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 2 

Abstract 18 

Computational methodologies to predict epitopes for cytotoxic T lymphocytes 19 

(CTLs) will galvanize vaccine research and pave the way toward targeted 20 

immunotherapy of infections and cancer. However, the classification of immunogenic 21 

epitopes and non-immunogenic major histocompatibility complex (MHC) class I ligands 22 

in silico has yet to attain sufficient accuracy. Here, we demonstrated highly accurate 23 

epitope prediction by a machine learning-based classifier incorporating T cell receptor 24 

(TCR)-peptide contact profiles, with an accuracy of 0.77 and an area under the curve of 25 

0.84 in hold-out validation. Predictive accuracy was retained for five major human 26 

leucocyte antigen supertypes. Successful prediction using independent datasets of viral 27 

epitopes and tumor neoepitopes was demonstrated. Collectively, this is the first study 28 

demonstrating accurate and generalizable CTL immunogenicity prediction from the 29 

TCR-peptide axis. The R package Repitope was implemented to maximize code 30 

reusability. Prospective validation in vaccination and/or cancer immunotherapy cohorts is 31 

warranted. 32 

  33 
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Introduction 34 

The adaptive immune system is driven by antigen recognition. The capability of 35 

triggering immune responses is termed 'immunogenicity'. Antigens are processed into 36 

fragments of peptides by proteasomes, and coupled to major histocompatibility complex 37 

[MHC; also called the human leucocyte antigen (HLA) in humans] molecules on the 38 

surface of antigen-presenting cells (APCs). Antigenic peptides presented by 39 

MHC-bearing cells are called MHC ligands. Naïve T cells interact with the MHC ligands 40 

(MHCLs) via their receptor (T cell receptor, TCR), and successful recognition activates 41 

them to initiate subsequent immunological orchestration(1). Immunogenic MHCLs are 42 

termed 'epitopes'. Conversely, being MHCLs does not ensure immunogenicity(2).  43 

Acquired immunity plays an indispensable role in rejecting both pathogens and 44 

tumors. Accumulating evidence is shedding light on mutation-derived epitopes, or 45 

neoepitopes, as the targets of anticancer T cell immunity. First, the efficacy of immune 46 

checkpoint inhibitors correlates with tumor mutational burden(3–6). Second, 47 

mismatch-repair deficiency, which increases the overall genomic instability and tumor 48 

mutational burden, has been shown to predict a better outcome in patients receiving 49 

checkpoint blockade therapy(7), which eventually led to the FDA approval of the first 50 

pan-cancer efficacy biomarker(8). Third, the presence of neoepitope-specific T cells in 51 
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patients has been established(9–11). Finally, even outside the context of immunotherapy, 52 

a heavier mutational burden has been shown to predict a longer overall survival through 53 

the meta-analysis of genomic sequencing datasets from studies of six tumor types(12). 54 

Collectively, these observations led to the unprecedented progress of precision 55 

immunotherapy initiatives in oncoimmunology. However, personalized anticancer 56 

immunotherapy is still at a nascent stage, in important part owing to the lack of a fast and 57 

scalable methodology to screen potent neoepitopes. The test-one-by-one strategy is not 58 

feasible given the heavy mutational burden observed in most types of cancer, and, albeit 59 

extensively studied, immunoinformatics has achieved only minimal success to date in 60 

predicting potent neoepitopes from their genomic profiles(13).  61 

Two types of computational tools have been explored for applications in epitope 62 

prediction. The first type predicts properties in the processes involved in antigen 63 

presentation, including antigen processing, peptide transport, and the affinity and stability 64 

of the MHC-peptide complex (14–17). A limitation of this approach is the high false 65 

discovery rate in terms of immunogenicity (i.e., only a small fraction of the peptides 66 

predicted and subsequently shown to bind to MHC are actually recognized by T cells and 67 

elicit effective responses). The second category of tool used for epitope discovery is 68 

aimed at the direct prediction of immunogenicity. Several immunoinformatic tools have 69 
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been proposed for the prediction of MHC class I (MHC-I) epitopes, which activate 70 

cytotoxic T lymphocytes (CTLs) (18–23). However, none of them has demonstrated 71 

adequate predictive performance in validation datasets, or has been successfully applied 72 

to real-world datasets such as tumor neoepitope sequences obtained from immune 73 

checkpoint inhibitor clinical trials.  74 

Epitopes, by definition, are recognized by T cells via TCRs. However, in contrast to 75 

the MHC-peptide axis, the TCR-peptide axis has yet to be thoroughly examined in the 76 

context of immunogenicity. Exceptional research led by Chowell et al. demonstrated that 77 

immunogenicity prediction was improved by incorporating hydrophobicity at TCR 78 

contact residues(23). However, their model focuses on the biochemical properties of 79 

MHC-I-loaded peptides but does not specifically address TCR-peptide interactions 80 

themselves. On the other hand, a groundbreaking study conducted by Strønen et al. shed 81 

light on the TCR-dependent nature of peptide immunogenicity in the context of 82 

oncoimmunology(24). They showed that naïve T cell repertoires of healthy blood donors 83 

were able to trigger effective immune responses against a variety of neoepitopes isolated 84 

from cancer patients treated with immune checkpoint inhibitors. Many of the targeted 85 

neoepitopes were overlooked by autologous tumor-infiltrating lymphocytes in vivo. 86 

Furthermore, patient-derived T cells transformed with the appropriate donor TCR 87 
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successfully invigorated anti-neoepitope immunity. Their results suggest that even 88 

