
Computational approaches for discovery of mutational signatures in cancer 1 

Adrian Baez-Ortega and Kevin Gori 2 

 3 

Corresponding author. Adrian Baez-Ortega, Department of Veterinary Medicine, University 4 

of Cambridge, Cambridge CB3 0ES, UK. E-mail: ab2324@cam.ac.uk 5 

 6 

Adrian Baez-Ortega is a PhD student in the Transmissible Cancer Group at the University of 7 

Cambridge. He develops computational methods and workflows for studying somatic 8 

variation and mutagenesis in contagious cancers. 9 

Kevin Gori is a post-doctoral researcher in the Transmissible Cancer Group at the University 10 

of Cambridge. He took his PhD at the European Bioinformatics Institute under the 11 

supervision of Nick Goldman. He works on evolutionary analysis in transmissible cancer. 12 

 13 

Abstract 14 

The accumulation of somatic mutations in a genome is the result of the activity of one or 15 

more mutagenic processes, each of which leaves its own imprint. The study of these DNA 16 

fingerprints, termed mutational signatures, holds important potential for furthering our 17 

understanding of the causes and evolution of cancer, and can provide insights of relevance for 18 

cancer prevention and treatment. In this review, we focus our attention on the mathematical 19 

models and computational techniques that have driven recent advances in the field.  20 
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Introduction 23 

Cancer is a disease of the genome, in which uncontrolled clonal proliferation is initiated and 24 

fuelled by genomic alterations in somatic cells [1]. Despite the fact that a cancer genome may 25 

carry between tens and millions of somatic mutations [2,3], only a small subset of these, 26 

termed ‘driver’ mutations, are thought to be under selection and to cause neoplastic expansion 27 

[1,4]. The remaining ‘passenger’ mutations are generally believed not to confer selective 28 

advantage, and to arise from the processes involved in mutagenesis [5,6]. The collection of 29 

mutations in a somatic cell genome is the result of one or more mutational processes 30 

operating, continuously or intermittently, during the organism’s lifetime [7]. Such mutational 31 

processes include DNA damage by exogenous or endogenous agents, defective DNA 32 

replication, insertion of transposable elements, defects in DNA repair mechanisms, and 33 

enzymatic modifications of DNA, among others [8]. Many of these processes imprint a 34 

distinct pattern of mutations in the genome, known as a ‘mutational signature’ [2,9]. 35 

Therefore, the compendium of somatic changes in a cancer genome constitutes a record of the 36 

combined mutagenic effect of the specific mixture of processes moulding it [2]. Furthermore, 37 

because most mutations are passengers, they are largely beyond the effect of adaptive 38 

selection [10]. 39 

Although mutational signatures are a relatively recent concept in cancer biology, the 40 

first descriptions of genomic aberrations caused by a specific process date back to the early 41 

twentieth century, when X-rays were found to induce chromosome breakage in irradiated 42 

cells [11–13]. More-detailed mutational patterns were reported in the 1960s, notably the 43 

crosslinking of adjacent pyrimidine bases (CC, CT, TC, TT) due to ultraviolet radiation, 44 

which produces cytosine-to-thymine (C>T) and cytosine–cytosine-to-thymine–thymine 45 

(CC>TT) transitions at dipyrimidine sites [14–16]. Other causal links between mutagenic 46 

agents and patterns of somatic changes have also become established, such as the guanine-to-47 

thymine (G>T) transversions resulting from guanine adducts that are caused by carcinogens 48 

present in tobacco smoke [17,18]. Furthermore, some chemotherapeutic agents are mutagens 49 
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as well, and may imprint their own mutational signature in the cancer genomes of patients 50 

with secondary malignancies [19,20]. These examples illustrate the importance of studying 51 

somatic mutation patterns to our understanding of the molecular mechanisms of neoplasia, 52 

potentially enabling the discovery of novel mutagens [2,7,8,21]. Moreover, several authors 53 

have emphasised the potential of mutational signature analysis to provide insights of clinical 54 

significance, by informing and guiding diagnostic procedures, personalised cancer 55 

interventions and prevention efforts [19,22–27]. 56 

Recent advances in high-throughput DNA sequencing technologies have enabled 57 

studies which examine many thousands of whole cancer genomes or exomes. In parallel, new 58 

scientific avenues have been explored to identify and analyse genomic aberrations, among 59 

them the extraction of mutational signatures from collections of somatic mutations. This has 60 

produced catalogues of signatures that operate in a variety of human neoplasias [2,28–31]. 61 

While the development of methods for discovery of mutational signatures has achieved 62 

considerable success, this is still an emerging field, stemming from very recent analytical and 63 

technological breakthroughs. In this review, we aim to summarise current methodologies, in 64 

particular the mathematical models and computational techniques, which form the basis of 65 

mutational signature analysis. 66 

 67 

Mathematical modelling of mutational signatures 68 

A mutational signature can be mathematically defined as a relationship between a (known or 69 

unknown) mutagenic process and a series of somatic mutation types. Many classes of 70 

genomic alterations can serve as features of a mutational signature, including single- or di-71 

nucleotide substitutions, small insertions and deletions (indels), copy number changes, 72 

structural rearrangements, transposable element integration events, localised hypermutation 73 

(kataegis), and epigenetic changes. In practice, only a limited number of features can be 74 

incorporated into the mathematical abstraction of a mutational signature, with the attention of 75 

most studies to date being focused on single-base substitutions. However, signatures based on 76 
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indels [29,32] or structural variants [27,29,32] have also been described. Furthermore, certain 77 

substitution signatures are consistently associated with features such as increased numbers of 78 

indels or rearrangements of a particular class, kataegis events, or biases in the transcriptional 79 

strand in which mutations occur [2,28–30,33]. It is therefore useful to consider such features 80 

as biological constraints for the identification of signatures, even if precisely modelling them 81 

is more challenging. 82 

The selected set of K mutation types can be expressed as a finite alphabet 𝒜, with 83 

𝒜  = K, every symbol in 𝒜 representing a distinct mutation type. This alphabet constitutes 84 

the domain of a mutational signature, which is modelled as a discrete probability density 85 

function, S : 𝒜 → ℝ+K. Hence, the mathematical representation of a given signature, Sn, is a K-86 

tuple of probability values, Sn  =  [s1n, s2n, …, sKn]T, with skn denoting the probability of the 87 

mutation type represented by the k-th symbol in A being caused by the mutational process 88 

associated with Sn. As probability values, the elements of Sn are intrinsically nonnegative and 89 

their sum is always 1: 90 

 skn = 1
K

k=1

 (1) 

 skn  ≥  0, 1  ≤  k  ≤  K (2) 

