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ABSTRACT  25 

Biological collagenous tissues comprised of networks of collagen fibers are suitable for a 26 

broad spectrum of medical applications owing to their attractive mechanical properties. In this 27 

study, we developed a noninvasive approach to estimate collagenous tissue elastic properties 28 

directly from microscopy images using Machine Learning (ML) techniques. Glutaraldehyde-29 

treated bovine pericardium (GLBP) tissue, widely used in the fabrication of bioprosthetic heart 30 

valves and vascular patches, was chosen as a representative collagenous tissue. A Deep Learning 31 

model was designed and trained to process second harmonic generation (SHG) images of collagen 32 

networks in GLBP tissue samples, and directly predict the tissue elastic mechanical properties. 33 

The trained model is capable of identifying the overall tissue stiffness with a classification 34 

accuracy of 84%, and predicting the nonlinear anisotropic stress-strain curves with average 35 

regression errors of 0.021 and 0.031. Thus, this study demonstrates the feasibility and great 36 

potential of using the Deep Learning approach for fast and noninvasive assessment of collagenous 37 

tissue elastic properties from microstructural images. 38 

Keywords: Deep Learning, convolutional neural network, elastic property, collagenous tissue 39 
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1. INTRODUCTION 41 

Biological collagenous tissues are comprised of networks of collagen fibers embedded in 42 

a ground substance [1, 2], which provide pliability and strength important for many normal 43 

physiological functions. The attractive biological and mechanical properties [3] also make 44 

collagenous tissues, mostly derived from animals as xenografts, suitable for a broad spectrum of 45 

medical applications such as bioprosthetic heart valve (BHV) [4, 5], cardiovascular grafting/patch  46 

[6, 7], tendon  [8] and hernia [9] repair.  However, due to the heterogeneity and inherent variability 47 

of biological tissues, the mechanical properties of collagenous tissues obtained at different 48 

locations even within the same individual (regardless whether animal or human) may differ, and 49 

may impact tissue-derived device function.   50 

Many studies [10-16] have shown that the microstructure of soft tissues, particularly the 51 

collagen fiber network structure, is the key determinant of the tissue elastic properties at the 52 

macroscopic level. Advanced microscopy imaging techniques, such as second harmonic 53 

generation (SHG) imaging, has enabled noninvasive visualization of soft tissue collagen networks 54 

at the microstructural level. The elastic properties of collagenous tissues are traditionally obtained 55 

through destructive mechanical testing of harvested tissue samples (Figure 1). Ideally, the 56 

nonlinear anisotropic elastic properties of collagenous tissues could be directly estimated from 57 

noninvasive images (e.g. SHG images) of the tissue microstructure, such that xenografts could be 58 

carefully selected based on their mechanical properties and optimal, more predictable, tissue-59 

derived device function could be ensured.  60 

Recently, Deep Learning [17], a branch of Machine Learning utilizing deep neural 61 

networks, has garnered enormous attention in the field of artificial intelligence. A special type of 62 

neural network, namely the convolutional neural network (CNN) [17-19], has become the state-63 
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of-the-art approach for computer vision and image analysis applications (e.g. face recognition), 64 

reaching, and even surpassing, human performance in some cases [20-23]. CNN provides an end-65 

to-end solution from input image to output target value by automatically extracting image features, 66 

thus eliminating the need for hand-crafted image features.  67 

In this study, we developed, to our best knowledge, the first Deep Learning approach to 68 

estimate the elastic properties of collagenous tissues from SHG images (Figure 1). Glutaraldehyde-69 

treated bovine pericardium (GLBP) tissue, widely used in the fabrication of BHVs [5] and vascular 70 

patches, was chosen as a representative collagenous tissue. A multi-layer CNN was designed and 71 

trained on a dataset of SHG images and corresponding mechanical testing results (i.e., equi-biaxial 72 

stress-strain curves). The trained CNN can automatically extract features from input SHG images 73 

of GLBP tissues and predict the nonlinear anisotropic elastic properties (Figure 1). 74 

 75 

Figure 1. Two approaches to obtain the elastic properties of a tissue sample: 1) the 76 

traditional approach utilizing mechanical testing of a physical test sample and 2) noninvasive 77 

microscopy imaging coupled with a trained Deep Learning model. 78 
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2. METHODS 79 

 80 

2.1 Tissue preparation and mechanical testing 81 

 82 

The GLBP tissue samples used in this study were collected and mechanically tested 83 

through previous work by our group aimed at evaluating transcatheter heart valve biomaterials 84 

[24]. The tissue preparation and mechanical testing protocols are well documented in the published 85 

works [25-27]. Briefly, testing samples were cut into a 20×20 mm2 square, and four graphite 86 

markers delimiting a square approximately 2×2 mm2 in size were glued to the central region of 87 

each sample for optical strain measurements. Samples were then mounted in a trampoline fashion 88 

to a planar biaxial tester in aqueous 0.9% NaCl solution at 37 °C. A stress-controlled test protocol 89 

[25]  was utilized to obtain the biaxial stress-strain response curves of each testing sample. In this 90 

study, 48 GLBP tissue samples were tested in total. 91 

2.2 Tissue imaging 92 

Upon completion of biaxial mechanical testing, the tissue samples were imaged using the 93 