MHCLs non-immunogenic to autologous TCRs can serve as epitopes if recognized by 89 

appropriate TCRs.  90 

We started the whole project aiming at unveiling the enigma of the 91 

immunogenicity on MHC-I-loaded peptides on the basis of the following hypothesis: 92 

are peptides stably interacting with the host TCR repertoire more likely to be 93 

immunogenic? If this is the case, prediction of peptide immunogenicity may be 94 

significantly improved by incorporating the TCR-peptide axis. Given that human TCR 95 

repertoires are evolutionarily optimized so as to effectively combat pathogens and 96 

cancers, we utilized a pooled human TCR repertoire sequenced from the commercial 97 

RNA of peripheral blood CD8+ T cells for reference. We defined repertoire-wide 98 

TCR-peptide contact profiles (rTPCP) using amino acid pairwise contact potential 99 

(AACP) scales to quantitatively parametrize TCR-peptide interactions to classify 100 

epitopes and MHCLs through a machine learning (ML) approach. Our initial model 101 

achieved unprecedented accuracy in hold-out validation. When the rTPCP definition 102 

was modified to incorporate position-specific effects (mrTPCP), comparable accuracy 103 

was achieved with just one AACP scale. Prediction was not biased for at least five HLA 104 

supertypes. Permutation of peptide sequences, but not TCR sequences, undermined 105 
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predictive accuracy. Successful prediction was demonstrated using independent 106 

epitope/MHCL datasets of viral and tumor origin. Moreover, using a mutational 107 

landscape dataset obtained from checkpoint inhibitor trials, a correlation between 108 

predicted neoepitope burden and clinical outcome was shown. Overall, this is the first 109 

study demonstrating a highly accurate and generalizable epitope prediction by 110 

integrating the TCR-peptide axis. The codes for rTPCP and mrTPCP analysis were 111 

compiled into the R package Repitope (https://github.com/masato-ogishi/Repitope/). 112 

Prospective validation of this tool in independent cohorts of vaccination and cancer 113 

immunotherapy is necessary to evaluate its possible clinical applicability. 114 

  115 
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Results 116 

Preparation of pooled human TCR repertoire dataset 117 

First, we screened public databases such as Sequence Read Archive, but failed to 118 

find a suitable human TCR sequence dataset. Therefore, we generated an in-house TCR 119 

repertoire data by sequencing the variable regions of TCR β chains (TCR-Vβ) from 120 

commercially available pooled human peripheral CD8+ T cells. Among the three 121 

complementarity-determining regions (CDRs), we focused on CDR3, because it has the 122 

largest diversity among CDR regions, and CDR1 and CDR2 are primarily involved in the 123 

recognition of MHC, not the ligand presented(1). Rarefaction analysis estimated the total 124 

CDR3 clonotype diversity be approximately 1500, out of which 872 unique clonotypes 125 

were identified (fig. S1). No apparent bias in CDR3 length or Variable (V) and Junction 126 

(J) segment usage was observed (fig. S2). 127 

Immunogenicity prediction from repertoire-wide TCR-peptide contact profiles 128 

parametrized using amino acid contact potentials 129 

Immunogenicity prediction model necessitates quantitative parametrization of the 130 

likelihood that a given peptide stably interacts with a given set of TCRs. Although 131 

molecular dynamics simulation would be the most accurate method, it is not appropriate 132 
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because of its high demand for computational power; our goal is to construct a “portable” 133 

prediction framework that can be run on ordinary desktop computers. To simplify the 134 

framework, we adopted a sequence-based prediction strategy using AACPs listed in the 135 

AAIndex database(25) (http://www.genome.jp/aaindex/AAindex/list_of_potentials) as 136 

the measurement of energetic stability, or the decrease in free energy, of TCR-peptide 137 

interaction. We hereby propose the concept of rTPCP, where a given peptide contacts 138 

with all TCRs in a given repertoire with varying contact potentials (Fig. 1; see 139 

Supplementary Materials and Methods for details). Using the rTPCP variables, we 140 

attempted ML-based classification of MHCL peptides into immunogenic (functional 141 

epitope) and non-immunogenic subsets. We utilized the peptide dataset compiled by 142 

Chowell et al., which contains 7582 distinct human peptides (23). Preliminary analyses 143 

suggested support vector machine (SVM) as the most accurate and balanced algorithm. 144 

As an initial attempt, we focused on 450 epitopes and 450 ligands restricted on human 145 

leucocyte antigen A2 (HLA-A2). We retrieved 35 AAIndex AACP scales (table S1) to 146 

calculate rTPCP variables. To our surprise, the resultant SVM-based immunogenicity 147 

prediction model achieved an unprecedentedly high predictive performance in the 148 

hold-out validation dataset [accuracy, 0.81; 95% confidence interval (CI), 0.76 to 0.86; 149 

receiver operating characteristic (ROC) area under the curve (AUC), 0.87; 95% CI, 0.83 150 
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to 0.91] (Fig. 2A). Four additional iterations using different random seeds yielded 151 

comparable results (table S2).  152 

One caveat of ML-based prediction is over-parametrization, which may lead to 153 

model instability and limited generalizability, as is the case for our model (2520 rTPCP 154 

variables against 900 HLA-A2-restricted peptides). Variable importance analysis 155 

revealed that the AAIndex AACP scale MIYS990106, which represents inter-residue 156 

pairwise contact energies(26), yielded the most consistently important variables (fig. 157 

S3). Therefore, we retrained the SVM-based classifier solely using the 158 

MIYS990106-derived rTPCP variables. This time, we included a full set of 159 

epitopes/MHCLs in the dataset to maximize overall data size, resulting in a matrix with 160 

72 variables for 7575 distinct peptides. The model achieved considerably high 161 

performance despite the relatively small number of variables (accuracy, 0.75; 95% CI, 162 

