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Abstract 

 Conflict between organisms can lead to reciprocal adaptation that manifests itself as an increased 

evolutionary rate in the genes mediating the conflict. This adaptive signature has been observed in RNA 

interference (RNAi) pathway genes involved in the suppression of viruses and transposable elements in 

Drosophila melanogaster, suggesting that a subset of Drosophila RNAi genes may be locked into an arms 

race with these parasites. However, it is not known whether rapid evolution of RNAi genes is a general 

phenomenon across invertebrates, or which RNAi genes generally evolve adaptively. Here we use 

population genomic data from eight invertebrate species to infer rates of adaptive sequence evolution, and 

to test for past and ongoing selective sweeps in RNAi genes. We assess rates of adaptive protein evolution 

across species by using a formal meta-analytic framework to combine data across species, and by 

implementing a multispecies generalised linear mixed model of mutation counts. In all species, we find that 

RNAi genes display a greater rate of adaptive protein substitution than other genes, and that this is 

primarily mediated by positive selection acting on the subset of genes that are most likely to defend against 

viruses and transposable elements. In contrast, evidence for recent selective sweeps is broadly spread 

across functional classes of RNAi genes and differs substantially among species. Finally, we identify genes 

that exhibit elevated adaptive evolution across the analysed insect species combined, perhaps due to 

concurrent parasite-mediated arms races. 

 

Introduction 

 RNA-interference mechanisms include a diverse group of pathways, united by their use of 

Argonaute-family proteins complexed with short (20-30 nt) RNA molecules to guide the targeting of longer 

RNA molecules through sequence complementarity (Carmell, et al., 2002; Meister, 2013). These pathways 

regulate multiple biological processes that can be divided into three distinct subpathways in arthropods 

and nematodes, each represented by a characteristic class of small RNAs: the micro-RNA (miRNA), the 

short-interfering RNA (siRNA), and the piwi-interacting RNA (piRNA) pathways. The miRNA pathway 

processes endogenously-encoded foldback hairpins which, once in their mature miRNA form, regulate gene 
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expression and coordinate developmental processes (Alvarez-Garcia & Miska, 2005; Chen, et al., 2014; Ha 

& Kim, 2014). The siRNA pathway has two distinct roles, depending on the endogenous or exogenous origin 

of its substrate. First, the endo-siRNA pathway processes endogenously encoded dsRNA to regulate 

processes such as TE defense (Kawamura, et al., 2008; Czech, et al., 2008; Ghildiyal, et al., 2008) 

chromosomal segregation (Hall, et al., 2003; Huang, et al., 2015), and heterochromatin formation 

(Deshpande, et al., 2005). Second, the exo-siRNA (or viRNA) functions primarily as a form of antiviral 

immunity (Wang, et al., 2006; Bronkhorst & van Rij, 2014). The piRNA pathway forms a defence against 

transposable elements (TEs) in the germ line, and piRNAs are derived from endogenously-encoded piRNA 

clusters of inactivated TE sequences and from active TEs (Klattenhoff & Theurkauf, 2008; Thomson & Lin, 

2009; Czech, et al., 2016).  

Nevertheless, within this simple framework there is substantial variation among species, and RNAi-

pathway components seem to be evolutionarily labile. For example, in nematodes the mechanism and 

function of the piRNA pathway is not well conserved: primary piRNA-like small RNAs are encoded by short 

distinct loci instead of the clusters observed in flies and mammals, and mediate the biogenesis of a 

separate endo-siRNA population transcribed by an RNA-dependent RNA Polymerase (RdRP) and processed 

by Dicer (Duchaine, et al., 2006; Das, et al., 2008). Further, only one of the five major clades of nematode 

have retained Piwi-subfamily proteins — the canonical effector of the piRNA pathway —and instead rely 

solely on the (RDRP-produced) endo-siRNAs (Sarkies, et al., 2015). The piRNA pathway can also take on 

entirely new roles, for example, multiple duplications of piwi in Aedes mosquitoes has allowed the piRNA 

pathway to adopt an antiviral role in the somatic tissues (Morazzani, et al., 2012), while other piwi 

duplicates maintain the ancestral function (Miesen, et al., 2015; Miesen, et al., 2016).  

 The role of RNAi pathways in mediating inter-genomic (host-virus) and intra-genomic (host-TE, 

segregation distortion) (Ferree & Barbash, 2007) conflict suggests that they may be a hotspot of adaptive 

protein evolution. This has been well studied in Drosophila, where RNAi pathway genes show elevated 

rates of adaptive protein evolution (Obbard, et al., 2006; Obbard, et al., 2009), signatures of selective 

sweeps (Obbard, et al., 2011; Kolaczkowski, et al., 2011; Lewis, et al., 2016), and sites with elevated protein 

evolution across the Drosophila phylogeny (Vermaak, et al., 2005; Heger & Ponting, 2007; Kolaczkowski, et 
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al., 2011). For example, a comparison of the antiviral RNAi genes AGO2, Dcr-2, and r2d2 to their miRNA 

functional counterparts with no known role in conflict (the paralogs AGO1, Dcr-1, and loqs) shows a striking 

difference in rates of protein evolution, as well as a greater rate of adaptive amino-acid substitution 

(Obbard, et al., 2006). In addition, evolutionary rates of piRNA pathway genes involved in transcriptional 

silencing are elevated and highly correlated with other piRNA pathway genes across the Drosophila 

phylogeny (Blumenstiel, et al., 2016). 

 Although some antiviral and anti-TE RNAi pathway genes clearly display elevated rates of adaptive 

protein evolution in Drosophila, the generality of this pattern remains to be elucidated. Here we apply both 

traditional McDonald-Kreitman (McDonald & Kreitman, 1991) and SnIPRE-style (Eilertson, et al., 2012) 

analyses, and selective sweep-based analyses (Nielsen, et al., 2005; Pavlidis, et al., 2013) to publicly-

available genome-scale data from 6 insects and 2 nematodes. By combining estimates across species, we 

investigate the specific RNAi subpathways that may be the target of elevated positive selection. This allows 

us to estimate the rates of adaptation across species, thereby improving single gene estimates and allowing 

us to identify genes that are undergoing parallel adaptation across the taxa analysed. Finally, we summarise 

the evidence for recently completed and ongoing selective sweeps in RNAi genes across these eight taxa. 

We conclude that rapid evolution of RNAi genes is a general phenomenon in these invertebrates, although 

evidence for recent sweeps is highly contingent on the focal species. 

 

Materials and Methods 

Selection of genes for analysis 

Genes implicated in the RNAi pathway of either Drosophila melanogaster or Caenorhabditis elegans were 

used to find homologues in six insects and two nematode species (Table S1, Table S2). For the six insect 

species, these were further classified as miRNA, piRNA, siRNA, or viRNA. Although the viRNA pathway is not 

widely regarded as separate from siRNA, we make this distinction based on the hypothesis that these genes 

may be evolving adaptively in response to viruses, as these genes have direct experimental evidence of an 

antiviral role in D. melanogaster. We also split the piRNA pathway genes among three functional 
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categories: post-transcriptional silencing effectors, transcriptional silencing effectors, and biogenesis 

machinery. A gene was considered a biogenesis factor if piRNA levels decrease upon loss-of-function, an 

effector if piRNA pathway function is compromised without reducing piRNA levels, and a transcriptional 

silencing effector if the effector is involved in transcriptional silencing (Table S1). Finally, we selected 65 

piRNA genes in D. melanogaster with known tissue-specificity to calculate rates of adaptation in the 

germline versus the somatic follicle cells (Table S3). This gene list contains the core of the piRNA pathway 

and genes independently validated in two of the three recent screens for piRNA pathway constituents 

(Handler, et al., 2013; Czech, et al., 2013; Muerdter, et al., 2013).  

Homologs of the D. melanogaster and C. elegans genes were identified using a two-step process. First, a 

hidden Markov Model (HMMer) (Eddy, 2008)) was used to find best reciprocal best-hits for a gene of 

interest using predicted protein sets (if available) or UniProtKB. If no hit was found, then Exonerate was 

used to identify unannotated homologues in the genome using the model ‘protein2genome’ (Slater & 

Birney, 2005). If exonerate was unable to model a homologue, then this gene was classified as missing, 

either due to gene loss or an incomplete genome assembly. We defined genes as duplicates (paralogues) if 

multiple regions of a genome shared a best hit to a reference gene, and these regions showed substantial 

sequence divergence between them (i.e. they were not obviously a mis-assembly duplicate or allelic). 

Because of the large divergence times between insects and nematodes and the complexity of RNAi 

pathways in nematodes, and hence the associated difficulty in assigning homology in the two nematodes, 

we restricted our gene-level analyses to only the insect species. 

Population genomic data 

 We utilised previously published population genomic data for Drosophila melanogaster (Lack et al, 

2015), Drosophila pseudoobscura (Pseudobase) (McGaugh, et al., 2012), Anopheles gambiae (The 

Anopheles gambiae 1000 Genomes Consortium (2014): Ag1000G phase 1 AR2 data release. MalariaGEN.), 

Heliconius melpomene (Kronforst, et al., 2013), Bombyx mandarina (Xia, et al., 2009), Apis mellifera 

(Harpur, et al., 2014), Pristionchus pacificus (Rödelsperger, et al., 2014), and Caenorhabditis briggsae 

(Thomas, et al., 2015) for our analyses (Table S4). For both Drosophila species, we used previously-
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published haplotype data (haploid sequencing of D. melanogaster, inbred lines of D. pseudoobscura). For 

the other taxa we obtained raw sequencing reads from EBI ENA (identifiers provided in Table S4) and 

mapped them to the most recent reference genome for each species using Bowtie2 (Langmead & Salzberg, 

2012) with default settings. We used GATK's HaplotypeCaller on each individual separately (DePristo, et al., 

2011) to call variants in a 200 kb region surrounding each gene of interest. For high coverage datasets (A. 

mellifera, H. melpomene, C. briggsae, A. gambiae, and P. pacificus) we excluded sites with a read depth 

lower than 5, but we reduced this threshold to 2 for the low-coverage B. mandarina. After mapping and 

filtering sites we created two randomly resolved pseudohaplotype sequences per individual (i.e. without 

any linkage information) from the sites that remained, and these were used for downstream analyses (none 

of which depend on linkage information). Only one haplotype was sampled from each C. briggsae and P. 

pacificus individual as the sequenced individuals were reported to be highly homozygous. In H. melpomene, 

we occasionally observed long stretches of high divergence shared by multiple individuals. We assumed 

these to be possible cases of either contamination, inversions that have recently risen to a high frequency, 

or introgression (Pardo-Diaz, et al., 2012), and removed these haplotypes.  

 To calculate divergence between genes, and to polarise mutations for sweep analyses, we used the 

outgroup species Drosophila simulans, Drosophila miranda, Heliconius hecale, Bombyx huttoni, Anopheles 

christyi and Anopheles melas, Apis cerana, Caenorhabditis nigoni, and Pristionchus exspectatus, respectively 

(Table S4). Outgroups were chosen based on their divergence from the ingroup species (ca. 1-10% 

divergence of all sites) and on the availability of genomic data. For A. gambiae we tested outgroups with 

low (An. melas) and high (An. christyi) divergence times, as most Anopheles species are too close or too 

divergent to provide a robust outgroup for MK tests (Obbard, et al., 2007), and our results remain 

qualitatively the same for both outgroups (A. melas used for the presented analyses). For D. simulans 

(FlyBase, r2.02), D. miranda (Pseudobase, MSH22 strain), A. melas (VectorBase, CM1001059 strain, AmelC1 

assembly), A. christyi (VectorBase, ACHKN1017 strain, AchrA1 assembly), B. huttoni (Sackton, et al., 2014) 

(BioProject PRJNA198873), and P. exspectatus (WormBase, Bioproject PRJEB6009), the outgroup reference 

assemblies were publicly available and used as provided. However, the Caenorhabditis nigoni reference 

assembly sequence (caenorhabditis.bio.ed.ac.uk/home/download) is contaminated with the more 
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divergent nematode Caenorhabditis afra (Thomas, et al., 2015), and Caenorhabditis nigoni is the only 

current suitable outgroup for C. briggsae. We therefore applied a sliding window across the alignments 

between C. nigoni and C. afra, and excluded regions that were greater than 6 standard deviations from the 

mean divergence. Published reference assemblies were not available for Apis cerana and Heliconius hecale. 

To generate outgroup sequences for these species we iteratively remapped reads (H. hecale: ERR260306; A. 

cerana: SRR957079) to the respective Apis mellifera and Heliconius melpomene references, each time 

updating the previous reference with homozygous nonreference calls. These reads were mapped with 

Bowtie2 and then remapped with the divergent alignment software, Stampy (Lunter & Goodson, 2011). 

Homozygous nonreference calls (enriched for sites divergent between the ingroup and outgroup) were 

made with GATK's HaplotypeCaller, with the heterozygosity parameter set to the expected divergence 

between species. Such sequences will not perfectly reflect the true outgroup sequence, and are expected 

to be biased toward the ingroup, downwardly biasing estimates of divergence in high-divergence regions. 

However, we confirmed that this approach works well by iteratively mapping D. simulans to D. 

melanogaster, and comparing the result with the known D. simulans assemblies (KS= 0.10 for iterative 

mapping vs KS=0.12 for the true assembly), and while bias probably remains, it is unlikely to spuriously 

elevate the inferred rates of one class of genes relative to the other. More generally, our approach to 

mapping, filtering, and variant calling may be prone to such biases, but they are unlikely to differentially 

affect gene classes of different function. 

