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Abstract  13 

Reef-building corals maintain a symbiotic relationship with dinoflagellate algae of the 14 

genus Symbiodinium and this symbiosis is vital for the survival of the coral holobiont. 15 

Symbiodinium community composition within the coral host has been shown to influence a 16 

coral’s ability to resist and recover from stress. A multitude of stressors including ocean 17 

warming, ocean acidification, and eutrophication have been linked to global scale decline in 18 

coral health and cover in recent decades. Three distinct thermal regimes (highTP, modTP, and 19 

lowTP) following an inshore-offshore gradient of declining average temperatures and thermal 20 

variation were identified on the Belize Mesoamerican Barrier Reef System (MBRS). 21 

Quantitative metabarcoding of the ITS-2 locus was employed to investigate differences and 22 

similarities in Symbiodinium genetic diversity of the Caribbean corals Siderastrea siderea, S. 23 

radians, and Pseudodiploria strigosa between the three thermal regimes. A total of ten 24 

Symbiodinium lineages were identified across the three coral host species. Siderastrea siderea 25 

associated with distinct Symbiodinium communities, however Symbiodinium communities of its 26 

congener, S. radians, and P. strigosa, were more similar to one another. Thermal regime played 27 

a role in defining Symbiodinium communities in S. siderea but not S. radians or P. strigosa. 28 

Against expectations, Symbiodinium trenchii, a symbiont known to confer thermal tolerance, was 29 

dominant only in S. siderea at one sampled offshore site and was rare inshore, suggesting that 30 

coral thermal tolerance in more thermally variable inshore habitats is achieved through 31 

alternative mechanisms. Overall, thermal parameters alone were likely not the only primary 32 

drivers of Symbiodinium community composition, suggesting that environmental variables 33 

unrelated to temperature (i.e., light availability, or nutrients) may play key roles in structuring 34 
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coral-algal communities in Belize and that the relative importance of these environmental 35 

variables may vary by coral host species. 36 

Keywords: coral, Symbiodinium, symbiosis, marine science, environmental variability 37 
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Introduction 39 

Obligate symbioses, relationships in which two or more organisms depend on one 40 

another for nutrition and survival, occur globally. Such symbioses are ubiquitous in plants and 41 

algae, i.e., Mycorrhiza [1], lichens [2], or insects, i.e., ants and bacteria [3]. The effects of 42 

climate change are expected to disrupt proper functioning of many symbioses, including that of 43 

reef-building corals [4-6], who’s success depends on the symbiosis between the coral host and 44 

photosynthetic algae of the genus Symbiodinium [7-9]. Under stressful conditions this coral-45 

Symbiodinium relationship breaks down, resulting in the loss of endosymbiont cells and/or 46 

photosynthetic pigments from the coral tissue in a process known as ‘coral bleaching’ [10]. Coral 47 

bleaching is most commonly associated with thermal stress [11-15] and is predicted to increase 48 

in frequency and severity as the world’s climate continues to change [5, 16-21]. Increased 49 

thermal stress resulting from climate change combined with other local stressors such as 50 

eutrophication, habitat destruction, and overfishing has created an uncertain future for coral reefs 51 

[6, 13, 22]. In the Caribbean Sea, warming rates are higher than in any other tropical basin [23, 52 

24] and coral cover has declined by as much as 80% in recent decades [25]. It has been predicted 53 

that Caribbean coral reefs may suffer biannual bleaching events within the next 20-30 years [17] 54 

and annual bleaching by 2040 [26].  55 

In the face of a changing climate and widespread reef declines, corals will need to rapidly 56 

increase their thermal tolerance in order to persist in their current form [18, 27]. Coral thermal 57 

tolerance has been shown to be influenced by a coral’s thermal history, which among other 58 

factors includes average environmental temperature and extent of thermal variability [28, 29]. On 59 

average, corals previously exposed to warmer temperatures show decreased mortality during 60 

bleaching events [30] and more stable growth patterns [31] compared with corals exposed to 61 
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cooler temperatures, which exhibit greater mortality during heat stress and declining growth rates 62 

with increased temperatures [30, 31]. Exposure to greater daily thermal variation has also been 63 

shown to increase coral thermal tolerance [32] and  has been associated with higher coral cover 64 

and slower mortality rates when compared to reefs exposed to less thermal variation [33]. Coral 65 

thermal tolerance is also heritable with larvae from parent colonies on lower-latitude (warmer) 66 

reefs showing a 10-fold increase in survival under heat stress when compared to larvae from 67 

cooler reefs locations [34]. A growing body of evidence suggests that the coral host plays a 68 

significant role in thermal tolerance [35-38], however, plasticity or specificity of coral-associated 69 