SHG technique at the unloaded state. We utilized a Zeiss 710 NLO inverted confocal microscope 94 

(Carl Zeiss Microscopy, LLC, Thornwood, NY, USA), equipped with a mode-locked Ti:Sapphire 95 

Chameleon Ultra laser (Coherent Inc., Santa Clara, CA), a non-descanned detector (NDD), and a 96 

Plan-Apochromat 40x oil immersion objective. The laser was set to 800 nm and emission was 97 

filtered from 380–430 nm. Samples were kept hydrated with saline solution during imaging to 98 

prevent drying artifacts and covered with #1.5 coverslips. Samples were imaged inside the area 99 

delimited by the graphite markers, and 2D image slices were collected in the thickness direction 100 

from the smooth side of each sample. A 2D slice has 512×512 pixels to 1024×1024 pixels, and for 101 

each sample the number of slices was varied to cover the thickness. In total, we obtained 3D SHG 102 

images (size from 512×512×N to 1024×1024×N) of 48 tissue samples from different animal 103 
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subjects, and the corresponding mechanical testing data. Representative SHG images of a GLBP 104 

sample are shown in Figure 2, with a total of 18 slices (N=18) through the thickness. It is evident 105 

from Figure 2 that the image patterns change very slowly through the GLBP tissue thickness.  106 

 107 

Figure 2.  Representative SHG image slices of a tissue sample. n denotes the index of each slice. 108 

 109 
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2.3 PCA-based Parameterization of GLBP stress-strain curves 110 

Two distinct stress-strain curves were obtained from the equi-biaxial mechanical testing 111 

(section 2.1) of each tissue sample (Figure 3a&b), due to the anisotropic mechanical behavior of 112 

the tissue : 1) strain E11 and stress S11 along the X1-direction, and 2) strain E22 and stress S22 along 113 

the X2-direction.  Each stress-strain curve was uniformly sampled along the stress axis within the 114 

range of 10 to 630 KPa. The cutoff of 630KPa was chosen because different ranges of external 115 

stresses were applied to the tissue samples and 630KPa was the minimum peak stress value. For 116 

each tissue sample, the resampled strain values from the two curves were assembled as a vector of 117 

126 numbers, �. By using principle component analysis (PCA) [28, 29], the vector � of a tissue 118 

sample can be decomposed as 119 

� ≅ ���� = �� + 	
�
 + 	��� + 	
�
                                              (1) 120 

where ��  is the population mean, {��} are the modes of variation, and {	�} are the coefficients. 121 

Here, {	�} can vary, while �� and {��} are the same for all tissue samples. The first three modes of 122 

variation {�
, ��, �
} with {	
, 	�, 	
} can describe 99% of the total variation of the stress-strain 123 

curves, which means each stress-strain curve can be almost perfectly reconstructed by using Eq.(1) 124 

as shown in Figure 3b. Furthermore, the reconstruction error was measured by the mean absolute 125 

error (MAE), given by 126 

                        MAE = 


������

∑ |����(�) − �(�)|��

 !��
                                            (2) 127 

where j is the index of a component in a vector; and if "
 = 1, "� = 63, MAE is the error of the 128 

reconstructed S11~E11 curve; and if "
 = 64, "� = 126, MAE is the error of the reconstructed 129 

S22~E22 curve. 130 
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As shown in Figure 3c&d, a material is softer, i.e. more compliant, than the mean material 131 

if  	
 ( 0, and stiffer than the mean material if 	
 * 0. Thus the sign of 	
 can be used to describe 132 

the overall tissue stiffness. 133 

 134 

 135 

Figure 3. (a) The orientation definition of a tissue sample: X1 direction and X2 direction. (b) The 136 

open circles represent the stress-strain curves of a tissue sample from equi-biaxial mechanical 137 

testing experiments. The reconstructed stress-strain curves are shown by the red lines (S11~E11) 138 

and blue lines (S22~E22). (c)&(d) The stress-strain curves in the two directions of the 48 tissue 139 

samples color-coded by the corresponding 	
. The dashed lines are the mean curves, ��.  140 
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2.4 Deep learning model 141 

 142 

Figure 4. Architecture of the deep convolutional neural network used in this study.  143 

As show in Figure 4, we designed a deep convolutional neural network (CNN) as the deep 144 

learning model, consisting of 6 blocks in a pipeline. The 1st block takes an input image of size 145 