The same mutational process operating in multiple genomes may produce different 91 

numbers of mutations in each. The intensity at which a mutational process with signature Sn 92 

operates in a genome g, expressed in terms of the number of mutations caused, is known as 93 

the ‘exposure’ to (or the ‘contribution’ or ‘activity’ of) the process, and denoted by eng. 94 

Regarding the catalogue of somatic mutations in a cancer genome g, this is also defined as a 95 

vector of mutation counts over 𝒜, Mg ∶ 𝒜 → ℕ0K, and expressed as a second nonnegative K-96 

tuple: Mg = [m1g, m2g, …, mKg] . (This notation of mutational catalogues, signatures and 97 

exposures will be maintained hereafter for coherence.) 98 

A mutational catalogue can be approximately considered as a linear superposition of 99 

the signatures of the latent mutational processes that have acted at some point in the somatic 100 

cell lineage giving rise to the sampled neoplastic cells, each signature weighted by the 101 
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exposure to the corresponding process. In addition, catalogues are expected to contain some 102 

level of noise arising from sequencing or analysis errors and sampling noise. Neglecting such 103 

noise, the number of mutations of the k-th type in the catalogue Mg, mkg, can be approximated 104 

by the sum of the k-th element of the N operative mutational signatures, each weighted by its 105 

respective exposure: 106 

 mkg  ≈ skn  eng

N

n=1

 (3) 

Most of the existing mathematical approaches to mutational signature inference have 107 

focused on single-base substitutions as mutation features, maintaining the convention 108 

established by Nik-Zainal et al. [33] and Alexandrov et al. [2]. In this scheme, substitutions 109 

are first classified into six categories, by representing the change at the pyrimidine partner in 110 

the mutated base pair (e.g. a guanine-to-adenine substitution, G>A, is instead expressed as a 111 

cytosine-to-thymine change, C>T, in the complementary strand). This classification is then 112 

extended by considering the immediate sequence context of the substitution, usually the 113 

adjacent 5’ and 3’ bases. The six substitution types are thus translated into 96 trinucleotide 114 

mutation types (6 substitution types × 4 types of 5’ base × 4 types of 3’ base). An extensive 115 

literature supports the need for at least a trinucleotide context of mutations in order to 116 

distinguish the mutational patterns induced by a variety of mutagens. In addition, there have 117 

been attempts to deconvolute signatures using a five- or seven-base sequence context, 118 

resulting in 1536 and 24,576 mutation types, respectively [27,34,35]. Further elaboration can 119 

also be achieved by considering the transcriptional strand of mutations in transcribed regions. 120 

Nevertheless, expanding the range of mutation types normally implies a decrease in the 121 

observed number of mutations per type, which may curb the power to identify patterns. 122 

In a generalisation that considers N different mutational processes acting in a 123 

collection of G cancer genomes, with mutational catalogues defined over K mutation types, 124 

the catalogues, signatures and exposures can be mathematically expressed as matrices named 125 

M, S and E, respectively (Fig. 1a): 126 
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MK×G  =

m11 m12 ⋯ m1G
m21 m22 ⋯ m2G
⋮ ⋮ ⋱ ⋮

mK1 mK2 ⋯ mKG

 

SK×N  =

s11 s12 ⋯ s1N
s21 s22 ⋯ s2N
⋮ ⋮ ⋱ ⋮
sK1 sK2 ⋯ sKN

 

EN×G  =

e11 e12 ⋯ e1G
e21 e22 ⋯ e2G
⋮ ⋮ ⋱ ⋮
eN1 eN2 ⋯ eNG

 

Consequently, the approximate description of a mutational catalogue as a sum of 127 

signatures multiplied by their exposures, expressed in (3), is generalised into matrix form: 128 

 M  ≈  S E (4) 

By adopting this mathematical representation, the problem of inferring the mutational 129 

signatures and exposures that best account for a given collection of observed catalogues 130 

becomes equivalent to finding the instances of S and E that reproduce M with minimal error. 131 

This is, in turn, connected to the problem of determining the number of signatures, N, that 132 

optimally explains the data in M (Fig. 1b). This process is sometimes referred to as de novo 133 

extraction, inference, deciphering, or deconvolution of mutational signatures. By contrast, the 134 

simpler problem of signature refitting is characterised by both M and S being known a priori. 135 

 136 

Computational approaches for mutational signature discovery 137 

A host of computational strategies have been advanced to tackle the problem of signature 138 

discovery as formulated above; these are presented below and summarised in Table 1. 139 

 140 

Nonnegative matrix factorisation 141 

The unsupervised learning technique of nonnegative matrix factorisation (NMF) [36,37] was 142 

devised to explain a set of observed data utilising a set of components, the combination of 143 

which approximates the original data with maximal fidelity. NMF is distinguished from 144 

similar techniques, such as principal component analysis (PCA) or independent component 145 

analysis (ICA), in that nonnegativity is enforced for the values composing both the 146 
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components and the mixture coefficients, and that no orthogonality or independence 147 

constraints are imposed (therefore permitting partially or entirely correlated components). 148 

These features make NMF especially well-suited to the problem of mutational signature 149 

inference, because of the intrinsic nonnegativity of the matrices in the mathematical model 150 

presented above. Moreover, NMF has repeatedly stood out as a powerful technique for the 151 

extraction of meaningful components from various types of high-dimensional biological data 152 

[38–42], besides successful applications in other fields [39]. 153 

NMF constituted the basis of the first computational method for mutational signature 154 

inference, the Wellcome Trust Sanger Institute (WTSI) Mutational Signature 155 

Framework (hereafter referred to as the WTSI Framework). This was published, together 156 

with the mathematical model introduced above, in a landmark work by Alexandrov et al. 157 

[34], which enabled the first detailed delineations of mutational signatures in human cancer 158 

[2,33,43]. The WTSI Framework performs NMF on a set of mutational catalogues by 159 

building upon an implementation, developed by Brunet et al. [38], of the multiplicative 160 

update algorithm devised by Lee and Seung [36,44]. More formally, given a set of mutational 161 

catalogues, M, composed of G genomes defined over K mutation types, the method extracts 162 

exactly N mutational signatures (with 1 ≤ N ≤ min{K, G} – 1), by finding the matrices S and 163 

E that approximately solve the nonconvex optimisation problem derived from (4), with the 164 

selected matrix norm being the Frobenius reconstruction error: 165 

 min
S ! 0, E ! 0  

M  –  S E F
2    (5) 