0.73 to 0.76; AUC, 0.81; 95% CI, 0.80 to 0.83) (Fig. 2B). Four additional iterations with 163 

different random seeds yielded comparable results (table S3). 164 

Improved immunogenicity prediction by incorporating position-specific contact 165 

profiles 166 

MHC-loaded peptides interact with TCRs at specific positions(1). The effects of 167 

position-specific interactions may counterbalance each other in TPCP. To test this 168 
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hypothesis, we modified the rTPCP definition to incorporate position-specific 169 

interactions (mrTPCP; schematically depicted in Figure 3). In this iteration, every TCR 170 

was fragmented and pooled to generate a TCR fragment repertoire, and representative 171 

statistics were calculated on a set of AACPs (see Supplementary Materials and Methods 172 

for details). Because of the position-specific nature of the analysis, we limited the 173 

subsequent analysis to 4738 unique nonapeptides in the Chowell dataset. The 174 

SVM-based classifier trained from 187 mrTPCP variables outperformed our previous 175 

rTPCP-based classifier (accuracy, 0.77; 95% CI, 0.75 to 0.79; AUC, 0.84; 95% CI, 0.82 176 

to 0.86), with statistical significance [p = 0.048, according to the roc.test function 177 

implemented in the pROC package(27)] (Fig. 4A). For comparison, the same dataset 178 

was used to test three previously published immunogenicity prediction tools with 179 

publicly available source code or web implementation. However, none of the tested 180 

tools achieved similarly meaningful prediction; the accuracies were 0.56, 0.59, and 0.57 181 

for POPISK(19), PAAQD(20), and EpitopePrediction(28), respectively. 182 

The amino acid compositions of MHCLs are restricted by the HLA to which they 183 

are coupled. Since our mrTPCP framework is not dependent on HLA information, it 184 

might be useful for pan-specific immunogenicity prediction. To test this hypothesis, 185 

4738 unique nonapeptides in the Chowell dataset were stratified based on their 186 
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corresponding HLA supertypes, and ROC analysis was conducted (Fig. 4B). The trained 187 

classifier worked with no significant decrease in accuracy for at least five major HLA 188 

supertypes (HLA-A1, A2, B15, B44, and B57) for which a sufficient amount of peptide 189 

data was available. 190 

Previous studies suggest that position-specific amino acid usage biases in 191 

MHC-coupled peptides affect their immunogenicity(21, 23). In our model, windows 1 192 

and 2 seemed to be of higher importance, but no exceptionally important window was 193 

identified (fig. S4). To further evaluate these position-dependent characteristics, we next 194 

conducted sequence manipulation analysis; mrTPCP variables were calculated for 195 

manipulated peptide sequences or using manipulated reference TCR repertoire 196 

sequences. The classifier trained from authentic TCRs and peptides was then applied to 197 

perform ROC analysis. Manipulation of TCRs led to a minimal decrease in AUC, 198 

whereas manipulation of peptides led to a significant decrease in AUC (Fig. 4C). 199 

Difference in amino acid compositions between epitopes and MHCLs was only of 200 

partial predictive significance, indicating that position-specific or sequence-specific 201 

features are the major determinants of immunogenicity. 202 

Collectively, these observations suggest that the mrTPCP framework effectively 203 

mimics the biological mechanisms of CTL immunogenicity, thereby providing a 204 
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promising methodology for accurate epitope prediction. 205 

Immunogenicity prediction using independent datasets 206 

 Any pattern learned from one dataset is not always extendable to other datasets 207 

constructed in different contexts. Therefore, we tested the performance of our 208 

immunogenicity prediction model by utilizing independent datasets adopted from 209 

previous publications(4, 10, 24, 29–32), after removing peptides overlapping with those 210 

in the Chowell dataset. As expected, randomly selected 10,000 MHCLs retrieved from 211 

the Immune Epitope Database (IEDB) were predicted as either immunogenic or 212 

non-immunogenic in an approximately 1:1 ratio, with a uniform distribution of 213 

predicted probabilities (Fig. 5A and Table 1). In contrast, epitope datasets of viral and 214 

tumor origin were significantly enriched with peptides predicted as epitopes (p < 0.01 by 215 

Wilcoxon’s rank sum test in comparison with randomly selected MHCLs from IEDB). It 216 

is notable that 16 out of 22 (73%) well-defined neoepitopes and 22 out of 35 (63%) best 217 

neoepitopes reported by Stronen et al. had probabilities of > 0.80 (Fig. 5A). With the 218 

probability threshold of 0.80, our model also effectively classified the epitope/MHCL 219 

dataset from various pathogens originally reported by Calis et al.(21) (accuracy, 0.71; 220 

95% CI, 0.67 to 0.75; AUC, 0.77; 95% CI, 0.71 to 0.82) (Fig. 5B). 221 

 Encouraged by these observations, we next explored the possibility that our 222 
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immunogenicity prediction model improves the correlation between neoepitope burden 223 

and clinical outcomes in checkpoint inhibitor trials. First, we adopted clinical and 224 

mutational data from non-small cell lung carcinoma (NSCLC) patients treated with 225 

pembrolizumab (n = 23)(3). We observed a slightly improved correlation between 226 

neoepitope burden and progression-free survival (PFS) (R = 0.55, p = 0.007), compared 227 

with the correlation between originally reported mutated peptide burden and PFS (R = 228 

0.61, p = 0.002), although the improvement is not statistically significant as determined 229 

by the methods implemented in the cocor package(33) (Fig. 6A). The PFSs of three 230 

patients, namely, CA9903, CU9061, and SA9755, were better predicted (Fig. 6A). Next, 231 

we analyzed clinical and mutational data from melanoma patients treated with 232 

ipilimumab (n = 110)(5). Clinical benefit (CB) was defined as originally reported(5). 233 