256×256×N pixels. The 6th block can be configured either as a classifier of the overall tissue 146 

stiffness (sign of 	
), or a regressor to predict the PCA parameters {	
, 	�, 	
}, which can be used 147 

to reconstruct the stress-strain curves by Eq.(1). The CNN (Figure 4) learns the relationship 148 

between the tissue SHG images and elastic properties from the training dataset, and then can infer 149 

the elastic properties from a new tissue image. 150 

Usually, convolutional neural networks (CNNs) consist of many layers that are 151 

sequentially connected, e.g., output from the first layer is the input to the second layer. A layer 152 

performs a specific operation, such as convolution, normalization, or max pooling, and it has 153 

parameters either prescribed or to be learned from data. For a detailed explanation of these layers, 154 

we refer the reader to the reference papers [17, 18, 30, 31]. The network structure should be 155 

designed for specific applications, e.g., choosing the types and sizes of layers and determining 156 

their combinations. For our application, the designed CNN consisting of 6 blocks in a pipeline, 157 

where each block has one or more layers. Given an input 3D image of 256×256×N pixels, the 1st 158 

block with only one preprocessing layer, performs local contrast normalization and uniformly 159 

resamples the input 3D image into the first feature map of 256×256×3 pixels. The 1st block does 160 

not have any trainable/free parameters. The 2nd block contains a convolution layer with 64 filters 161 
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(a.k.a. kernels) of 33×33×3 pixels, a batch-normalization layer, a ReLu (rectifier linear unit) layer, 162 

and a max pooling layer; and the output from the 2nd block is a feature map of 32×32×64 pixels. 163 

The 3rd to the 5th blocks are very similar to the 2nd block, which output feature maps of 16×16×64, 164 

7×7×64, and 1×1×64 pixels respectively. All of the max-pooling layers use a 2×2 pooling window. 165 

The 1st to 5th blocks can be considered image-feature extractors which output a feature vector of 166 

64 numbers. The 6th block is used for classification with a softmax classifier, and regression with 167 

a linear model. The CNN was implemented by using MatConvnet [32], an open source MATLAB 168 

toolbox, and custom MATLAB functions; and it can process an input 3D image within 10 seconds 169 

on a PC with intel i7-4770 CPU and 32G RAM. 170 

2.5 Learning of the deep convolutional neural network 171 

The CNN (Figure 4) parameters were learned from the training data. To overcome the 172 

challenge of training the CNN with a small dataset [28] (i.e., 48 test samples, which is an 173 

acceptable sample size for material testing of biological tissues), the CNN was trained by 174 

combining: 1) unsupervised deep learning to determine the parameters in the 2nd to 5th blocks, 2) 175 

supervised learning to determine the parameters in the 6th blocks, and 3) data augmentation to 176 

generate more training data. 177 

2.5.1 Unsupervised Deep Learning from the 2nd to 5th blocks 178 

To determine the filter parameters of a convolution layer, generally we could use encoder-179 

decoder based unsupervised learning strategies [33-36]. The input feature map to the convolution 180 

layer can be divided into small patches, where each patch has the same size as a filter (all filters in 181 

the same layer have the same size). Each patch can be converted to a vector, +, and the vectorized 182 

patches can be stacked together as the columns of a data matrix ,. The filters of the convolution 183 

layer can also be vectorized and stacked together as the columns of a filter matrix -. Let ℎ(/) 184 
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denote the ReLu function: ℎ(/) = /  if / * 0 , and ℎ(/) = 0  if / ≤ 0 . The encoder performs 185 

convolution followed by ReLu to each patch, which outputs the code matrix ℎ(-,) close to the 186 

optimal (unknown yet) code matrix 1. Given the optimal code matrix 1, the decoder tries to 187 

recover the input patches ,  by using a linear combination of the atoms/columns in a 188 

dictionary/matrix 2, i.e, using 21 to approximate ,. Then the goal is to find the optimal variables 189 

{-,2, 1} such that the encoding error and the decoding error are both minimized, which is to 190 

minimize the following objective function: 191 

ℱ = ‖ℎ(-5,) − 1‖� + ‖, − 21‖� + 6(-,2, 1)                            (3) 192 

where 6(-,2, 1) defines some constraints on the variables, and -5 denotes the matrix-transpose 193 

of -.  The matrix norm ‖. ‖ is the Frobenius norm. Obviously, by using different constraints, we 194 

can obtain different solutions of {-,2, 1}. We proposed an algorithm with three steps to directly 195 

obtain a solution under the low rank constraint [37]: 196 

Step-1: Perform low rank approximation (LRA) [37] on the patches ,, then a vectorized 197 

patch + can be approximated by 198 

+ ≅ ∑ 89:9
;
9!
 = 2< ,                                                      (4) 199 

where 2 = =:
, … , :;?, and the vector :9  has the same size as + , and @ ≤ @A  which is the 200 

number of pixels in the patch +. :9 is the product of the mth largest singular value, B9, and the 201 

corresponding left-singular vector obtained by LRA. 2 is the same for every single patch +. Also 202 

obtained by LRA, the code vector, < = =8
, … 8;?5, is a column vector of scalars, which is different 203 

for different patches. The percentage error of approximation for the patches , is given by 204 

CDDED =
∑ FG�
HI
GJHK�

∑ FL
�HI

LJ�
× 100% .                                               (5) 205 
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If @ = @A , then the error is zero. By controlling the number of retrained singular values and 206 

singular vectors, i.e., @, the approximation error and the computation cost (proportional to M) can 207 

be controlled. In this study, @  is fixed to 32, and the error is less than 30%. The low rank 208 

approximation essentially obtains 2  and 1  that minimize ‖, − 21‖�  under the low rank 209 

constraint. Since the singular vectors in 2 are orthogonal to each other, the code vector < can be 210 

simply approximated by 25+, i.e., < ≅ 25+, which is obtained by multiplying 25 to both sides of 211 