The algorithm first initialises S and E as random nonnegative matrices, and reduces 166 

the dimension of M by removing those mutation types that together account for ≤1% of all the 167 

mutations. Two steps are then iteratively followed: (a) Monte Carlo bootstrap resampling of 168 

the reduced catalogue matrix, and (b) application of the multiplicative update algorithm to the 169 

resampled matrix, finding the instances of S and E that minimise the Frobenius norm in (5). 170 

After completion of the iterative stage, partition clustering is applied to the resulting set of 171 

signatures, in order to structure the data into N clusters. The N consensus signature vectors, 172 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 24, 2017. ; https://doi.org/10.1101/154716doi: bioRxiv preprint 

https://doi.org/10.1101/154716
http://creativecommons.org/licenses/by-nc-nd/4.0/


which compose the averaged signature matrix, S, are obtained by averaging the signatures in 173 

each cluster. Since each signature is related to a specific exposure, the averaged exposure 174 

matrix, E, can be inferred from S. In cases where the mutational catalogues have been derived 175 

from cancer exomes, the extracted mutational signatures should thereafter be normalised to 176 

the trinucleotide frequencies of the whole genome. 177 

The WTSI Framework requires the number of signatures to infer, N, to be defined as 178 

a parameter. Because the number of signatures present in the data is normally not known a 179 

priori, the framework needs to be applied for values of N ranging between 1 (or the smallest 180 

plausible number of signatures) and min{K, G} – 1. For each value of N, the overall 181 

reproducibility (measured as the average silhouette width [45] of the signature clusters, using 182 

cosine similarity) and Frobenius reconstruction error are calculated, and the best value is 183 

selected such that the resulting signatures are highly reproducible and exhibit low overall 184 

reconstruction error. Nevertheless, the manual determination of N on the basis of these 185 

criteria is perhaps the most heavily criticised aspect of the WTSI Framework. Accurate 186 

estimation of the number of mutational signatures, besides remaining one of the thorniest 187 

facets of mutational signature analysis, is crucial given the associated risks of inferring 188 

signatures that merely describe the noise in the data by overfitting (through overestimation of 189 

N), or insufficiently separating signatures present in the data by underfitting (through 190 

underestimation of N). 191 

Although the NMF approach has proven highly effective, especially when applied to 192 

large cohorts of cancer genomes, it is not without conceptual limitations [34]. The first of 193 

these lies in the number of catalogues required, which is a limiting factor on the number of 194 

signatures that can be accurately extracted, and rises exponentially with N. The number of 195 

mutations per catalogue also influences the power to infer signatures, with a small set of 196 

densely mutated genomes being more informative than a large number of sparsely mutated 197 

genomes. In fact, the influence of catalogues with extreme mutation burdens (hypermutated 198 

genomes) on the NMF process can hinder the detection of signals from less-mutated 199 
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catalogues. Furthermore, mutational signatures exhibiting higher exposures can generally be 200 

identified more easily and accurately. Sensitivity to initial conditions is another major 201 

limitation, arising from the high dimensionality and inherent nonconvexity (presence of 202 

multiple local minima) of the optimisation problem posed by (5). This aspect of NMF has 203 

attracted particular attention in the past, leading to the proposal of alternative initialisation 204 

strategies [46,47] that might outperform the random initialisation adopted by the WTSI 205 

Framework. 206 

In more recent analyses, the WTSI working group has significantly refined their own 207 

application of the WTSI Framework, in order to enhance power and accuracy; however, such 208 

refinements have not been incorporated in the publically available software. Firstly, an 209 

additional analysis step can follow the deconvolution of consensus mutational signatures, 210 

which centres on precisely estimating the contribution of each signature to each genome [28]. 211 

This is individually achieved for each catalogue through minimisation of a variation of the 212 

function shown in (5); the difference lies in S now being known, and harbouring only the 213 

consensus mutational patterns of the processes that operate in the tumour type of the sample 214 

(these are known from the signature extraction process). Notably, additional biological 215 

constraints are imposed in the selection of the processes included in S; these require that, for 216 

each candidate process, at least one associated genomic feature (e.g. transcriptional strand 217 

bias or enrichment in aberrations of a specific type) be present in the examined sample. The 218 

second enhancement consists of a ‘hierarchical signature extraction’ process [29], which is 219 

directed to increase the power to identify signatures exhibiting either low activity or limited 220 

representation across the sample cohort. Here, the WTSI Framework is initially applied to the 221 

original matrix, M, containing all the somatic catalogues. After identification of signatures, 222 

those samples that are well-explained by the resulting mutational patterns are removed from 223 

M, and the method is re-applied to the remaining catalogues. The process is repeated until no 224 

new signatures are discovered, and the additional step for estimating signature contributions 225 

described above is then applied to all the consensus patterns. 226 
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Following the success of the WTSI Framework, other software tools have been 227 

released that exploit NMF to decipher mutational signatures. The SomaticSignatures 228 

package, developed by Gehring et al. [48], provides an R implementation of the NMF 229 

algorithm by Brunet et al. [38]. It aims to offer a more accessible approach to signature 230 

inference, featuring additional normalisation and plotting routines and allowing integration 231 

with widely used Bioconductor [49] workflows and data structures. On the other hand, this 232 

accessibility is accompanied by a notable shortage of options for fine-tuning of the inference 233 

process. In addition, the package allows the application of PCA for de novo signature 234 

extraction; however, since it does not enforce nonnegativity, PCA is implausible from a 235 

biological standpoint, and unlikely to be fruitful. Despite this, and due to its simplicity and 236 

adherence to the Bioconductor framework, SomaticSignatures has become the tool of choice 237 

in a number of recent cancer studies [50–56]. 238 

MutSpec is a third framework, presented by Ardin et al. [57], that exploits NMF 239 

through the R package developed by Gaujoux and Seoighe [58]; this provides an interface to 240 

several NMF implementations, including that by Brunet et al. [38]. Moreover, MutSpec 241 

stands out for being the first published tool in the field that features a comprehensive 242 

graphical user interface, with a view toward empowering a wider variety of researchers, 243 

including those with limited bioinformatics expertise, to perform analyses of mutational 244 

catalogues. MutSpec accomplishes this by building upon the open-source Galaxy platform 245 

[59,60], which allows integration of multiple bioinformatics tools in an accessible and 246 

reproducible manner. 247 

Although both SomaticSignatures and MutSpec ultimately apply the same 248 

implementation of the multiplicative update algorithm for NMF [38] originally adopted by the 249 

WTSI Framework, it should be noted that these packages may not produce identical results to 250 

those of the latter, since they lack the computationally intensive pre-processing and 251 

bootstrapping routines that complement the application of NMF in the method devised by 252 