Symbiodinium and bacterial communities have also been shown to play a significant role in 70 

overall thermal tolerance [39-43]. 71 

The clades, lineages, or species of Symbiodinium hosted by a coral are critical to its 72 

survival and resilience to stress. The genus Symbiodinium is genetically diverse and comprises at 73 

least nine divergent clades [clades A-I; 44]. These clades can be further broken down into 74 

lineages, corresponding approximately to species level diversity [45], with some species 75 

conferring variable benefits [39, 44, 46]. In particular, some Symbiodinium are more thermally 76 

tolerant than others [9, 39, 47], specifically Symbiodinium clade D [48]. In contrast, clade C is 77 

more thermally sensitive [49-51], yet it includes Symbiodinium thermophilum, a thermally 78 

tolerant species within clade C endemic to the Red Sea [52]. This example illustrates that making 79 

clade level generalizations is problematic due to the physiological diversity within a single 80 

Symbiodinium clade [53]. Specific lineages within clades can also confer various advantages. For 81 

example, C1 enhances growth rate [54], S. thermophilum confers heat tolerance [52], and B2 82 

confers cold tolerance [55]. Additionally, species D1a (Symbiodinium trenchii) has been shown 83 

to be both heat tolerant [56, 57], and cold tolerant [47]. However, the increased thermal tolerance 84 
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of a coral which predominantly hosts clade D Symbiodinium appears to come at a cost of lower 85 

lipid stores, reproductive potential, growth, and carbon fixation rates compared with corals that 86 

host other clades [58-61]. Due to the high levels of variation in coral host-Symbiodinium 87 

interactions, it is essential to identify which lineages are present in order to help predict how a 88 

coral may respond to environmental stressors.  89 

The majority of coral species host one dominant Symbiodinium lineage [44, 62, 63] along 90 

with several non-dominant lineages [64], each proliferating primarily by asexual cloning [53]. 91 

However, other corals can host multiple dominant lineages or clades [39, 53]. Recent advances 92 

in genetic techniques, especially next-generation sequencing (NGS), have allowed researchers to 93 

identify cryptic and low-abundance symbionts comprising 0.1% or more of the total 94 

Symbiodinium community within a host [37, 65]. It is important to understand these low-95 

abundance Symbiodinium, as they have the potential to play important roles in coral-algal 96 

holobiont physiology under ambient and stressful conditions [66-68, but see also 69]. Identifying 97 

trends in Symbiodinium community variation (including cryptic or low abundance lineages) 98 

within and between species across a coral reef may allow for a better understanding of the role of 99 

Symbiodinium communities in modulating coral response to environmental variation.    100 

Symbiodinium communities have been shown to vary regionally [between reef systems; 101 

61, 70, 71], locally [within a reef system; 70], temporally [across time on the same reef; 72], and 102 

within a colony [71]. Studies of this variation have revealed geographically endemic lineages of 103 

Symbiodinium which may play a significant role in local and regional scale coral survival and 104 

stress tolerance [39, 71, 73]. While temperature stress may play a role in structuring 105 

Symbiodinium communities [74], variations in other environmental factors have also been shown 106 

to drive Symbiodinium community composition. For example, physical processes and total 107 
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suspended solids (a proxy for nutrients and flow) drive Symbiodinium associations within the 108 

Orbicella annularis species complex in Belize and Panama [70]; however, on a regional scale 109 

(e.g., the entire Caribbean Sea), O. annularis Symbiodinium communities differed based on 110 

patterns of chronic thermal stress [75]. Additionally, the presence of several subclades of 111 

Symbiodinium correlated with other environmental parameters, such as cooler summers, nutrient 112 

loading, and turbidity [75]. Taken together, these studies demonstrate that variation in 113 

Symbiodinium communities can be driven by a variety of environmental parameters and may be 114 

specific to each coral species in each specific environment.  115 

The majority of Caribbean Symbiodinium biogeography studies have focused on the 116 

Orbicella species complex [70, 71, 75] as Orbicella spp. has experienced significant declines 117 

over the last two decades [76] and are now listed as ‘threatened’ under the Endangered Species 118 

Act. However, the variation in Symbiodinium communities of other more stress tolerant corals, 119 

such as Sidereastrea siderea and S. radians [77-82], remain relatively understudied. Here, we 120 

assess Symbiodinium community composition in three species of ubiquitous Caribbean corals 121 