 For MK analyses, target sequences were aligned as amino acids using MUSCLE (Edgar, 2004), and 

then each examined by eye to remove putative mis-alignments. Within-species data was aligned first, and 

then a consensus sequence of this alignment used to align against the outgroup sequence. Synonymous 

and nonsynonymous substitutions between species were inferred using codeml from the PAML package 

using the YN00 model (Yang & Nielsen, 2000), which estimates substitution rates using an approximation to 

maximum likelihood methods, while accounting for base composition differences between codon positions 

and differences in transition/transversion rates. 

Rates of adaptive evolution by pathway 
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 To estimate the rate of adaptive protein evolution in different functional classes of gene, and to 

test for differences in rate between classes, we used two different approaches derived from the McDonald-

Kreitman test (‘MK framework’) (McDonald & Kreitman, 1991). The MK framework combines 

polymorphism and divergence data from putatively neutral (synonymous) and potentially selected 

(nonsynonymous) variants to infer an excess of nonsynonymous fixations —beyond that expected under 

model of neutrality and constraint—that can be attributed to positive selection. We first used an explicit 

population-genetic model to estimate the number of adaptive nonsynonymous substitutions per site (DFE-

alpha) (Eyre-Walker & Keightley, 2009). This approach has the advantage that it provides direct estimates 

of the parameters of interest, and explicitly models changes in population size and the distribution of 

deleterious fitness effects, which might otherwise bias estimates (Keightley & Eyre-Walker, 2007; Eyre-

Walker & Keightley, 2009). However, as currently implemented, this method does not allow data to be 

directly combined between species. Therefore, to obtain more precise homologue- and pathway-based 

estimates we combined per-gene point estimates from DFE-alpha using a linear mixed model (including 

their estimated uncertainty; i.e. a meta-analysis). Our second approach used an extension of the SnIPRE 

model (Eilertson, et al., 2012), which re-frames the MK test as a linear model in which polymorphism and 

substitution counts are predicted by synonymous or nonsynonymous state. Although this model does not 

explicitly consider the same underlying population-genetic processes, it does permit a straightforward 

extension to natively include gene, homologue, pathway, and host species as predictors in the model, and 

therefore provides a direct test of the questions of interest (although at a cost of potentially less accurate 

or arbitrarily-scaled parameter estimates). We have re-implemented the SnIPRE model using the Bayesian 

Generalised Linear Mixed Modelling R package MCMCglmm (Hadfield, 2010), and the code is provided in S1 

text.  

DFE-alpha analyses 

 DFE-alpha (Eyre-Walker & Keightley, 2009) infers ωA (the number of adaptive nonsynonymous 

substitutions per nonsynonymous site, relative to the number of synonymous substitutions per 

synonymous site), while simultaneously modelling the distribution of deleterious fitness effects and 

population size changes (Keightley & Eyre-Walker, 2007; Eyre-Walker & Keightley, 2009). The ωA statistic is 
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closely related to the more widely reported α statistic (the proportion of nonsynonymous substitutions that 

are adaptive (Charlesworth, 1994; Fay, et al., 2001; Smith & Eyre-Walker, 2002; Bierne & Eyre-Walker, 

2004; Welch, 2006), but differs in that ωA is expected to be less dependent on effective population size and 

therefore better for cross-species comparisons (because the denominator, dS, should be less affected by 

the efficacy of selection, and thus effective population size (Gossmann, et al., 2010; Gossmann, et al., 2012; 

Kousathanas, et al., 2014). DFE-alpha utilises the observed site frequency spectrum (SFS) for putatively 

neutral synonymous sites and potentially selected nonsynonymous sites, and maximises the likelihood of 

observing these spectra given the distribution of deleterious fitness effects (DFE) for nonsynonymous sites 

and a step-change in effective population size (Eyre-Walker & Keightley, 2009). The ‘excess’ 

nonsynonymous divergence attributable to adaptive substitution is then inferred, given the maximum 

likelihood estimate of the DFE and the observed divergence (Eyre-Walker & Keightley, 2009). We inferred 

ωA for: (i) each RNAi gene and each position-matched control gene (i.e. those with no known RNAi-pathway 

role falling within the same 200 Kbp interval); (ii) each RNAi subpathway and their set of control genes, and; 

(iii) all RNAi pathway genes together, by pooling polymorphism and divergence data across genes within 

classes. We then compared this grouped polymorphism and divergence data in pathways of interest against 

control genes. We estimated the parameters of the nominal change in population size (the relative 

population size change parameter N2, and the time of the population size change, t2) for all genes treated 

together within species, and then fixed these estimates for pathway and individual gene estimates. 

Conditional on this species-wide estimate of demographic history, the DFE was estimated separately for 

RNAi and control genes. We obtained confidence intervals for estimates of α and ωA by bootstrapping 

genes within classes (1000 draws), and we tested for differences in rate between gene classes by randomly 

permuting genes 1000 times between classes. To test for differences in the DFE between RNAi and control 

genes we performed a likelihood ratio test between a model in which parameters of the DFE were 

estimated for all genes together, and one in which we allowed the DFE parameters to be estimated 

separately for RNAi and control genes.  
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Pooling polymorphism and divergence data across genes allows calculation of pathway-specific ωA within a 

species, but cannot readily give cross-species estimates. Therefore, we also calculated ωA for individual 

genes in each species, and analysed these estimates across species. In general, such estimates are 

extremely poor unless samples sizes are extremely large (e.g. hundreds of alleles are sampled, or genes are 

very large ) (Keightley & Eyre-Walker, 2010). However, if the selective pressure acting on genes is 

consistent across species, for example as is assumed by many phylogenetic approaches to detecting 

selection (Yang, 2007), we can acquire more accurate estimates of the relative rate of adaptive evolution by 

combining information across species. We therefore used a formal meta-analytic approach to combine 

small-group and single-gene estimates across species using MCMCglmm (Hadfield, 2010), by constructing 

linear mixed models. These models were used to estimate average gene-level ωA of various pathways and 

homologues, and variation among gene-level ωA estimates.  

The first three models took the same form, only distinguished by the pathways among which genes were 

divided. In Model 1A the genes were classified as either ‘control’ or ‘RNAi’, in Model 1B the RNAi class was 

expanded into four levels:  ‘miRNA’, ‘siRNA’, ‘viRNA’, and ‘piRNA’ and in Model 1C the piRNA class was 

further split into three functional categories: ‘effectors of transcriptional silencing’, ‘effectors of post-

transcriptional silencing’, and ‘biogenesis factors’. The model for the estimate of 𝜔𝐴 (i.e. 𝜔̂𝐴) for homologue 

k in gene class l in species m had the form: 

𝜔̂𝐴:𝑘𝑙𝑚 = 𝛽0 + 𝛽𝐶𝑙𝑎𝑠𝑠:𝑙 + 𝑢𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚:𝑚 + 𝑚𝑘𝑙𝑚 + 𝜀𝑘𝑙𝑚  [1] 

where 𝛽0 is the intercept, 𝛽𝐶𝑙𝑎𝑠𝑠:𝑙 is a fixed effect associated with gene class  l, 𝑢𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚:𝑚 is a random 

effect associated with species m, 𝑚𝑘𝑙𝑚 is the sampling error associated with each estimate, and 𝜀𝑘𝑙𝑚 is the 

between observation error after accounting for measurement error, which was allowed to vary by gene 

class (i.e. pathway). The variance of the sampling errors was obtained by bootstrapping genes by codon, 

and this sampling error variance was fixed at that value in the analysis. All species effects were assumed to 

come from a single normal distribution but the errors were assumed to come from independent normal 

distributions with different variances for each gene class.  
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Model 2 extended Model 1 by including homologue as a random effect (𝑢𝐻𝑜𝑚:𝑘𝑙) in order to identify 

homologues with elevated adaptation across lineages: 

𝜔̂𝐴:𝑘𝑙𝑚 = 𝛽0 + 𝛽𝐶𝑙𝑎𝑠𝑠:𝑙 + 𝑢𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚:𝑚 + 𝑢𝐻𝑜𝑚:𝑘𝑙 +  𝑚𝑘𝑙𝑚 + 𝜀𝑘𝑙𝑚  [2] 

where the homologue effects were assumed to come from independent normal distributions with different 

variances for each gene class. In this model the cross-species average 𝜔𝐴 for a homologue k in gene class l 

is given by 𝜔̅𝐴:𝑘𝑙 =  𝛽0 + 𝑢𝐶𝑙𝑎𝑠𝑠:𝑙 + 𝑢𝐻𝑜𝑚:𝑘𝑙. However, if genes are misclassified with respect to the gene 

class they belong, then 𝜔̅𝐴:𝑘𝑙 is likely to biased in general, and particularly so for misclassified genes. An 

arguably more conservative approach is to only use information from homologous genes to estimate the 

cross-species (i.e. remove the class effects from the model; this approach is provided as Model 2B in S1 

text) and have 𝜔̅𝐴:𝑘𝑙 =  𝛽0 + 𝑢𝐻𝑜𝑚:𝑘𝑙. See S1 text for R code and a full description of the models used. 

 

SnIPRE-like analysis  

The meta-analytic approach to cross-species analysis above has the advantage of utilising DFE-alpha 

estimates that are inferred under an explicit population-genetic model. However, it has the disadvantage 

that it conditions on point estimates from a model, rather than using the available data directly. We have 

therefore taken advantage of the Poisson linear mixed model approach to MK analyses ‘SnIPRE’ proposed 

by Eilertson et al. (2012), which models the counts of mutations in four classes: synonymous within-species 

polymorphisms, nonsynonymous within-species polymorphisms, between-species synonymous differences 

(divergence) and between-species nonsynonymous differences. By fitting ‘nonsynonymous’ and ‘divergent’ 

as main effects, selection can be inferred from their interaction, which records the excess contribution of 

nonsynonymous mutations to between-species divergence. This excess can be assessed at the level of 

individual genes (by treating gene identity as a random effect) or can be expressed as a function of other 

fixed or random effects such as gene class and species. Although this approach does not directly provide 

parameter estimates that are interpretable in simple population-genetic terms, such as ωA, it has the 

advantage of extending naturally to provide comparisons between species and gene classes while still using 

raw count data directly. Here we combine polymorphism and divergence data from several species to test 
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whether RNAi genes have higher rates of adaptive substitution than our set of control genes, whether 

these rates vary between different subclasses of RNAi gene, and whether these rates vary between 

different homologues. We fit these models with the R package MCMCglmm (Hadfield, 2010) and the code 

is provided in the S1 text. In their single-species and single-class analysis Eilertson et al. (2012) used the 

generalised linear mixed model with the fixed effect part of the model as:  

𝑙𝑜𝑔(𝜇𝑖𝑗𝑘) = 𝛽0 + 𝛽𝑁𝑖 + 𝛽𝐷𝑗 + 𝛽𝑁𝐷𝑖𝑗 + 𝛽𝑙𝑒𝑛𝑔𝑡ℎ𝑥𝑖𝑘    [3] 

where 𝜇𝑖𝑘  is the expected number of mutations in gene k  in one of the four classes indexed by i = 0,1 and j 

= 0,1 where i = 1 indicates nonsynonymous (N) and k = 1 divergent (D). This model estimates the intercept 

𝛽0 (the density of synonymous polymorphisms), 𝛽𝑁 (the genome-wide difference between a mutation 

being nonsynonymous versus synonymous), 𝛽𝐷 (the genome-wide difference between a mutation being a 

substitution versus a polymorphism), and 𝛽𝑁𝐷 (the interaction effect describing any genome-wide excess 

or dearth of nonsynonymous substitutions). 𝑥𝑖𝑘 is the logarithm of the number of sites in gene k where a 

synonymous (i = 0) or a nonsynonymous (i = 1) mutation could occur and the fixed effect 𝛽𝑙𝑒𝑛𝑔𝑡ℎ models 

how the number of observed mutations changes as a function of the number of sites. Eilertson et al. (2012) 

also fitted a random effect structure that models between-gene mutation patterns after accounting for the 

fixed effects: 

𝑙𝑜𝑔(𝜇𝑖𝑗𝑘) = 𝛽0 + 𝛽𝑁𝑖 + 𝛽𝐷𝑗 + 𝛽𝑁𝐷𝑖𝑗 +  𝛽𝑙𝑒𝑛𝑔𝑡ℎ𝑥𝑖𝑘 + 𝜀𝑘 +  𝜀𝑘
𝑁𝑖 + 𝜀𝑘

𝐷𝑗 + 𝜀𝑘
𝑁𝐷𝑖𝑗  [4] 

where the additional terms denoted  𝜀 are the gene-specific random deviations from each of the first four 

fixed effect terms described above. The four gene-specific random deviations were assumed to come from 

a multivariate normal distribution with estimated (co)variance matrix. Eilertson et al. (2012) define the 

selection effect of gene k as 𝛽𝑁𝐷 + 𝜀𝑘
𝐷𝐺 , where a positive effect is evidence for positive selection, and (in 

Bayesian terms) the posterior probability that the effect exceeds zero can be directly assessed.  