Alexandrov et al. [34]. Nevertheless, SomaticSignatures and MutSpec do adopt the definition 253 
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of mutational signatures as probability vectors over single-base substitution types in a 254 

trinucleotide context. It is worth noting that one recent study [27] that applied both the WTSI 255 

Framework and SomaticSignatures for de novo extraction of signatures from esophageal 256 

adenocarcinoma genomes reported a high similarity between the core mutational patterns 257 

identified by both tools. 258 

 259 

Expectation–maximisation 260 

In contrast to the numerical optimisation approach to mutational signature inference 261 

expressed by (5), probabilistic frameworks have also been devised which exploit the 262 

intrinsically stochastic nature of mutagenesis. These frameworks have been claimed to be 263 

better-suited to deal with mutational stochasticity, which is partly responsible for the noise 264 

observed in mutational catalogues and becomes more prominent as less-mutated genomes, or 265 

smaller genomic regions, are examined. 266 

The first probabilistic approach in the field was developed by Fischer et al. [61], 267 

under the name EMu. It builds upon the insight that the NMF optimisation problem posed by 268 

the WTSI Framework can be recast as a probabilistic model, in which the observed mutation 269 

counts (M) are distributed as independent Poisson random variables, parameterised by the 270 

product of the matrices of signatures (S) and exposures (E). Given some assumptions, such as 271 

that the quantity being minimised in NMF is a type of Bregman divergence [62], the two 272 

approaches are equivalent [63–65]. Estimation of S and E is performed through an 273 

expectation–maximisation (EM) algorithm [66]. Notably, the probabilistic setting also 274 

addresses the determination of the most plausible number of signatures, N, as a model 275 

selection problem. 276 

Another novelty of EMu is the incorporation of tumour-specific variation in 277 

mutational opportunity across different sequence contexts. Mutational opportunities, which 278 

derive from the sequence composition of a genome, can be expressed as a nonnegative K-279 

tuple containing the opportunity for each mutation type in the genome g, 280 
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Og = [o1g, o2g, …, oKg] . For single-base substitutions in a trinucleotide context, the 281 

opportunities correspond to the frequencies of each trinucleotide type in each genome. 282 

Explicitly accounting for the opportunity for mutations to occur is especially relevant given 283 

that the relative frequency of certain sequences in the human genome (e.g. 284 

underrepresentation of CpG dinucleotides) can exert undesired biases on the inferred 285 

mutational patterns. In addition, copy number alterations, which are frequent in cancer 286 

genomes [1,67], can substantially alter the mutational opportunity in affected regions across 287 

tumours. The divergence in sequence composition across genomic segments also makes 288 

opportunity a relevant factor in the determination of signature contributions in a specific 289 

region. The probabilistic framework and explicit dependence on opportunity are intended to 290 

increase adaptability for the analysis of signatures in short genomic regions. 291 

Fischer et al. make use of a Poisson-distributed probabilistic model to describe the 292 

mutational catalogue of a given genome as the result of a stochastic process of mutation 293 

accumulation. Assuming the N mutational processes to be mutually independent, the 294 

probability of observing the catalogue Mg = [m1g, m2g, …, mKg] is given by: 295 

   p Mg  Eg,  Og, S   ≡ Pois mkg     okg skn  eng 

N

n=1

K

k=1

 (6) 

In this model, the mutational signatures, S, act as the shared model parameters, and 296 

the signature exposures, E, as the hidden data. The end of the EM procedure is to find 297 

maximum likelihood estimates of both, thereby solving the deconvolution problem. The 298 

algorithm starts by making an initial guess of the model parameters, S(0), and thereafter 299 

iterates through two steps. In the first, denoted E-step, an estimate is obtained for the 300 

signature exposures, E, given the current parameter guess, S(k). In the subsequent M-step, E is 301 

used to update the parameter estimate for the next iteration, S(k+1). Iteration through these 302 

steps finishes when the likelihood of the observed data, p(M|S), converges to a local 303 

maximum. 304 
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The data likelihoods obtained for different values of N are compared in order to 305 

determine the number of mutational processes involved. Because increasing N normally leads 306 

to a better explanation of the data, due to the higher number of available model parameters, 307 

the likelihood generally rises with N. Overfitting of the data is avoided applying the Bayesian 308 

information criterion (BIC) [68], a model selection criterion whose second term corrects for 309 

the model complexity: 310 

 BIC = 2 log p M S  – N K – 1    logG (7) 

The BIC is calculated for each of the models, and the one exhibiting the highest BIC 311 

value is selected [68,69]. After inference of signatures, EMu can estimate both the global 312 

exposures in each genome and the local exposures per genomic region. Inference of local 313 

exposures is performed by dividing each genome into non-overlapping segments of equal 314 

length, and using the estimated global exposures as an informed prior distribution. The 315 

patterns of variation in local exposures can subsequently be compared within and across 316 

genomes. 317 

It is worth noting that, while EMu builds upon a valid alternative interpretation of 318 

NMF, which considers the latter as an application of EM to a particular problem [64], the 319 

novel concepts and advantages of the method presented by Fischer et al. are not intrinsic 320 

properties of the EM paradigm, but explicit enhancements that are amenable to assimilation 321 

by other approaches. On the other hand, EMu suffers from the same sensitivity to initial 322 

conditions as conventional NMF, and it may as well benefit from alternative initialisation 323 

strategies. Despite this, EMu successfully exploits a probabilistic formulation of mutational 324 

signature inference to address previously unexplored aspects, namely the incorporation of 325 

context- and tumour-specific opportunity for mutations, the estimation of local signature 326 

exposures, and the direct determination of the number of mutational processes. 327 

 328 

Bayesian NMF 329 

As noted above, the WTSI Framework has been criticised for requiring a manual selection of 330 

the number of mutational signatures, N, on the basis of heuristics that are indicative of the 331 
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goodness of the solutions. While EMu addresses this issue by means of a purely probabilistic 332 

methodology, alternative approaches have proceeded by wrapping NMF in a Bayesian 333 

framework, partly with a view toward improving estimation of N. 334 

The BayesNMF software by Kasar et al. [70] and Kim et al. [71] is based upon a 335 

variant of NMF proposed by Tan and Févotte [72]. Similarly to the strategy introduced by 336 

Fischer et al. [61], BayesNMF exploits the compatibilities between NMF and a Poisson 337 

generative model of mutations. More specifically, the number of mutations of the k-th type in 338 

a genome g, mkg, is assumed to be the combination of N independent mutation burdens, mkg
n  339 

