - the same protein interaction network and 

expression set, but with the gene IDs on the expression set shuffled.  These 

randomized networks allowed us to empirically estimate the False Discovery Rate as 

we could see for a given LLRintegrated score how many complexes would be discovered 

in the randomized networks. We chose an FDR of 10% for defining the BrCa-Core set 

of complexes. 

 

Evaluating Complexes 
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To assess the overlap between BrCa-Core complexes and existing annotation sets 

(CORUM complexes, Gene Ontology Cellular Compartment, Gene Ontology 

Biological Process) we used the gProfiler tool (Reimand et al., 2016). Only genes 

present in both the protein-interaction network and the tumor proteome expression 

were used as the background list or this enrichment. Multiple testing correction was 

performed using the default g:SCS approach (Reimand et al., 2016). 

 

We calculated the average Pearson correlation between complex subunits using the 

dataset of Tyanova et al (Tyanova et al., 2016) and Pozniak et al (Pozniak et al., 

2016). For this analysis we excluded pairs of proteins whose genes reside on the same 

chromosome to avoid high correlation resulting solely from co-amplification/co-

deletion events. For the shRNA data from (Marcotte et al., 2016) we calculated the 

Pearson’s correlation of co-complexed pairs using the zGARP profiles of 77 breast 

cancer cell lines. 

 

From the STRING database (Szklarczyk et al., 2017) we extracted pairs of proteins 

that are frequently mentioned together in the literature (textmining score > 250) and 

that tend to co-occur in a significant pattern across species (cooccurence score > 0). 

Fisher’s exact test was used to assess the significance of the overlap between the 

BrCa-Core co-complexed pairs and these reference datasets. 

 

Identifying subtype specific expression patterns 

To identify protein complexes differentially expressed in specific breast cancer 

subtypes we used a variant of the 1D annotation enrichment test proposed by Cox and 

Mann (Cox and Mann, 2012). For each protein we calculate the difference between 
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the median expression of samples from a specific subtype and the median expression 

of samples from all other subtypes combined.  We then applied a Mann-Whitney test 

to these median differences to see if the members of a given protein complex are 

among the most significantly differentially expressed proteins in a particular subtype 

(i.e. to see if all/most complex members are at one end of a ranked list of 

differentially expressed proteins). This test is performed in a two-sided fashion to 

identify complexes that are either over- or under-expressed in specific subtypes. All 

protein complexes with more than two members are tested for differential expression 

in all three subtypes. We correct for multiple-hypothesis testing using the Benjamini 

and Hochberg approach (Benjamini and Hochberg, 1995), and identified a set of 82 

differentially expressed complexes at an FDR of 10%. We then tested these 

complexes for differential expression in the dataset of Tyanova et al at the same FDR. 

As not every BrCa-Core complex is represented by multiple members in Tyanova et 

al we could test only 59 of these associations. The s-score (Cox and Mann, 2012) was 

used to measure the effect size of the association between protein complex expression 

and subtype, and Spearman’s correlation was used to assess the concordance of effect 

sizes between the associations identified in the Mertins et al data and those in 

Tyanova et al.  

Mutation, copy number, mRNA expression and RPPA data 

Sequence, copy number and mRNA expression profiles for were all obtained through 

the cBioPortal (Breast Invasive Carcinoma, TCGA Provisional) (Gao et al., 2013). To 

identify associations between mutation/deletion and protein abundance we annotated 

all tumor samples according to whether or not they featured mutations or deletions in 

each of the genes coding for proteins in the BrCa-Core set. For copy number profiles 

we considered genes to be deleted in a specific sample if they had a GISTIC score of -
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2. We considered genes to be mutated if they harbored a non-synonymous missense 

mutation, splice-site mutation, an insertion or deletion, or a nonsense mutation. For 

the RPPA analysis and mRNA expression analysis presented in Figure 6 we used the 

Z-score normalized expression levels available through the cBioPortal (Gao et al., 

2013). 

 

MCF7 Analysis  

The MCF7 cell lines were grown in DMEM (Gibco) supplemented with 10% fetal 

bovine serum (Gibco) and 1% L-glutamine (Gibco).  