Here we extend the SnIPRE-like model of Eilertson et al. (2012) to accommodate multiple species and to 

allow the evolutionary parameters to differ between different classes of gene. To this end we allowed the 
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four fixed effects to vary by species and by gene class (control, piRNA, siRNA, miRNA and viRNA) to give the 

fixed effect model: 

𝛽0 + 𝛽𝑁𝑖 + 𝛽𝐷𝑗 + 𝛽𝑁𝐷𝑖𝑗 +  𝛽𝑙𝑒𝑛𝑔𝑡ℎ𝑥𝑖𝑘𝑙𝑚 + 𝛽𝐶𝑙𝑎𝑠𝑠:𝑙 +  𝛽𝐶𝑙𝑎𝑠𝑠:𝑙
𝑁 𝑖 + 𝛽𝐶𝑙𝑎𝑠𝑠:𝑙

𝐷 𝑗 + 𝛽𝐶𝑙𝑎𝑠𝑠:𝑙
𝑁𝐷 𝑖𝑗 + 𝛽𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚:𝑚 +

 𝛽𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚:𝑚
𝑁 𝑖 + 𝛽𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚:𝑚

𝐷 𝑗 + 𝛽𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚:𝑚
𝑁𝐷 𝑖𝑗  [5] 

From this, we calculated the estimated selection effect for a specific pathway as 𝛽𝑁𝐷 + 𝛽𝐶𝑙𝑎𝑠𝑠:𝑙
𝑁𝐷 . The 

random effect portion of the model included homologue-specific effects and gene-specific effects and had 

the form 

𝑢𝐻𝑜𝑚:𝑘 +  𝑢𝐻𝑜𝑚:𝑘
𝑁 𝑖 + 𝑢𝐻𝑜𝑚:𝑘

𝐷 𝑗 + 𝑢𝐻𝑜𝑚:𝑘
𝑁𝐷 𝑖𝑗 + 𝜀𝑘𝑙𝑚 +  𝜀𝑘𝑙𝑚

𝑁 𝑖 + 𝜀𝑘𝑙𝑚
𝐷 𝑗 + 𝜀𝑘𝑙𝑚

𝑁𝐷 𝑖𝑗 [6] 

In addition to the four gene effects, the four homologue effects were also assumed to come from a 

multivariate normal distribution with estimated (co)variance matrix. We used this model to calculate the 

selection effect for homologue k in gene class l as 𝛽𝑁𝐷 + 𝛽𝐶𝑙𝑎𝑠𝑠:𝑙
𝑁𝐷 + 𝑢𝐻𝑜𝑚:𝑘𝑙

𝑁𝐷  and each gene as  𝛽𝑁𝐷 +

𝛽𝐶𝑙𝑎𝑠𝑠:𝑙
𝑁𝐷 + 𝑢𝐻𝑜𝑚:𝑘𝑙𝑚

𝑁𝐷 + 𝜀𝑘𝑙𝑚
𝑁𝐷 . We estimated  𝛽𝑙𝑒𝑛𝑔𝑡ℎ rather than fixing it at one, as in Eilertson et al. (2012), 

although the posterior mean of  𝛽𝑙𝑒𝑛𝑔𝑡ℎ was close to one, supporting the assumption of Eilertson et al. 

(2012). In addition, we also fitted the SnIPRE model without assuming genes belong to known pathways, 

analogous to model 2. The code to fit these models is provided in the S1 text. 

  

Selective sweep analysis 

The recent spread of a positively selected allele leaves characteristic patterns of diversity and allele 

frequencies in the genomic region surrounding the selected site, and these can be used to detect recent 

adaptive substitutions (e.g. Maynard Smith & Haigh, 1974; Barton, 1998; Nielsen, et al., 2005). We used 

SweeD (Pavlidis, et al., 2013; derived from Sweepfinder, Nielsen, et al., 2005) to search for evidence of 

recent selective sweeps in the regions surrounding RNAi genes. The algorithm scans the genome and at a 

user-defined interval calculates the composite likelihood of the observed site frequency spectrum (SFS) 

under a model of a selective sweep centred on that site, versus a standard neutral model. The ratio of the 

two composite likelihoods (CLR) is then used as a test statistic, with significance assessed by coalescent 
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simulation (see Figure S1 and Text S2). We used this method to scan 200 kb (or less if the reference 

genome contig was less than 200 kb) surrounding each gene of interest in each species. For each focal 

region, we polarised the SFS by parsimony between the outgroup reference genome and the ingroup 

consensus sequence, which we aligned with LastZ ungapped alignment (Harris, 2007). We did not assume 

an ancestral state for fixed differences that were invariant in our ingroup (i.e. these sites were folded). This 

will make the analysis more robust to possible errors during contig alignment, because misalignment would 

manifest itself as regions of increased divergence between species. We included invariant sites in the 

analysis, as a characteristic signature of a recent sweep is a lack of diversity, and so including invariant sites 

in Sweepfinder analyses can greatly improve statistical power (Nielsen, et al., 2005). This comes with a risk 

of increased false positives (Huber et al, 2016), but including these sites should not differentially affect 

RNAi and control genes, unless there is a consistent difference in mutation rates between these two classes 

of genes. The SweeD analysis provides CLR values for equidistant points across the genome, with CLR values 

forming a “peak” in areas with high support for a sweep. To assess whether RNAi genes have experienced 

more sweeps than control genes in 6 of our 8 species (B. mandarina and P. pacificus were not tested 

because the published genome assemblies are unannotated), we counted the number of RNAi and control 

genes that overlapped significant peaks in the CLR statistic (based on the significance threshold provided by 

coalescent simulation, Figure S1, S2 text). If consecutive peaks occurred within 1 kb of each other, we 

classified them as a single broad peak, such that the contig was split into “sweep-positive” and “sweep-

negative” areas. We then classified all genes along the contig as to whether they overlapped a “sweep-

positive” area or not, and whether or not they were an RNAi gene. We used a binomial test to assess 

whether RNAi or control classes had more sweep-positive genes than expected given the summed gene 

length for each class. 

 To test whether sweeps were enriched in any particular subpathway, we normalised the maximum 

CLR statistic in a gene by the expected significance threshold from coalescent simulations and modelled 

these values (𝐶𝐿𝑅̃) using the following linear mixed model: 

𝐶𝐿𝑅̃𝑘𝑙𝑚 =  𝛽0 + 𝛽𝐶𝑙𝑎𝑠𝑠:𝑙 + 𝑢𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚:𝑚 + 𝜀𝑘𝑙𝑚   [7] 
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Here, 𝛽𝐶𝑙𝑎𝑠𝑠:𝑙 is a fixed effect for the pathway each gene is assigned (miRNA, siRNA, piRNA or viRNA), 

𝑢𝑂𝑟𝑔𝑎𝑛𝑖𝑠𝑚:𝑚 is a random effect for species m and  𝜀𝑘𝑙𝑚 is the error term. 

 In the four organisms for which we have haplotype information (D. melanogaster, D. 

pseudoobscura, P. pacificus, C. briggsae), we additionally tested for ongoing or soft sweeps using the 

haplotype-based nSL statistic (Ferrer-Admetlla, et al., 2014). The nSL statistic is similar to the more widely 

used iHS statistic (Voight, et al., 2006), except that distance is measured in polymorphic sites rather than 

the genetic map distance (Ferrer-Admetlla, et al., 2014). This genome scan calculates the average number 

of consecutive polymorphisms associated with either the ancestral or derived allele at each polymorphic 

site along the contig across all pairwise comparisons. Areas with long range linkage disequilibrium will 

therefore be identified through SNPs with extreme nSL values. 

 

Results 

Evidence of genome-wide adaptive substitution in insects, but not nematodes 

The position-matched ‘control’ genes (that lack RNAi-related function) included in our analyses allowed us 

to estimate the average genome-wide rate of adaptation, assuming that proximity to RNAi gene has no 

effect on their rate of adaptive evolution. Our analysis broadly agrees with previous ones, suggesting a 

substantial fraction of amino-acid substitution is adaptive across insect species (Figure 1). All insect species 

shared similar estimates (ωA from 0.02 to 0.05) except for D. pseudoobscura, which exhibited an extremely 

high ωA value of 0.16 [0.05,0.32] (95% bootstrap confidence interval) adaptive nonsynonymous 

substitutions per synonymous substitution per site. Although we only sampled two nematode lineages, it is 

notable that both ωA estimates were negative (C. briggsae: -0.20 [-0.25, -0.15]; P. pacificus: -0.24 [-0.27, -

0.21]. This is consistent with the previously noted high ratio of nonsynonymous to synonymous 

polymorphism (πA/πS) ratio in these species, and perhaps suggests population structure and local 

adaptation (Rödelsperger, et al., 2014; Thomas, et al., 2015). We also calculated α, or the proportion of 

adaptive substitutions for each species, which reflect the same patterns observed for ωA (Figure S2). 
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 The cross-species SnIPRE-like model provides a formal comparison of adaptive divergence in the 

insect species. The structure of the model forces comparison relative to one species, for which we chose D. 

melanogaster. Anopheles gambiae and Bombyx mandarina had levels of putatively adaptive 

nonsynonymous divergence that were indistinguishable from those of D. melanogaster (MCMCp = 0.489 

and MCMCp=0.616, respectively). Consistent with the DFE-alpha estimates of ωA, A. mellifera and H. 

melpomene had significantly less adaptive nonsynonymous divergence than D. melanogaster (MCMCp = 

0.04 and MCMCp < 3x10-4, respectively), whereas D. pseudoobscura had an increased excess of 

nonsynonymous divergence (MCMCp = 0.0005). Other species-specific SnIPRE parameters can be found in 

S1 text.  

 

RNAi genes consistently display more adaptive protein substitution than other genes  

For each focal species we estimated the distribution of fitness effects of new mutations using DFE-alpha for 

RNAi pathway and non-RNAi (‘control’) genes, by pooling polymorphism and divergence data for each gene 

class. We fitted two models, one in which RNAi and control genes share a single DFE, and second in which 

each class of gene had a separate DFE. We then compared these models using a likelihood ratio test. In D. 

melanogaster, D. pseudoobscura, H. melpomene, A. mellifera, and C. briggsae, models in which control and 

RNAi genes have separate DFE parameters fitted the data significantly better than a model in which the two 

classes share a single DFE (Figure 1). Although there is no clear or universal trend, the DFE of control genes 

generally seemed slightly shifted towards more deleterious mutations than RNAi genes. For example, in 

most lineages (not D. pseudoobscura or A. gambiae), the estimated DFEs had a higher proportion of 

strongly deleterious mutations in control genes than RNAi genes, which suggests less constraint in RNAi 

genes. However, the overall shape of the DFE is quite different between species, either indicating that in 

these species gene function may play a smaller role than other factors in patterns of polymorphism, or that 

the DFE is estimated with low precision.  

 We then compared rates of adaptive amino acid substitution in RNAi genes to those in the non-

RNAi control genes in each lineage, by pooling polymorphism and divergence data for the two classes as 
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input to DFE-alpha (Figure 1). In every species tested, the point-estimate of class-wide ωA was greater in 

RNAi genes than control genes. Although the effect was often small, the difference was individually 

significant in D. melanogaster, D. pseudoobscura, H. melpomene, and P. pacificus. To quantify the overall 

difference, we analysed individual gene estimates of ωA in a linear mixed model framework (i.e. a meta-

analysis) to estimate across-species rates of adaptive evolution in control and RNAi genes (model 1 in S1 

text, Figure 1). We found the cross-species ωA was significantly greater for RNAi genes than control genes, 

estimated as ωA = 0.062 [0.049, 0.078] (95% Highest posterior density) versus ωA = 0.01 [0.0009, 0.019] (p < 

0.001). In addition, the residual gene-level variance was also much greater (MCMCp <0.001) for RNAi genes 

(0.0037, [0.0022, 0.0051]) than control genes (0.0003, [0.0001, 0.0004]), implying that ωA is more variable 

in this class than among genes in general and consistent with a subset of RNAi genes or pathways 

undergoing extreme rates of adaptive amino acid substitution (Figure 1). 

Adaptive rates are high in piRNA and viRNA pathways 

 The higher rate of adaptive substitution seen in RNAi genes as a whole could result from slightly 

elevated positive selection across all components, or to a subset of the genes or pathway being 

substantially elevated. The higher gene-level variance seen in RNAi genes (above) suggests the latter, and 

to test this we pooled polymorphism and divergence data by sub-pathway for each insect species to 

calculate rates of adaptation in miRNA, siRNA, viRNA (i.e. confirmed antiviral siRNA in D. melanogaster), 

and piRNA pathways (Figure 2). In each species, the piRNA pathway exhibited a significantly greater rate of 

adaptive amino acid substitution than control genes, and miRNA pathway genes showed similar rates to 

control genes. Rates of adaptation for the siRNA (both endo-siRNA and viRNA) pathway were greater in 

only a subset of lineages. The magnitude of rates and proportion of adaptive lineages increased upon 

removing endo-siRNA genes and restricting the analysis to viRNA genes only. For all subsequent analyses, 

we analysed these pathways separately to test the hypothesis that the core antiviral RNAi genes have 

elevated rates of adaptive evolution. 