(with 1 ≤ n ≤ N); such burdens are in turn assumed to be generated by a Poisson process 340 

parameterised by mutation-type- and genome-specific rates, such that the expected number of 341 

mutations attributed to signature Sn is: 342 

 E mkg
n   =  skn eng (8) 

The properties of the Poisson process [73] then imply that mkg  is also Poisson-343 

distributed as: 344 

 mkg ~ Pois    skn eng

N

n=1

 (9) 

Consequently, as already seen, the estimation of signatures (S) and exposures (E) by 345 

maximising the likelihood of the observed data (M), given the expectation E[M] = S E, is 346 

equivalent to the minimisation of a particular Bregman divergence [62] between M and the 347 

matrix product S E through NMF [72]. However, BayesNMF addresses the selection of N 348 

implicitly through a technique known as ‘automatic relevance determination’ [72], which 349 

‘prunes’ or ‘shrinks’ those components in S and E which are inconsequential, not contributing 350 

to explaining M. Each signature Sn is therefore assigned a relevance weight, Wn; then, after 351 

imposing appropriate priors on the parameters, NMF inference is performed via numerical 352 

optimisation. During this process, the columns of S and rows of E corresponding to 353 

inconsequential pairs of signatures and exposures are shrunk to zero by their relevance 354 

weights. The effective dimensionality, corresponding to the estimated number of mutational 355 

signatures, is given by the final number of nonzero components. 356 
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Notably, the authors have extended their method to explicitly incorporate the 357 

transcriptional strand of mutations [71], resulting in a model with 192 trinucleotide mutation 358 

types (96 for each strand). While the WTSI Framework does not explicitly account for 359 

transcriptional strand biases, some studies have used this and other genomic features as 360 

biological constraints for validating the presence of specific signatures in a sample [28]. 361 

Moreover, models incorporating transcriptional strand information are only suitable for 362 

mutations in transcribed regions. 363 

Another notable aspect of the application of BayesNMF, particularly that presented 364 

by Kim et al. [71], is the manner in which the excessive influence of hypermutated catalogues 365 

on the inference is moderated. This is based on equally partitioning the mutations in 366 

hypermutated genomes into multiple artificial catalogues, which maintain the mutational 367 

profile of the original tumour. The number of artificial catalogues is chosen such that their 368 

contribution becomes similar to that of non-hypermutated samples, without altering the 369 

overall number of mutations. Because of the linear properties of NMF [36], the number of 370 

mutations attributed to each signature in the original genomes can be reconstructed by 371 

summing the exposures in their respective artificial catalogues. As a measure to overcome 372 

sensitivity to initial conditions, Kim et al. [71] also performed multiple applications of the 373 

method with random initial conditions. 374 

A second Bayesian approach to NMF has been recently proposed by Rosales et al. 375 

[74] in the form of the signeR package. This follows an empirical Bayesian approach to NMF 376 

which considerably differs from the strategy devised by Kasar et al. [70] and Kim et al. [71]. 377 

Firstly, the authors account for tumour-specific mutational opportunities, following the 378 

example set by Fischer et al. [61]. The number of mutations of the k-th type in a genome g, 379 

mkg, is assumed to be a Poisson-distributed variable, with a rate incorporating the mutational 380 

opportunity, okg: 381 

 mkg ~ Pois okg skn eng

N

n=1

 (10) 
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The matrices S and E, which are the parameters of the generative Poisson process, are 382 

initialised either by sampling from their (Gamma) prior distributions, or by applying 383 

numerical NMF via the implementation developed by Gaujoux and Seoighe [58]. The central 384 

method for inference is based on a combination of Markov chain Monte Carlo (MCMC) and 385 

EM techniques, which are applied in an iterative fashion [75]. This MCMC EM strategy 386 

provides a posterior distribution of the NMF model, from which estimates for the mutational 387 

signatures and exposures can be derived. The MCMC EM algorithm, in which the chosen 388 

MCMC variant is a Metropolised Gibbs sampler, is applied to obtain a series of MCMC 389 

samples from the posterior distributions of the model parameters (S and E), hyperparameters 390 

and hyperprior parameters. These samples can be subsequently used to derive point estimates 391 

and posterior statistics for signatures and exposures. Estimation of the number of mutational 392 

signatures is tackled, as in EMu, by means of the BIC, which is described in (7) and 393 

computed as the median of the BIC values across the MCMC samples. 394 

In addition to this Bayesian NMF framework, Rosales et al. [74] introduce two novel 395 

applications of the method. The first is the incorporation of an a priori categorisation of 396 

samples, on the basis of independent knowledge (e.g. clinical data), in order to determine 397 

whether the exposure of any of the mutational signatures diverges significantly between the 398 

defined categories. Secondly, a measure known as ‘differential exposure score’, which results 399 

from this analysis of exposures, can be used to assign unclassified samples to one of the 400 

categories, using a k-nearest neighbours algorithm [76]. This ability for unsupervised 401 

clustering of tumours may prove especially relevant for clinical cancer prognosis. 402 

 403 

Independent probabilistic model 404 

An unconventional approach to mutational signature discovery, which stands out for the 405 

adoption of a novel probabilistic model of signatures, has been introduced in the 406 

pmsignature R package by Shiraishi et al. [35]. Their model is termed ‘independent’ 407 

because, in contrast to the conventional ‘full’ model employed by all other methods, it 408 
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decomposes mutational signatures into separate features (such as substitution type, flanking 409 

bases or transcriptional strand bias), which are assumed to be mutually independent. The 410 

notion of independence across features of a signature, if counterintuitive, simplifies the model 411 

drastically by reducing the number of parameters per signature. This, in turn, allows 412 

incorporation of additional signature features, such as extended sequence context. For 413 

instance, the mutational pattern defined by single-base substitutions in a pentanucleotide 414 

sequence context results in K = 1536 mutation types, or 1535 free parameters per signature, in 415 

the full model. Generally, accounting for the n adjacent bases 5’ and 3’ of the mutated site 416 

results in (K – 1) = (6 × 42n – 1) free parameters in the full model. This imposes a practical 417 

limit on the number of features that can be incorporated into a signature, because both 418 

inference stability and interpretability of the inferred signatures decline as the parameter 419 

space gains in dimensionality. The consequence is a constrained flexibility of full models; 420 

these, for example, normally consider only a trinucleotide sequence context, thus ignoring the 421 

information potentially harboured by farther adjacent nucleotides [77,78]. 422 

The work of Shiraishi et al. [35] can be seen as a quantum leap in the modelling of 423 

mutational signatures. Instead of belonging to a single mutation type, each mutation is 424 

modelled as having L distinct features, each with its own range of discrete values, and is 425 

therefore represented by a feature vector of length L. A signature Sn is characterised using an 426 