There were significant differences in both mutational burden and predicted neoepitope 234 

burden between patients with and without CB (Fig. 6B). Overall, our results showed 235 

that neoepitope burden predicted through the mrTPCP framework retains at least 236 

comparable usefulness as a biomarker as compared with conventional mutational 237 

burden, with greatly reduced number of neoepitope candidates, enabling more focused 238 

approach in view of precision immunotherapy. 239 

 Finally, we compared estimated neoepitope burden across 21 tumor types in The 240 
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Cancer Genome Atlas (TCGA)(34). HLA-A-02:01 was chosen for subsequent analysis 241 

as an example. Using the EpitopePrediction package(28), a total of 108,730 9-mer 242 

MHCLs, of which 105,959 were unique, were identified. Immunogenicity prediction 243 

was performed as described, with the probability threshold of 0.80. A total of 69,587 244 

(64%) mutated peptides were predicted as neoepitopes. Skin cutaneous melanoma 245 

(SKCM), lung squamous cell carcinoma (LUSC), and lung adenocarcinoma (LUAD) 246 

were the three most MHCL-enriched, and neoepitope-enriched types of cancer (Fig. 7A). 247 

There was a significant gene-by-gene variation of the ratio of neoepitope burden to the 248 

MHCL burden (Fig. 7B). Mitochondrial enzymes (MT-CO1 and MT-ND4) and 249 

olfactory receptors (OR2T2, OR4A5, OR4C16, OR4K2, OR5J2, and OR7D4) were the 250 

genes that were particularly high-yield in terms of neoepitopes. 251 

R package implementation of immunogenicity prediction framework 252 

 We implemented the R package Repitope to maximize code reusability. Repitope 253 

contains datasets used in this study, functions to calculate rTPCP and mrTPCP variables 254 

for user-provided peptide datasets and reference TCR repertoire data, and the mrTPCP 255 

SVM classifier developed in this study. Source codes are deposited for public use at 256 

GitHub (https://github.com/masato-ogishi/Repitope/). 257 

  258 
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Discussion 259 

 In this work, the accurate classification of epitopes and non-immunogenic MHC-I 260 

ligands was achieved by introducing the concept of repertoire-wide TCR-peptide contact 261 

profiles. Considering that current concepts of CTL epitope prediction are mostly focused 262 

on the peptide-MHC axis, it is of interest that our immunogenicity prediction model 263 

incorporating the TCR-peptide axis showed improved predictive capability over previous 264 

models. 265 

We decided to use the dataset previously compiled by Chowell et al. for the 266 

following reasons. First, we eschewed compiling peptide datasets from scrach to avoid 267 

potential selection bias. Second, the dataset contains a sufficiently large number of human 268 

peptide data from IEDB, the largest and least biased data source available. Finally, the 269 

mutual exclusiveness of epitopes and MHCLs included in the dataset is ideal for model 270 

training and evaluation; the immunogenic CTL epitopes included were defined by T cell 271 

assays, and non-immunogenic MHCLs included were proven by MHC ligand elution 272 

assays, with any potentially immunogenic eluted ligand associated with autoimmunity or 273 

cancer being excluded. Consequently, the SVM classifier developed in this work 274 

successfully classified epitopes and MHCLs with unprecedented accuracy (Figs. 2 and 4). 275 

Moreover, our model also improved upon previous ones in that it employs smaller 276 
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number of variables(19, 22) (fig. S3). Generally, ML classifiers using smaller numbers of 277 

variables are preferable, since over-parametrization frequently causes ML algorithms to 278 

“cheat”, or to find variables distributed unevenly between the two classes in question just 279 

because of stochastic fluctuation (with no generalizability for external data). Our 280 

mrTPCP model employs only one AACP scale for parametrization, which resulted in 187 281 

mrTPCP variables. This is a fairly small size when considering the number of input 282 

peptides.  283 

Our mrTPCP framework has two notable features: independence from HLA 284 

specificity, and dependence on a reference TCR repertoire. First, pan-specific 285 

immunogenicity prediction may be feasible, as it does not depend on HLA information. 286 

We showed that our model worked with minimal performance reduction for at least five 287 

major HLA supertypes (HLA-A1, A2, B15, B44, and B57), for which sufficient amount 288 

of peptide data was available (Fig. 4B). This point could further be explored with more 289 

immunogenicity data for various HLA alleles in the future. Second, the framework 290 

requires reference TCR repertoire. The model discussed in this study relies on the pooled 291 

TCR repertoire of German origin, which could be a source of bias. However, 292 

immunogenicity could still be predicted with a minimal decrease in AUC, even when 293 

using completely random sequences instead of TCR repertoire (Fig. 4C). Conversely, 294 
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manipulation of input peptide sequences resulted in a significant decrease in predictive 295 

accuracy (Fig. 4C). These observations suggested that the mrTPCP framework is 296 

primarily dependent on the inherent features of epitope sequence but not the reference 297 

repertoire. Interestingly, peptide sequence permutation and randomization with relative 298 

amino acid compositions retained led to moderately decreased AUC (0.68 and 0.64, 299 

respectively), whereas completely random peptide sequences could not be classified 300 

(AUC = 0.50). This is consistent with the previous research of Calis et al., in which an 301 

AUC of 0.65 was obtained when residue-specific properties but not sequence-specific 302 

properties were taken into consideration(21). Collectively, both amino acid composition 303 

and sequence-specific features recapitulated by the mrTPCP framework are important in 304 

determining peptide immunogenicity.  305 

The regulatory mechanisms of CTL activation are asymmetric, and it is this 306 

asymmetry that makes the construction of immunogenicity prediction models 307 

complicated. The activation part is relatively simple; stable and strong interactions in the 308 

