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ABSTRACT2

Functional brain connectivity is the co-occurrence of brain activity in different areas during resting3
and while doing tasks. The data of interest are multivariate timeseries measured simultaneously4
across brain parcels using resting-state fMRI (rfMRI). We analyze functional connectivity using5
two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the6
number of brain parcels. Our second model scales quadratically. We apply both models to7
data from the Human Connectome Project (HCP) comparing connectivity between short and8
conventional sleepers. We find stronger functional connectivity in short than conventional sleepers9
in brain areas consistent with previous findings. This might be due to subjects falling asleep in the10
scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to11
remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a12
sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide13
implementations using R and the probabilistic programming language Stan.14
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1 INTRODUCTION

Functional connectivity focuses on the exploration of neurophysiological measures of brain activity between16
brain regions (Friston, 2011; Smith, 2012; Varoquaux and Craddock, 2013). Functional connectivity studies17
have increased our understanding of the basic structure of the brain (Sporns et al., 2004; Eguiluz et al.,18
2004; Bassett and Bullmore, 2006; Fox and Raichle, 2007; Bullmore and Sporns, 2009; Van Den Heuvel19
and Pol, 2010) and provided insights into pathologies (Greicius et al., 2003; Greicius, 2008; Biswal et al.,20
2010; Fox and Greicius, 2010).21

From the statistical point of view, functional connectivity is the problem of estimating covariance22
matrices, precision matrices, or correlation matrices from timeseries data. These matrices encode the23
level of connectivity between any two brain regions. The timeseries are derived from resting-state fMRI24
(rfMRI) by averaging individual voxels over parcels in the gray matter. We define parcels manually or with25
data-driven brain parcellation algorithms. The final goal can be an exploratory or a differential analysis26
comparing connectivity across regions between experimental conditions and time (Preti et al., 2016). Many27
statistical methods are available to estimate covariance matrices, precision matrices, or correlation matrices28
from multivariate data. The sample covariance and its inverse, or the the sample correlation matrix are29
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usually poor estimators because of the high-dimensionality of the data (large number of parcels p and30
small number of subjects). The number of parameters grows quadratically in the number of regions with31
p(p− 1)/2 possible pairwise connections between parcels. Therefore more elaborate estimators need to be32
employed, such as the Graphical Lasso (Friedman et al., 2008) estimator for inverse-covariance matrices33
or the Ledoit-Wolf shrinkage estimator (Ledoit and Wolf, 2004) for correlation matrices. Application of34
these methods to rfMRI are available (Varoquaux et al., 2010a,b; Smith et al., 2011; Ryali et al., 2012;35
Varoquaux et al., 2012).36

The estimation of connectivity is usually only the first step and leads to downstream differential analyses37
comparing connectivity between experimental conditions or between subgroups. For instance, we will38
compare the connectivity of short sleepers with conventional sleepers available as preprocessed timeseries39
from the Human Connectome Project (Van Essen et al., 2013). One approach is massive univariate testing40
of each of the p(p − 1)/2 connections by linear modeling. Such an approach allows us to test different41
contrasts and include batch factors or random effect terms (Lewis et al., 2009; Grillon et al., 2013). It lacks42
statistical power because it ignores possible dependencies between elements in the connectivity matrix.43
An alternative is to assess selected functionals or summary statistics rather than individual elements in the44
connectivity matrix (Stam, 2004; Salvador et al., 2005; Achard et al., 2006; Marrelec et al., 2008; Bullmore45
and Sporns, 2009; Ginestet et al., to appear). Another approach is to flip response variable and explanatory46
variable and predict experimental condition (or subgroup) from connectivity matrices (or functionals of47
matrices) through machine learning (Craddock et al., 2012; Dosenbach et al., 2010). These approaches48
lack interpretability in terms of brain function.49

From a statistical viewpoint, the problem boils down to modeling heteroscedasticity. Heteroscedasticity50
is said to occur when the variance of the unobservable error, conditional on explanatory variables, is not51
constant. For example, consider the regression problem predicting expenditure on meals from income.52
People with higher income will have greater variability in their choices of food consumption. A poorer53
person will have less choice, constrained to inexpensive foods. In functional connectivity, heteroscedasticity54
is multivariate and variances become covariance matrices. In other words, heteroscedasticity co-occurs55
among brain parcels and can be explained as a function of explanatory variables.56

In this article, we propose a low-dimensional multivariate heteroscedasticity model for functional57
connectivity. Our model is of intermediary complexity, between modeling all p(p− 1)/2 connections and58
only using global summary statistics. Our model builds on the covariance regression model introduced by59
Hoff and Niu (2012). It includes a random effects term that describes heteroscedasticity in the multivariate60
response variable. We adapt it for functional connectivity and implement it using the statistical programming61
language Stan. Additionally, we perform preliminary thinning of the observed multivariate timeseries from62
N to the effective sample size n. Using n reduces false positives and speeds up computations by a factor63
of N/n. To find the appropriate n, we compute the autocorrelation as it is common in the Markov chain64
Monte Carlo literature. We compare our low-dimensional model to a full covariance model contained in65
the class of linear covariance models introduced by Anderson (1973). Both models are used to analyze real66
data from HCP comparing connectivity between short and conventional sleepers.67

