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Abstract
As sequencing technologies improve their capacity to detect distinct transcripts of the
same gene and to address complex experimental designs such as longitudinal studies, there
is a need to develop statistical methods for the analysis of isoform expression changes
in time series data. Iso-maSigPro is a new functionality of the R package maSigPro for
transcriptomics time series data analysis. Iso-maSigPro identifies genes with a differential
isoform usage across time. The package also includes new clustering and visualization
functions that allow grouping of genes with similar expression patterns at the isoform level,
as well as those genes with a shift in major expressed isoform. The package is freely available
under the LGPL license from the Bioconductor web site (http://bioconductor.org).
Contact: mj.nueda@ua.es, aconesa@ufl.edu

1 Introduction

Alternative splicing (AS) is a common mechanism of higher eukaryotes to expand tran-
scriptome complexity and functional diversity. The expression of alternative isoforms of
many genes is a developmentally regulated process (Vuong et al., 2016) and AS has been
shown to occur as response to environmental cues (AlShareef et al., 2017). Hence, there
is an interest in studying the dynamics of AS. Deep sequencing methods currently used
in transcriptomics research allow for the study of AS. Reads that map to splice junctions
can be used to estimate splicing events, while several transcript recontruction and quan-
tification methods have been published that enable inference of isoform expression with
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different levels of accuracy (Steijger et al., 2013). More recently, long-read sequencing plat-
forms, which allow transcript identification without the need of a reconstruction step, have
become available to boost the study of isoform regulation (Au et al., 2013). While many
algorithms have been developed for differential AS analysis most of these approaches target
pair-wise comparisons (i.e. Andres et al., 2012 and Matthew et al., 2015) and have not
yet developed specific models that integrate time course with differential splicing analysis.
The DICESeq method was designed for a better estimation of isoform expression in time
series, but does not implement a specific strategy for obtaining differentially expressed iso-
forms (Huang and Sanguinetti, 2016). Topa and Honkela proposed to model time series
as a Gaussuian process and isoform levels as proportions over the total gene expression to
then evaluate splicing as the change between time-dependent and time-independent mod-
els (Topa and Honkela, 2016). This approach requires large datasets to fit parameters and
does not consider comparisons between multiple series, such as treatment and control.
Compared to genes or transcripts, the analysis of differential isoform expression in time
course experiments poses a number of specific challenges. Different transcripts of the same
gene may vary in their time trajectories and the analysis algorithm should be able to identify
those genes where isoform profiles change differently in a significant manner, i.e. those genes
that are differentially spliced across time. Additionally, joint visualisation of significant
splicing changes is complicated by the fact that genes have different number of isoforms and
hence data does not fit into the structure of traditional clustering, where the same number
of data points is required for each feature. Therefore, novel clustering strategies should be
envisioned to group genes expressing their isoforms in a similar fashion. Finally, transcripts
of the same gene have frequently very different expression levels, with one ”major” isoform
bearing most of the expression signal and alternative isoforms being lowerly expressed.
Ideally, analysis approaches should be able to account for this characteristic and identify
those cases where genes change their major isoform in the course of time.
maSigPro is an R package specifically designed for the analysis of multiple time course
transcriptomics data. maSigPro fits an optimized polynomial linear model to describe
the dynamics of gene expression in one or multiple experimental conditions and selects
genes with significant model coefficients (Conesa et al., 2006). The package incorporates a
clustering function to visualize genes with similar profiles. maSigPro was initially developed
for microarrays and later updated to model count data (Nueda et al., 2014). In this paper
we present Iso-maSigPro, a further adaptation to study differential isoform usage in time
course RNA-seq experiments. We implement a new function to model differential splicing
and combine this with differential transcript expression analysis to identify genes where
isoforms change expression across time. Novel query and visualisation functions allow
selecting genes with the strongest isoform switches and grouping genes with similar time-
dependent AS patterns.
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2 Methods

2.1 Model

The Generalized Linear Model (GLM) described in Nueda et al., 2014 to study the gene
expression value yi at observation i, time ti and s experimental conditions (i.e, treatments,
tissues, strains, etc) identified by s−1 binary variables (z1i ,...,zs−1

i ) can be written as follows
(when considering s = 2 and linear effects):

g(µi) = β0 + β1ti + β2z
1
i + β3tiz

1
i

being µi = E(yi), g a monotonic differentiable function called ’link function’, which char-
acterizes the GLM model, and β0, β1, β2, β3 the coefficients to estimate.