TCR-peptide-MHC complex are the main driving force of T cell activation(1). In contrast, 309 

there are several immunomodulatory systems outside the TCR-peptide-MHC axis 310 

affecting the T cell activation process in vivo, including regulatory T cells (Tregs)(35), 311 

CTL exhaustion mediated by chronic immune checkpoint signals, and the 312 
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immunosuppressive microenvironment engendered by solid tumors(36, 37). Considering 313 

this asymmetry, immunogenicity prediction models based solely on peptide sequence 314 

may in principle yield some false positives. Therefore, our results should be recognized as 315 

preliminary, warranting prospective validation to evaluate their clinical applicability. 316 

That being said, however, eliminating candidates least likely to be immunogenic in silico 317 

should greatly expedite research in targeted immunotherapy, and the findings in our 318 

present study are indeed encouraging; epitopes of viral and tumor origin not included in 319 

the training/testing dataset were successfully predicted with high sensitivity, whereas 320 

predicted probabilities of MHCLs randomly retrieved from IEDB distributed almost 321 

uniformly from 0 to 1 (Fig. 5 and Table 1). It is reasonable to assume a distribution of 322 

levels of immunogenicity in the dataset of randomly selected MHCLs without T cell 323 

assay-based annotation. Furthermore, we showed that the usefulness of neoepitope 324 

burden as a biomarker for clinical outcome was not affected, or even slightly improved, 325 

when candidate mutations were filtered using our prediction model (Fig. 6). One caveat to 326 

be mentioned is its relatively low sensitivity in predicting HIV epitopes. In addition to the 327 

“general” rules learned from the Chowell dataset which contains epitopes from various 328 

sources, some additional rules may be critical for HIV-specific CTL immunity and could 329 

be machine-learned with more data obtained specifically in the context of chronic HIV 330 
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infection.  331 

Immune checkpoint inhibitors achieved revolutionary success in some types of 332 

tumor including melanoma and non-small cell lung carcinoma (NSCLC)(38–40). 333 

However, relatively few explanations have been proposed about the reason why these two 334 

types of tumor are the most sensitive to checkpoint blockade. To address this, we 335 

explored the entire TCGA cancer genome dataset(34). As anticipated, skin cutaneous 336 

melanoma and NSCLC were most enriched with predicted MHCLs or neoepitopes (Fig. 337 

7A). The ratio of predicted neoepitope to predicted MHCL significantly varied by 338 

respective gene analyzed (Fig. 7B). Focusing on the high-yield genes such as 339 

mitochondrial enzymes and olfactory receptors may expedite the development of 340 

pan-cancer targeted immunotherapy. 341 

Similarly to previous studies on immunogenicity prediction, this study has several 342 

limitations. First, this is a retrospective observational study; no prospective identification 343 

of novel epitopes is demonstrated. Thus, prospective validation is indispensable before 344 

this model can be clinically applied. Second, the process of quantitative parametrization 345 

of TCR-peptide interactions could further be optimized, as our window-based pairwise 346 

interaction model might oversimplify the biophysicochemical nature of the 347 

TCR-peptide-MHC interactions. In particular, the hypothesis that either a 4-mer or 348 
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5-mer window size is sufficient for recapitulating TCR-peptide interactions is not 349 

experimentally verified, necessitating further exploration. Moreover, we limited our 350 

modeling to TCR-Vβ, omitting TCR-Vα; this point could further be explored. Despite 351 

these caveats, however, both the proposed framework of mrTPCP recapitulating the 352 

biology of TCR-peptide interactions and the demonstrated robustness of 353 

immunogenicity prediction represent noticeable progress toward fully unveiling the 354 

mechanisms underlying CTL immunity, paving the way toward precision 355 

immunotherapy against pathogens and cancer. 356 

 In conclusion, accurate epitope prediction was achieved through a machine 357 

learning approach by incorporating TCR-peptide interactions parametrized using an 358 

optimal amino acid pairwise contact potential scale. Unbiased prediction was 359 

demonstrated for peptides coupled to multiple major HLA supertypes. The framework 360 

was primarily reliant on the sequence-dependent features of the peptides, and only 361 

minimally affected by the perturbation of the reference TCR repertoire. The resultant 362 

classifier worked well for independent viral epitopes and tumor neoepitopes. These 363 

findings not only provide valuable insights into the mechanisms underlying CTL 364 

immunity, but could also bolster the ongoing precision immunotherapy initiatives. Code 365 

reusability was maximized by publicly distributing the R package Repitope, in which 366 
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datasets and key scripts are bundled. Disease-specific, prospective cohort studies could 367 

be conducted to evaluate clinical usefulness in the future.  368 

  369 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2017. ; https://doi.org/10.1101/155317doi: bioRxiv preprint 

https://doi.org/10.1101/155317
http://creativecommons.org/licenses/by-nc/4.0/


 23 

Materials and Methods 370 

Study design 371 

Research objectives. The purpose of this study was to construct a sequence-based epitope 372 

prediction model by incorporating TCR-peptide contact profiles.  373 

Design. This is a retrospective, observational study. The entire analysis is exploratory; no 374 

predetermined experimental protocol was applied a priori. 375 

Data collection. Peptide sequences accompanied by annotations on immunogenicity and 376 

other clinical profiles (if applicable) were manually retrieved from public database and 377 

previously published articles by the authors. 378 

Data size. The optimal sizes of the epitope and MHCL datasets are unknown, since we 379 

hereby proposed a novel framework. Therefore, no statistical estimation was performed 380 

to predetermine sample size. 381 

Computational analysis 382 

All in-house computational analyses were conducted using R ver. 3.4.0 383 

(https://www.r-project.org/) (42). The latest versions of R packages were consistently 384 

used. Key datasets and scripts were bundled as the R package Repitope, and publicly 385 

distributed in GitHub (https://github.com/masato-ogishi/Repitope/). Other scripts are 386 

available upon request. 387 
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Preparation of pooled human TCR repertoire dataset 388 