(Siderastrea siderea, S. radians, and Pseudodiploria strigosa) across three distinct thermal 122 

regimes along the Belize Mesoamerican Barrier Reef System (MBRS) previously shown to 123 

influence coral community composition [83]. Coral-associated Symbiodinium communities were 124 

examined across an inshore-offshore thermal gradient and a latitudinal gradient to elucidate the 125 

role that coral species, local habitat, and thermal regime play in structuring Symbiodinium 126 

communities in the western Caribbean Sea.  127 

Methods:  128 

Site selection and characteristics 129 
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Ten sites along the Belize MBRS were selected. These sites were previously 130 

characterized into three thermally distinct regimes (lowTP, modTP, highTP) and exhibited 131 

variations in coral species diversity and richness [83]. HighTP sites (inshore) were characterized 132 

by larger annual temperature variation, higher annual maximum temperatures, and are exposed to 133 

temperatures above the regional bleaching threshold of 29.7°C (Aronson et al., 2002) more often 134 

than modTP sites (mid-channel reefs) and lowTP sites (offshore) [83]. HighTP sites were 135 

dominated by stress tolerant and weedy coral species while corals representing all four coral life 136 

histories [stress tolerant, weedy, competitive, and generalist; 82] were present in lowTP and 137 

modTP sites [83]. 138 

 139 

Sample Collection 140 

In November 2014, five to ten (quantity depended on local availability) coral tissue 141 

microsamples (approx. 2 mm diameter) were collected at 3 to 5 m depth from three coral species 142 

(Siderastrea siderea, S. radians, and Pseudodiploria strigosa) at nine sites across four latitudes 143 

along the Belize MBRS (Fig 1; Table 1). Each latitudinal transect contained a lowTP, modTP, and 144 

highTP site. The transects from north to south were: Belize City, Dangriga, Placencia, and Punta 145 

Gorda (Fig 1). All three sites within the Punta Gorda and Placencia transects were sampled, but 146 

only the lowTP and highTP sites were sampled along the Belize City and Dangriga transects due to 147 

time constraints. Samples collected at the Belize City highTP site were collected in October 2015, 148 

as no corals were located in the area in 2014, but patch reefs were located in 2015. Coral 149 

microsamples were collected at least 1m apart from one another to randomize micro-150 

environmental and host genetic effects in order to attain more site-specific representative 151 

samples. Microsamples were collected from colony edges to avoid unnecessary damage to the 152 
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larger colony and to limit effects of Symbiodinium zonation within an individual [71]. Tissue 153 

microsamples were placed on ice immediately following collection for transport to mainland 154 

Belize. Microsamples were then preserved in 96% ethanol and stored on ice at –20°C, and 155 

transported on ice to the coral ecophysiology lab at the University of North Carolina at Chapel 156 

Hill and stored at −20°C until DNA isolation. 157 

 158 

Sea Surface Temperature  159 

Daily 1-km horizontal resolution sea surface temperature (SST) estimates were acquired 160 

from the NASA Jet Propulsion Laboratory’s Multi-Scale High Resolution SST (JPL MUR SST) 161 

product via NOAA Environmental Research Division’s Data Access Program (ERDDAP- 162 

https://coastwatch.pfeg.noaa.gov/erddap/index.html) [84] and analyzed following Baumann et al 163 

[83]. Several additional temperature parameters were taken into account for this study, including: 164 

annual degree heating days (similar to degree heating weeks, as per Gleeson and Strong [85]), 165 

annual minimum temperature, annual average temperature, annual winter average temperature, 166 

and annual summer average temperature. Values for these parameters within the three thermal 167 

regimes are reported in Table S1.  168 

 169 

DNA Extraction  170 

 Coral holobiont (coral, algae, and microbiome) DNA was isolated from each sample 171 

following a modified phenol-chloroform [86-88] method described in detail by Davies et al 172 

(2013). Briefly, DNA was isolated by immersing the tissue in digest buffer (100 mM NaCL, 173 

10mM Tris-Cl pH 8.0, 25 mM EDTA pH 9.0, 0.5% SDS, 0.1 mgml-1 Proteinase K, and 1 µgml-1
 174 

RNaseA) for 1 h at 42°C followed by a standard phenol-chloroform extraction. Extracted DNA 175 
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was confirmed on an agarose gel and quantified using a Nanodrop 2000 Spectrophotometer 176 