Total lysate preparation for Mass spectrometry 

Cells were plated in 100 mm dishes. Once confluent, media was discarded and cells 

were washed in PBS. Cells were lysed in a lysis buffer containing 2% SDS (Fisher 

Scientific), 20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM MgCl2, (Sigma Aldrich) 

supplemented with protease inhibitor tablets (Roche) and phosphatase inhibitors (2 

mM sodium orthovanadate, 10 mM sodium fluoride and 10 mM � -

glycerophosphate) (Sigma-Aldrich). Lysates were subjected to sonication (Syclon 

ultrasonic cell disrupter), boiling (95°C, 5 min) and placed on ice for 10-15 min prior 

to centrifugation (14000 rcf, 10 min). The supernatant was transferred to fresh 

eppendorfs and samples were subsequently placed on ice for a further 10-15 min to 

allow the SDS to precipitate and re-centrifuged. Supernatant was transferred to fresh 

eppendorfs and protein concentration was measured using the Pierce BCA protein 

assay kit as per manufacturers instruction (Thermo Scientific), using a SpectraMax 

M3 (Molecular Devices). Once quantified, DL-dithiothreitol (DTT) was added to the 

lysates at a final concentration of 0.1 M DTT. Subsequently, lysates were boiled 

(95°C, 5 min). Detergent was removed from the lysates prior to MS analysis using the 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2017. ; https://doi.org/10.1101/155333doi: bioRxiv preprint 

https://doi.org/10.1101/155333
http://creativecommons.org/licenses/by/4.0/


	 30	

Filter Aided Sample Preparation (FASP) procedure incorporating Vivacon spin 

ultracentrifugation units with a molecular weight cutoff of 30 kDa 

(Sartorius)(Wisniewski et al., 2009). Briefly, 200 �l of urea buffer (Fisher Scientific) 

UA buffer (8 M urea in 0.1 M Tris-HCl pH 8.9) was added to 100 �g of cell lysate. 

Samples were added to the filter unit and centrifuged at 14000 rcf for 15 min. An 

additional 200 �l of UA buffer was added to the filter unit and re-centrifuged. 

Iodoacetamide (100 �l, 0.05 M prepared in UA buffer) was added to the filter units, 

incubated for 1 min on a thermomixer at 600 rpm and subsequently incubated in 

darkness for 20 min. Following the incubation period, filter units were centrifuged 

and washed twice with 100 �l of UA buffer followed by 2 washes with 100 �l of 

ABC solution (0.05 M NH4HC03). After the final wash step, filter units were 

transferred to a new collection tube and a multi-step digestion method was employed 

as described by Wisniewski and Mann (Wisniewski and Mann, 2012). In the first 

instance, proteins were digested in a wet chamber overnight at 37°C using a solution 

containing Lys-C (Lysl Endopeptidase, Wako) and ABC buffer (1:50, enzyme to 

protein ratio). The following day, liberated peptides were collected by centrifugation 

and subsequent wash cycles with ABC buffer. Meanwhile, remaining proteins on the 

filter unit were digested using a solution containing Sequencing Grade Modified 

Trypsin (Promega) and ABC buffer in a wet chamber at 37°C for a minimum of 4 hr. 

Once again liberated peptides were collected by centrifugation and subsequent wash 

cycles with ABC buffer. The concentration of the Lys-C digests and Trypsin digests 

were measured using a NanoDrop 2000. In total, 10 �g of each digest was loaded 

onto activated handmade C18 StageTips as described previously(Rappsilber et al., 

2003). StageTips were desalted with two 1% TFA wash cycles and bound peptides 
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were eluted with 2 X 25 �l of 50% ACN/0.1% TFA. Final eluates were concentrated 

in the speed-vacuum centrifuge (Centri-Vap concentrator, Labconco to a final volume 

of ~5 �l. Samples were then resuspended by adding 0.1% acetic acid, to a final 

volume of 15 �l and analyzed by mass spectrometry. 

Mass Spectrometry 

Mass spectrometry analysis was performed on a Q-Exactive mass spectrometer 

(Thermo Scientific), connected to a Dionex Ultimate 3000 (RSLCnano) 

chromatography system (Thermo Scientific) incorporating an autosampler. Five 

microliters of Lys-C/tryptic peptides was loaded onto a fused silica emitter (75�m 

ID, pulled using a laser puller (Sutter Instruments P2000)), packed with 1.8� 120Å 

UChrom C18 packing material (NanoLCMS Solutions) and separated using an 

increasing acetonitrile gradient of 2 – 35%, with a 180 min reverse phase gradient at a 

flow rate of 250 nl/min. The instrument was operating in positive ion mode and with a 

capillary temperature of 320°C, coupled to a potential of 2300V applied to the 

column. Scan parameters for MS1 were as follows: Resolution 70,000, AGC 3e6, MIT 

60ms while scan parameters for MS2 were: Resolution 17,500, AGC 5e4, MIT 250ms, 

NCE 27.0, Isolation window 1.6m/z. The exclusion list parameters contained no 

entries and charge exclusion was set to un-assigned and singly charged. Both MS1 

and MS2 were recorded as profile data. Data were acquired in automatic data-

dependent switching mode, with a high-resolution MS scan (300-1600 m/z) selecting 