L-tuple of parameter vectors, Fn = [fn1,   fn2,  …, fnL], where fnl is the probability vector of the 427 

l-th feature in signature Sn, its length being equal to the number of possible values of the 428 

feature. In this model, single-base substitutions on a pentanucleotide context are represented 429 

using five features (substitution and four flanking bases). Each feature being an independent 430 

probability vector, this involves (6 – 1) + 4 × (4 – 1) = 17 free parameters, instead of 1535. In 431 

general, incorporating the n adjacent bases on each side of the mutated site requires only (5 + 432 

6n) parameters. Remarkably, this independent model of signatures can be considered as a 433 

generalisation of the full model; the latter would be the simplest case of independent model, 434 
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where all the signature features have been collapsed into a single attribute, the ‘mutation 435 

type’, which contains all the possible feature combinations. 436 

Instead of using numbers of mutations, pmsignature models the contribution of a 437 

signature as the proportion of mutations attributed to it in each genome. Such proportions, 438 

denoted by   qgn, are termed ‘membership parameters’, due to the close relationship between 439 

this model of mutations and the so-called mixed-membership or admixture models [79] (also 440 

known as latent Dirichlet allocation models [80]), which have been extensively applied to 441 

population genetics and document clustering problems. In pmsignature, each mutation is 442 

assumed to be the result of a two-step generative model: first, a mutational signature is 443 

selected according to the membership parameters of the current catalogue; second, the 444 

features of the mutation are generated according to the multinomial distribution described by 445 

the chosen signature. Of note, informative parallelisms between NMF and admixture models 446 

have been previously noted by other authors [81], suggesting that current methods could 447 

benefit from the experience gained in applications of the latter. 448 

The central parameters of the independent model, namely the sample membership 449 

proportions,   qgn, and the signature parameters, Fn, need to be estimated from the observed 450 

catalogues; this is done by means of an EM algorithm [66]. In order to account for the 451 

tendency of EM to converge to different local maxima depending on the initial conditions, the 452 

algorithm is applied on multiple initial configurations, before choosing the solution that 453 

exhibits maximum likelihood overall. To model mutational opportunity, instead of using 454 

probabilistic coefficients, pmsignature employs a ‘background signature’ corresponding to the 455 

genome frequencies of the types of nucleotide association considered (e.g. pentanucleotides). 456 

However, this background signature is based on the human reference genome, thus negating 457 

incorporation of sample-specific variegation in opportunity. Regarding the estimation of the 458 

number of mutational processes, an analogous strategy to that implemented by Alexandrov et 459 

al. [34] is adopted, with N being manually chosen such that the likelihood is sufficiently high, 460 

and the standard errors of the parameters are sufficiently low. In addition, N is selected such 461 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 24, 2017. ; https://doi.org/10.1101/154716doi: bioRxiv preprint 

https://doi.org/10.1101/154716
http://creativecommons.org/licenses/by-nc-nd/4.0/


that the resulting set of mutational signatures does not contain any pair of signatures which 462 

seem to correspond to the same mutational process (signatures exhibiting similar feature 463 

patterns and membership parameters). Hence, a more versatile strategy to automatically 464 

determine N would constitute a major improvement of the method. 465 

The consequence of adopting a simpler model in pmsignature, as reported by the 466 

authors [35], is a gain in power and stability, which allows inference of more-accurate and -467 

reproducible signatures from smaller sample cohorts. Moreover, the reduction in parametric 468 

complexity enables the incorporation of additional contextual features, such as extended 469 

sequence context, transcriptional strand, copy number and epigenetic states. The consequent 470 

gain in signature resolution can potentially prompt the unveiling of novel mutational patterns 471 

and associated biological insights. Nevertheless, it must be noted that the estimation of 472 

signature parameters in pmsignature is severely impaired by its disregard of those mutational 473 

patterns lacking distinctive features (known as uniform or ‘flat’ signatures). The set of 474 

mutational signatures extracted by Shiraishi et al. [35] from previously published data does 475 

not feature any such ‘flat’ signature, even when some of these have been identified in the 476 

same data set [2] and experimentally validated by other groups [82,83]. The inability to detect 477 

signatures with uniform patterns therefore undermines the potential of this model in its 478 

current form. 479 

In order to simplify the visualisation of signatures with multiple features, the authors 480 

have also introduced a novel graphical representation [35], closely related to sequence logos 481 

[84], that provides a schematic view of the distinctive characteristics of a signature. Albeit 482 

reliant on the illustration of probabilities as surface areas, which are often difficult to interpret 483 

visually [85], diagrammatic representations of this kind will likely become indispensable if 484 

the resolution of signatures is to be significantly enhanced, since the interpretation of 485 

mutational patterns expressed as plain probability distributions would soon become 486 

impractical. 487 

 488 
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Mutational signature refitting 489 

From the perspective of the NMF model, the problem of refitting mutational signatures 490 

consists of estimating the exposures (E) of a given set of signatures (S) in a collection of 491 

mutational catalogues (M), with the actual number of operative processes (N) being known or 492 

unknown. Because S is known a priori, signature refitting is a much more tractable problem 493 

than de novo signature inference. In consequence, signature refitting does not suffer the 494 

requirement of large sample cohorts to achieve power and accuracy, being even applicable to 495 

individual genomes. 496 

The deconstructSigs R package, recently developed by Rosenthal et al. [86], is 497 

currently the only published method explicitly designed for mutational signature refitting. It 498 

adopts an iterative multiple linear regression strategy to estimate the linear combination of 499 

signatures that optimally reconstructs the mutational profile of each genome in M, imposing 500 

nonnegativity on the inferred signature exposures. Mutational catalogues are modelled as 501 

mutation proportions, instead of counts, and normalisation by mutational opportunity is 502 

enabled through the incorporation of the trinucleotide frequencies from the reference human 503 

genome. The iterative fitting algorithm, which is applied separately to each catalogue, starts 504 

by discarding those signatures in which a mutation type that is absent from the examined 505 

catalogue has a probability above 0.2. This prevents consideration of signatures that, 506 

according to their mutational profiles, are unlikely to be present in the tumour. An initial 507 

signature is then selected, such that the sum of squared errors (SSE) between the signature 508 

and the mutational profile of the catalogue is minimised. The exposure value that minimises 509 

the SSE for the chosen signature is set as the only positive exposure. In successive iterations, 510 

each of the remaining signatures is evaluated to find the exposure value that minimises the 511 