(Thermo Scientific).  177 

 178 

PCR amplification and metabarcoding 179 

 The ITS-2 region (350 bp) was targeted and amplified in each sample using custom 180 

primers that incorporated Symbiodinium specific ITS-2-dino-forward and its2rev2-reverse 181 

regions [65, 73, 89]. Each primer was constructed with a universal linker, which allowed for the 182 

downstream incorporation of Illumina specific adapters and barcodes during the second PCR as 183 

well as four degenerative bases whose function was to increase the complexity of library 184 

composition. The forward primer was 5’-GTCTCGTCGGCTCGG + 185 

AGATGTGTATAAGAGACAG + NNNN + CCTCCGCTTACTTATATGCTT-3’ where the 186 

underlined bases are the 5’- universal linker, italicized bases indicate spacer sequences, N’s 187 

denote degenerative bases and the bold bases are the ITS-2-dino. The reverse primer was 5’-188 

TCGTCGGCAGCGTCA + AGATGTGTATAAGAGACAG + NNNN + 189 

GTGAATTGCAGAACTCGTG-3’.  190 

Each 20uL PCR reaction contained 5-100 ng DNA template, 12.4 µL MilliQ H2O, 0.2 191 

µM dNTPs, 1µM forward and 1µM reverse primers, 1X Extaq buffer, and 0.5 U (units) Extaq 192 

polymerase (Takara Biotechnology). PCR cycles were run for all samples using the following 193 

PCR profile: 95°C for 5 min, 95°C for 40 s, 59°C for 2 min, 72°C for 1 min per cycle and a final 194 

elongation step of 72°C for 7 min. The optimal number of PCR cycles for each sample was 195 

determined from visualization of a faint band on a 2% agarose gel (usually between 22 and 28 196 

cycles) as per Quigley et al. (2014). PCR products were cleaned using GeneJET PCR 197 

purification kits (Fermentas Life Sciences) and then a second PCR reaction was performed to 198 
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incorporate custom barcode-primer sequences [65] modified for Illumina Miseq as in Klepac et 199 

al. [90]. Custom barcode primer sequences included 5’-Illumina adaptor + 6 bp barcode 200 

sequence + one of two universal linkers-3’ (e.g.: 5’- CAAGCAGAAGACGGCATACGAGAT  +  201 

GTATAG +  GTCTCGTGGGCTCGG-3’, or 5’- AATGATACGGCGACCACCGAGATCTACAC 202 

+ AGTCAA  + TCGTCGGCAGCGTC-3’). Following barcoding, PCR samples were visualized 203 

on a 2% agarose gel and pooled based on band intensity (to ensure equal contributions of each 204 

sample in the pool). The resulting pool was run on a 1% SYBR Green (Invitrogen) stained gel 205 

for 60 minutes at 90 volts and 120 mAmps. The target band was excised, soaked in 30 uL of 206 

milli-Q water overnight at 4°C, and the supernatant was submitted for sequencing to the 207 

University of North Carolina at Chapel Hill High Throughput Sequencing Facility across two 208 

lanes of Illumina MiSeq (one 2x250, one 2x300). The two lanes produced similar mapping 209 

efficiencies (73% and 73%, respectively; Table S3).  210 

 211 

Bioinformatic Pipeline 212 

The bioinformatic pipeline used here builds upon previous work by Quigley et al. [65] 213 

and Green et al. [73]. Raw sequences were renamed to retain sample information and then all 214 

forward (R1) and reverse (R2) sequences were concatenated into two files, which were processed 215 

using CD-HIT-OTU[91]. CD-HIT-OTU clusters concatenated reads into identical groups at 216 

100% similarity for identification of operational taxonomic units (OTUs). Each sample was then 217 

mapped back to the resulting reference OTUs and an abundance count for each sample across all 218 

OTUs was produced. A BLASTn search of each reference OTU was then run against the 219 

GenBank (NCBI) nucleotide reference collection using the representative sequence from each 220 

OTU to identify which Symbiodinium lineage was represented by each OTU (Table S2).  221 
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The phylogeny of representative sequences of each distinct Symbiodinium OTU was 222 

constructed using the PhyML tool [92, 93] within Geneious version 10.0.5 (http://geneious.com) 223 

[94]. PhyML was run using the GTR+I model (chosen based on delta AIC values produced from 224 

jModelTest [92, 95]) to determine the maximum likelihood tree. The TreeDyn tool in 225 

Phylogeny.fr was used to view the tree (Fig 2) [96-98]. The reference sequences included in the 226 

phylogeny were accessed from GenBank (Table S6). 227 

 228 

Statistical Analysis 229 

OTU abundance analysis used the R [99] package MCMC.OTU and followed methods 230 

described in Green et al. [73]. First, outlier samples with low sequence coverage (total log counts 231 