 To formalise the effect of pathway (miRNA, piRNA, non-antiviral endo-siRNA, viRNA) while 

accounting for variability in adaptation across species (model 2 in S1 text, Figure 2), we performed a meta-
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analysis of ωA estimates in individual genes from DFE-alpha, fitting pathway as a fixed effect. The piRNA, 

viRNA, and endo-siRNA pathways were each significantly different from control genes (control ωA =0.01 

[0.002,0.018]; piRNA MCMCp < 0.001; viRNA MCMCp = 0.002; siRNA MCMCp = 0.004; for MCMCp value 

calculation, see the S1 text), with cross-species estimates of ωA of 0.08 [0.06,0.10], 0.18 [0.06, 0.30] and 

0.03 [0.01,0.05], respectively. The viRNA pathway ωA estimate was not significantly greater than the piRNA 

pathway (MCMCp = 0.07), but was greater than the endo-siRNA pathway (MCMCp = 0.01), and the miRNA 

pathway (MCMCp < 0.001). The ωA estimate for the piRNA pathway was significantly greater than the endo-

siRNA (MCMCp = 0.002) and the miRNA pathways (MCMCp < 0.001). Consistent with our analysis of pooled 

polymorphism and divergence data, the rate of adaptive evolution in the miRNA pathway (ωA = 0.01 [-

0.001, 0.02]; MCMCp=0.09) was not significantly different from control genes. Our linear models included 

pathway-specific error variances, which were lower for control genes (3 [2,4] x10-4) and miRNA pathway 

genes (7 [2,12] x10-4) than for endo-siRNA (13 [4,22] x10-4), piRNA (66 [37,97] x10-4), and viRNA pathway 

genes (0.04 [0.007, 0.86]), consistent with a great variation in adaptive rates in these pathways. 

 We repeated the subpathway-level analysis using a SnIPRE-like model (Eilertson, et al., 2012) to 

estimate the average selection effect within subpathways across organisms, without making any explicit 

assumptions about the DFE. Although SnIPRE can be used to provide estimates of population genetic 

parameters, we limit our discussion to the “selection effect” statistic, where negative values are consistent 

with constraint and positive values with adaptive protein evolution, and magnitude reflects the strength of 

positive or negative selection. Consistent with our analysis of DFE-alpha estimates, the SnIPRE model 

identified a mean positive selective effect estimated across species (selective effect=0.25 [0.02, 0.46] 95% 

HPD interval, MCMCp = 0.03), with large variance among genes (Figure 3). Again, viRNA, endo-siRNA, and 

piRNA pathway-level selection effects were significantly elevated compared to control genes (viRNA: 1.10 

[0.63, 1.57] MCMCp < 5x10-4, non-antiviral siRNA: 0.96 [0.44, 1.52] MCMCp = 0.02, piRNA: 0.63 [0.44, 0.84] 

MCMCp < 3x10-4), with the viRNA pathway exhibiting a significantly larger effect than the piRNA (MCMCp = 

0.006), but not the endo-siRNA (MCMCp = 0.66). In agreement with the DFE alpha analysis, the miRNA 

pathway was not significantly different from control genes (MCMCp = 0.07), and had a selection effect of 

0.53 [0.20, 0.86].  
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Adaptation is elevated in all major piRNA pathway functions, but is most enriched in transcriptional 

silencing 

Rapid adaptation in Drosophila piRNA pathway genes has been hypothesized to be the result of fluctuating 

selection for increased TE defence and decreased off-target genic silencing (Blumenstiel et al 2016). A 

prediction of this hypothesis is that genes involved in transcriptional silencing would be under increased 

positive selection. We tested this prediction by further dividing the piRNA pathway into effectors (e.g. 

PIWIs), biogenesis factors (e.g. adapter proteins), and transcriptional silencing factors, and using single-

gene polymorphism and divergence data to estimate ωA and the selection effect for each piRNA functional 

category (Model 3). We found all piRNA functional groups are significantly greater than control genes 

(MCMCp < 0.001) (Figure 2C), and that transcriptional silencing genes (ωA = 0.16 [0.08-0.25]) have greater 

adaptive rates than effectors (MCMCp = 0.04, ωA  = 0.08 [0.04-0.13]) and biogenesis factors (MCMCp = 0.03, 

ωA  = 0.08 [0.05-0.11]). This result holds when excluding Drosophila transcriptional silencing factors rhino, 

deadlock, and cutoff, which are products of recent gene duplication or de novo formation (Figure S3), and 

may not have evolutionary rates that are directly comparable to other genes. 

We also estimated the average selection effect for each functional process of the piRNA pathway using the 

SnIPRE approach. Similar to the DFE-alpha meta-analysis, we find that all piRNA functional categories have 

elevated positive selection relative to control genes (biogenesis: MCMCp=0.018, effector: MCMCp=0.012, 

transcriptional silencing: MCMCp=0.0004), that transcriptional silencing factors had the largest average 

selection effect of 0.92 [0.58, 1.31], and that genes involved in transcriptional silencing were significantly 

greater than biogenesis factors (selection effect: 0.53, [0.29, 0.78], MCMCp = 0.027) (Figure 3B). In contrast 

to the DFE-alpha meta-analysis, however, genes involved in transcriptional silencing were not significantly 

greater than effector genes (0.78 [0.40, 1.19], MCMCp = 0.68), and pathway-level point estimates of these 

selection effects were much closer (Figure 2C, Figure 3B).  

Individual genes in the piRNA and viRNA pathway show elevated adaptation  

The higher overall rates of adaptive protein substitution seen in RNAi genes may result from the 

engagement of some genes in an evolutionary arms race (e.g. with viral suppressors of RNAi), a response to 
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the selection imposed by the invasion of novel parasites (e.g. transposable elements), or a trade-off 

between the specificity and sensitivity of genome defense (Aravin, et al., 2007; Obbard, et al., 2006; 

Blumenstiel, et al., 2016). We used a linear mixed model to combine single-gene estimates of ωA from DFE-

alpha across multiple species to identify candidate arms race genes in the RNAi pathways, fitting 

subpathway as a fixed effect, with homologue and organism as random effects, and subpathway-specific 

error variances. We found little variation among genes in a subpathway after accounting for subpathway, 

and in most cases there was not enough information to differentiate individual genes from the pathway 

mean (Figure 4A). Although a model that accounts for pathway is statistically preferable if pathways are 

meaningful, any errors in assigning ‘pathway’ membership would introduce bias to the estimates for 

misclassified genes. We therefore also estimated homologue-specific effects in a model that excludes the 

subpathway effect (model 2B in the S1 text). This model finds significant evidence for positive selection in 

fewer genes (Figure S4A) including 13 of 22 piRNA genes, 2 of 3 viRNA genes, and no genes in the siRNA or 

miRNA pathway.  

We also performed this homologue-level analyses using the SnIPRE approach. Similar to the DFE-alpha 

meta-analysis, we found very little information after accounting for subpathway (Figure 4B), resulting in 

low among-gene variation within RNAi subpathways. When we excluded subpathway effects, we found a 

similar result to the homologue-level DFE-alpha meta-analysis without subpathway, except fewer piRNA 

pathway genes are nominally significant (6/22 genes). Notably, maelstrom, eggless, piwi (including aub), 

AGO2, and Dcr-2 were found to have significantly elevated positive selection across all four homologue-

level analyses (i.e. with or without imposing a subpathway classification). 

MK tests are commonly used to test for positive selection in individual genes. SnIPRE selection effects can 

be used to perform an analogous test for selection, except the approach can gain power by taking in the 

genome-wide distribution of polymorphism and divergence patterns by fitting gene as a random effect 

(Eilertson et al, 2010). We find that 36% of RNAi genes show nominally ‘significant’ positive selection. In 

contrast, only 5% of selection effects in control genes are significantly positive (Table S5). At the pathway 

level, 40% of piRNA genes, 44% of viRNA genes, 26% of non-antiviral siRNA pathway genes, and 25% of 

miRNA pathway genes have significantly positive selection effects (Table S5). No gene had positive 
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selection effects in every lineage, although armitage, capsuleen, cutoff, tudor, vasa, vretano, and Yb 

homologs were identified in over half the lineages. 

Selective sweeps are detectable across functional classes of RNAi genes 

 Recent positive selection is expected to leave a characteristic mark in the genome, including a SFS 

skewed towards low and high frequency alleles and a local reduction in polymorphism (Maynard Smith & 

Haigh, 1974; Barton, 1998; Nielsen, et al., 2005). As RNAi genes show elevated rates of adaptive evolution, 

we speculated that they may also exhibit more evidence of recent selective sweeps. Using SweeD, we 

found that many of the insect lineages do show evidence for sweeps in a subset of RNAi genes (Figure 5, 

Figures S5-S12). We tested whether RNAi genes have undergone more recent sweeps than surrounding 

genes by classifying nominally significant peaks as either occurring near (within 1 KB) an RNAi gene or not, 

and using a binomial test to determine whether more sweeps than expected occur in RNAi genes (given 

their length). In four of the six species tested (D. melanogaster, D. pseudoobscura, A. mellifera, and A. 

gambiae) there were significantly more detectable sweep signals in RNAi genes than in surrounding non-

RNAi genes (D. melanogaster p = 0.0006; A. mellifera p = 0.015; A. gambiae p = 0.0001; D. pseudoobscura p 

= 7x10-5). However, we find no difference among subpathways in the frequency with which we detected 

recent sweeps. In addition, none of the genes exhibited a significant CLR peak across all organisms tested, 

although spn-E and vig display significant evidence of recent sweeps in five of the six insect lineages. It was 

notable that 34% of the variation in the per-gene maximum CLR test statistic was attributable to species, 

consistent with either sample size or demographic history playing a substantial role in our power to detect 

sweeps. 

Sweep signatures were the most pronounced in A. mellifera, in both the CLR magnitude and breadth of the 

genomic region affected (Figure 5, Figure S10). These were associated with large regions devoid of any 

polymorphism, despite the high rate of recombination seen in honeybees (Beye, et al., 2006), which is 

expected to narrow the region affected by a nearby sweep. We also searched for evidence of haplotype 

structure, as would be expected during an ongoing or soft selective sweeps using the nSL statistic (data not 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2017. ; https://doi.org/10.1101/154153doi: bioRxiv preprint 

https://doi.org/10.1101/154153
http://creativecommons.org/licenses/by/4.0/


shown). However, there were no strong signals in any of the RNAi genes for which we had haplotype 

information.  

Discussion 

Using both DFE-alpha and SnIPRE-like McDonald-Kreitman framework analyses we identify elevated rates 

of adaptive evolution in RNAi-pathway genes across six insects and two nematodes. In most species, the 

RNAi-pathway genes are also more likely to display evidence of a recent selective sweep. These results 

generalise the findings of previous analyses in Drosophila, and are consistent with these genes being 

engaged in an arms race across the invertebrates. Across species, we find that genes involved in the 

suppression of viruses and transposable elements show the highest rates of adaptive evolution, and those 

in the miRNA pathway the lowest (not significantly different from non-RNAi-genes). There is substantial 

variation in rates among RNAi but the antiviral genes AGO2 and Dcr-2 and the piwi-pathway genes 

maelstrom, eggless, piwi, aub, armitage, capsuleen, cutoff, tudor, vasa, vretano, spn-E, vig and Yb show 

consistently strong signatures of long-term and/or recent positive selection. 

Identification of rapidly evolving pathways by DFE-alpha and SnIPRE 

Estimating rates of adaptive protein evolution in an MK-framework (McDonald and Kreitman, 1991) can be 

biased by past population size changes and slightly deleterious mutations that segregate at low 

frequencies. We compare adaptive rates between different classes of RNAi genes, accounting for these 

biases by explicitly modelling the DFE and demographic history using DFE-alpha (Eyre-Walker and Keightley, 

2009), or by modelling the genome-wide patterns of polymorphism and divergence with SnIPRE (Eilertson, 

et al., 2012). Most of the qualitative results of each of these analyses are in agreement, however, SnIPRE 

and DFE-alpha analyses disagree on the relative differences in the rate of adaptive evolution among 

subpathways. For example, the DFE-alpha meta-analysis provides low point estimates for the endo-siRNA 

and miRNA pathways relative to the piRNA and viRNA, but SnIPRE identifies the endo-siRNA selection effect 

as higher than the piRNA, and piRNA genes closer to the miRNA. This incongruence could reflect differences 

in the DFE between subpathways. For example, genes in the miRNA and endo-siRNA pathways are highly 

conserved and have low rates of protein evolution, while mechanisms of piRNA pathway function are 
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surprisingly diverse across animals (e.g. Morazzani, et al., 2012; Sarkies, et al., 2015). These differences in 

constraint could lead to an underestimation of miRNA and endo-siRNA pathway adaptation and 

overestimation of piRNA adaptation in the DFE-alpha analyses, and indicate that estimating the DFE 

separately for each subpathway may improve estimates.  

Adaptive protein evolution across species is enriched in specific functional pathways 

We found large differences in rates of adaptative protein substitution between insects and nematodes, but 

less variation among insect species. In an analysis of variance, we find that species explained only 11% of 

the variation in gene-level estimates of ωA. In contrast, gene and pathway explained 42% of the variation in 

gene-level ωA estimates. The elevated rate and among-gene variation seen in piRNA and viRNA pathway 

genes across species could be caused by rapid adaptation in the same subset of genes in a pathway, or in a 

random selection of genes in a pathway. Homologue-level analysis of ωA and selection effects (Figure 4, 

Figure S4) indicates it is probably both, as subsets of homologues within pathways show consistent 

evidence for elevated adaptive protein evolution, but homologous genes also exhibit high variances across 

species.  