2.1.1 Model for Differentially Spliced Genes (DSG) across time:

For each multi-isoform gene two models are created, identifying J isoforms with J − 1
binary variables (I1,...,IJ−1). The reference model, M0, considers there exist only constant
differences between isoforms and the global gene model, M1, considers the possibility of a
time vs condition vs isoform interaction. M0 imposes parallel profiles to the different iso-
forms, in contrast M1 allows modeling different profiles and hence captures the differential
splicing cases. For instance, for a gene with two isoforms, two experimental conditions or
series and linear effects:

M0 : g(µij) = β0
0 + β0

1tij + β0
2z

1
ij + β0

3tijz
1
ij + β0

4I
1
j

M1 : g(µij) = β1
0 + β1

1tij + β1
2z

1
ij + β1

3tijz
1
ij + β1

4I
1
j +

β1
5tijI

1
j + β1

6z
1
ijI

1
j + β1

7tijz
1
ijI

1
j

being µij = E(yij) the expected value for observation i and isoform j.
To evaluate the statistical significance of the interaction, both models are compared for each
gene. In GLMs hypothesis testing is based on the log-likelihood ratio statistic (McCullagh
and Nelder, 1989; Wood, 2006).

2[l(β̂1) − l(β̂0)] ∼ χ2
p1−p0

where l(β̂1) is the maximized likelihood of the complete model with p1 coefficients and l(β̂0)
the likelihood of the reference model with p0 parameters, being p0 < p1.

2.1.2 The Iso-maSigPro functions

Seven new functions have been added to the maSigPro package to enable analysis of differ-
entially expressed isoforms. Figure 1 shows the analysis pipeline and novel Iso-maSigPro
functions:
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1. IsoModel() implements the DS models M0 and M1 for each multi-isoform gene, us-
ing the polynomial model obtained with the generic make.design.matrix() maSigPro
function that best describes the experimental design. The comparison of both models
gives as a result a FDR-corrected p-value of differential splicing.

2. Transcripts from significant DSGs are then subjected to regular Next-maSigPro anal-
ysis to detect Differentially Expressed Transcripts (DETs).

3. IsoModel() returns a list of DSGs together with the estimated models of associated
isoforms to be used as input in getDS() function to obtain a selection of DSGs at a
preestablished level of goodness of fit for each model.

4. Downstream analysis can be performed with functions seeDS(), tableDS(), getDSPat-
tern(), PodiumChange() and IsoPlot(), that cluster, select and visualize patterns of
isoform change.

Note that in this formulation, it is possible that a gene is called DSG but no significant
DETs of that gene are found under the significance level, goodness of fit and multiple
testing correction constraints of the regular maSigPro analysis.

IsoModel() 
fits model for DS 

getDS() 
selects significant  
DSGs and DETs 

tableDS() 
identifies cluster location 

of major and minor isoforms 

seeDS() 
clusters DETs  

PodiumChange() 
finds DSGs with major isoform switch 

getDSPattern() 
extracts genes with specific 
isoform clustering pattern 

IsoPlot() 
shows expression  
of indicated DSG 

Figure 1: Workflow for Iso-maSigPro analysis.