2 MATERIAL & METHODS

2.1 Data68

We analyzed data from the WU-Minn HCP 1200 Subjects Data Release. We focus on the functional-69
resting fMRI (rfMRI) data of 820 subjects. The images were acquired in four runs of approximately 1570
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Figure 1. Parcels derived from spatial group-ICA. Created at the most relevant axial slices in MNI152 space.
According to Smith et al. (2009), these parcels map to visual areas (R1, R3, R4, and R8), sensorimotor (R7
and R11), cognition-language (R2, R5, R10, and R14), perception-somesthesis-pain (R2, R6, R10, and
R14), cerebellum (R9), executive control (R12), auditory (R12 and R13), and default network (R15).

minutes each. Acquisition ranged over 13 periods (Q01, Q02, . . . , Q13). We separated the subjects into two71
groups: short sleepers (≤ 6 hours) or conventional sleepers (7 to 9 hours) as defined by the National Sleep72
Foundation (Hirshkowitz et al., 2015). This results in 489 conventional and 241 short sleepers. The HCP73
1200 data repository contains images processed at different levels: spatially registered images, functional74
timeseries, and connectivity matrices. We work with the preprocessed timeseries data. In particular, the75
rfMRI preprocessing pipeline includes both spatial (Glasser et al., 2013) and temporal preprocessing (Smith76
et al., 2013). The spatial preprocessing uses tools from FSL (Jenkinson et al., 2012) and FreeSurfer (Fischl77
et al., 1999) to minimize distortions and align subject-specific brain anatomy to reference atlases using78
volume-based and surface-based registration methods. After spatial preprocessing, artifacts are removed79
from each subject individually (Salimi-Khorshidi et al., 2014; Griffanti et al., 2014), then the data are80
temporally demeaned and variance stabilized (Beckmann and Smith, 2004), and further denoised using81
a group-PCA (Smith et al., 2014). Components of a spatial group-ICA (Hyv et al., 1999; Beckmann82
and Smith, 2004) are mapped to each subject defining parcels (Glasser et al., 2013). The ICA-weighted83
voxelwise rfMRI signal are averaged over each component. Each weighted average represents one row in84
the multivariate timeseries. Note that parcels obtained in this way are not necessary spatially contiguous,85
in particular, they can overlap and include multiple spatially separated regions. HCP provides a range of86
ICA components 15, 25, 50, 100, 200, and 300. We choose 15 (Figure 1) for our analysis to allow for87
comparison with prior sleep related findings on a partially overlapping dataset (Curtis et al., 2016).88

2.2 Low-Dimensional Covariance Regression89

In this section, we introduce a low-dimensional linear model to compare connectivity between90
experimental conditions or subgroups.91

2.2.1 Model92

The data we observe are p-dimensional multivariate vectors y1, . . . ,yN . We assume that the observations
are mean-centered so that 1

N

∑N
i=1 yi = 0. After centering, we subsample each timeseries at n < N

time points to remove temporal dependencies between observations (Section 2.2.2). We are given a set
of explanatory variables xi that encode experimental conditions or subgroups, e.g. element one is the
intercept 1 and element two is 0 for conventional and 1 for short sleepers. We bind the xi’s row-wise into
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the usual design matrixX . Our model

yi = γi ×Bxi + εi for i = 1, . . . , n

has a random effects term γi × Bxi and an independent and identically distributed error term εi. We93
suppose the two random variables to have94

E (εi) = 0, Cov (εi) = σ2Ip

E (γi) = 0, Var (γi) = 1, E (γi × εi) = 0.

Then, the expected covariance is of the form

E
(
yiy

T
i

)
= Bxix

T
i B

T + σ2Ip = Σxi .

resulting from the inclusion of the random variable γi. The covariance matrix Σ is indexed by xi to indicate95
that it changes as a function of the explanatory variables. As with usual univariate linear modeling, we can96
interpret the coefficientsB as explaining differences between experimental conditions. The matrixB is97
p× J dimensional, where J is the number of columns in the n× J dimensional design matrixX . Here98
J = 2 and the second column encodes the contrast between short sleepers and conventional sleepers. The99
interpretation ofB is that small values indicate little heteroscedasticity, identical signs indicates positive100
correlation, and opposite signs indicate negative correlation. For instance, assume that the second column101
ofB is b2 = (−1, 3, 0, 2)T . The interpretation for these four regions is as follows: region one and two are102
negatively correlated, so are region one and four, region two and four are positively correlated, and region103
three is uncorrelated.104