Eq.(4). After this step, the code matrix 1 and dictionary 2 are determined. 212 

Step-2: Define the filter matrix - by using the learned dictionary 2, given by  213 

- = =2, −2? = =:
, … , :;, −:
, … , −:;?.                                        (6) 214 

Also, we define a new code vector <O as 215 

<O = =ℎ(<5), ℎ(−<5)?5 .                                                      (7) 216 

Then the objective function Eq.(3) is equivalent to  217 

ℱ = Pℎ(-5,) − 1AP
�
+ ‖, − 21‖� + 6(-,2, 1)  ,                               (8) 218 

where 1A is the stack of new code vectors, corresponding to 1, and 1A ≅ ℎ(-5,) because < ≅ 25+. 219 

Then, a vectorized patch + can be encoded as a vector <O by the encoder ℎ(-5+). For example, 220 

+ ≅ 2:
 − 3:�, then the code vector is =2, 0? if - = =:
, :�?, and the code vector is =2, 0, 0, 3? if 221 

- = =:
, :�−:
, −:�?,  which clearly shows that the longer code vector preserves more 222 

information of +. The rationale of Eq.(6)&(7) is that the ReLu layer rejects any negative signal 223 

(i.e. code) output from the convolution layer, and therefore, nearly half of the signals will be lost 224 

in each block, harming the performance of the CNN. After this step, the filters of the convolution 225 

layer are determined. 226 
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Step-3: Perform feature map normalization. The output from the ReLu layer is a feature 227 

map serving as the input to the next layer. The size of the feature map is Q
 × Q� × Q
 (i.e. height 228 

× width × channel). The values of the feature map at one spatial location can be assembled to a 229 

code vector < of length Q
. By assembling all of the code vectors from the training dataset, a data 230 

matrix is obtained, and each row of this matrix is normalized by subtracting the mean and dividing 231 

by the standard deviation. The rows of the code matrix 1 from a single input image will also be 232 

normalized in the same way by using the same values of mean and standard deviation. This 233 

normalization is essentially equivalent to batch-normalization [30] which has been shown to 234 

improve CNN accuracy. After this step, the parameters (i.e. mean and standard deviation values) 235 

of the normalization layer are determined. 236 

2.5.2 Supervised learning in the 6th block 237 

The 6th block can be configured either as a classifier or regressor. In the classification 238 

configuration, a softmax function is used to predict class membership based on the feature vector 239 

from the 5th block. Since it is a binary (soft vs. stiff) classification task, the softmax function 240 

reduces to a logistic function, given by 241 

R = 



�STUV�∑ WXTX
YZ
XJ� �[\

                                                      (9) 242 

where {]
, … , ]^_, `} are the unknown scalar parameters and =/
, … , /^_? is the feature vector 243 

from the 5th block. Usually, a discrimination threshold (e.g. 0.5) is specified for the binary 244 

classification. If R is greater than or equal to the threshold, then the input is classified as stiff; and 245 

if R is smaller than the threshold, then it is classified as soft. With the labeled training data (i.e., 246 

image data with known mechanical properties), the 65 parameters in Eq.(9) can be determined 247 

through supervised learning using the cross-entropy loss function and the conjugate gradient 248 

optimization algorithm. 249 
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 In the regression configuration, a multiple output linear regressor predicts the values of 250 

{	
, 	�, 	
} in Eq.(1) based on the feature vector from the 5th block, which is given by 251 

	� = ∑ ]� / 
^_
 !
 + `�, i=1, 2, 3                                         (10) 252 

where {]� , `� , a = 1,2,3, � = 1, … ,64}  are the unknown scalar parameters. With the labeled 253 

training data, the 195 parameters of this regressor can be learned by using the least squares 254 

regression algorithm. Once the parameters {	
, 	�, 	
} are predicted by the regressor, the stress-255 

strain curves can be reconstructed by using Eq.(1). 256 

2.5.3 Data augmentation 257 

Data augmentation methods are extensively used in Deep Learning applications [18, 38-258 

40] to generate more training data. In this study, two data augmentation methods were used: image 259 

splitting and flipping (Figure 5). A 3D image of N slices can be split into patches using a sliding 260 

window with a stride of 128, and the size of each patch is 256×256×N. As a result of image 261 

splitting, 1678 patches were generated. Furthermore, each patch was flipped along the horizontal 262 

direction and/or vertical direction, which produced 6712 patches. The elastic properties 263 

corresponding to image patches from the same GLBP tissue sample, were assumed to be identical. 264 

 265 

Figure.5 An example of data augmentation to generate image patches. 266 
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2.6 A comparative study of network structures 267 

 Given the relatively large size of the CNN compared to the dataset, the natural question 268 

arises whether reducing the number of layers or filters will significantly impact the performance. 269 

Given the huge design space, it would be impractical to evaluate all possible simplifications of the 270 

CNN structure. In this study, we chose to investigate two simplified CNNs for comparison, named 271 