2.2 Visualization

Typically, maSigPro will cluster features according to their expression pattern in all exper-
imental conditions. This option is still available for all differential transcripts regardless
of their parent gene. The Iso-maSigPro framework allows for two additional visualisation
functions to study differential splicing results: differential splicing clustering and major
isoform switch.
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2.2.1 Differential splicing clustering with seeDS() and tableDS()

The clustering strategy implemented with these two functions aims to identify groups of
DSGs with similar isoform expression patterns. First, seeDS() takes DETs - either from
DSGs or in combination with DETs from single-transcript genes- and clusters them into
k groups with any of the available maSigPro clustering approaches to define transcrip-
tional patterns globally present in the data. Next, tableDS() identifies, for each DSG, the
cluster(s) their DETs belong to and labels gene transcripts as major (here defined as the
isoform with the highest total expression across conditions) or minor isoforms. This infor-
mation is used to create a classification table that indicates the distribution of DETs of
DSG across different clusters. By evaluating the classification table with the cluster pro-
files, the user can readily identify genes with strong or subtle expression differences among
their set of isoforms.

2.2.2 PodiumChange()

This function returns DSGs that undergo a switch of their most expressed isoform during
the time course. PodiumChange() can be applied taking into consideration only DETs or
all isoforms of DSGs. This last option is interesting when the DSG has only one isoform
called as DET. The function takes as input the result of getDS() and returns a list of
genes with podium changes. The function can detect changes at any time point (eventual
changes), for an indicated experimental condition or at specific subranges of time and
experimental conditions. Finally an isoform-resolved expression profile graph of genes with
podium changes can be plotted with the IsoPlot() function to reveal the switch among
isoforms.

2.2.3 IsoPlot()

This function provides gene-level plots of the expression profiles of all transcripts in the
input genes. Optionally, the user can choose to visualize all transcripts or only DETs of
the selected genes. Typically, IsoPlot() will be used to inspect specific genes identified by
the PodiumChange() or the tableDS() functions.

3 Results

The described methodology has been applied to the analysis of a published RNA-seq dataset
(GEO accession GSE75417) describing a mouse B-cell differentiation course from the pre-
BI (cycling or Hardy fraction C’) stage to the pre-BII (or Hardy fraction D) stage, where
B-cell progenitors undergo growth arrest and differentiation. The process is triggered by
the induction of the expression of the B-cell specific transcription factor Ikaros. Transcripts
were quantified with eXpress (Roberts and Pachter, 2013). A total of 34,156 transcripts
belonging to 12,572 genes are available, of which 6,882 genes expressed more than one
transcript and 28,466 transcripts belong to multi-isoform genes. Data consist of 6 time
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points (0, 2, 6, 12, 18 and 24 hours after Ikaros induction), two experimental conditions
(Control and Ikaros-induced) and three biological replicates per time and experimental
condition.

3.1 Identification of DSGs

The IsoModel() function gave as overall result the selection of 347 DSGs containing a total
of 1,239 transcripts. Of these, 665 also had significant time course changes (DETs). For
37 genes, we could not find individual differentially expressed transcripts, suggesting these
genes had subtle expression changes that could be detected only when different isoforms
profiles were compared. Table 1 summarizes results.

Table 1: IsoModel results on the B-cell data. Number of DSGs and DETs in differentially spliced genes.

#DETs by DSGs 0 1 2 3 4 5 6 8 9 10 Total
#DSGs 37 129 103 30 22 16 6 1 2 1 347
#DETs 0 129 206 90 88 80 36 8 18 10 665

3.2 Clustering of DSGs

We applied the function seeDS() to group our 665 DETs into 6 clusters (Figure 2) and
obtained the cluster assignment of their major and minor significant isoforms (Table 2 and
Supplementary tables).

Table 2: tableDS() results. Number of DSGs with major and minor isoforms in seeDS() clusters.

Cluster of minor Cluster of major isoform
isoform(s) 1 2 3 4 5 6

1 24 6 7 8 0 2
1&2 13 7 1 1 0 0

1&2&3&4 0 0 1 0 0 0
1&2&4 0 1 0 1 0 0
1&3 0 0 0 1 0 0
1&4 1 0 1 1 0 0
1&5 0 1 0 0 2 0
1&6 3 1 1 0 0 1
2 15 13 2 1 0 0

2&3&4 0 0 1 0 0 0
2&6 0 1 0 0 0 0
3 4 0 15 10 0 0

3&4 0 0 6 4 0 0
3&6 0 0 0 0 0 1
4 5 0 5 5 0 0
5 1 0 0 0 1 0
6 2 0 1 1 0 2

68 30 41 33 3 6
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Figure 2: Output of seeDS(). Clusters of 665 DETs belonging to 347 DSGs.