The general form of this model was introduced by Hoff and Niu (2012) with the idea of decomposing105
covariance matrices into covariates explained and unexplained terms. In this original form the unexplained106
part is parametrized as a full covariance matrix scaling quadratically in the number of regions, i.e. p(p−1)/p107
parameters. Instead, we parametrize it as a diagonal matrix with independent variance terms for each region.108
This simplified model scales linearly in the number of regions p and can therefore be applied to large brain109
parcellations.110

We use flat priors on both parameters σ andB. The elements of theB matrix have a uniform prior on111
(−∞,∞), and the elements of σ vector have a uniform prior on (0,∞). These priors are improper and do112
not integrate to one over their support. In case of prior knowledge, it is preferable to use more informative113
priors. For large p, we can add an additional hierarchical level to adjusting for multiple testing by including114
a common inclusion probability per column inB (Scott and Berger, 2006; Scott et al., 2010).115

As is common in univariate linear modeling, it is possible to encode additional explanatory variables116
such as subject ID and possible batch factors. It would also be possible to extend the model to include117
temporal dependencies in the form of spline coefficients. We have not done so here because we wanted to118
focus explicitly on functional connectivity between regions.119

2.2.2 Effective Sample Size120

We subsample n time points to obtain the Effective Sample Size (ESS). This n is smaller than the121
total number N of time points because it accounts for temporal dependency. We propose a procedure to122
automatically choose n using an autocorrelation estimate of the timeseries. This is current practice in the123
field of Markov chain Monte Carlo and implemented in R package coda (Plummer et al., 2006). The ESS124
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describes how much a dependent sample is worth with respect to an independent sample of the same size.125

Kass et al. (1998) define ESS via the lag t autocorrelation Corr
(
y
(j)
1 ,y

(j)
1+t

)
as126

n = min
j=1,...,p

 N

1 + 2
∑∞

t=1 Corr
(
y
(j)
1 ,y

(j)
1+t

)
 .

This is a component-wise definition and we follow a conservative approach by taking the minimum over127
all p components as the overall estimator. Intuitively, the larger the autocorrelation the lower is our ESS128
because we can predict future form current time points. A convenient side-produce of subsampling is129
reduced computational costs.130

2.2.3 Inference131

We implement our model in the probabilistic programming language Stan (Carpenter et al., 2016) using132
R. Stan uses Hamiltonian Monte Carlo to sample efficiently from posterior distributions using automatic133
differentiation. It removes the need for manually deriving gradients of the posterior distributions, thus134
making it easy to extend models. Our Stan code is available in our new R package CovRegFC from our135
GibHub repository. Alternatively, using conjugate priors it is possible to derive a Gibbs sampler to sample136
from the posterior distribution of a related model as in Hoff and Niu (2012). However, this makes it harder137
to extend the model.138

Due to the non-identifiability of matrix B up to random sign changes, B and −B corresponding139
to the same covariance function, we need to align the posterior samples coming from multiple chains.140
A general option is to use Procrustes alignment. Procrustes alignment (Korth and Tucker, 1976) is a141
method for landmark registration (Kendall, 1984; Bookstein, 1986) in the shape statistics literature and an142
implementation is available in the R package shape (Dryden and Mardia, 1998).143

2.3 Full Covariance Regression144

In this section, we introduce a full covariance linear model.145

2.3.1 Model146

Here we do not subsample and deal with temporal dependencies in a different way. In this model,147
the number of observations are the number of subjects k = 1, . . . , K. After column-wise centering of148
each N × p (recall that N is the total number of time points) timeseries Y 1, . . . ,Y K , we compute149
sample covariance matrices for each subject S1 = Y T

1 Y 1, . . . ,SK = Y T
KY K . We take this as our150

“observed” response. Additionally, we have one explanatory vector x1, . . . ,xn for each response covariance151
matrix. In our HCP data subset, we have 730 subjects, so K = 730 and we have K data point pairs152

(S1,x1), . . . , (SK ,xK). We assume that the explanatory vector has two elements: the first element x(1)k153

representing the intercept and is equal to one, and the second element x(2)k is one for short and zero for154
conventional sleepers. Our regression model155

Sk ∼Wishart
(
x
(1)
k Σ(1) + x

(2)
k Σ(2), ν

)
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Figure 2. Distribution of 1000 off-diagonal elements R12 extracted from correlation matrices drawn from
the LKJ prior. This prior is symmetric, so the distribution will be similar for other off-diagonal elements.

decomposes the “observed” covariance matrix into an intercept term and a term encoding the functional156
connectivity between sleepers. The second parameter in the Wishart distribution describes the degrees of157
freedom and has support (p− 1,∞).158

We will now describe how to draw samples from the Wishart distribution, this will give us a better159
intuition for the proposed model. Matrices following a Wishart distribution can be generated by drawing160
vectors y1, . . . ,yN independently from a Normal(0,Σ), storing vectors in a N × p matrices Y i, and161
computing the sample covariance matrix Si = Y T

i Y i. Then, the constructed Si’s are distributed according162
to a Wishart distribution with parameters Σ and degrees of freedom N . If the ESS is smaller than N it will163
be reflected in the degrees of freedom parameter ν. In our model, we will estimate ν from the data. In this164
way, we account for the temporal dependencies in the timeseries. The marginal posterior distribution of ν165
will be highly concentrated around a small degree of freedom (close to p) for strongly dependent samples166
and concentrated around a large degree of freedom (close to N ) for weakly dependent samples.167