CNN-s1 and CNN-s2 respectively. CNN-s1: in Step-2 of unsupervised learning in section 4.5.1, 272 

the filter matrix - was simplified as - = 2, which reduces the number of filters. CNN-s2: the 273 

ReLu and normalization layers were removed, and the filter matrix - was simplified as - = 2. 274 

The structure of CNN-s2 is similar to that in [34]. 275 

3. RESULTS 276 

3.1 Unsupervised deep learning 277 

The learned filters of the CNN are visualized in Figure 6. The filters in the 2nd block (Fig. 278 

6a) are local image feature detectors, resembling the local fiber network structures. The filters in 279 

the other blocks (Fig. 6b-d) are more abstract, essentially representing various combinations of the 280 

local structures at different length scales and locations. 281 
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 282 

Figure 6. Examples of the learned filters. (a) The 32 filters in the convolution layer of the 2nd block, 283 

the 32 opposites of these filters are not shown. The red box contains one filter (size is 33×33×3).  284 

(b) One of the filters in the convolution layer of the 3rd block. (c) One of the filters in the 285 

convolution layer of the 4th block.  (d) One of the filters in the convolution layer of the 5th block.  286 

 287 

3.2 Classification 288 

Classification performance was evaluated through ten-fold cross validation using the image 289 

patch data. In each round of cross validation, 90% of the image patches and corresponding overall 290 

stiffness values (i.e. sign of 	
) were randomly selected as the training data; and the remaining 291 

10% of the data were used as the testing data to test whether the trained classifier can predict the 292 

sign of 	
, i.e., identify whether the tissue sample (corresponding to an image patch) is soft or 293 

stiff. The classification accuracy, defined as (TP+TN)/(TP+TN+FP+FN), the sensitivity, defined 294 

as TP/(TP+FN), and the specificity defined as TN/(TN+FP), were calculated to assess 295 

performance.  Here, true positive (TP) is the number of stiff tissue patches correctly identified as 296 

stiff; false negative (FN) is the number of stiff tissue patches incorrectly identified as soft; true 297 
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negative (TN) is the number of soft tissue patches correctly identified as soft; and false positive 298 

(FP) is the number of soft tissue patches incorrectly identified as stiff. In addition, AUC, defined 299 

as the area under a receiver operating characteristic (ROC) curve, was calculated as a measure of 300 

the overall classification performance. For comparison, a baseline softmax classifier using the 301 

skewness of image histogram [41] as the only feature, was also trained and tested. Since the two 302 

histograms of an image and its flipped version are the same, the flipped image patches were not 303 

used in the classification experiment. Two simplified versions of the CNN, CNN-s1 and CNN-s2 304 

with less filters and less layers (details in Method section), were also tested. 305 

ROC curves, as shown in Figure 7, were obtained by varying the discrimination threshold 306 

for each classifier. The performances of the proposed CNN, CNN-s1, CNN-s2, and the skewness-307 

based softmax classifier using 0.5 as the discrimination threshold for classification, are reported in 308 

Table-1. The proposed CNN achieved the best performance, the skewness-based softmax classifier 309 

had the worst performance, and the two simplified CNNs had moderate performance. 310 

 311 

Figure 7. ROC curves of different classifiers 312 
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 313 

Table-1: Classification Performance 314 

Method Accuracy Sensitivity Specificity AUC 

proposed CNN 84±2.5% 82±4.1% 86±3.6% 0.92 

CNN-s1 78±2.8% 73±5.5% 80±3.7% 0.86 

CNN-s2 75±3.5% 67±5.6% 80±4.9% 0.84 

skewness based 

softmax classifier 
71±3.2% 51±5.9% 84±3.9% 0.76 

 315 

3.3 Regression 316 

Regression performance was evaluated using a leave-one-out cross validation approach to 317 

test whether the trained regressor can predict the values of {	
, 	�, 	
}, which were used to 318 

reconstruct the stress-strain curve of each tissue sample by Eq.(1). In each round of the cross 319 

validation, the image patches and the stress-strain curves from one of the 48 tissue samples were 320 

used as the testing data to evaluate the accuracy of the regressor, and the remaining data were used 321 

as the training data to determine the parameters of the regressor. The predicted {	
, 	�, 	
} values 322 

for each of the image patches from the test tissue sample were averaged to obtain the final 323 

{	
, 	�, 	
} predictions for the whole tissue sample. 324 

From the cross validation, the errors (Eq.(2)) in the predicted stress-strain curves were 325 

0.021±0.015 and 0.031±0.029, compared to the actual S11~E11 and S22~E22 curves, respectively. 326 

Figure 8a shows an exemplary set of experimentally measured and predicted curves for one 327 

sample, and the error distribution across all of the samples is given in Figure 8b. The full set of 328 

predicted curves for all 48 samples are provided in the appendix. 329 
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 330 

 331 

Figure 8. (a) Representative stress-strain curves predicted by the deep learning model shown as 332 

dashed lines, and the stress-strain curves obtained from mechanical testing shown as solid lines. 333 

S11~E11 curves are shown in red. S22~E22 curves are shown in blue. (b) The mean absolute error 334 