SSE between the reconstructed profile (including the previously incorporated exposures and 512 

the candidate one) and the mutational profile of the tumour. The signature achieving 513 

minimum SSE is selected, and its optimal exposure is incorporated to the reconstructed 514 

profile. The process continues until the difference in SSE before and after an iteration falls 515 
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below an empirically determined threshold of 10–4 ; the estimated exposures are then 516 

transformed to proportions. Finally, any exposure lower than 0.06 (6%) is discarded, in order 517 

to exclude spurious signatures; this minimum exposure threshold was also empirically 518 

determined from simulation studies. 519 

An iterative regression strategy has important associated risks, the most prominent 520 

being the impossibility of reducing or removing the contribution of a signature after it has 521 

been selected. Consequently, a signature that is actually absent from the sample might be 522 

unalterably chosen in the initial iterations, only because it fits the overall profile of the tumour 523 

better than any other signature. This is not a rare situation, since one-third of the currently 524 

published mutational signatures [31] (all of which are by default included in S) are mostly 525 

composed of cytosine-to-thymine (C>T) changes. Thus, for example, a mutational profile 526 

arising from the combination of two given signatures may initially be best fitted by a third 527 

signature which does not actually contribute to the mutational profile, but which significantly 528 

resembles it. Two measures to minimise the risk of misfitting are: (a) carefully selecting the 529 

signatures to include in S, preferring those that have been already associated with the 530 

examined tumour type; and (b) considering knowledge about additional genomic features 531 

linked to the activity of a mutational signature in a genome. Limiting the set of candidate 532 

signatures also lessens the risk of overfitting, especially given that the number of signatures, 533 

N, is indirectly determined in this method through the empirically set thresholds for change in 534 

SSE and minimum exposure value. On the other hand, such measures increase the 535 

opportunity for the biases of the investigator to influence the outcome. 536 

Despite such concerns, the identification of mutational signatures in individual 537 

tumours through refitting harbours extreme potential, as emphasised by Rosenthal et al. [86] 538 

and demonstrated by the number of studies that have adopted their method in the short time 539 

since its publication [54,87–90]. When used for refitting well-validated signatures in specific 540 

cancer types, deconstructSigs has the power to detect mutational processes that operate only 541 

in small subsets of genomes, without the complexity or requirement of large cohorts that 542 
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characterise de novo approaches. Some remarkable applications are the comparison between 543 

processes operative across different cancer subtypes, and the analysis of variegation in 544 

signature activities over time within a single tumour, or between primary and metastatic sites 545 

in a same patient. As genomic examination of individual malignancies is gradually 546 

incorporated into clinical practice, a straightforward method to ascertain which mutational 547 

processes operate in a cancer genome, and to what extent, potentially including their temporal 548 

and spatial evolution, will constitute an invaluable instrument for the advancement of 549 

personalised cancer therapy. 550 

 551 

Alternative approaches 552 

Apart from the ones described here, both de novo inference and refitting of mutational 553 

signatures are amenable to many other computational approaches, including purely Bayesian 554 

techniques (e.g. hierarchical Dirichlet processes), global optimisation metaheuristics (e.g. 555 

simulated annealing), and nonlinear optimisation algorithms (e.g. sequential quadratic 556 

programming). When considering the design of novel methods for the analysis of mutational 557 

signatures, the special properties of each technique, such as propensity for overfitting, 558 

sensitivity to initial conditions, computational cost and scalability, should be thoughtfully 559 

considered. In the near term, fresh methodologies are likely to arise which build upon either 560 

the mathematical models of signatures already developed, or entirely new ones. Furthermore, 561 

because signature refitting poses a much simpler mathematical problem than de novo 562 

signature deconvolution, approaches based on well-established mathematical or statistical 563 

paradigms could be implemented with little effort, as substantiated by works that have already 564 

accomplished signature refitting through some of the aforementioned techniques [27,91,92]. 565 

 566 

Discussion 567 

In the relatively short time since its first reported application [33,43], the deconvolution of 568 

mutational signatures has proven a successful analytical technique. Numerous authors have 569 
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highlighted the potential of mutational signature analysis in the settings of cancer treatment 570 

and prevention. The proposed applications thus far include the use of signatures (a) as genetic 571 

biomarkers of early malignancy or exposure to carcinogenic agents, especially in combination 572 

with ‘liquid biopsy’ diagnostic techniques [23,26]; (b) to stratify patient cohorts into 573 

subgroups indicative of distinct dominant aetiological factors, with the aim of suggesting 574 

targeted therapies that may benefit some subgroups, on the basis of the molecular 575 

mechanisms involved [19,22,24,27,93]; (c) to discover or support causative links between 576 

exposure to known or novel carcinogens and the development of particular cancer types, by 577 

determining the extent to which those carcinogens contribute to mutagenesis [25,26,94,95]; 578 

(d) to evaluate the safety of chemotherapeutic agents, some of which have been shown to 579 

contribute to the mutation burdens in exposed patients [19,20]; (e) to drive novel molecular 580 

research directed at establishing links between mutagens or molecular processes and currently 581 

unexplained (‘orphan’) signatures [19], or to tease apart the individual fingerprints hidden in 582 

composite mutational patterns, such as that of the complex chemical mixture in tobacco 583 

smoke [26]; and (f) to contribute toward public awareness and education of the cancer risk 584 

associated with preventable exposures to certain mutagens (currently, mainly tobacco smoke, 585 

ultraviolet light, aristolochic acid, aflatoxin B1 and some pathogen infections) 586 

[2,25,26,94,95]. 587 

From a biological standpoint, the potential of mutational signature analysis to identify 588 

and quantify the contributions of mutagenic processes operative in cancer genomes makes it 589 

an outstanding tool for further delving into the fundamental causes and mechanisms of 590 

tumorigenesis [7,95]. For instance, by contrasting the mutational mechanisms that operate in 591 

normal and cancer genomes, the study of signatures has helped to settle the long-standing 592 

debate around whether the mutation rates and processes shaping the genomes of normal cells 593 

can account for the aberrations found in cancer genomes [23,96]. 594 

The WTSI Mutational Signature Framework, with a considerable number of 595 

successful applications in large-scale genomic studies of cancer [2,22,24,25,27–596 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 24, 2017. ; https://doi.org/10.1101/154716doi: bioRxiv preprint 

https://doi.org/10.1101/154716
http://creativecommons.org/licenses/by-nc-nd/4.0/


30,32,33,43,94,97], represents the current state-of-the-art of the NMF approach to signature 597 

deconvolution. Consequently, it acts as a de facto ‘gold standard’ in the field. In spite of this, 598 

the method has several conceptual limitations, especially the requirement of extensive cohorts 599 

of genomes, and harbours potential for further methodological refinements [34]. Different 600 

enhanced flavours of NMF have been proposed [46,72,98–106] which might hold the key to 601 

improving the effectiveness of the WTSI Framework’s model, for example by incorporating 602 

additional sparsity constraints. Other distinct statistical approaches to signature inference 603 

have been proposed with a view towards overcoming the limitations of conventional NMF, 604 

which turn to either Bayesian approximations to NMF [71,74] or entirely probabilistic models 605 