To complete our model description, we need to put priors on covariance matrices and the degrees of168
freedom. We decompose the covariance prior into a standard deviation σ vector and a correlation matrix Ω169
for each term170

Σ(1) = σ(1)IpΩ
(1) σ(1)Ip and Σ(2) = σ(2)IpΩ

(2) σ(2)Ip

and put a Lewandowski, Kurowicka, and Joe (LKJ) prior on the correlation matrix (Lewandowski et al.,171
2009) independently for each term172

Ω(1) ∼ LKJcorr(η) and Ω(2) ∼ LKJcorr(η).

This correlation matrix prior has one parameter η that defines the amount of expected correlations. To173
gain intuition about η, we draw samples from the prior for a range of dimensions and parameter settings174
(Figure 2). The behavior in two dimension is similar to a beta distribution putting mass on either the175
boundary of the support of the prior or in the center. As we move toward higher dimensions, we can see176
that the distribution is less sensitive to the parameter η. For our model, we set η = 1 to enforce a flat177
prior. We complete our prior description by putting independent flat priors on both the vector of standard178
deviations σ and the degrees of freedom ν, i.e. uniform prior on (0,∞) and uniform prior on (p−1, N−1),179
respectively.180
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2.3.2 Inference181

The number of parameters in the model scales quadratically in the number of regions making this model182
applicable in the classical statistical setting where we have larger sample sizes than number of predictors.183
In Section 3.1, we will show an application to the HCP data with K = 730 subjects and p = 15 regions.184
Note, Hoff (2009) devised a Gibbs sampler for a similar model using an eigenmodel for the subject-level185
covariance matrices.186

2.3.3 Posterior Analysis and Multiplicity Control187

After drawing samples from the posterior, we can evaluate the marginal posterior distributions of standard188
deviations σ, correlations Ω, and degrees of freedom ν. As mentioned, we assume that the second element189
in the explanatory vector encodes whether a subject is a short or a conventional sleepers. In this setting,190
Ω(2) represents the difference in correlation between short and conventional sleepers. As we have the191

marginal posterior distribution for every Ω
(2)
ij , we can evaluate the probability192

Pij =
∣∣∣ 2 Prob

(
Ω
(2)
ij > 0

)
− 1

∣∣∣.
Our interpretation in terms of connectivity is as follows: If Pij is zero then the correlation is equally193

probable to be negative or positive. In this case, we are unable to clearly classify the sign of the correlation194
difference as negative or positive. If Pij is close to one then the correlation is more probable to be either195
negative or positive. In this case, we can say that parcel i can be seen to be differentially connected to196
parcel j.197

There are p(p− 1)/2 pairwise correlations and we wish to find correlations that are different between198
the two groups. If the probability Pij is large, we will report the connection as significantly different. To199
control for multiple testing, we declare correlations only as significant if they pass a threshold λ. We choose200
λ to control the posterior expected FDR (Mitra et al., 2016)201

FDRλ =

∑
ij(1− Pij)I(Pij > λ)∑

ij I(Pij > λ)
.

We find λ through grid search for a fixed FDR. This allow us to report only correlations that survive the202
threshold at a given FDR.203

3 RESULTS

The HCP released a dataset with 820 timeseries of normal healthy subjects measured during resting-state204
fMRI (rfMRI). The imaging data is accompanied by demographic and behavioral data including a sleep205
questionnaire. Approximately 30% Americans are reported short sleepers with 4 to 6 hours of sleep per206
night. The National Sleep Foundation recommends that adults sleep between 7 to 9 hours. We use both207
models to analyze the HCP data on 730 participants (after subsetting to short and conventional sleepers)208
to elucidate difference in functional connectivity between short and conventional sleepers. As mentioned209
before, the design matrixX has an intercept 1 and a column encoding short sleepers 1 and conventional210
sleepers 0, i.e. conventional sleepers are the reference condition. We use a burn-in of 500 steps during211
which Stan optimizes tuning parameters for the HMC sampler, e.g. the mass matrix and the integration step212
length. After burn-in, we run HMC for additional 500 steps. To check convergence, we assess traceplots213
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Figure 3. Reduced covariance model. This is the second column in the design matrix encoding the contrast
between short and conventional sleepers. The sign is not identifiable; it only matters whether parcels are on
the same or opposite side. If they are on the same side, then they are positively correlated. If they are on the
opposite side, then they are negatively correlated. The posterior credible intervals are widened according to
the number of regions or channels in the plot using the Bonferroni procedure.