(MAE) distribution of all samples. 335 

 336 

4. DISCUSSION 337 

In this study, we developed a Deep Learning approach utilizing a deep CNN to estimate 338 

the elastic properties of collagenous tissues directly from noninvasive microscopy images. To our 339 

best knowledge, this is the first study in which Deep Learning techniques were used to derive 340 

nonlinear anisotropic elastic properties directly from tissue microscopy images. This work was 341 

motivated by the lengthy, complex, and destructive nature of traditional tissue mechanical testing. 342 

While it takes only about 10-30 minutes to obtain SHG images of a tissue sample, it takes much 343 

longer (hours) to prepare testing samples, set up testing and measurement instruments, and perform 344 

the actual mechanical test on each sample to obtain the stress-strain response curves. It took several 345 

months to obtain the data from the 48 samples used in this study. The success of this study holds 346 
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promise for the use of Machine Learning techniques to noninvasively and efficiently estimate the 347 

mechanical properties of many structure-based biological materials. 348 

Traditional machine learning methods [17] require hand-engineered features (i.e. features 349 

defined by human experts), which are difficult to obtain for this application. Rezakhaniha et al. 350 

[44] have defined intuitive texture features of tissue fibers, such as waviness, straightness, bundle 351 

size, etc., but this requires time-consuming manual annotation. Moreover, it is unclear whether 352 

these hand-engineered features could fully describe the fiber network structural information. As 353 

an end-to-end solution, CNN eliminates the need for hand-engineered features.  One factor limiting 354 

the use of CNN and Deep Learning methods in biomechanics applications, is that they generally 355 

require a large amount of training data [42, 43], while the sample size for mechanical testing of 356 

biological tissues is typically small, on the order of 10 – 100 samples. However, in this study, it is 357 

shown that the deep CNN can also work well with a small dataset by combining supervised and 358 

unsupervised learning methods, and utilizing data augmentation methods. As more images and 359 

mechanical testing data are collected, the performance of the CNN can be further improved. 360 

   The CNN architecture used in this study, was specifically designed for this application.   361 

The 1st to 5th block of the CNN serve as automatic feature extractors that convert the input image 362 

into a feature vector for classification and regression. The filters in the first convolution layer 363 

represent different local fiber network patterns, while the filters in the remaining convolution 364 

layers represent various combinations of these patterns at different locations and length scales. 365 

Two simplified versions of the CNN were tested, i.e., CNN-s1 and CNN-s2 with less filters and 366 

less layers. The results show that simplifications to the CNN led to a significant decrease of 367 

accuracy, which may be the result of signal loss during signal propagation due to the fewer filters, 368 

and disruption of the encoding mechanism due to the fewer layers, respectively.  369 
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The CNN also demonstrated superiority over a simple image-feature based method to 370 

estimate the overall stiffness of collagen-based materials. Raub et al. [41] showed that the 371 

skewness of an image histogram was correlated to the collagen concentration and the Young’s 372 

modulus of collagen gels. Therefore, a softmax classifier was built by using the skewness as the 373 

only input feature in this study.  As demonstrated in the results (Figure 7), the CNN outperformed 374 

the softmax classifier by a large margin; and even the two simplified versions of the CNN 375 

performed better than the softmax classifier, which underscores the superiority of CNNs for 376 

automatically extracting fiber network features. 377 

More importantly, we demonstrated that the CNN can predict the PCA parameters of the 378 

stress-strain curves, such that the entire anisotropic stress-strain response of GLBP tissues can be 379 

estimated. For a nonlinear elastic response, it is well known that the Young’s modulus or stiffness 380 

cannot fully describe the tissue mechanical behavior, since the tangential value changes at different 381 

stress/strain levels along the nonlinear stress-strain curve. Thus, the PCA parameters offer a much 382 

more comprehensive look at the tissue elastic properties. Interestingly, we found that for this 383 

application, the overall “shape” of a stress-strain curve can be described with a single parameter, 384 

	
 in Eq.(1).  The novel PCA based approach to represent stress-strain curves developed in this 385 

study may facilitate more thorough analysis and comparison of tissue stress-strain responses over 386 

basic stiffness metrics. 387 

This approach opens the door for the fast and noninvasive assessment of collagenous tissue 388 

elastic properties from microstructural images, enabling many potential applications such as 389 

serving as a quality control tool for the manufacturing of BHVs. 390 

 391 
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5. CONCLUSION 392 

In conclusion, this study demonstrated the feasibility of using Deep Learning techniques 393 

for fast and noninvasive assessment of collagenous tissue elastic properties from microcopy 394 

images. The main contributions of this study include: 1) the use of PCA to parameterize equi-395 

biaxial stress-strain curves and quantify the overall stiffness, 2) the custom deep convolutional 396 

neural network design to automatically extract structural patterns of collagenous tissues, and 397 

perform classification to identify overall stiffness, as well as regression to predict PCA- parameters 398 

of nonlinear anisotropic stress-strain curves, and 3) the unsupervised deep learning method 399 

combined with supervised learning and data augmentation to overcome the challenge of small 400 

datasets for Deep Learning in the field of biomechanics. The developed approach was evaluated 401 

through cross validation, where an average classification accuracy of 84% and average regression 402 

errors of 0.021 and 0.031 were achieved. This study clearly demonstrates the great potential for 403 