≥2.5 standard deviations below the mean of all samples) were identified and removed, which 232 

removed 3 samples. Next, rare OTUs (<0.1% of the global sum of counts [as per 65]) were 233 

identified and discarded leaving 56 of the original 5,132 OTUs. Many remaining OTUs were 234 

identified as having the same Symbiodinium lineage (i.e., C1 or D1a) and these OTUs were 235 

regressed against one another. Positive correlations between OTUs within a lineage may indicate 236 

paralogous loci from the same genome [37, 73]. As a result, reads from OTUs within the same 237 

lineage that showed a positive R2 and significant p-value following linear regression were pooled 238 

in order to control for possible overestimation of biodiversity [100].  Pooling resulted in a final 239 

OTU table containing ten OTUs (Table S2). Raw reads, trimmed reads, mapped reads, and 240 

percentage of reads mapped per species were calculated and reported in Table 2. Final pooled 241 

OTUs were run through the MCMC.OTU package in R and fit to a model that included fixed 242 

effect for host species, collection site, and thermal regime (Table S4). Differences between fixed 243 

effects were calculated based on their sampled posterior distributions and statistical significance 244 
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was calculated as per Matz et al. [101]. OTU count data were converted to relative abundances 245 

(%), which were used to generate Fig 3 (Table S5). 246 

To visualize differences in symbiont communities between temperature regimes, latitude, 247 

and species, principal component analyses (PCA) were performed on all OTUs that passed 248 

filtering using the vegan package in R [102]. Count data were transformed using Bray-Curtis 249 

similarity and were used as input for PCA. PERMANOVA was carried out on each PCA using 250 

the adonis function of the vegan package in R [102].  251 

 252 

Results 253 

Symbiodinium diversity and abundance across the Belize MBRS 254 

Our analysis produced 118,834 unique sequences of which 89,211 mapped to 10 OTUs 255 

(Table 1). The dominant OTU (hereafter referred to as lineage) in S. siderea was C1.I (74.39%), 256 

while B1.I dominated S. radians (70.31%) and P. strigosa (51.74%) samples (Table S5, Fig 3). 257 

Nine out of ten Symbiodinium lineages were present in S. siderea and P. strigosa while all ten 258 

were present in S. radians (Table S5). The four most abundant lineages in S. siderea were C1.I, 259 

C1.III, D1a, and B1.I (74.39%, 12.94%, 9.29%, and 2.94%, respectively; Table S5, Fig 3A) and 260 

date of collection did not impact the dominate Symbiodinium lineages (all samples collected in 261 

2014 except for Belize City highTP which were collected in 2015; Fig 3). Symbiodinium D1a (S. 262 

trenchii) was most abundant in S. siderea at lowTP sites, particularly the lowTP site along the most 263 

southern Punta Gorda transect (Table S5, Fig 3A) and lineage C1.III was more abundant in 264 

central and northern Belize (Belize City and Dangriga transects) compared to southern Belize 265 

(Figs 1, 3). Lineages C1.II, B1.II, G3, A4a, and B.BG were also present in S. siderea (Table S5, 266 

Fig 3A).  267 
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The four most abundant lineages in S. radians were B1.I, C1.I, B1.II, and C1.II (70.31%, 268 

13.41%, 6.54%, and 2.19% respectively; Table S5, Fig 3B). B1.I was the dominant symbiont 269 

across all thermal regimes and all latitudes, but C1.I and C1.II were the most abundant 270 

Symbiodinium lineages in several samples from the central Placencia transect (Table S5, Fig 3B). 271 

Lineage C1.II was only present in proportions above 1% in 2 samples, both from the modTP site 272 

along the Placencia transect (Table S5, Fig 3B). D1a (S. trenchii) was only present in low 273 

abundance in S. radians (Table S5, Fig 3B). Lineages C1.III, D1a, G3, A4a, B.BG, and C3 were 274 

also present in S. radians (Table S5, Fig 3B).  275 

The four most abundant lineages in P. strigosa were B1.I, C1.I, C1.II, and C1.III 276 

(51.74%, 21.87%, 16.92%, and 6.24%, respectively).  C1.II was the most abundant lineage at the 277 

lowTP site in the Placencia transect, but B1.I was most abundant at all other sites (Table S5, Fig 278 