of random parameter subsets. We obtain an effective sample size of 167 for the 15 regions ICA-based214
parcellation. We now analyze the marginal posterior distribution of each of the parameters.215

3.1 Differential Analysis216

In Figure 3, we summarize and visualize the marginal posterior distribution of the second column inB.217
In the center part of the plot, we show the posterior distribution as posterior medians (dot) and credible218
intervals containing 95% of the posterior density (segments). The credible intervals are Bonferroni corrected219
by fixing the segment endpoints at the 0.05/15 and (1− 0.05/15) quantiles. Care has to be taken when220
interpreting the location of segments with respect to the zero coefficient line (red line). Due to the sign221
non-identifiability ofB, we have to ignore on which side the segments are located. Recall that regions on222
the same side are positively correlated, regions on opposite sides are negatively correlation, and regions223
overlapping the red line are undecided. To relate the region name back to the anatomy, we plotted the most224
relevant axial slice in the MNI152 space on the left and the right of the coefficient plot, depending on their225
sign, respectively. We can make the following observations: Parcels in set 1 (R4, R5, R7, and R9) are226
positively correlated. Keep in mind that the sign of the coefficient carries no information about the sign of227
the correlation. So, even though the coefficients are negative the correlations are positive, because they228
are on the same side of the red line. Parcels in set 2 (R1-R3, R8, R10-R13, and R15) are also positively229
correlated, for the same reason as before. In contrast, the two parcel sets are negatively correlated, because230
they are on opposite sides. The connectivity of R6 and R14 are not different from conventional sleepers231
because their credible intervals overlap the red line. According to the meta analysis in (Smith et al., 2009),232
parcel set 1 is associate with visual, cognition-language, sensorimotor areas, and the cerebellum; and parcel233
set 2 with visual, cognition-language, auditory areas, and the default network.234
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Figure 4. Posterior mean correlations magnitude and standard deviations of the difference between short
and conventional sleepers.
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Figure 5.Thresholded connectivity matrix showing the level of differential correlation between all pairs of
parcels in short vs. conventional sleepers. Thresholding is chosen to control for posterior expected FDR at
three different levels > 0.01, 0.01, and 0.001.

We now compare the result from the low-dimensional model with results form the full model. First, we235
compute the posterior marginal mean of the standard deviations vector σ(2) and the correlation matrix236
magnitude |Ω(2)| encoding the difference between short and conventional sleepers (Figures 4). The standard237
deviation plot on the right shows that parcel R3 varies the most, and that region R2 varies the least. The238
magnitude correlation plot on the left shows that parcel pair R9 and R13 exhibit the strongest correlation.239
This is consistent with the low-dimensional model results, where R9 and R13 are in opposite parcel240
sets. Also these parcels have large effect sizes in the low-dimensional results. In Figure 5, we assess the241
significance of differential correlations. The color code indicates different FDR levels. Overall strong242
differences in the correlation structure are visible with a large portion of connections at an FDR of 0.001.243
In contrast to the low-dimensional model, these are differences in correlations and not whether they are244
more positively or more negatively correlated.245
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Figure 6. Power analysis for low-dimensional covariance regression with 15 parcels. The two statistics
are the True Positive Rate (TPR) and the False Discovery Rate (FDR). The significance level is denoted by
α. Points are averages computed over 100 samples from the population.

3.1.1 Note on Computation Time246

For the low-dimensional model and the available 730 subjects, the computation time for the HMC sampler247
is around 20 hours on a single core on a modern CPU. For a subsample of 40 subjects, the computation248
time is around 20 to 25 minutes, and for 80 subjects around 50 to 55 minutes. It is possible to run more249
chains in parallel to increase the sample size. To combine each run, we need to align the posterior samples250
using Procrustes alignment as indicated in the methods section.251

The full model takes about one hour on a single core, and we run four chains in parallel to increase252
sample size.253

3.2 Power Analysis254

We design a power analysis (Figure 6) for low-dimensional covariance regression with 15 parcels. As the255
population we take the available 730 subjects in the HCP data repository that are either short or conventional256
sleepers and have preprocessed timeseries. We sample 100 times from this population keeping the same257
ratio between the number of observations for each group, i.e. two thirds conventional and one third short258
sleepers. We report the average True Positive Rate (TPR) and the False Discovery Rate (FDR) over the 100259
samples. The TPR measures the power of our procedure to detect true correlation differences. We count a260
connection as detected if it is correctly classified as positive or negative correlation. The FDR measures the261
amount of mistakes we make. The tradeoff between the two can be controlled through the significance262
level α. Power increases linearly with sample size. FDR decrease linearly but at a lower rate with sample263
size. At samples size 40, we have a power of 50% with an FDR of 20%. This improves to a power of 80%264
with an FDR of 10% at sample size 160.265
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4 DISCUSSION