[35,61,86]. Interestingly, independent works [25,27] have performed direct comparisons 606 

between some of these methods and reported notable coherence between their outcomes, in 607 

spite of their divergent mathematical frameworks. Other approaches, while still adhering to 608 

the classic NMF formulation, intend to facilitate signature analysis by means of user-friendly 609 

graphical interfaces [57] or integration in popular bioinformatic frameworks [48]. As a 610 

mounting number of medium-scale studies aspire to probe the mutational mechanisms 611 

operating in specific cancer types or subtypes, methods that enable simple and accurate 612 

analysis of signatures are definitely welcome contributions to the field. 613 

The identification of mutational signatures in cancer genomes remains a daunting 614 

endeavour, despite the breakthroughs it has spurred. In the short term, some of the 615 

computational strategies reported here will likely be subjected to significant refinement, or 616 

extended through the release of new software, while fresh approaches to signature discovery, 617 

using yet-unexploited techniques, are also sure to arrive. In the longer term, it must be noted 618 

that current methods base their signature models exclusively on mutational profiles, and fail 619 

to incorporate other experimental and clinical knowledge about mutational processes. Instead, 620 

current studies rely on a manual, informal consideration of the additional biological features 621 

associated with certain signatures. Such features should be quantified and formally 622 

accommodated in mathematical models, if methods for identification are to be further 623 
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sharpened. At the same time, the pursuit of high-resolution mutational signatures by 624 

accounting for additional contextual features might be hindered by the limitations of current 625 

models. It can be argued that innovative models assuming niether complete mutual 626 

independence nor non-independence between the features of a signature could prove key to 627 

achieving the ideal compromise between flexibility and complexity that is warranted for 628 

powerful, stable and accurate delineation of mutational signatures. 629 

As current and forthcoming approaches shed light on the mathematical properties of 630 

mutational signature discovery, the study of somatic mutation patterns will surely be extended 631 

through the addition of new signatures, aberration classes, contextual features, and previously 632 

unexamined cancer types. Meanwhile, the insights yielded by advances in this field will 633 

further our understanding of the causes, mechanisms and evolution of human malignancy, and 634 

provide new opportunities for cancer prevention and treatment. 635 

 636 

Key points 637 

• The somatic mutations in a genome are the result of the activity of one or more 638 

mutational processes, some of which imprint a distinct mutational signature. 639 

• Nonnegative matrix factorization (NMF) is the most widely used method for 640 

identifying mutational signatures. 641 

• Alternative approaches include partly and fully probabilistic models, as well as NMF 642 

implementations offering greater ease of use. 643 

• The study of mutational signatures can prove useful for cancer prevention and 644 

treatment efforts, including patient stratification and identification of novel mutagens. 645 

• The field will likely be expanded with the inclusion of additional techniques, mutation 646 

classes, biological features and tumour types. 647 
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Fig. 1. Mathematical modelling and deconvolution of mutational signatures. (a) Diagram 658 

illustrating the modelling of mutational signatures as probabilistic relationships between mutation 659 

types and mutational processes operative in genomes, for a general case with K mutation types, N 660 

mutational processes and G genomes. The notation of signatures, exposures and mutational 661 

catalogues follows that used in the main text. The varying widths of the links between mutation 662 

types and signatures (mutation probabilities), and between signatures and catalogues (signature 663 

exposures) represent the observation that varying values of skn  and eng  reflect the specific 664 

mutational profile of each signature and the exposure composition of each genome. Nonnegativity 665 

constraints for mutation probabilities and signature exposures are specified directly below them. 666 

(b) Example of de novo signature extraction, for a case with K = 6 mutation (single-base 667 

substitution) types, N = 3 mutational signatures and G = 4 mutational catalogues. Starting from the 668 

set of catalogues (depicted here as mutational profiles, each bar corresponding to a distinct 669 

mutation type), de novo extraction methods determine the set of mutational signatures 670 

(represented as consensus mutational profiles) and exposures (depicted here as proportions of the 671 

mutations in each catalogue, for simplicity) that reconstruct the original mutational catalogues 672 

with minimal error. 673 
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Table 1. Published software packages for mathematical inference of mutational signatures. 675 

(Abbreviations: EM: expectation–maximisation; MCMC: Markov chain Monte Carlo; NMF: 676 

nonnegative matrix factorisation; WTSI: Wellcome Trust Sanger Institute.) 677 

Software Mathematical 
framework 

De novo 
signature 
extraction 

Incorporation of 
mutational 
opportunity 

Notable aspects  Programming 
language(s) Reference(s) 

WTSI Mutational 
Signature 
Framework 

NMF Yes No 

• First mathematical model 
of signatures 

• Extensive development 
and application 

• ‘Gold standard’ status 

MATLAB [34] 

SomaticSignatures NMF Yes No 
• Ease of use 
• Integration in 

Bioconductor 
R [48] 

MutSpec NMF Yes No • Ease of use 
• Graphic user interface 

R, Perl  
(Galaxy 
platform) 

[57] 

EMu 
Probabilistic 
(EM, Poisson 
model) 

Yes Yes  
(tumour-specific) 

• First probabilistic model 
of signatures 

• First modelling of 
mutational opportunity 

• Automatic estimation of 
number of signatures 

C++ [61] 

BayesNMF 

Bayesian 
NMF 
(Poisson 
model) 

Yes No • Automatic estimation of 
number of signatures R [70,71] 

signeR 

Bayesian 
NMF 
(MCMC EM, 
Poisson 
model) 

Yes Yes 
(tumour-specific) 

• Automatic estimation of 
number of signatures 

• Differential exposure 
analysis 

• Unsupervised sample 
classification 

R, C++ [74] 

pmsignature 

Probabilistic 
(EM, 
independent 
model) 

Yes Yes 

• Simplified mathematical 
model 

• Increased number of 
signature features 

• Alternative visual 
representation 

R, C++ [35] 

deconstructSigs Multiple linear 
regression No Yes 

• Analysis of signature 
activities in individual 
tumours 

R [86] 
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