3). C1.I was the second most abundant lineage in modTP and highTP sites and C1.II was the 279 

second most abundant lineage in the lowTP site (Table S5, Fig 3C). D1a (S. trenchii) was only 280 

present in low abundance in P. strigosa (Table S5, Fig 3C). Lineages D1a, B1.II, G3, A4a, and 281 

B.BG were also present in P. strigosa (Table S5, Fig 3C). 282 

 283 

Host species specificity in Symbiodinium community composition 284 

Symbiodinium communities differed significantly between S. siderea and the other two 285 

coral host species (Table S4, Fig 4A, p-value=0.001). This difference appears to be driven by 286 

higher relative abundances of C1.I and D1a (S. trenchii) in S. siderea compared to P. strigosa 287 

and S. radians (Fig 3A). Within S. siderea, Symbiodinium communities varied by thermal regime 288 

site, and latitude (Table S4, Fig 4B). Symbiodinium communities in S. radians and P. strigosa 289 

did not differ significantly by thermal regime, site, or latitude (Table S4).  290 
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 291 

Discussion 292 

Host-specificity drives Symbiodinium community composition 293 

This study indicates that Siderastrea siderea hosts significantly different Symbiodinium 294 

communities from S. radians and P. strigosa on the Belize MBRS (Table S5, Fig 3), providing 295 

evidence to support previous findings of high rates of host-specific Symbiodinium associations 296 

within the Caribbean Sea where at least 62 genetically different Symbiodinium have been found 297 

and where >50% of Symbiodinium lineages have been found in only one coral genus [53, 103]. 298 

This trend contrasts that of the Indo-Pacific where Symbiodinium diversity is lower and a few 299 

host-generalist Symbiodinium associate with many corals [103]. The three coral species studied 300 

here were found to be associated with the two most abundant Symbiodinium clades in the 301 

Caribbean [104]: B1 in S. radians and P. strigosa colonies and C1 in S. siderea (Table S5, Fig 302 

3). These associations are consistent with previous studies that identified the same dominant 303 

Symbiodinium in these species on the Belize MBRS [103]. However, our data contrast with 304 

findings of other studies on the same species elsewhere in the Caribbean which have identified 305 

other dominant Symbiodinium lineages in these host species [e.g., C3 and B5a in S. siderea and 306 

B5 and C46a in S. radians; 103, 105]. This supports previous evidence for regional endemism 307 

within the Caribbean Sea [103, 106]. Symbiodinium clade G, a lineage found in Octocorals [107], 308 

Foraminifera [108] , and Pacific Porites spp. [109], was also observed to be a minor player in the 309 

symbiont communities of S. radians and P. strigosa (Table S5, Fig 3). This results indicates that 310 

this clade is present in the Caribbean Sea, however because this clade is not traditionally 311 

associated with Scleractinian corals, we cannot be confident that its presence is as a symbiont, a 312 

contaminant from the local environment, or that it was ingested as food. Differences in 313 
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Symbiodinium communities between coral host species appear to be driven by the relative 314 

abundance of B1 and C1 as well as the presence or absence of D1a (Fig 4A). Presence of 315 

multiple lineages of C1 and B1 in this study (Table S2, Table S5) support previous evidence of 316 

phylogenetic partitioning, or highly specific lineages, in clades B and C [71, 103, 110, 111]. 317 

Interestingly, Symbiodinium communities were more similar between S. radians and P. strigosa 318 

than between S. radians and S. siderea, indicating that members of the same coral genus do not 319 

necessarily share a common dominant Symbiodinium partner, a phenomenon previously 320 

observed in Siderastrea spp. and Orbicella spp. across the Caribbean Sea [103]. Finney et al 321 

[103] show that S. radians and S. siderea exhibit different dominant Symbiodinium in both 322 

Belize (B5 vs. C1) and Barbados (B5 vs. C3). A similar trend is seen in O. faveolata and O. 323 

annularis (B17 vs. D1a in Belize and C7 vs. B1 in Barbados) [103]. These results suggest that 324 

Symbiodinium communities may not be influenced by coral host genus. Previously, it has been 325 

shown that symbiont acquisition strategy does not play a large role in determining Symbiodinium 326 

communities, however geographic distance and differences in environmental variables between 327 

habitats have been proposed as possible drivers of symbiont community composition [53, 103]. 328 

Coral life history strategy [82] or energetic demands may also play a role. Future research is 329 

needed to better understand this process. Differences in Symbiodinium communities between S. 330 

siderea and S. radians/ P. strigosa is suggestive that corals species are differentially affected by 331 

the environmental gradients sampled here.  332 

 333 

Thermal regime affects Symbiodinium community composition in S. siderea, but has no effect on 334 

other species  335 
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Symbiodinium communities varied significantly across thermal regimes in S. siderea 336 