We introduced two new models for functional connectivity. In particular, the low-dimensional covariance266
model is able to discover 50% of the correlation differences at a FDR of 20% in a sample size as little267
as 40. Our Stan implementations make it easy for others to extend our models. We applied both models268
to the HCP data subset to compare functional connectivity between short and conventional sleepers. Our269
findings are consistent with Curtis et al. (2016) and Killgore et al. (2012) reporting increases in functional270
connectivity in short sleepers for primary auditory, primary motor, primary somatosensory, and primary271
visual cortices. A similar neural signature was observed in experiments examining the transition from272
resting wakefulness to sleep onset using EEG and rfMRI (Larson-Prior et al., 2009; Tagliazucchi and Laufs,273
2014; Davis et al., 2016). Therefore, we recommend the inclusion of the average sleep duration of a subject274
as a “batch” covariate in the experimental design of rfMRI studies.275

A main challenge in covariance regression is the positive definiteness constraint. A solution is to276
transform the covariance estimation problem into an unconstrained problem thus making estimation and277
inference easier (Pourahmadi, 2011). One possible transformation starts with a spectral decomposition278
where the covariance matrix is decomposed into a diagonal matrix of eigenvalues and an orthogonal matrix279
with normalized eigenvectors as columns. The procedure continues with a global log-transformation to280
the covariance matrix, which results in a log-transformation of individual eigenvalues and removes the281
constraint. However mathematically and computationally tempting this approach seems, it remains hard282
to interpret the log-transformations statistically (Brown et al., 1994; Liechty et al., 2004). An alternative283
transformation uses a Cholesky decomposition of the covariance matrix. For the Cholesky decomposition,284
we need a natural ordering of the variables not known a priori for functional connectivity data – a natural285
ordering could be given if the chronology is known.286

Modeling of covariance matrices builds on important geometrical concepts and the medical image287
analysis community has made significant progress in terms of mathematical descriptions and practical288
applications motivated by data in diffusion tensor imaging (Pennec, 1999; Moakher, 2005; Pennec, 2006;289
Arsigny et al., 2006/07; Lenglet et al., 2006; Fletcher and Joshi, 2007; Fillard et al., 2007; Schwartzman290
et al., 2008; Dryden et al., 2009). The underlying geometry is called Lie group theory and it appears when291
we consider the covariance matrices as elements in a non-linear space. The matrix log-transformation from292
the previous paragraph maps covariance matrices to the tangent space where unconstrained operations can293
be performed; for instance we create a mean by simple elementwise averaging. After computing the mean294
in tangent space, this mean is mapped back to the constrained space of covariance matrices. Despite the295
mathematical beauty and algorithmic convenience, statistical interpretations are still unwieldy. However,296
this does provide a fundamental geometric formulation and enables the use of handy geometrical tools297
(Absil et al. (2008) for a book-length treatment).298

We approach the problem from a statistical viewpoint and frame functional connectivity in terms of299
modeling heteroscedasticity. This allows us to take advantage of the rich history in statistics and led us300
to the covariance regression model introduced by Hoff and Niu (2012). We simplify the model to meet301
the large p requirement in neuroscience. The running time for 500 posterior samples on 80 subjects is less302
than an hour on a single core. This makes our approach applicable to many neuroimaging studies. For303
larger studies, such as the HCP with 730 subjects, further speed improvements using GPU’s are desirable304
to reduce computation time.305

One possible future application is functional Near-Infrared Spectroscopy (fNIRS), which has gained in306
popularity due its portability and high temporal resolution. A common approach is to set up a linear model307
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between brain responses at channels locations (Huppert et al., 2009; Ye et al., 2009; Tak and Ye, 2014) and308
experimental conditions. Thus, our models apply to fNIRS experiments. An additional challenge in fNIRS309
experiments is channel registration across multiple participants (Liu et al., 2016). Connectivity differences310
could be due artifacts created by channel misalignments not biology. In the absence of structural MRI, we311
could add an additional hierarchical level in our low-dimensional model to handle measurement errors312
accounting for possible misalignments between channels.313

We use a conservative component-wise estimate of the ESS. Less conservative multivariate estimators314
(Vats et al., 2015) might be able to increase statistical power at the cost of an increase in the false discovery315
rate.316

It is possible to append more columns in the design matrix to encode batch factors and subject-specific317
variability by binding one column per level. In addition to categorical variables, the covariance regression318
model can handle continuous variables such as head-motion measurement made using an accelerometer.319
Adding covariates to explain unwanted variation in the data can move some of the preprocessing steps to320
the functional connectivity analysis step. Such joint modeling can enable the propagation of uncertainty to321
the downstream analyses.322

REPRODUCIBILITY AND SUPPLEMENTARY MATERIAL

The entire data analysis workflow is available on our GitHub repository:323

• https://github.com/ChristofSeiler/CovRegFC_HCP324

We also provide a new R package CovRegFC with Stan code:325

• https://github.com/ChristofSeiler/CovRegFC326

Data preparation and statistical analyses are contained in Rmd files:327

• Low_Dimensional.Rmd328

• Full.Rmd329

• Power.Rmd330

By running these files all results and plots can be completely reproduced as html files:331