TCR repertoire sequencing was carried out as previously described(43), except the 389 

primers being used. Briefly, total RNA from CD8+ T cells collected from donated 390 

peripheral blood of German origin was purchased (Miltenyi Biotec) and used as the 391 

source of a pooled TCR repertoire. Primers for human TCR-Vβ were adopted from 392 

previously published work(44). All primers were synthesized by Life Technologies, and 393 

a template-switching oligo (TSO) containing 5′ terminal unique molecular identifier 394 

(UMI) and 3′ terminal guanidine locked nucleic acid (LNA) was synthesized by 395 

Exiqon(45). The sequences of the oligonucleotides utilized in this study are summarized 396 

in table S4. Reverse transcription with template-switching and semi-nested step-out PCR 397 

were performed using SMARTScribe (Clontech) and KAPA2G Fast Multiplex PCR 398 

master mix (Kapa Biosystems)(46). Amplified PCR products were gel-excised, repaired, 399 

and re-purified. Paired-end libraries were prepared, and paired-end sequencing of 2 x 300 400 

bp was performed using MiSeq (Illumina). UMI-guided de-multiplexing was performed 401 

using MiGEC software in order to reduce the effect of PCR amplification bias(47). CDR3 402 

regions were identified using IMGT/HighV-QUEST(48) 403 

(https://www.imgt.org/HighV-QUEST/). 404 

Epitope/ligand dataset for training/testing immunogenicity prediction model  405 
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 The dataset primarily utilized in this study is originated from the research led by 406 

Chowell et al(23). Any peptide derived from a mouse experiment was removed to create 407 

a human-specific immunogenicity dataset. No additional data filtering was performed to 408 

avoid deliberate peptide selection.  409 

Machine learning for immunogenicity prediction 410 

Machine learning (ML) procedures were streamlined using the caret package in 411 

R(49). The hold-out validation strategy was adopted; the input dataset was randomly split 412 

into training and testing subdatasets in a ratio of 2:1. The training subdataset was 413 

preprocessed (i.e., centered and scaled) using the preProcess function in caret. Ten-fold 414 

cross-validations (CVs) were repeated ten times to train classifiers. Testing subdataset 415 

was preprocessed using the preprocessing model generated from the training subdataset, 416 

and immunogenicity was predicted. Unless otherwise noted, the performance metric in 417 

each testing subdataset was reported. As any ML algorithm is designed to self-optimize 418 

through CVs, the performance metric obtained in the process of CVs is an optimized 419 

value for the input dataset. Our true interest is the performance of the trained classifier 420 

when applied to an external dataset not involved in either model training or optimization. 421 

Preliminary assessment suggested that the support vector machine (SVM) was the best 422 

algorithm. SVM has a long history of providing state-of-the-art, well-generalizable 423 
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predictions in various biological contexts(50). Four SVM methods, namely, svmLinear, 424 

svmPoly, svmRadial, and svmRadialSigma, were tested. We chose svmPoly as the best 425 

algorithm on the basis of various factors including accuracy, AUC, balance between 426 

sensitivity and specificity, and the smoothness of the calibration curve. Accuracy was 427 

calculated using the confusionMatrix function implemented in caret, and AUC was 428 

calculated using either the classifierplots function in the classifierplots package, or the 429 

roc and auc functions implemented in the pROC package(27). 430 

Epitope/ligand datasets for external validation 431 

The hold-out validation strategy is by itself not sufficient for evaluating the 432 

generalizability of the ML classifier for external datasets. The ML algorithm, after all, 433 

mines hidden patterns applicable across the training dataset. When the hold-out 434 

validation strategy is adopted, training and testing subdatasets derived from a single 435 

data source lie in a single context, and consequently, patterns learned from the training 436 

subdataset is highly likely applicable to the testing subdataset. Therefore, the trained 437 

classifier should be tested and validated with other external datasets constructed in 438 

different contexts. In this study, the trained classifier may be biased, since 439 

autoimmunity- and cancer-associated immunogenic peptides were excluded from the 440 

epitope data, and pathogen-derived MHCLs were excluded from the MHCL data in the 441 
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Chowell dataset.  442 

To independently assess the generalizability of the trained immunogenicity 443 

prediction model, epitope datasets were collected from the following sources: (i) 444 

hepatitis C virus (HCV) CTL epitopes 445 

(https://hcv.lanl.gov/content/immuno/tables/ctl_summary.html), (ii) human 446 

immunodeficiency virus type-I (HIV) CTL epitopes 447 

(https://www.hiv.lanl.gov/content/immunology/tables/ctl_summary.html), (iii) 448 

well-established tumor neoepitopes from multiple publications(4, 10, 29–32), (iv) 449 

neoepitopes predicted to be the most stable MHC binders identified in the study by 450 

Stronen et al.(24), and (v) all neoepitopes identified in the study by Stronen et al. For 451 

comparison, we also obtained a human MHCL dataset from IEDB (http://www.iedb.org/). 452 