We observed that, in most cases, major and minor isoforms of the same gene follow the
same transcriptional pattern. For example, out of the 68 genes with major isoforms in
cluster 1 (upregulation in the Ikaros series), 24 cases had minor isoforms belonging to the
same cluster. For other 15 genes, the secondary transcripts fall into cluster 2, which also
represents upregulation in Ikaros but with a time delay. Finally, 13 of these 68 genes
have their minor forms spread between clusters 1 and 2. For a small number of other
genes, expression of major and minor isoforms followed very different trajectories. For
example, 7 genes had major isoforms in cluster 3 (downregulation in Ikaros) but secondary
isoforms in cluster 1 (Ikaros upregulation). Figure 3A shows an example of one such
gene. The transcription factor Nfkb2 is expressed in our system with two isoforms with
opposite expression profiles. Isoform ENSMUST00000073116 is expressed in the pre-BI
stage and drops sharphly after Ikaros induction, while isoform ENSMUST00000011881
increased levels after 6 h. Both isoforms code for the same protein but have different
5’UTR regions that contain distinct regulatory signals (Supplementary figure S1).
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Figure 3: IsoPlot() examples. A) Nfkb2 gene has isoforms in cluster 1 and 4. B) Mxi1 is a podium
change gene.

3.3 Identification of genes with a switch of major isoform

We applied the function PodiumChange() to the 347 DSGs and identified 127 cases where
a change in the most expressed isoform was present at any time. To select genes where
the major isoform switch could be associated to the transition from cycling to differentia-
tion stages in B-cell development, we used the time.points parameter in PodiumChange()
to require a change in the last 2 time points, which resulted in 37 genes (Supplementary
tables). Figure 3B shows an example of one such gene (Mxi1 ) plotted with the function
IsoPlot(). Mxi1 is a transcriptional repressor and an antagonist of Myc, a key transcription
factor that regulates B-cell differentiation and is downregulated after Ikaros induction (Ma
et al., 2010). Interestingly, Mxi1 changes its most expressed isoform from Mxi1-202 (ENS-
MUST0000025998) to Mxi1-201 (ENSMUST0000003870) at 12 h after induction, which is
the turning point from pre-BI to pre-BII stages. These 2 isoforms contain the helix-loop-
helix DNA-binding domain but differ in their N-terminal sequences (Supplementary figure
S2), Mxi1-202 being a longer protein. Interestingly, N-terminal variations of the human
Mxi1 isoforms have been described to be associated with cytoplasmic retention of Mxi1 and
fine control of Myc repression (Engstrom et al., 2004). The major isoform switch revealed
by our PodiumChange() function may suggest that isoform-control of Mxi1 activity may
also occur in murine B-cell differentiation.

4 Discussion

The Iso-maSigPro set of functions updates the maSigPro framework to analyze isoform
changes in time course transcriptomics data. We model differential isoform utilisation as
the interactions between the isoform, experimental condition and time, and evaluate signif-
icance with the log-likelihood ratio statistic of the models including or not this interaction.
This approach selects genes where the relative proportions of their transcripts change in
time. However, isoform expression differences might be small or only affect low expressed
isoforms. To extract biologically meaningful changes in relative isoform abundances, we in-
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troduced new clustering and querying functions. seeDS() and tableDS() help to find genes
with substantial isoform profile differences in time, while PodiumChange() identifies those
cases with a switch in the most expressed transcript. We showed examples where these
functions helped to select genes with functionally relevant isoform changes. maSigPro is
the first Bioconductor package with specific functions for the identification and analysis of
alternative isoform expression in multiple time course transcriptomics experiments.
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