• Low_Dimensional.html332

• Full.html333

• Power.html334

The HCP data is available here:335

• https://www.humanconnectome.org/data/336

ACKNOWLEDGMENTS

CS was partially funded by two Swiss NSF postdoctoral fellowships 146281 and 158500. SPH was partially337
supported by NSF DMS grant 1501767. We thank the NIRS lab at the Center for Interdisciplinary Brain338
Sciences in the Stanford School of Medicine for introducing us to functional neuroimaging data in the339
context of fNIRS experiments.340

This is a provisional file, not the final typeset article 12

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2017. ; https://doi.org/10.1101/154468doi: bioRxiv preprint 

https://github.com/ChristofSeiler/CovRegFC_HCP
https://github.com/ChristofSeiler/CovRegFC
https://www.humanconnectome.org/data/
https://doi.org/10.1101/154468
http://creativecommons.org/licenses/by/4.0/


Seiler and Holmes Models for Functional Connectivity

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators:341
David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers342
that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems343
Neuroscience at Washington University.344

AUTHOR CONTRIBUTIONS

CS wrote an initial draft, performed and implemented the statistical analysis. SPH wrote the final manuscript345
and provided statistical tools.346

REFERENCES

Absil, P.-A., Mahony, R., and Sepulchre, R. (2008). Optimization algorithms on matrix manifolds347
(Princeton University Press, Princeton, NJ). doi:10.1515/9781400830244. With a foreword by Paul Van348
Dooren349

Achard, S., Salvador, R., Whitcher, B., Suckling, J., and Bullmore, E. (2006). A resilient, low-frequency,350
small-world human brain functional network with highly connected association cortical hubs. Journal of351
Neuroscience 26, 63–72352

Anderson, T. (1973). Asymptotically efficient estimation of covariance matrices with linear structure. The353
Annals of Statistics , 135–141354

Arsigny, V., Fillard, P., Pennec, X., and Ayache, N. (2006/07). Geometric means in a novel vector space355
structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29, 328–347 (electronic).356
doi:10.1137/050637996357

Bassett, D. S. and Bullmore, E. (2006). Small-world brain networks. The neuroscientist 12, 512–523358

Beckmann, C. F. and Smith, S. M. (2004). Probabilistic independent component analysis for functional359
magnetic resonance imaging. IEEE transactions on medical imaging 23, 137–152360

Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery361
science of human brain function. Proceedings of the National Academy of Sciences 107, 4734–4739362

Bookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions. Statistical Science ,363
181–222364

Brown, P. J., Le, N. D., and Zidek, J. V. (1994). Inference for a covariance matrix. Aspects of uncertainty:365
a tribute to DV Lindley. Chichester: Wiley366

Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and367
functional systems. Nature Reviews Neuroscience 10, 186–198368

Carpenter, B., Gelman, A., Hoffman, M., Lee, D., Goodrich, B., Betancourt, M., et al. (2016). Stan: A369
probabilistic programming language. Journal of Statistical Software 20370

Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., and Mayberg, H. S. (2012). A whole brain371
fmri atlas generated via spatially constrained spectral clustering. Human brain mapping 33, 1914–1928372

Curtis, B. J., Williams, P. G., Jones, C. R., and Anderson, J. S. (2016). Sleep duration and resting fmri373
functional connectivity: examination of short sleepers with and without perceived daytime dysfunction.374
Brain and Behavior 6375

Davis, B., Tagliazucchi, E., Jovicich, J., Laufs, H., and Hasson, U. (2016). Progression to deep sleep is376
characterized by changes to bold dynamics in sensory cortices. NeuroImage 130, 293–305377

Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., et al. (2010).378
Prediction of individual brain maturity using fmri. Science 329, 1358–1361379

Frontiers 13

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2017. ; https://doi.org/10.1101/154468doi: bioRxiv preprint 

https://doi.org/10.1101/154468
http://creativecommons.org/licenses/by/4.0/


Seiler and Holmes Models for Functional Connectivity

Dryden, I. L., Koloydenko, A., and Zhou, D. (2009). Non-Euclidean statistics for covariance matrices, with380
applications to diffusion tensor imaging. Ann. Appl. Stat. 3, 1102–1123. doi:10.1214/09-AOAS249381

Dryden, I. L. and Mardia, K. V. (1998). Statistical shape analysis. Wiley Series in Probability and Statistics:382
Probability and Statistics (John Wiley & Sons, Ltd., Chichester)383

Eguiluz, V. M., Chialvo, D. R., Cecchi, G., Baliki, M., and Apkarian, A. V. (2004). Scale-free brain384
functional networks. Neuroimage 22, 2330385

Fillard, P., Pennec, X., Arsigny, V., and Ayache, N. (2007). Clinical dt-mri estimation, smoothing, and386
fiber tracking with log-Euclidean metrics. IEEE transactions on medical imaging 26, 1472–1482387