the 12 most intense ions prior to tandem MS (MS/MS) analysis. Each biological 

sample (n=3) was run in technical duplicate. The resulting mass spectra were 

analyzed using MaxQuant software (version 1.5.0.25) containing the in-built 

Andromeda search engine to identify the proteins from a human database (Uniprot 

HUMAN, release 2012_01) containing 20,242 entries. Default parameters were 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 26, 2017. ; https://doi.org/10.1101/155333doi: bioRxiv preprint 

https://doi.org/10.1101/155333
http://creativecommons.org/licenses/by/4.0/


	 32	

selected in MaxQuant with the exception of the selection of the relevant enzyme, 

(LysC and Trypsin digests were separated between parameter groups). For database 

searches, the precursor mass tolerance was set to 20 ppm for first searches and 4.5 

ppm for main Andromeda search. The search included a fixed modification of 

Carbamidomethyl (C) and variable modifications of Oxidation (M);Acetyl (Protein N-

term). Label free quantification with a minimum ratio count of 2 was selected, the 

maximum number of missed cleavages was set at 2 and minimum peptide length was 

set to 7 amino acids. An FDR of 0.01 was set for peptide and protein identifications. 

Match between runs was selected with a matching time window of 0.7 min and 

alignment time window of 20min. The presence of reverse and contaminant 

identifications were removed from the dataset.  

Differential expression analysis 

Proteomic profiles were generated for three biological replicates of the parental 

(CDH1 wild-type) and CDH1-defective cell lines. Two technical replicates were 

obtained for each biological replicate and these were averaged prior to further 

analysis. Missing values were imputed using the minimum observed intensity for each 

sample, based on the assumption that missing proteins could be absent or below the 

detection threshold of the instrument. Log2 transformed LFQ (Label Free 

Quantification) values were used for analysis. A two-sided heteroscedastic t-test  

(Welch’s t-test) was used to identify differentially expressed proteins and the 

Benjamini-Hochberg approach was used to estimate the False Discovery Rate 

(Benjamini and Hochberg, 1995).  
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Figure Legends  

Figure 1. Protein co-expression is predictive of co-complex membership. A) ROC 

curve showing the ability of co-expression to predict co-complex membership. Blue 

line shows ROC curve derived from correlation calculated using protein expression 

profiles from 77 tumors, while the red line indicates that derived from mRNA 

expression profiles for the same samples. The green line indicates the co-expression 

correlation calculated using a larger set of 1,100 mRNA expression profiles. B) 

Histogram showing the average protein expression correlation within CORUM 

complexes. Only the average correlations from complexes with at least three members 

are shown in the plot. 

 

Figure 2. BrCa-Core complex discovery schematic. An integrated protein-protein 

interaction network is combined with tumor proteomic profiles to identify sets of 

densely connected proteins that display correlated expression profiles across tumor 

proteomes. By comparing the results to those derived from randomly relabeled 

protein interaction networks we can estimate the false-discovery rate. The BrCa-Core 

set contains 258 complexes at an estimated FDR of 10%. 

 

Figure 3 Complexes in BrCa-Core. A) BrCa-Core 17 - the COP9 signalosome. All 

cocomplex relationships are also found in the equivalent CORUM complex. The 

heatmap in the right shows protein expression of all subunits across 77 breast tumour 

proteomes. These have been sorted based on the mean abundance of all subunits B) 

BrCa-Core 14 - the conserved oligomeric golgi (COG) complex. All cocomplex 

relationships shown are also found in the equivalent CORUM complex. C) BrCa-Core 

47 - contains ORC2-5 complex found in CORUM with the addition of LRWD1 D) 
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BrCa-Core 25 - the COPI complex E) BrCa-Core 48 - the EARP complex with the 

recently identified EARP interactor TSSC1 F) BrCa-Core 26 - the Commander 

complex 

 

Figure 4. Subtype specific complex expression. Heatmap displaying protein 

expression levels of specific BrCa-Core complexes. Tumor samples are grouped 

according to subtype (using IHC markers), indicated on top of the heatmap. Genes are 

grouped into specific complexes indicated on the right of the heatmap. Shown are the 

expression levels taken from Tyanova et al (used for validation). These expression 

levels have been normalized such that the maximum expression level is 1 and 

minimum is 0. Heatmap for the discovery dataset (Mertens et al) is shown in Figure 

S2. 