Potential Drivers of Adaptation in the viRNA pathway 

It seems likely that the elevated rates of adaptive protein evolution we detect in the viRNA and piRNA 

pathways are a result of recurrent selection mediated by viruses and/or TEs. First, it is well established that 

defensive pathways show high rates of adaptive evolution, presumably as a consequence of antagonistic 

coevolution with parasites (Stenseth & Maynard Smith, 1984; Buckling & Rainey, 2002; Paterson, et al., 

2010; Brockhurst, et al., 2014). For example, a recent analysis of virus-interacting proteins estimated that 

30% of adaptive protein changes in mammals are driven by viruses (Enard, et al., 2016). Second, for the 

viRNA pathway genes at least, viral suppressors of RNAi are strong candidates to be the driving agent. 

Many RNA and DNA viruses of invertebrates are known to have proteins or structural RNAs which actively 

block RNAi function (Li, et al., 2002; Van Rij, et al., 2006; Nayak, et al., 2010; van Mierlo, et al., 2012; 

Bronkhorst, et al., 2014), and these can evolve rapidly and can be highly host-specific, consistent with an 

arms-race scenario (van Mierlo, et al., 2014). We find that AGO2 and Dcr-2 display consistently elevated 
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rates of adaptive protein substitution across insect species, with additional limited evidence of elevated 

adaptation in hen1, all of which have previously been identified as targets of active suppression by viral 

proteins (viral suppressors of RNAi; VSRs) (Van Rij, et al., 2006; Vogler, et al., 2007; Nayak, et al., 2010; van 

Mierlo, et al., 2012; van Cleef, et al., 2014), lending credibility to the hypothesis that viruses may play a 

major role in driving the observed rapid evolution in RNAi genes. 

 

Potential Drivers of Adaptation in the piRNA pathway 

Whereas an arms-race between antiviral RNAi genes and viral suppressors of RNAi is intuitive, the observed 

rapid adaptive evolution of piRNA pathway genes is currently harder to explain. Similar to viruses, TEs are 

costly for their hosts and could in principle select for increased suppression (Charlesworth, et al., 1994). 

However, piRNA-generating clusters ostensibly provide an adaptive defence that can arise on much faster 

time scales than fixation of advantageous mutations, reminiscent of acquired immunity (Brennecke, et al., 

2007; Khurana, et al., 2011; Mohn, et al., 2015; Han, et al., 2015). The adaptive response in piRNA genes 

could be mediated by at least three non-exclusive mechanisms: (i) direct piRNA pathway suppression by TEs 

or by off-target VSRs, (ii) recurrent “retuning” of piRNA machinery after a novel TE invasion (Lee and 

Langley et al, 2012; Yi et al, 2014), or (iii) fluctuating selection on the sensitivity to detect transposon 

sequences and specificity to exclude off-target genic silencing (i.e. the “genomic auto-immune hypothesis”) 

(Blumenstiel, et al., 2016). Besides the global de-repression of transposons upon invasion of the Penelope 

retroelement in D. virilis (Petrov, et al., 1995; Evgen'ev, et al., 1997; Rozhkov, et al., 2010; Blumenstiel, et 

al., 2016), there is limited evidence for (i), and the mechanism underlying this phenomenon still awaits 

elucidation. The latter two hypotheses are not mutually exclusive, and both posit that piRNA adaptation 

occurs in response to recurrent horizontal transfer of new TEs into the genome, a common occurrence in 

insects (Peccoud, et al., 2017). In (ii), the piRNA pathway evolves to optimise defence against the current 

suite of transposons, becoming “less adapted” for dealing with historic, obsolete ones. This would result in 

a Red Queen-like scenario, but instead of antagonistic coevolution with one parasite, the piRNA pathway 

must defend against a constant recycling of TE lineages. As the germline cells face a higher TE diversity than 
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somatic tissues, this is broadly supported by our observation that piRNA pathway genes with primarily 

germline function (Handler, et al., 2013; Czech, et al., 2013; Muerdter, et al., 2013) have higher rates of 

adaptive protein evolution than those functioning in the somatic layer of cells surrounding the Drosophila 

ovary (Figure S13), . The genomic autoimmunity hypothesis (iii) goes further, and proposes piRNA pathway 

adaptation to TE invasions results in increased piRNA function and associated off-target genic effects, which 

are then selected against after the TE is supressed (Blumenstiel, et al., 2016). It could be argued that our 

analysis of adaptive rates in piRNA functions lends broad support for this, in that genes mediating 

transcriptional silencing show the greatest adaptive rates across species in the piRNA pathway, with 

additional evidence for rapid adaptation in biogenesis factors, whose rates are expected to be correlated 

with the transcriptional machinery (Blumenstiel, et al., 2016). However, our pathway-level and homologue-

level analyses also find signals of elevated adaptation in effector genes, which have rates that covary to a 

lesser degree with other piRNA factors (Blumenstiel, et al., 2016). This does not refute the genomic 

autoimmunity hypothesis, but may suggest additional selective forces acting on the piRNA pathway 

independent of genes underlying a trade-off between sensitivity and specificity. Nevertheless, our results 

would also fit within the context of (ii), in a scenario where the transcriptional machinery has a greater 

evolutionary potential than the rest of the piRNA pathway.  
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Figure 1: ωA the DFE differ between RNAi genes and other genes 

(A)  Left:  For each species, ωA estimates and bootstrap confidence intervals for control (i.e. non-RNAi; blue) 

and RNAi (red) genes are plotted, with 95% bootstrap confidence intervals. Significance was determined by 

permutation. Right: The estimated discretised DFE for each species, with the proportion of mutation with 

Nes values in each category given for non-RNAi (blue) and RNAi (red) genes. (B) The posterior distribution of 

estimated ωA for RNAi (red) versus control (blue) genes, showing that RNAi genes have much great ωA 

estimates (left) and greater residual gene-level variation (right), indicating RNAi genes display higher rates 

adaptive amino-acid substitution, but are more variable.  
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Figure 2: DFE-alpha estimates of ωA for each subpathway 

(A) ωA estimates from pooled polymorphism and divergence data across insect RNAi subpathways using 

DFE-alpha. ωA was estimated for each subpathway in each organism and confidence intervals obtained 

by bootstrapping across genes. Significance was assessed by permutation tests between sub-pathway 

and control genes for each organism (p < 0.05*, p<0.01**, p<0.001***). (B) Individual-gene DFE-alpha 

ωA estimates were analysed using a linear mixed model in MCMCglmm, and show that (left) the viRNA 

pathway exhibits the fastest rate of adaptive protein substitution, followed by the piRNA pathway, and 

that among-gene variance shows the same pattern (right). (C) Individual gene DFE-alpha ωA estimates 

were analysed in MCMCglmm, except that the piRNA pathway was further split into genes involved in 

transcriptional silencing, piRNA biogenesis, or piRNA-mediated effectors of silencing. The posterior 
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distributions of these three effect sizes versus control genes are plotted. All three piRNA functions are 

targets of elevated positive selection and have large residual variances, although genes mediating 

transcriptional silencing have greater point estimates for both. 
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Figure 3 SnIPRE-like selection effects  

(A) SnIPRE ‘selection effect’ with 95% confidence intervals (species-level effects removed) are plotted for 

each gene in each species, coloured according to the gene’s role in the RNAi pathway. Solid horizontal lines 

signify the mean selection effect for each RNAi subpathway (or control genes) with dotted lines signifying 

the 95% confidence intervals for the subpathway mean. SnIPRE and DFE-alpha analyses are consistent in 

suggesting that the viRNA, endo-siRNA, and piRNA pathway have more adaptive amino-acid substitutions 

than control genes. (B) We also performed a SnIPRE analysis after dividing the piRNA pathway into three 

functional classes, as in Figure 2. The posterior distribution of selection effects associated with each piRNA 

function are plotted. Similar to DFE-alpha, SnIPRE identifies all three pathways as significantly elevated 

relative to control genes, however in the SnIPRE analysis transcriptional silencing genes have a significantly 

greater adaptive rate than biogenesis factors. 
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Figure 4 Cross-species homologue-level estimates of ωA and selection effects  
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(Left) Individual homologue ωA estimates (coloured points) were calculated using DFE-alpha and analysed 

using a linear mixed model with subpathway as fixed effect and species and homologue as a random effect 

(estimate uncertainty was included by incorporating bootstrap intervals as measurement error variance). 

The posterior distributions of the cross-species estimate for ωA for each homologue are plotted, and shaded 

if significantly different from the control gene distribution (region shaded grey). Single-gene estimates of ωA 

> 0.75 are plotted at 0.75 for clarity. (Right) The analogous analysis performed using SnIPRE, with the 

posterior distribution of homologue-level selection effects plotted. Both analyses find little variation among 

homologues after accounting for subpathway, and homologue-level analyses generally mirror pathway-

specific analyses. See Figure S4 for the equivalent models that exclude the fixed effect of pathway. 
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Figure 5 Selective sweeps in RNAi genes and example SweeD plots 

(A) Points indicate the log2 ratio of the maximum observed CLR value (from SweeD) in the named gene to 

the CLR 95% significance threshold inferred from simulation. Values above 0 indicate there was a 

‘significant’ CLR peak in a genic region and colours indicate species. (B) The viRNA pathway in Apis mellifera 

shows strong evidence for recent sweeps. For each of the three viRNA pathway genes the CLR statistic is 

plotted across a 200 kb region. The dotted line is the significance threshold estimated through neutral 

simulations under a published demographic history. Red regions denote the focal gene and green regions 

highlight surrounding genes. In Apis, both Dcr2 and R2D2 show strong evidence for sweeps with the 

surrounding region of Dcr2 being devoid of polymorphism, indicating this sweep was recent and rapid. 

AGO2 also shows a significant peak, but this is narrow and only marginally significant. 
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Table S1: Insect genes analysed, FlyBase identifiers, and subpathway involvement 
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Table S2 Nematode Genes and WormBase identifiers 
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Table S3: Larger set of piRNA-implicated genes used to calculate rates of adaptive evolution in the germline 

and soma of D. melanogaster 
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Table S4 Accession numbers for public data and genome assembly used for each species  

 

 

Table S5 Genes with significantly elevated selection effects 
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Figure S1 Demographic scenarios simulated for SweeD analysis 

Coalescent simulations were performed using ms for demographic scenarios for each species which are 

supported by other studies. The African (Zambia) D. melanogaster were assumed to have a constant 

population size. D. pseudoobscura has recently undergone a population expansion 0.08 Ne generations ago. 

A. gambiae shares migrants with some other unknown, unsampled subpopulation which split 0.68 Ne 

generations ago. Heliconius species in Costa Rica split 2.636 Ne generations ago and have shared migrants 

since. Bombyx mandarina went through a small bottleneck when B. mori split, and shared migrants during 

that bottleneck (but not after). Apis mellifera have four subpopulations which have gone through multiple 

population expansions and bottlenecks, with all subpopulations sharing migrants until they join 0.68 Ne 

generations ago. Caenorhabditis briggsae “tropical samples” have undergone a population bottleneck 0.68 

Ne generations ago. Finally, Pristionchus pacificus were sampled from four subpopulations, which split 0.85 

Ne generations ago. 
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Figure S2: Alpha values for RNAi genes 

For each species, α, or the proportion of adaptive substitutions was estimated from pooled polymorphism 

and divergence data using DFE-alpha for RNAi genes and position-matched control genes. α estimates for 

control genes are fairly constant across insect species, but are negative in the two nematode species. In all 

species except H. melpomene, the RNAi gene estimates are greater in RNAi genes than control genes. 
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Figure S3 Possible duplications in RNAi pathway  

Relationships of the insect species sampled, including coloured squares where possible gene duplications 

have occurred. Our search for RNAi genes in insect species other than D. melanogaster identified numerous 

duplications, and also some genes which were specific to Drosophila. Of note, D. pseudoobscura harboured 

duplications in asterix, armitage, cutoff, rm62, vretano, tejas, maelstrom, in addition to the multiple AGO2 

duplications reported previously (Lewis et al, 2016; Lewis et al, 2016), perhaps indicating an extensive 

addition to RNAi related pathways. Asterix was further duplicated three times in Anopheles and once in 

Heliconius, and A. mellifera also has five distinct copies of rm62. Furthermore, yb duplications have 

occurred independently in the lineage leading to H. melpomene and the one leading to the Drosophila 

species. The piRNA cluster transcriptional complex composed of cutoff, deadlock, and rhino were only 

observed in the two Drosophila species (represented by a star), and thus have likely either been lost in the 

other species or have evolved in since the split between Anopheles and Drosophila. 
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Figure S4 Cross-species homologue-level estimates of ωA and selection effects without pathway 

assumptions 

(Left) Individual gene ωA estimates (coloured points) were calculated using DFE-alpha and analyses using a 

linear mixed model with species and gene as random effects (estimate uncertainty was included by 

incorporating bootstrap intervals as measurement error variance), but without subpathway as fixed effect 

(see Figure 4). The posterior distributions of the cross-species estimate for ωA for each gene are plotted, 

and shaded if the MCMCp < 0.05 when tested against the control gene distribution (shaded grey region). 