Note that the MHCL data lacks T cell assay annotation, and thus the true ratio of 'epitopes' 453 

to 'MHCLs' in the definitions discussed in this study is unknown. Moreover, we retrieved 454 

the epitope/MHCL dataset originally reported by Calis et al(21). This dataset is suitable 455 

for assessing the specificity of our immunogenicity prediction model, because it contains 456 

experimentally validated non-immunogenic MHCLs, mostly originated from dengue 457 

virus. Peptide sequences containing alphabetical characters other than those representing 458 

20 authentic amino acid residues were removed. Any peptide contained in the Chowell 459 
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dataset was excluded. Datasets are available as supplementary data files (Data files 460 

S1-S6).  461 

Correlation with clinical outcomes in checkpoint inhibitor trials 462 

Correlation between mutational landscapes and clinical outcome has been shown 463 

in various tumor types in checkpoint inhibitor trials(3–5) To test the predictive 464 

usefulness of neoepitope burden predicted through the proposed framework, we 465 

re-analyzed mutational datasets from two studies(3, 5). Datasets are available as 466 

supplementary data files (Data files S7 and S8). 467 

Neoepitope burden across TCGA tumor types 468 

To assess the difference in neoepitope burden across tumor types, we analyzed 469 

genomic datasets derived from The Cancer Genome Atlas project(34). For all advanced 470 

stage (Stage III and Stage IV) tumors, mutation annotation format (MAF) files were 471 

downloaded from the National Cancer Institute (NCI) Genomic Data Commons (GDC) 472 

Data Portal (https://portal.gdc.cancer.gov/). Mutation data were parsed, and 473 

nonapeptides harboring mutation were reconstructed by referencing the UniProt human 474 

proteome (ID: UP000005640). HLA-A-02:01 is used as a representative allele, and the 475 

binding stability of all nonapeptides were estimated using the EpitopePrediction 476 
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package(28). The dataset is available as a supplementary data file (Data file S9). 477 

Statistical analysis 478 

 No variable distribution was assumed a priori, and data were presented as median 479 

and interquartile range, unless otherwise stated. P values were reported unadjusted unless 480 

otherwise stated. No accounting for missing data values is applicable. All statistical 481 

analysis is exploratory; no predetermined experimental protocols were applied before 482 

initiating the entire project. All statistical analyses were conducted in R. 483 

  484 
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Supplementary Materials 485 

Supplementary Materials and Methods 486 

Fig. S1. Clonotype rarefaction analysis in the reference TCR repertoire. 487 

Fig. S2. Composition of the reference TCR repertoire.. 488 

Fig. S3. Exploration of AACP scales most important in the immunogenicity prediction 489 

models trained using rTPCP variables. 490 

Fig. S4. Variable importance analysis of the immunogenicity prediction model trained 491 

using mrTPCP variables. 492 

Table S1. AAIndex AACP scales used in this study. 493 

Table S2. Performance evaluation of SVM classifiers with rTPCP variables from all 494 

AAIndex AACP scales. 495 

Table S3. Performance evaluation of SVM classifiers with rTPCP variables from 496 

MIYS990106 AACP scale. 497 

Table S4. Oligonucleotides used in this study. 498 

Data file S1. HCV CTL epitopes. 499 

Data file S2. HIV CTL epitopes. 500 

Data file S3. Well-established tumor neoepitopes from multiple publications. 501 

Data file S4. Best-predicted tumor neoepitopes reported by Stronen et al. 502 
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Data file S5. All neoepitopes reported by Stronen et al. 503 

Data file S6. Pathogen-derived epitopes reported by Calis et al. 504 

Data file S7. Tumor neoepitopes and clinical data reported by Rizvi et al. 505 

Data file S8. Tumor neoepitopes and clinical data reported by van Allen et al. 506 

Data file S9. Tumor neoepitope candidates identified from TCGA datasets. 507 
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Figures 652 

 653 

 

Figure 1. Schematic diagram of repertoire-wide TCR-peptide contact profile 654 

(rTPCP). Sequence-based modeling of TCR-peptide interactions is proposed. The 655 

interaction is restricted to a "window" of a fixed size, on the basis of the hypothesis that 656 

not all residues in the MHC-loaded peptide and TCR CDR3 are necessarily involved in 657 

the interactions. The energetic stability of the interactions is approximated as the summed 658 

amino acid pairwise contact potential (AACP). (A) TCR-peptide contact profile (TPCP) 659 

at a single TCR level. Both a peptide and a TCR CDR3 sequence are "windowed" in a 660 

sliding manner. Each fragment is paired, and the summed contact potential is calculated. 661 

TPCP is expressed as a set of representative statistics (e.g. median, maximum, minimum) 662 

of the set of inter-fragment contact potentials. (B) Repertoire-wide TPCP (rTPCP). 663 
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TPCPs were calculated against multiple TCR CDR3 sequences, and rTPCP is expressed 664 

as a set of representative statistics of TPCPs. 665 
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Figure 2. Immunogenicity prediction through rTPCP. (A) Representative ROC and 667 

calibration plots of the SVM classifier trained using rTPCP variables from all AACP 668 

scales. A total of 900 HLA-A2-restricted peptides (450 epitopes and 450 MHCLs) were 669 

randomly selected from the Chowell dataset, and split into training and testing 670 

subdatasets. The performance in the hold-out testing subdataset is shown. The AACP 671 

scales used are listed in table S1. (B) Representative ROC and calibration plots of the 672 
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SVM classifier trained using rTPCP variables from AAIndex MIYS990106. A full set of 673 

peptides in the Chowell dataset were used for model training and validation. Graphics 674 

were generated using the classifierplots package in R.  675 
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Figure 3. Schematic diagram of modified rTPCP (mrTPCP). All TCR sequences in 677 

the reference repertoire are fragmented according to the fixed window size. A 678 

position-specific peptide-derived fragment was matched against a set of TCR-derived 679 

fragments. Representative statistics were calculated both in a position-specific and 680 

position-blind (i.e., pooled) manner. Owing to the position-dependent nature of the 681 

analysis, only nonapeptides (=9-mers) were considered in the subsequent analysis. 682 
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Figure 4. Improved immunogenicity prediction using mrTPCP. (A) ROC and 684 

calibration plots of the SVM classifier trained using mrTPCP variables derived from 685 