Machine Learning techniques to estimate tissue mechanical properties solely through the use of 404 

noninvasive microcopy images. 405 
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Appendix 413 

Predicted stress-strain curves of the 48 tissue samples are shown from the best to the worst. 414 

Horizontal axis shows Green Strain. Vertical axis shows 2nd PK stress (KPa). Dashed lines are 415 

predicted stress-strain curves, and solid lines are the curves from mechanical testing. 416 

 417 

 418 

 419 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154161doi: bioRxiv preprint 

https://doi.org/10.1101/154161


 420 

 421 

 422 

 423 

 424 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154161doi: bioRxiv preprint 

https://doi.org/10.1101/154161


REFERENCES 425 

[1] Fomovsky GM, Thomopoulos S, Holmes JW. Contribution of Extracellular Matrix to the Mechanical 426 

Properties of the Heart. Journal of molecular and cellular cardiology 2010;48:490-6. 427 

[2] Sacks MS. Incorporation of Experimentally-Derived Fiber Orientation into a Structural Constitutive 428 

Model for Planar Collagenous Tissues. Journal of Biomechanical Engineering 2003;125:280-7. 429 

[3] Nimni ME, Cheung D, Strates B, Kodama M, Sheikh K. Chemically modified collagen: A natural 430 

biomaterial for tissue replacement. Journal of Biomedical Materials Research 1987;21:741-71. 431 

[4] Khor E. Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 432 

1997;18:95-105. 433 

[5] Vesely I. The evolution of bioprosthetic heart valve design and its impact on durability. 434 

Cardiovascular Pathology 2003;12:277-86. 435 

[6] Lam MT, Wu JC. Biomaterial applications in cardiovascular tissue repair and regeneration. Expert 436 

review of cardiovascular therapy 2012;10:1039-49. 437 

[7] Brown P. Abdominal Wall Reconstruction Using Biological Tissue Grafts. AORN Journal 2009;90:513-438 

24. 439 

[8] Demange MK, de Almeida AM, Rodeo SA. Updates in biological therapies for knee injuries: tendons. 440 

Current Reviews in Musculoskeletal Medicine 2014;7:239-46. 441 

[9] Huerta S, Varshney A, Patel PM, Mayo HG, Livingston EH. Biological mesh implants for abdominal 442 

hernia repair: Us food and drug administration approval process and systematic review of its efficacy. 443 

JAMA Surgery 2016;151:374-81. 444 

[10] Zhang L, Lake SP, Lai VK, Picu CR, Barocas VH, Shephard MS. A coupled fiber-matrix model 445 

demonstrates highly inhomogeneous microstructural interactions in soft tissues under tensile load. 446 

Journal of biomechanical engineering 2013;135:011008-. 447 

[11] Jin T, Stanciulescu I. Computational modeling of the arterial wall based on layer-specific histological 448 

data. Biomech Model Mechanobiol 2016;15:1479-94. 449 

[12] Jin T, Stanciulescu I. Numerical simulation of fibrous biomaterials with randomly distributed fiber 450 

network structure. Biomech Model Mechanobiol 2016;15:817-30. 451 

[13] D’Amore A, Amoroso N, Gottardi R, Hobson C, Carruthers C, Watkins S, et al. From single fiber to 452 

macro-level mechanics: A structural finite-element model for elastomeric fibrous biomaterials. Journal 453 

of the Mechanical Behavior of Biomedical Materials 2014;39:146-61. 454 

[14] Picu RC. Mechanics of random fiber networks-a review. Soft Matter 2011;7:6768-85. 455 

[15] Liu Q, Lu Z, Hu Z, Li J. Finite element analysis on tensile behaviour of 3D random fibrous materials: 456 

Model description and meso-level approach. Materials Science and Engineering: A 2013;587:36-45. 457 

[16] Wicker BK, Hutchens HP, Wu Q, Yeh AT, Humphrey JD. Normal basilar artery structure and biaxial 458 

mechanical behaviour. Comput Methods Biomech Biomed Engin 2008;11:539-51. 459 

[17] LeCun Y, Bengio Y, Hinton GE. Deep Learning. Nature 2015;521:436-44. 460 

[18] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural 461 

Networks. Neural Information Processing Systems 2012. 462 

[19] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. 463 

Proceedings of the IEEE 1998;86:2278-324. 464 

[20] He K, Zhang X, Ren S, Sun J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on 465 

ImageNet Classification. IEEE International Conference on Computer Vision 2015. 466 

[21] Kokkinos I. Pushing the Boundaries of Boundary Detection using Deep Learning. Intl Conf on 467 

Learning Representations 2016. 468 

[22] Taigman Y, Yang M, Ranzato MA, Wolf L. DeepFace: Closing the Gap to Human-Level Performance in 469 

Face Verification. IEEE Conference on Computer Vision and Pattern Recognition 2014. 470 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154161doi: bioRxiv preprint 

https://doi.org/10.1101/154161


[23] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. IEEE Conference on 471 

Computer Vision and Pattern Recognition 2016. 472 

[24] Caballero A, Sulejmani F, Martin C, Pham T, Sun W. Evaluation of Transcatheter Heart Valve 473 