Single-gene estimates of ωA > 0.75 are plotted at 0.75 for clarity. (Right) The analogous analysis, except 

performed using SnIPRE, with the posterior distribution of homologue-level selection effects plotted. Both 

analyses find AGO2, Dicer-2, piwi, maelstrom, and eggless as having elevated protein substitution. 
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Figure S5: Drosophila melanogaster sweeps 

For each D. melanogaster gene, the CLR statistic was plotted across a 200 kb region including the gene of 

interest. Each panel represents a region of the D. melanogaster genome, with red-shaded regions being the 

gene of interest and green-shaded regions being other genes along the chromosome. The horizontal dotted 

lines in each panel are significance thresholds calculated through neutral coalescent simulations. 
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Figure S6: Drosophila pseudoobscura sweeps 

For each D. pseudoobscura gene, the CLR statistic was plotted across a 200 kb region including the gene of 

interest. Each panel represents a region of the D. pseudoobscura genome, with red-shaded regions being 

the gene of interest and green-shaded regions being other genes along the chromosome. The horizontal 

dotted lines in each panel are significance thresholds calculated through neutral coalescent simulations. 
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Figure S7: Anopheles gambiae sweeps 

For each A. gambiae gene, the CLR statistic was plotted across a 200 kb region including the gene of 

interest. Each panel represents a region of the A. gambiae genome, with red-shaded regions being the gene 

of interest and green-shaded regions being other genes along the chromosome. The horizontal dotted lines 

in each panel are significance thresholds calculated through neutral coalescent simulations. 
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Figure S8: Heliconius melpomene sweeps 

For each H. melpomene gene, the CLR statistic was plotted across a 200 kb region including the gene of 

interest. Each panel represents a region of the H. melpomene genome, with red-shaded regions being the 

gene of interest and green-shaded regions being other genes along the chromosome. The horizontal dotted 

lines in each panel are significance thresholds calculated through neutral coalescent simulations. 
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Figure S9: Bombyx mandarina sweeps 

For each B. mandarina gene, the CLR statistic was plotted across a 200 kb region including the gene of 

interest. Each panel represents a region of the B. mandarina genome, with red-shaded regions being the 

gene of interest. The horizontal dotted lines in each panel are significance thresholds calculated through 

neutral coalescent simulations. The Bombyx genome used did not have an associated gff file, and so 

positions of nearby genes were not included. 
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Figure S10: Apis mellifera sweeps 

For each A. mellifera gene, the CLR statistic was plotted across a 200 kb region including the gene of 

interest. Each panel represents a region of the A. mellifera genome, with red-shaded regions being the 

gene of interest. The horizontal dotted lines in each panel are significance thresholds calculated through 

neutral coalescent simulations. 
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Figure S11: Caenorhabditis briggsae sweeps 

For each C. briggsae gene, the CLR statistic was plotted across a 200 kb region including the gene of 

interest. Each panel represents a region of the C. briggsae genome, with red-shaded regions being the gene 

of interest. The horizontal dotted lines in each panel are significance thresholds calculated through neutral 

coalescent simulations. 
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Figure S12: Pristionchus pacificus sweeps 

For each P. pacificus gene, the CLR statistic was plotted across a 200 kb region including the gene of 

interest. Each panel represents a region of the P. pacificus genome, with red-shaded regions being the gene 

of interest. The horizontal dotted lines in each panel are significance thresholds calculated through neutral 

coalescent simulations. The Pristionchus genome used did not have an associated gff file, so positions of 

nearby genes were not included. 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 23, 2017. ; https://doi.org/10.1101/154153doi: bioRxiv preprint 

https://doi.org/10.1101/154153
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supp Figure 13: Germline and somatic piRNA pathway genes 
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Polymorphism and divergence from a larger set of piRNA pathway genes (those identified in two of three 

recent piRNA pathway screens, plus the core piRNA pathway) (Handler et al, 2013; Czech et al, 2013; 

Muerdter et al, 2013) in D. melanogaster were pooled based on whether they are active in the germline, 

soma, or both and used to calculate ωA. Confidence intervals were obtained by bootstrapping by gene 1000 

times. Genes active in germline TE suppression show higher rates of adaptive protein evolution than those 

active in the somatic follicle cells, with genes active in both having an intermediate adaptive rate. 

 

S1 Text: Supplementary R code for models 

DFE-alpha meta-analysis 

Data set up: 

library(MCMCglmm) 

## Loading required package: Matrix 

## Loading required package: coda 

## Loading required package: ape 

######################################################### 
# Data Upload for gene-level omega.A linear mixed models ----------------------
--------------------------------------- 
dat<-read.table("dfe-alpha-ind_withVIRNA.csv", sep=",", header=TRUE) 
dat$omega_A[which(dat$omega_A==-Inf)]<-NA #Remove genes that can't be estimated
. The results are unaffected if these values are set to zero. 
dat<-subset(dat, !is.na(omega_A) & !is.na(omega_se) ) 

Model 1A: Comparison of RNAi and control genes 

prior.1A=list(R=list(V=diag(2),  
                      nu=0.002),  
               G=list(G1=list(V=diag(1),  
                              nu=1,  
                              alpha.mu=c(0),  
                              alpha.V=diag(1)))) 
 
model.1A <-MCMCglmm(omega_A~Class,  
                   random= ~Organism,  
                   rcov = ~idh(Class):units,  
                   mev=dat$omega_se^2, 
                   prior=prior.1A,  
                   data=dat, verbose = FALSE) 
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Model 1A models gene-level ωA estimates as a gaussian response with gene class as a fixed effect 
and species as a random effect. For the random effects (random= ~Organism), we assume all 
(co)variances among organisms are equal. We also estimate separate error variances for each 
gene class (rcov = ~idh(Class):units), allowing us to test whether the variance of the adaptive rate 
of RNAi and control genes differ. The idh() function specifies that the residual variance associated 
with each class of genes is independent, and sets the off-diagonals of the covariance matrix to 
zero. We specify the sampling error associated with each estimate of ωA (mev=dat$omega_se^2) 
obtained by bootstrapping by codon and rerunning DFE-alpha on the new codon set. 

summary(model.1A) 

##  
##  Iterations = 3001:12991 
##  Thinning interval  = 10 
##  Sample size  = 1000  
##  
##  DIC: -1537.862  
##  
##  G-structure:  ~Organism 
##  
##          post.mean  l-95% CI  u-95% CI eff.samp 
## Organism 8.451e-05 1.994e-10 0.0002989    518.6 
##  
##  R-structure:  ~idh(Class):units 
##  
##                    post.mean  l-95% CI  u-95% CI eff.samp 
## ClassControl.units 0.0003228 0.0001796 0.0004817    705.2 
## ClassRNAi.units    0.0036677 0.0021694 0.0052551    596.8 
##  
##  Location effects: omega_A ~ Class  
##  
##             post.mean  l-95% CI  u-95% CI eff.samp  pMCMC     
## (Intercept) 0.0095622 0.0002037 0.0188204     1000  0.028 *   
## ClassRNAi   0.0530510 0.0382375 0.0662674     1000 <0.001 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The command summary(model.1A) prints some aspects of the MCMC chain, the DIC score, the 
variance components for the G-structure (random effects), the error variance estimates, and the 
estimates for the fixed effects. The RNAi class of genes is estimated to be 0.05 greater than control 
genes, and this is signficant (pMCMC < 0.001) We also test whether the variance is significantly 
greater for RNAi genes using the posterior distributions for the error variances saved in the VCV 
object. 

head(model.1A$VCV)[,c("ClassControl.units", "ClassRNAi.units")]  

## Markov Chain Monte Carlo (MCMC) output: 
## Start = 3001  
## End = 3061  
## Thinning interval = 10  
##      ClassControl.units ClassRNAi.units 
## [1,]       0.0002867517     0.002768112 
## [2,]       0.0002296532     0.004182672 
## [3,]       0.0002213186     0.002911138 
## [4,]       0.0002727306     0.003119912 
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## [5,]       0.0002874699     0.002956077 
## [6,]       0.0003067956     0.004262320 
## [7,]       0.0002863971     0.002101608 

To test for significantly different variances, we subtract one posterior distribution from the other 
and ask what proportion overlaps zero. 

iterations.less.than.zero <- length(which(model.1A$VCV[,"ClassControl.units"] - 
model.1A$VCV[,"ClassRNAi.units"] > 0)) 
total.chain.length <- nrow(model.1A$VCV) 
pMCMC <- iterations.less.than.zero/total.chain.length 
pMCMC*2 

## [1] 0 

Therefore, in every iteration of the chain (1000 sampled iterations, thinning interval of 10), the 
error variance associated with RNAi genes was greater than control genes (MCMCp < 0.001). 

 

Model 1B: Comparison of RNAi subpathways (piRNA, siRNA, viRNA, miRNA) 

prior.1B=list(R=list(V=diag(5),  
                    nu=0.002),  
             G=list(G1=list(V=diag(1),  
                            nu=1,  
                            alpha.mu=c(0),  
                            alpha.V=diag(1)))) 
model.1B <-MCMCglmm(omega_A~Subclass,  
                   random= ~Organism,  
                   data=dat,  
                   mev=dat$omega_se^2,  
                   rcov = ~idh(Subclass):units,  
                   prior=prior.1B, verbose = FALSE) 

Model 1B is similar to model 1A, except the RNAi class has now been divided into four 
subpathways (miRNA, siRNA, piRNA, viRNA). The summary of the model output is the following: 

summary(model.1B) 

##  
##  Iterations = 3001:12991 
##  Thinning interval  = 10 
##  Sample size  = 1000  
##  
##  DIC: -1529.198  
##  
##  G-structure:  ~Organism 
##  
##          post.mean  l-95% CI  u-95% CI eff.samp 
## Organism 7.741e-05 4.421e-11 0.0003035    673.8 
##  
##  R-structure:  ~idh(Subclass):units 
##  
##                       post.mean  l-95% CI  u-95% CI eff.samp 
## SubclassControl.units 0.0003252 0.0001822 0.0004842    553.1 
## Subclassmi.units      0.0006925 0.0002427 0.0012781    990.4 
## Subclasspi.units      0.0063899 0.0037257 0.0094438    661.8 
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## Subclasssi.units      0.0012648 0.0003426 0.0024599   1000.0 
## Subclassvi.units      0.0391034 0.0081908 0.0842066   1000.0 
##  
##  Location effects: omega_A ~ Subclass  
##  
##              post.mean   l-95% CI   u-95% CI eff.samp  pMCMC     
## (Intercept)  0.0096087  0.0002142  0.0178675    902.3  0.036 *   
## Subclassmi   0.0108465 -0.0007559  0.0246557   1000.0  0.082 .   
## Subclasspi   0.0794998  0.0586724  0.1002338   1000.0 <0.001 *** 
## Subclasssi   0.0301952  0.0087547  0.0480110   1000.0  0.002 **  
## Subclassvi   0.1863027  0.0690058  0.3184570   1000.0  0.002 **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The subclass effects (parameterised as "mi", "pi", "si", and "vi"), along with their pMCMC values 
are listed under location effects. Differences in residual variances between subpathways can be 
tested in a similar manner to model 1A. We tested whether certain subpathways were greater 
than others as previously done with variance components in Model 1A, except using the posteriors 
for the fixed effects stored in the Sol object. For example: 

iterations.less.than.zero <- length(which(model.1B$Sol[,"Subclassmi"] - model.1
B$Sol[,"Subclassvi"] > 0)) 
total.chain.length <- nrow(model.1B$Sol) 
pMCMC <- iterations.less.than.zero/total.chain.length 
pMCMC*2 

## [1] 0.002 

We conclude that the viRNA pathway has a significantly greater rate of adaptive protein evolution 
(MCMCp = 0.002). 

 

Model 1C: Comparison of RNAi subpathways, with the piRNA split into effectors, biogenesis 
factors, and transcriptional silencing factors. 

dat$Subclass_pi <- factor(dat$Subclass_pi, levels=c("Control", "mi", "si","effe
ctor", "transcriptional", "biogenesis","vi")) 
 
prior.1C=list(R=list(V=diag(7), nu=0.002),  
               G=list(G1=list(V=diag(1), nu=1, alpha.mu=c(0), alpha.V=diag(1)))
) 
model.1C <-MCMCglmm(omega_A~Subclass_pi,  
                   random= ~Organism,  
                   rcov = ~idh(Subclass_pi):units,  
                   mev=dat$omega_se^2,  
                   data=dat,  
                   prior=prior.1C, verbose = FALSE, nitt = 50000) 

Again, Model 1C is structurally identical to Model 1A and Model 1B, with the only difference being 
the number of factor levels which genes are grouped into. 

summary(model.1C) 

##  
##  Iterations = 3001:49991 
##  Thinning interval  = 10 
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##  Sample size  = 4700  
##  
##  DIC: -1533.084  
##  
##  G-structure:  ~Organism 
##  
##          post.mean  l-95% CI  u-95% CI eff.samp 
## Organism 6.068e-05 1.341e-11 0.0002115     2955 
##  
##  R-structure:  ~idh(Subclass_pi):units 
##  
##                                  post.mean  l-95% CI  u-95% CI eff.samp 
## Subclass_piControl.units         0.0003235 0.0001818 0.0004742     3475 
## Subclass_pimi.units              0.0005880 0.0002091 0.0010588     4254 
## Subclass_pisi.units              0.0012564 0.0003701 0.0024096     4342 
## Subclass_pieffector.units        0.0071395 0.0017279 0.0144296     4700 
## Subclass_pitranscriptional.units 0.0158533 0.0003308 0.0397985     2898 
## Subclass_pibiogenesis.units      0.0069787 0.0032832 0.0112018     3689 
## Subclass_pivi.units              0.0391355 0.0080485 0.0820324     4700 
##  
##  Location effects: omega_A ~ Subclass_pi  
##  
##                            post.mean  l-95% CI  u-95% CI eff.samp   pMCMC 
## (Intercept)                 0.009687  0.001916  0.018081     4132 0.02383 
## Subclass_pimi               0.010512 -0.001300  0.022172     4700 0.06638 
## Subclass_pisi               0.030278  0.011611  0.051474     4315 0.00383 
## Subclass_pieffector         0.079908  0.036203  0.125608     4700 < 2e-04 
## Subclass_pitranscriptional  0.154907  0.074015  0.242532     4013 < 2e-04 
## Subclass_pibiogenesis       0.078657  0.054069  0.106494     4700 < 2e-04 
## Subclass_pivi               0.189578  0.067866  0.309402     5537 0.00340 
##                                
## (Intercept)                *   
## Subclass_pimi              .   
## Subclass_pisi              **  
## Subclass_pieffector        *** 
## Subclass_pitranscriptional *** 
## Subclass_pibiogenesis      *** 
## Subclass_pivi              **  
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

All three piRNA pathways are significantly greater than control genes. Significance between 
subpathways and variance components was assessed as above. 