 

Figure 5. Subunit loss is associated with a reduction in protein complex 

expression. A) Model displaying potential series of events – mutation or deletion of 

one subunit is associated with reduced protein abundance of that subunit, and 

potentially a reduction in expression of the entire complex. B) Mutation or deletion of 

EXOC2 is associated with a reduction in protein expression of the exocyst complex 

(BrCa-Core 27). EXOC2 mutation (blue) or deletion (black) is indicated in the top 

row. Proteomic samples have been sorted according to EXOC2 abundance. Genes 

marked with a star indicate those whose proteomic abundance is significantly lower 

(one-sided Mann Whitney test, p<0.05) in samples with EXOC2 mutation/deletion. C) 

Mutation or deletion of PBRM1 is associated with a reduction in protein expression of 

a PBAF-like subcomplex (BrCa-Core 60). Legend as for A. C) CDH1 mutation is 
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associated with a reduction in protein expression of an adherens-junction complex 

(BrCa-Core 30). Legend as for A. 

  

Figure 6. E-cadherin loss is associated with reduced expression of an adherens 

junction complex. A) In tumor samples CDH1 mutation is associated with a decrease 

in mRNA and protein expression of CDH1, but only of protein expression for 

CTNNA1 and CTNNB1. All expression and RPPA measurements are Z-scores. Box 

plots show median and interquartile range. P-values calculated using a Mann-Whitney 

test. mRNA measurements for all three genes were available for 992 tumors, RPPA 

data for CDH1 and CTNNB1 were available for 760 tumors, while RPPA data for 

CTNNA1 was available for only 64 tumors. B) Protein expression measured in a pair 

of isogenic MCF7 cell lines that differ by CDH1 status. Shown are the log2 Label 

Free Quantification intensities. P-values are calculated using a two-sided 

heteroscedastic t-test. 
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Tables 

 

Table 1 – Correlation of BrCa-Core co-complexed pairs in additional resources 

Shown is the average correlation between pairs of proteins annotated to the same 

protein complex (CORUM or BrCa-Core) or identified as interacting in the integrated 

protein-protein interaction network (PPI Pairs). Correlation is calculated across three 

breast tumour proteomic datasets (TCGA, Tyanova, Pozniak) and an shRNA screen 

of breast tumour cell lines (Marcotte). 

  

 TCGA 

Proteomics 

Tyanova 

Proteomics 

Pozniak 

Proteomics 

Marcotte 

shRNA 

PPI Pairs 0.12 0.12 0.10 0.06 

CORUM 0.20 0.19 0.14 0.08 

BrCa-Core 0.62 0.32 0.28 0.25 
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Supplemental Figure Legends 

Figure S1 BrCa-Core Complexes. Related to Figure 3. All complexes identified in 

BrCa-Core are shown. Orange edges correspond to co-complex relationships also 

identified in the CORUM database while green edges correspond to co-complex 

relationships absent from CORUM.  

 

Figure S2. Subtype specific complex expression. Related to Figure 4. Heatmap 

displaying expression levels of specific protein complexes. Tumor samples are 

grouped according to subtype (using IHC), indicated on top of the heatmap. Genes are 

grouped into specific complexes indicated on the right of the heatmap. All expression 

levels have been normalized such that the maximum expression level is 1 and 

minimum is 0. Shown are the expression levels from Mertens et al (used for 

discovery). Expression levels for Tyanova et al (used for validation) are shown in 

Figure 4 

 

Figure S3. Correlation within BrCa-Core complexes is more evident using 

proteomic profiles than mRNA profiles. Related to Figure 5. Heatmaps showing the 

Pearson’s correlation between the subunits of the (A) exocyst subcomplex (main text 

Figure 5B), (B) BAF complex (main text Figure 5C) and (C) the adherens junction 

complex (main text Figure 5D). In each subfigure the heatmap calculated using 

mRNA profiles is on the left and using protein profiles on the right 

 

Figure S4. Subunit loss is not associated with a reduction in protein complex 

mRNA expression. Related to Figure 5. A) Mutation or deletion of EXOC2 is not 

associated with a reduction in mRNA expression of the exocyst complex. EXOC2 
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mutation (blue) or deletion (black) is indicated in the top row. Samples have been 

sorted according to EXOC2 mRNA expression. EXOC2 (marked with a star) is the 

only gene to display a significant association with EXOC2 status (P<0.05, Mann-

Whitney U test) B) Mutation or deletion of PBRM1 is not associated with a reduction 

in mRNA expression of the BAF subcomplex members. No member of the complex 

displays a significant association between mRNA and PBRM1 status. Legend as for 

A. C) CDH1 mutation is not associated with a reduction in mRNA expression of an 

adherens-junction complex. Legend as for A. CDH1 (marked with a star) is the only 

gene to display a significant association with CDH1 status (P<0.05, Mann-Whitney U 

test). 
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