Fischl, B., Sereno, M. I., and Dale, A. M. (1999). Cortical surface-based analysis: Ii: inflation, flattening,388
and a surface-based coordinate system. Neuroimage 9, 195–207389

Fletcher, P. T. and Joshi, S. (2007). Riemannian geometry for the statistical analysis of diffusion tensor390
data. Signal Processing 87, 250–262391

Fox, M. D. and Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers392
in systems neuroscience 4, 19393

Fox, M. D. and Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional394
magnetic resonance imaging. Nature Reviews Neuroscience 8, 700–711395

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical396
lasso. Biostatistics 9, 432–441397

Friston, K. J. (2011). Functional and effective connectivity: a review. Brain connectivity 1, 13–36398

Ginestet, C. E., Li, J., Balanchandran, P., Rosenberg, S., and Kolaczyk, E. D. (to appear). Hypothesis399
testing for network data in functional neuroimaging. Annals of Applied Statistics400

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., et al. (2013).401
The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124402

Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current opinion403
in neurology 21, 424–430404

Greicius, M. D., Krasnow, B., Reiss, A. L., and Menon, V. (2003). Functional connectivity in the resting405
brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of406
Sciences 100, 253–258407

Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud, G., Sexton, C. E., et al.408
(2014). Ica-based artefact removal and accelerated fmri acquisition for improved resting state network409
imaging. Neuroimage 95, 232–247410

Grillon, M.-L., Oppenheim, C., Varoquaux, G., Charbonneau, F., Devauchelle, A.-D., Krebs, M.-O., et al.411
(2013). Hyperfrontality and hypoconnectivity during refreshing in schizophrenia. Psychiatry Research:412
Neuroimaging 211, 226–233413

Hirshkowitz, M., Whiton, K., Albert, S. M., Alessi, C., Bruni, O., DonCarlos, L., et al. (2015). National414
sleep foundations sleep time duration recommendations: methodology and results summary. Sleep415
Health 1, 40–43416

Hoff, P. D. (2009). A hierarchical eigenmodel for pooled covariance estimation. J. R. Stat. Soc. Ser. B Stat.417
Methodol. 71, 971–992. doi:10.1111/j.1467-9868.2009.00716.x418

Hoff, P. D. and Niu, X. (2012). A covariance regression model. Statist. Sinica 22, 729–753. doi:10.5705/419
ss.2010.051420

Huppert, T. J., Diamond, S. G., Franceschini, M. A., and Boas, D. A. (2009). Homer: a review of421
time-series analysis methods for near-infrared spectroscopy of the brain. Applied optics 48, D280–D298422

Hyv, A. et al. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE423
Transactions on Neural Networks 10, 626–634424

This is a provisional file, not the final typeset article 14

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2017. ; https://doi.org/10.1101/154468doi: bioRxiv preprint 

https://doi.org/10.1101/154468
http://creativecommons.org/licenses/by/4.0/


Seiler and Holmes Models for Functional Connectivity

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., and Smith, S. M. (2012). Fsl.425
Neuroimage 62, 782–790426

Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998). Markov chain monte carlo in practice: a427
roundtable discussion. The American Statistician 52, 93–100428

Kendall, D. G. (1984). Shape manifolds, Procrustean metrics, and complex projective spaces. Bull. London429
Math. Soc. 16, 81–121. doi:10.1112/blms/16.2.81430

Killgore, W. D., Schwab, Z. J., and Weiner, M. R. (2012). Self-reported nocturnal sleep duration is431
associated with next-day resting state functional connectivity. Neuroreport 23, 741–745432

Korth, B. and Tucker, L. R. (1976). Procrustes matching by congruence coefficients. Psychometrika 41,433
531–535434

Larson-Prior, L. J., Zempel, J. M., Nolan, T. S., Prior, F. W., Snyder, A. Z., and Raichle, M. E. (2009).435
Cortical network functional connectivity in the descent to sleep. Proceedings of the National Academy436
of Sciences 106, 4489–4494437

Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices.438
Journal of multivariate analysis 88, 365–411439

Lenglet, C., Rousson, M., and Deriche, R. (2006). Dti segmentation by statistical surface evolution. IEEE440
Transactions on Medical Imaging 25, 685–700441

Lewandowski, D., Kurowicka, D., and Joe, H. (2009). Generating random correlation matrices based on442
vines and extended onion method. Journal of multivariate analysis 100, 1989–2001443

Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., and Corbetta, M. (2009). Learning sculpts444
the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences445
106, 17558–17563446

Liechty, J. C., Liechty, M. W., and Müller, P. (2004). Bayesian correlation estimation. Biometrika 91, 1–14447

Liu, N., Mok, C., Witt, E. E., Pradhan, A. H., Chen, J. E., and Reiss, A. L. (2016). NIRS-based448
hyperscanning reveals inter-brain neural synchronization during cooperative Jenga game with face-to-face449
communication. Frontiers in Human Neuroscience 10450
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