Model 2A: Comparison of RNAi homologues (with subpathway as a fixed effect) 

prior.2A=list(R=list(V=diag(5), nu=0.002),  
             G=list(G1=list(V=diag(4),  
                            nu=1,  
                            alpha.mu=rep(0,4),  
                            alpha.V=diag(4)),  
                    G2=list(V=diag(1),  
                            nu=1,  
                            alpha.mu=rep(0,1),  
                            alpha.V=diag(1)))) 
model.2A <-MCMCglmm(omega_A~Subclass,  
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                   random=~idh(at.level(Subclass, c('mi', 'pi', 'si', 'vi'))):G
ene + Organism,  
                   rcov =~idh(Subclass):units,  
                   data=dat, mev=dat$omega_se^2, pr=TRUE, prior = prior.2A, ver
bose = FALSE) 

The second model is similar to the first, but for two differences. First, the effect of each RNAi 
homologue is estimated across species, specifying idh(at.level(Subclass, c('mi', 'pi', 'si', '.vi'))) so 
that the homologue effect is not estimated for the (nonhomologous) control genes. Second, we 
specify pr=TRUE, so that the random effects are stored along with the fixed effects in the model 
output. 

summary(model.2A) 

##  
##  Iterations = 3001:12991 
##  Thinning interval  = 10 
##  Sample size  = 1000  
##  
##  DIC: -1542.535  
##  
##  G-structure:  ~idh(at.level(Subclass, c("mi", "pi", "si", "vi"))):Gene 
##  
##                                                     post.mean  l-95% CI 
## at.level(Subclass, c("mi", "pi", "si", "vi"))1.Gene 0.0004272 1.394e-11 
## at.level(Subclass, c("mi", "pi", "si", "vi"))2.Gene 0.0006833 8.664e-09 
## at.level(Subclass, c("mi", "pi", "si", "vi"))3.Gene 0.0005370 2.340e-13 
## at.level(Subclass, c("mi", "pi", "si", "vi"))4.Gene 0.1036248 2.972e-08 
##                                                     u-95% CI eff.samp 
## at.level(Subclass, c("mi", "pi", "si", "vi"))1.Gene 0.001419    649.3 
## at.level(Subclass, c("mi", "pi", "si", "vi"))2.Gene 0.002115   1000.0 
## at.level(Subclass, c("mi", "pi", "si", "vi"))3.Gene 0.002051    438.2 
## at.level(Subclass, c("mi", "pi", "si", "vi"))4.Gene 0.325240   1000.0 
##  
##                ~Organism 
##  
##          post.mean  l-95% CI  u-95% CI eff.samp 
## Organism 6.993e-05 9.763e-11 0.0002299    514.5 
##  
##  R-structure:  ~idh(Subclass):units 
##  
##                       post.mean  l-95% CI  u-95% CI eff.samp 
## SubclassControl.units 0.0003251 0.0001810 0.0004723    698.9 
## Subclassmi.units      0.0005521 0.0001729 0.0010869    771.4 
## Subclasspi.units      0.0060251 0.0033111 0.0094265    688.9 
## Subclasssi.units      0.0012674 0.0003819 0.0025295   1000.0 
## Subclassvi.units      0.0431069 0.0083074 0.0930210   1000.0 
##  
##  Location effects: omega_A ~ Subclass  
##  
##             post.mean  l-95% CI  u-95% CI eff.samp  pMCMC     
## (Intercept)  0.009849  0.002151  0.018498     1000  0.024 *   
## Subclassmi   0.011261 -0.006067  0.033797     1000  0.220     
## Subclasspi   0.081436  0.058334  0.103126     1000 <0.001 *** 
## Subclasssi   0.031000  0.005495  0.065159     1000  0.044 *   
## Subclassvi   0.188296 -0.077555  0.471909     1000  0.108     
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## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The posterior distribution of the fixed and random effects of the model are stored in the object 
named model.2A$Sol, with columns pertaining to each distribution. For example: 

colnames(data.frame(model.2A$Sol))[c(1:10, 44:50)] #Show columns of interest 

##  [1] "X.Intercept."                                               
##  [2] "Subclassmi"                                                 
##  [3] "Subclasspi"                                                 
##  [4] "Subclasssi"                                                 
##  [5] "Subclassvi"                                                 
##  [6] "at.level.Subclass..c..mi....pi....si....vi...1.Gene.ago1"   
##  [7] "at.level.Subclass..c..mi....pi....si....vi...1.Gene.ars2"   
##  [8] "at.level.Subclass..c..mi....pi....si....vi...1.Gene.dcr1"   
##  [9] "at.level.Subclass..c..mi....pi....si....vi...1.Gene.drosha" 
## [10] "at.level.Subclass..c..mi....pi....si....vi...1.Gene.loqs"   
## [11] "at.level.Subclass..c..mi....pi....si....vi...3.Gene.tsn"    
## [12] "at.level.Subclass..c..mi....pi....si....vi...3.Gene.vig"    
## [13] "at.level.Subclass..c..mi....pi....si....vi...4.Gene.ago2"   
## [14] "at.level.Subclass..c..mi....pi....si....vi...4.Gene.dcr2"   
## [15] "at.level.Subclass..c..mi....pi....si....vi...4.Gene.r2d2"   
## [16] "Organism.Anopheles"                                         
## [17] "Organism.Apis" 

We obtain the posterior distribution for ωA of an individual homologue by adding the posterior 
distributions for the intercept, subclass, and homologue. For example, the ωA posterior for 
Argonaute-2 is: 

ago2.posterior <- model.2A$Sol[,"(Intercept)"] + model.2A$Sol[,"Subclassvi"] + 
model.2A$Sol[,"at.level(Subclass, c(\"mi\", \"pi\", \"si\", \"vi\"))4.Gene.ago2
"] 

We obtain 95% HPD confidence intervals using the command HPDinterval(): 

HPDinterval(ago2.posterior) 

##           lower     upper 
## var1 0.05833242 0.4022962 
## attr(,"Probability") 
## [1] 0.95 

This show the lower 95% HPD interval (0.07) is greater than 0. We test whether this is greater than 
control genes by subtracting the posterior of ωA estimates of Argonaute-2 from the control gene 
class posterior, and see the proportion of MCMC intervals where it overlaps zero. 

control.posterior <- model.2A$Sol[,"(Intercept)"]  
control.minus.ago2.posterior <-  control.posterior - ago2.posterior 
 
iterations.less.than.zero <- length(which(control.minus.ago2.posterior > 0)) 
total.chain.length <- length(control.minus.ago2.posterior) 
pMCMC <- iterations.less.than.zero/total.chain.length 
pMCMC*2 #Multiply by 2 to make a two tailed test 

## [1] 0.012 

We conclude Argonaute-2 has a greater adaptive rate than control genes (pMCMC = 0.012). 
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Model 2B: Comparison of RNAi genes 

prior.2B=list(R=list(V=diag(1), nu=0.002),  
             G=list(G1=list(V=diag(1),  
                            nu=1,  
                            alpha.mu=rep(0,1),  
                            alpha.V=diag(1)),  
                    G2=list(V=diag(1),  
                            nu=1,  
                            alpha.mu=rep(0,1),  
                            alpha.V=diag(1)))) 
model.2B <-MCMCglmm(omega_A~1,  
                   random=~idv(at.level(Class, c('RNAi'))):Gene + Organism,  
                   data=dat, mev=dat$omega_se^2, pr=TRUE, prior = prior.2B, ver
bose=FALSE, nitt = 50000) 

We also parameterise the second model without assigning genes to subpathways, and remove the 
subclass fixed effect and subclass-specific error-variances. The following is the output of the 
model: 

summary(model.2B) 

##  
##  Iterations = 3001:49991 
##  Thinning interval  = 10 
##  Sample size  = 4700  
##  
##  DIC: -1749.396  
##  
##  G-structure:  ~idv(at.level(Class, c("RNAi"))):Gene 
##  
##                                post.mean l-95% CI u-95% CI eff.samp 
## at.level(Class,c("RNAi")).Gene  0.003086 0.001022 0.005389      973 
##  
##                ~Organism 
##  
##          post.mean  l-95% CI u-95% CI eff.samp 
## Organism 0.0003451 5.648e-06  0.00105    917.2 
##  
##  R-structure:  ~units 
##  
##       post.mean  l-95% CI  u-95% CI eff.samp 
## units 0.0006735 0.0003879 0.0009833     1893 
##  
##  Location effects: omega_A ~ 1  
##  
##             post.mean l-95% CI u-95% CI eff.samp  pMCMC   
## (Intercept)  0.019337 0.002746 0.035655     4089 0.0281 * 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Without a subclass effect, we assess whether a gene has a significantly elevated rate of adaptive 
amino acid evolution by comparing the posterior distributions of each gene effect to zero. For 
example, for Argonaute-2: 
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ago2.posterior <- model.2B$Sol[,"at.level(Class, c(\"RNAi\")).Gene.ago2"] 
pMCMC <- length(which(ago2.posterior < 0))/length(ago2.posterior) 
pMCMC*2 

## [1] 0.04723404 

We conclude that Argonaute-2 has significantly elevated ωA (pMCMC = 0.047). 

 

 

SnIPRE-like analysis 

 

Model 3A: SnIPRE-like analysis, with subpathway as a fixed effect 

Set up data 

library(MCMCglmm) 
library(MASS) 
dat<-read.csv("C:/Users/willi/Desktop/xspecies_rnaigene_counts_withpiRNA.csv", 
sep = " ") 
dat$nfac<-as.factor(paste(dat$divergence, dat$nonsynonymous)) 
dat$length<-dat$Ln 
dat$length[which(dat$synonymous==1)]<-dat$Ls[which(dat$synonymous==1)] 
dat$gene.id<-paste(dat$organism, dat$gene, dat$Duplicate) 
dat<-dat[-which(dat$organism=="bombyx" & dat$gene=="vas"),] #This gene had a pr
oblematic alignment 
missing<-table(dat$gene.id,dat$nfac) 
missing<-missing[which(rowSums(missing)!=4),] #Remove genes with missing data 

for(i in 1:nrow(missing)){ 
  combi<-strsplit(rownames(missing)[i], " ")[[1]] 
  combj<-which(missing[i,]==0) 
 
  for(j in 1:length(combj)){   
     dat[nrow(dat)+1,]<-dat[which(dat$organism==combi[1] & dat$gene==combi[2] & 
dat$Duplicate==combi[3])[1],] 
     dat[nrow(dat),"nfac"]<-colnames(missing)[combj[j]] 
     dat[nrow(dat),"count"]<-0 
     dat[nrow(dat),"length"]<-1 
     dat[nrow(dat),"divergence"]<-as.numeric(substr(colnames(missing)[combj[j]]
,1,1)) 
     dat[nrow(dat),"nonsynonymous"]<-as.numeric(substr(colnames(missing)[combj[
j]],3,3)) 
  } 
} 
rownames(dat)<-1:nrow(dat) 
dat$organism <- factor(dat$organism, levels = c("dmel", "anopheles", "apis", "b
ombyx", "dpse", "heliconius"))  

The data look like the following. Each gene in each species is represented by 4 rows of count data, 
one for each of the MK observations of polymorphism and divergence by synonymous and 
nonsynonymous mutation types.  
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head(dat[dat$RNAi==1,c(1,2,3,6,7,10,12:19)]) 

##     gene count divergence nonsynonymous  organism Duplicate piRNA siRNA 
## 465 ago1     3          1             1 anopheles         A     0     0 
## 466 ago1    10          1             0 anopheles         A     0     0 
## 467 ago1     8          0             0 anopheles         A     0     0 
## 468 ago1     2          0             1 anopheles         A     0     0 
## 469 ago1     0          1             1      apis         A     0     0 
## 470 ago1    39          1             0      apis         A     0     0 
##     miRNA viRNA effector transcriptional biogenesis nfac 
## 465     1     0        0               0          0  1 1 
## 466     1     0        0               0          0  1 0 
## 467     1     0        0               0          0  0 0 
## 468     1     0        0               0          0  0 1 
## 469     1     0        0               0          0  1 1 
## 470     1     0        0               0          0  1 0 

prior.3A<-list(R=list(V=diag(4), nu=0.002),  
              G=list(G1=list(V=diag(4),  
                             nu=4,  
                             alpha.mu=rep(0,4),  
                             alpha.V=diag(4)*1000))) 
model.3A<-MCMCglmm(count~log(length) + nonsynonymous + divergence + nonsynonymo
us:divergence + organism + 
                         (nonsynonymous + divergence + nonsynonymous:divergence
):(organism + piRNA + viRNA + miRNA + siRNA),  
                       random=~us(1 + nonsynonymous + divergence + nonsynonymou
s:divergence):gene, 
                       rcov=~us(nfac):organism:gene:Duplicate, family="poisson"
,  
                       data=dat, pr = TRUE, pl=TRUE, prior = prior.3A, verbose 
= FALSE) 