(Table S4, Fig 4B), supporting previous evidence that habitat type [112] and temperature [113] 337 

are correlated with differences in Symbiodinium associations. Symbiodinium communities did not 338 

differ significantly across thermal regimes in S. radians or P. strigosa, possibly due to low 339 

sample size at each sampling site for these two coral species (Table 1; Fig 3). Symbiodinium 340 

communities did not differ between thermal regimes in S. radians or P. strigosa (Table S4), In 341 

this study, only temperature parameters were quantified, yet it is likely that they did not account 342 

for all of the variance in Symbiodinium communities for any coral host species investigated as 343 

other local impacts, such as nutrients, light availability, and/or sedimentation may play a role 344 

[48, 114-118]. 345 

 346 

Role of local impacts on Symbiodinium communities 347 

It has previously been shown that prevalence of specific Symbiodinium types within a 348 

coral host species can differ based on local scale environmental parameters such as nutrient 349 

loading and turbidity [75]. While these variables were not quantified in this study, chlorophyll-a 350 

(chl-a), a proxy for nutrient input, has previously been shown to be positively correlated with 351 

thermal regime in Belize. Specifically, highTP sites had higher chl-a than lowTP sites across the 352 

Belize MBRS [83]. Therefore, a PERMANOVA that shows significant differences in 353 

Symbiodinium communities between thermal regimes includes a confounding effect of nutrient 354 

input (Table S4). Since significant differences in Symbiodinium communities occurred between 355 

thermal regimes in S. siderea only, it is possible that nutrient loading or turbidity played a role in 356 

Symbiodinium variation within S. siderea, but may not have significantly influenced 357 

Symbiodinium communities in S. radians or P. strigosa. However, the magnitude of this 358 
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influence cannot be teased apart from the effect of thermal regime without extensive 359 

quantification of nutrient concentrations across the Belize MBRS.  360 

 361 

Coral host may play a role in thermal tolerance 362 

In this study, the relative abundance of thermally tolerant Symbiodinium D1a (S. trenchii) 363 

was not associated with inshore reefs as in Toller at al. [119], marginal reefs as in Hennige et al. 364 

[120] and LaJeunesse et al. [104], sites exposed to the highest temperatures as in Baker et al. 365 

[48], or sites exposed to the widest range of thermal fluctuations as in Abrego et al. [121], 366 

Fabricius et al. [122], and LaJeunesse et al. [40, 123]. Instead, S. trenchii was most prevalent at 367 

the southern Punta Gorda lowTP and modTP sites (Table S1, S5, Fig 3). Since S. trenchii is often 368 

associated with recently bleached and/or recovering corals [48, 124], but can be replaced or 369 

outcompeted following recovery [105], it is possible that a recent bleaching event may have 370 

occurred at these sites, however these data are not available. In summer 2014, temperatures at all 371 

sites in this study exceeded the published local bleaching threshold of 29.7°C [86] (Fig S1), yet 372 

S. trenchii was only the dominant symbiotic partner in eight S. siderea samples, all of which 373 

were from the same two sites (Punta Gorda lowTP and modTP; Fig 3). The presence of S. trenchii 374 

in several P. strigosa corals taken from the Punta Gorda modTP site provides additional evidence 375 

of temperature stress at these sites (Punta Gorda lowTP and modTP). This result suggests that 376 

corals at these sites had either bleached recently or retained S. trenchii as a dominant symbiont 377 

following past bleaching, possibly as a way to increase thermal tolerance [125]. Lower thermal 378 

tolerance has been proposed previously for S. siderea [80] and Orbicella faveolata [126] at these 379 

sites (Punta Gorda lowTP and modTP) and may be due to nutrients, sediments, and low salinity 380 

terrestrial runoff exported from Guatemala and Honduras by currents that wash over this area of 381 
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the Belize MBRS [126-128]. Low abundances of S. trenchii at other lowTP and modTP sites 382 

corroborates this hypothesis, as estimated thermal stress occurred at all latitudes at roughly the 383 

same magnitude (Fig S1). Overall, lack of S. trenchii in highTP sites indicates that regardless of 384 

warmer and more variable conditions, these three coral species do not associate with this 385 

thermally tolerant symbiont. Therefore, presumed increased thermal tolerance at highTP sites may 386 

be due to local adaptation of the coral host [37, 129] or strains of Symbiodinium [130, 131]. 387 