MIYS990106. See the legend of Fig. 2B and method sections for further details. (B) 686 

HLA-stratified ROC analysis. The entire Chowell dataset was sorted according to their 687 

HLA restriction, and six most data-rich HLA supertypes were selected for visualization. 688 

(C) Sequence manipulation analysis. Either the input peptide sequences or the reference 689 

TCR repertoire sequences were manipulated, and mrTPCP variables were calculated. The 690 

authentically trained SVM classifier was applied. Inv, inversion of the sequence; Perm, 691 

permutation of the sequence; Syns, randomly synthesized sequences with relative amino 692 
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acid frequencies retained. For peptides, amino acid frequencies of immunogenic and 693 

non-immunogenic peptides were separately considered; Random, completely random 694 

sequences. (B-C) AUC was calculated and graphics were generated using pROC and 695 

plotROC packages in R, respectively. 696 
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Figure 5. Immunogenicity prediction of independent datasets of viral epitopes and 698 

tumor neoepitopes. Peptide data were collected from various sources. Any peptide 699 

overlapping with those in the Chowell dataset was excluded. The probability of 700 

immunogenicity was estimated by applying the mrTPCP-based SVM classifier (Fig. 4A). 701 

(A) A metadataset of viral epitopes and tumor neoepitopes(4, 10, 24, 29–32). Dots and 702 

bars represent the median and interquartile range, respectively. ***: p < 0.001, **: p 703 

<0.01. P values were determined using Wilcoxon’s rank sum test. NE, neoepitopes. (B) 704 

Epitope/ligand data originally reported by Calis et al.(21). The probability threshold was 705 

set to be 0.80. 706 
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Figure 6. Correlation between predicted neoepitope burden and clinical outcome in 708 

checkpoint inhibitor trials. The mrTPCP-based SVM classifier (Fig. 4A) was applied to 709 

external datasets of tumor mutational landscapes obtained from checkpoint inhibitor 710 

trials. We set the threshold of immunogenicity to be above 0.80, on the basis of the 711 

observation that most of the well-established tumor neoepitopes exhibited probabilities of 712 

higher than 0.80 (Fig. 5A) (A) Progression-free survival (PFS) correlated with mutational 713 

burden/predicted neoepitope burden in non-small cell lung carcinoma (NSCLC) patients 714 

treated with pembrolizumab(3). The three patients were labeled, for which scaled fitting 715 

residuals decreased by more than 1 when the predicted neoepitope burden was used as a 716 

correlate. Adjusted correlation coefficient (𝑅2𝑎𝑑𝑗) was calculated using the stat_poly_eq 717 

package.(B) Clinical benefit (CB) was associated with heavier mutational 718 

burden/predicted neoepitope burden in melanoma patients treated with ipilimumab(5). 719 

CB was defined as in the original paper(5). NCB, no clinical benefit. 720 
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Figure 7. Neoepitope burdens in TCGA datasets. Mutation data were retrieved from 722 

all advanced stage tumors in The Cancer Genome Atlas (TCGA)(34). For the 105959 723 

HLA-A-02:01-restricted nonapeptides predicted to be stable MHC binders, 724 

immunogenicity prediction was carried out. (A) Predicted neoepitope burden was 725 

visualized for the 21 tumor types registered in TCGA. SKCM, Skin Cutaneous 726 

Melanoma; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell carcinoma. For a 727 

complete set of abbreviation used in TCGA, visit the NCI Genomic Data Commons 728 

(https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations). 729 

(B) The correlation between predicted MHCL burden and neoepitope burden per gene. 730 

HUGO symbols were depicted for genes enriched with neoepitopes. Enrichment was 731 

defined as fitting residuals being larger than 10 for the purpose of tidy visualization. 732 

Adjusted correlation coefficient was calculated using the stat_poly_eq package. 733 
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Tables 735 

 736 

Table 1. Prediction results on datasets independent from training/validation data. 737 

Immunogenicity was predicted using the mrTPCP-based SVM classifier (Fig. 4A). Note 738 

that any peptide contained in the Chowell dataset was excluded. Unadjusted p values 739 

were calculated against the IEDB MHCL data as the negative control using the prop.test 740 

function implemented in R with continuity correction. N.A., not applicable. 741 

 742 

Dataset Predicted Epitope P value Data Source 

HCV CTL epitopes 

[n = 11] 

10 (90.9%) < 0.01 HCV immunology database 

(https://hcv.lanl.gov/content/immuno/t

ables/ctl_summary.html) 

HIV CTL epitopes 

[n = 867] 

545 (62.9%) < 0.001 HIV molecular immunology database 

(https://www.hiv.lanl.gov/content/imm

unology/tables/ctl_summary.html) 

Well-established 

tumor neoepitopes 

[n = 20] 

18 (90.0%) < 0.001 (4, 10, 29–32) 

Tumor neoepitopes 

(Best) [n = 35] 

34 (97.1%) < 0.001 (24) 

Tumor neoepitopes 

(All) [n = 492] 

382 (77.6%) < 0.001 (24) 

IEDB MHC-I 

ligands [10,000 

randomly selected] 

5412 (54.1%) N.A. IEDB (http://www.iedb.org/) 
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