Biomaterials: Biomechanical Characterization of Bovine and Porcine Pericardium. Journal of Materials 474 

Science: Materials in Medicine (under review) 2017. 475 

[25] Sacks MS, Sun W. Multiaxial Mechanical Behavior of Biological Materials. Annual Review of 476 

Biomedical Engineering 2003;5:251-84. 477 

[26] Sun W, Sacks M, Fulchiero G, Lovekamp J, Vyavahare N, Scott M. Response of heterograft heart 478 

valve biomaterials to moderate cyclic loading. Journal of Biomedical Materials Research Part A 479 

2004;69A:658-69. 480 

[27] Sun W, Abad A, Sacks MS. Simulated Bioprosthetic Heart Valve Deformation under Quasi-Static 481 

Loading. Journal of Biomechanical Engineering 2005;127:905-14. 482 

[28] Devijver PA. Pattern Recognition: A Statistical Approach. London, GB: Prentice-Hall; 1982. 483 

[29] Heimann T, Meinzer H-P. Statistical shape models for 3D medical image segmentation: a review. 484 

Medical Image Analysis 2009;13:543-63. 485 

[30] Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal 486 

Covariate Shift. Proceedings of The 32nd International Conference on Machine Learning 2015:448-56. 487 

[31] Glorot X, Bordes A, Bengio Y. Deep Sparse Rectifier Neural Networks. Proceedings of the Fourteenth 488 

International Conference on Artificial Intelligence and Statistics 2011. 489 

[32] Vedaldi A, Lenc K. MatConvNet: Convolutional Neural Networks for MATLAB.  Proceedings of the 490 

23rd ACM international conference on Multimedia. Brisbane, Australia: ACM; 2015. p. 689-92. 491 

[33] Jarrett K, Kavukcuoglu K, Ranzato MA, LeCun Y. What is the Best Multi-Stage Architecture for Object 492 

Recognition? International Conference on Computer Vision 2009. 493 

[34] Lei Z, Yi D, Li SZ. Learning Stacked Image Descriptor for Face Recognition. IEEE Transactions on 494 

Circuits and Systems for Video Technology 2016;26:1685-96. 495 

[35] Bengio Y, Lamblin P, Popovici D, Larochelle H. Greedy layer-wise training of deep networks.  496 

Proceedings of the 19th International Conference on Neural Information Processing Systems. Canada: 497 

MIT Press; 2006. p. 153-60. 498 

[36] Hinton GE, Osindero S, Teh Y-W. A Fast Learning Algorithm for Deep Belief Nets. Neural 499 

Computation 2006;18:1527-54. 500 

[37] Markovsky I. Structured low-rank approximation and its applications. Automatica 2008;44:891-909. 501 

[38] Kooi T, Litjens G, van Ginneken B, Gubern-Mérida A, Sánchez CI, Mann R, et al. Large scale deep 502 

learning for computer aided detection of mammographic lesions. Medical Image Analysis 2017;35:303-503 

12. 504 

[39] Isensee F, Kickingereder P, Bonekamp D, Bendszus M, Wick W, Schlemmer H-P, et al. Brain Tumor 505 

Segmentation Using Large Receptive Field Deep Convolutional Neural Networks. In: Maier-Hein gFKH, 506 

Deserno gLTM, Handels H, Tolxdorff T, editors. Bildverarbeitung für die Medizin 2017: Algorithmen - 507 

Systeme - Anwendungen Proceedings des Workshops vom 12 bis 14 März 2017 in Heidelberg. Berlin, 508 

Heidelberg: Springer Berlin Heidelberg; 2017. p. 86-91. 509 

[40] Liu S, Zheng H, Fengc Y, Lid W. Prostate Cancer Diagnosis using Deep Learning with 3D 510 

Multiparametric MRI.  SPIE Medical Imaging International Society for Optics and Photonics. 511 

[41] Raub CB, Putnam AJ, Tromberg BJ, George SC. Predicting bulk mechanical properties of cellularized 512 

collagen gels using multiphoton microscopy. Acta Biomaterialia 2010;6:4657-65. 513 

[42] Deng J, Dong W, Socher R, Li LJ, Kai L, Li F-F. ImageNet: A large-scale hierarchical image database.  514 

2009 IEEE Conference on Computer Vision and Pattern Recognition2009. p. 248-55. 515 

[43] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet Large Scale Visual 516 

Recognition Challenge. International Journal of Computer Vision 2015;115:211-52. 517 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154161doi: bioRxiv preprint 

https://doi.org/10.1101/154161


[44] Rezakhaniha R, Agianniotis A, Schrauwen JTC, Griffa A, Sage D, Bouten CVC, et al. Experimental 518 

investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning 519 

microscopy. Biomech Model Mechanobiol 2012;11:461-73. 520 

[45] Cootes TF, Taylor CJ, Cooper DH, Graham J. Active shape models - their training and application. 521 

Computer Vision and Image Understanding 1995;61:38-59. 522 

 523 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 23, 2017. ; https://doi.org/10.1101/154161doi: bioRxiv preprint 

https://doi.org/10.1101/154161