Further research into coral host and symbiont local adaptation would be needed to confirm this 388 

hypothesis. 389 

 390 

Conclusion 391 

This study demonstrates that Symbiodinium communities associated with corals in Belize 392 

are dependent on both host species as well as environmental variables. S. siderea Symbiodinium 393 

communities were divergent from S. radians and P. strigosa (Fig 3; Fig 4A). Thermal regime 394 

played a role in driving Symbiodinium community composition in S. siderea but not S. radians or 395 

P. strigosa, suggesting that local impacts such as nutrients, sediment, or light availability may 396 

also influence Symbiodinium communities on the Belize MBRS. Additionally, low abundance of 397 

S. trenchii in inshore highTP sites indicates thermal tolerance at these sites must be conferred 398 

through alternative mechanisms, such as local adaptation.  399 
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 767 

Tables and Figures 768 

Table 1: Sampling locations and sample size for S. siderea (SSID), S. radians (SRAD), and P. strigosa (PSTR). 769 
Locations are listed in order of descending latitude (Northernmost to Southernmost). ‘-‘ represent an instance where 770 
sample size is equal to zero (n=0).  771 
Transect Thermal 

regime 

Collection 

Date 

Illumina 

Lane 

Lat (°N) Long 

(°W) 

SSID SRAD PSTR 

Belize City Low Nov 2014 2 17.64363 88.0264 n=10 --- --- 

Belize City High Oct 2015 2 17.48685 88.1207 n=10 --- --- 

Dangriga Low Nov 2014 2 17.078 88.01285 n=9 --- --- 

Dangriga High Nov 2014 2 16.79491 88.27699 n=10 --- --- 

Placencia Low Nov 2014 1 16.45816 88.01295 n=7 n=7 n=5 

Placencia Mod Nov 2014 1 16.49995 88.16527 n=6 n=7 n=6 

Placencia High Nov 2014 1 16.4654 88.31315 n=9 n=9 n=5 

Sapodilla Low Nov 2014 1 16.15729 88.25073 n=8 --- --- 

Sapodilla Mod Nov 2014 1 16.13013 88.33234 n=6 --- n=6 

Sapodilla High Nov 2014 1 16.2245 88.62943 n=8 n=6 --- 

 772 

Table 2: Average number of raw reads, trimmed reads, and mapped reads including mapping efficiency (% of 773 
trimmed reads that mapped) for each species.  774 

Species Raw reads  Trimmed reads Mapped reads Mapping 

efficiency 

S. siderea 46161 28453 22048 73% 
S. radians 51081  46812 35290 75% 
P. strigosa 88888 43928 31873 69% 
Total 186130 118834 89211 75% 
 775 

 776 

 777 

Figure Legends 778 

Fig 1: Thermal regime designations for sampling sites on the Belize MBRS [83]. Stars indicate sites 779 
where coral tissue samples were collected for Symbiodinium community analysis. LowTP, modTP, and 780 
highTP are defined based on combined averages of annual maximum temperature, annual temperature 781 
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range, annual days above the bleaching threshold, and annual longest streak of consecutive days above 782 
the bleaching threshold. LowTP sites exhibit the lowest values for all parameters measured and highTP sites 783 
exhibit the highest. A more detailed description of classification of these thermal regimes can be found in 784 
Baumann et al. [83].  785 

 786 

Fig 2: Phylogenetic analysis of ITS-2 sequences of representative OTUs from this study in addition to 787 
reference sequences for each clade (indicated by *). Branch support values are shown on the branches at 788 
divisions between distinct clades. The scale bar represents replacements per nucleotide site. 789 

 790 

Fig 3. Relative abundance (%) of each OTU (lineage) in S. siderea (A), S. radians (B), and P. strigosa 791 
(C). Each column represents an individual sample. Columns are arranged by latitudinal transect (as 792 
indicated by site names in alternating gray and white boxes) and then by thermal regime (blue boxes 793 
indicate lowTP sites, green boxes indicate modTP sites, and red boxes indicates highTP sites.  794 

 795 

Fig 4. Principal component analysis (PCA) plots of Symbiodinium communities by species (A) and by 796 
thermal regime for S. siderea (B). Percentages on each axis indicate the amount of variation explained by 797 
each axis. Adonis p-values indicate significant results of PERMANOVA tests. See Table S4 for 798 
additional PERMANOVA results. Black arrows indicate loadings showing the magnitude and direction of 799 
the effect of each OTU on the total variance. Colored ellipses indicate 95% confidence intervals.  800 

 801 

 802 
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