For the SnIPRE-like analysis, we model the counts of each type of mutation (Pn, Ps, Dn, Ds) in each 
gene in each organism as a poisson response variable. Following Eilertson et al (2012), we set the 
fixed effects to the length of the gene, the type of mutation (by fitting either a nonsynonymous or 
divergence effect), and the interaction between nonsynonymous and divergence effects. Because 
we are interested in estimating effects of certain pathways across species, we also fit 
nonsynonymous, divergence and nonsynonymous-by-divergence effects separately for each gene 
class and organism with the term 
nonsynonymous+divergence+nonsynonymous:divergence):(organism+piRNA+siRNA+miRNA+viRN
A). The fixed effects portion of the model looks as follows: 

summary(model.3A) 

##  
##  Iterations = 3001:12991 
##  Thinning interval  = 10 
##  Sample size  = 1000  
##  
##  DIC: 9979.245  
##  
##  G-structure:  ~us(1 + nonsynonymous + divergence + nonsynonymous:divergence
):gene 
##  
##                                                         post.mean 
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## (Intercept):(Intercept).gene                            0.0300609 
## nonsynonymous:(Intercept).gene                          0.0092904 
## divergence:(Intercept).gene                            -0.0062428 
## nonsynonymous:divergence:(Intercept).gene              -0.0028054 
## (Intercept):nonsynonymous.gene                          0.0092904 
## nonsynonymous:nonsynonymous.gene                        0.7257428 
## divergence:nonsynonymous.gene                           0.0679281 
## nonsynonymous:divergence:nonsynonymous.gene            -0.0110024 
## (Intercept):divergence.gene                            -0.0062428 
## nonsynonymous:divergence.gene                           0.0679281 
## divergence:divergence.gene                              0.0397815 
## nonsynonymous:divergence:divergence.gene                0.0006943 
## (Intercept):nonsynonymous:divergence.gene              -0.0028054 
## nonsynonymous:nonsynonymous:divergence.gene            -0.0110024 
## divergence:nonsynonymous:divergence.gene                0.0006943 
## nonsynonymous:divergence:nonsynonymous:divergence.gene  0.0263167 
##                                                          l-95% CI u-95% CI 
## (Intercept):(Intercept).gene                            2.216e-07  0.09298 
## nonsynonymous:(Intercept).gene                         -9.516e-02  0.09389 
## divergence:(Intercept).gene                            -4.354e-02  0.01857 
## nonsynonymous:divergence:(Intercept).gene              -3.070e-02  0.01703 
## (Intercept):nonsynonymous.gene                         -9.516e-02  0.09389 
## nonsynonymous:nonsynonymous.gene                        5.079e-01  0.99459 
## divergence:nonsynonymous.gene                          -1.419e-02  0.17282 
## nonsynonymous:divergence:nonsynonymous.gene            -9.904e-02  0.06650 
## (Intercept):divergence.gene                            -4.354e-02  0.01857 
## nonsynonymous:divergence.gene                          -1.419e-02  0.17282 
## divergence:divergence.gene                              8.076e-08  0.08962 
## nonsynonymous:divergence:divergence.gene               -2.709e-02  0.02161 
## (Intercept):nonsynonymous:divergence.gene              -3.070e-02  0.01703 
## nonsynonymous:nonsynonymous:divergence.gene            -9.904e-02  0.06650 
## divergence:nonsynonymous:divergence.gene               -2.709e-02  0.02161 
## nonsynonymous:divergence:nonsynonymous:divergence.gene  3.772e-09  0.08581 
##                                                        eff.samp 
## (Intercept):(Intercept).gene                              75.05 
## nonsynonymous:(Intercept).gene                            72.18 
## divergence:(Intercept).gene                               56.54 
## nonsynonymous:divergence:(Intercept).gene                 68.75 
## (Intercept):nonsynonymous.gene                            72.18 
## nonsynonymous:nonsynonymous.gene                         110.97 
## divergence:nonsynonymous.gene                             80.44 
## nonsynonymous:divergence:nonsynonymous.gene               20.63 
## (Intercept):divergence.gene                               56.54 
## nonsynonymous:divergence.gene                             80.44 
## divergence:divergence.gene                               143.92 
## nonsynonymous:divergence:divergence.gene                  75.55 
## (Intercept):nonsynonymous:divergence.gene                 68.75 
## nonsynonymous:nonsynonymous:divergence.gene               20.63 
## divergence:nonsynonymous:divergence.gene                  75.55 
## nonsynonymous:divergence:nonsynonymous:divergence.gene    12.38 
##  
##  R-structure:  ~us(nfac):organism:gene:Duplicate 
##  
##                                         post.mean  l-95% CI u-95% CI 
## nfac0 0:nfac0 0.organism:gene:Duplicate   0.61205  0.494162  0.73623 
## nfac0 1:nfac0 0.organism:gene:Duplicate   0.40907  0.300592  0.52785 
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## nfac1 0:nfac0 0.organism:gene:Duplicate   0.07070  0.027120  0.12159 
## nfac1 1:nfac0 0.organism:gene:Duplicate  -0.04874 -0.134091  0.04111 
## nfac0 0:nfac0 1.organism:gene:Duplicate   0.40907  0.300592  0.52785 
## nfac0 1:nfac0 1.organism:gene:Duplicate   0.59946  0.457727  0.75343 
## nfac1 0:nfac0 1.organism:gene:Duplicate   0.06481  0.008542  0.11479 
## nfac1 1:nfac0 1.organism:gene:Duplicate   0.25187  0.146510  0.37272 
## nfac0 0:nfac1 0.organism:gene:Duplicate   0.07070  0.027120  0.12159 
## nfac0 1:nfac1 0.organism:gene:Duplicate   0.06481  0.008542  0.11479 
## nfac1 0:nfac1 0.organism:gene:Duplicate   0.11693  0.079694  0.15503 
## nfac1 1:nfac1 0.organism:gene:Duplicate   0.10049  0.050778  0.14859 
## nfac0 0:nfac1 1.organism:gene:Duplicate  -0.04874 -0.134091  0.04111 
## nfac0 1:nfac1 1.organism:gene:Duplicate   0.25187  0.146510  0.37272 
## nfac1 0:nfac1 1.organism:gene:Duplicate   0.10049  0.050778  0.14859 
## nfac1 1:nfac1 1.organism:gene:Duplicate   0.42194  0.308206  0.54007 
##                                         eff.samp 
## nfac0 0:nfac0 0.organism:gene:Duplicate    230.4 
## nfac0 1:nfac0 0.organism:gene:Duplicate    170.7 
## nfac1 0:nfac0 0.organism:gene:Duplicate    122.4 
## nfac1 1:nfac0 0.organism:gene:Duplicate    153.7 
## nfac0 0:nfac0 1.organism:gene:Duplicate    170.7 
## nfac0 1:nfac0 1.organism:gene:Duplicate    178.2 
## nfac1 0:nfac0 1.organism:gene:Duplicate    115.4 
## nfac1 1:nfac0 1.organism:gene:Duplicate    184.9 
## nfac0 0:nfac1 0.organism:gene:Duplicate    122.4 
## nfac0 1:nfac1 0.organism:gene:Duplicate    115.4 
## nfac1 0:nfac1 0.organism:gene:Duplicate    168.3 
## nfac1 1:nfac1 0.organism:gene:Duplicate    321.7 
## nfac0 0:nfac1 1.organism:gene:Duplicate    153.7 
## nfac0 1:nfac1 1.organism:gene:Duplicate    184.9 
## nfac1 0:nfac1 1.organism:gene:Duplicate    321.7 
## nfac1 1:nfac1 1.organism:gene:Duplicate    242.8 
##  
##  Location effects: count ~ log(length) + nonsynonymous + divergence + nonsyn
onymous:divergence + organism + (nonsynonymous + divergence + nonsynonymous:div
ergence):(organism + piRNA + viRNA + miRNA + siRNA)  
##  
##                                             post.mean l-95% CI u-95% CI 
## (Intercept)                                  -4.46904 -4.97306 -3.94758 
## log(length)                                   0.97623  0.91561  1.04389 
## nonsynonymous                                -1.49970 -1.77328 -1.24692 
## divergence                                    1.21542  1.00947  1.42464 
## organismanopheles                             0.21142 -0.08762  0.44189 
## organismapis                                 -1.81890 -2.10749 -1.52871 
## organismbombyx                                0.40217  0.14216  0.69221 
## organismdpse                                 -0.43007 -0.70159 -0.18840 
## organismheliconius                            0.05955 -0.21181  0.34851 
## nonsynonymous:divergence                      0.25602  0.01122  0.46658 
## nonsynonymous:organismanopheles              -0.46541 -0.75293 -0.17766 
## nonsynonymous:organismapis                   -0.40197 -0.77895 -0.04547 
## nonsynonymous:organismbombyx                 -0.24661 -0.58073  0.06554 
## nonsynonymous:organismdpse                    0.34119  0.03611  0.64421 
## nonsynonymous:organismheliconius              0.01839 -0.27399  0.31943 
## nonsynonymous:piRNA                           0.54011  0.15190  0.93668 
## nonsynonymous:viRNA                           0.58109 -0.60559  1.64163 
## nonsynonymous:miRNA                          -0.44753 -1.18277  0.25110 
## nonsynonymous:siRNA                          -0.82456 -1.74869  0.04430 
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## divergence:organismanopheles                 -0.95889 -1.23915 -0.67998 
## divergence:organismapis                       1.06272  0.77986  1.36073 
## divergence:organismbombyx                     0.27959 -0.01646  0.53432 
## divergence:organismdpse                      -0.76135 -1.03303 -0.50080 
## divergence:organismheliconius                -1.06374 -1.31553 -0.76169 
## divergence:piRNA                              0.08859 -0.04536  0.21826 
## divergence:viRNA                              0.13431 -0.24487  0.45353 
## divergence:miRNA                             -0.02860 -0.24507  0.18153 
## divergence:siRNA                             -0.04164 -0.30738  0.20942 
## nonsynonymous:divergence:organismanopheles    0.05467 -0.17126  0.27527 
## nonsynonymous:divergence:organismapis        -0.35464 -0.63657  0.02153 
## nonsynonymous:divergence:organismbombyx       0.06181 -0.22513  0.33049 
## nonsynonymous:divergence:organismdpse         0.39663  0.17378  0.65118 
## nonsynonymous:divergence:organismheliconius  -0.55927 -0.78868 -0.34668 
## nonsynonymous:divergence:piRNA                0.36223  0.13452  0.59720 
## nonsynonymous:divergence:viRNA                0.90780  0.50794  1.33614 
## nonsynonymous:divergence:miRNA                0.26052 -0.06620  0.51761 
## nonsynonymous:divergence:siRNA                0.78372  0.18102  1.45044 
##                                             eff.samp  pMCMC     
## (Intercept)                                  101.086 <0.001 *** 
## log(length)                                   82.580 <0.001 *** 
## nonsynonymous                                 56.027 <0.001 *** 
## divergence                                   403.392 <0.001 *** 
## organismanopheles                            723.666  0.126     
## organismapis                                 264.677 <0.001 *** 
## organismbombyx                               514.172  0.004 **  
## organismdpse                                 311.035  0.002 **  
## organismheliconius                           706.023  0.640     
## nonsynonymous:divergence                      11.749  0.038 *   
## nonsynonymous:organismanopheles              150.165 <0.001 *** 
## nonsynonymous:organismapis                    20.804  0.020 *   
## nonsynonymous:organismbombyx                  60.972  0.140     
## nonsynonymous:organismdpse                    36.646  0.038 *   
## nonsynonymous:organismheliconius             147.820  0.888     
## nonsynonymous:piRNA                          211.155  0.008 **  
## nonsynonymous:viRNA                          294.525  0.310     
## nonsynonymous:miRNA                          326.843  0.236     
## nonsynonymous:siRNA                           16.762  0.082 .   
## divergence:organismanopheles                 529.568 <0.001 *** 
## divergence:organismapis                      254.734 <0.001 *** 
## divergence:organismbombyx                    345.638  0.052 .   
## divergence:organismdpse                      291.953 <0.001 *** 
## divergence:organismheliconius                654.453 <0.001 *** 
## divergence:piRNA                             437.990  0.178     
## divergence:viRNA                             321.484  0.422     
## divergence:miRNA                             689.476  0.764     
## divergence:siRNA                             574.703  0.752     
## nonsynonymous:divergence:organismanopheles    39.134  0.680     
## nonsynonymous:divergence:organismapis          8.341  0.080 .   
## nonsynonymous:divergence:organismbombyx       19.681  0.644     
## nonsynonymous:divergence:organismdpse         18.507 <0.001 *** 
## nonsynonymous:divergence:organismheliconius   42.853 <0.001 *** 
## nonsynonymous:divergence:piRNA                13.101  0.004 **  
## nonsynonymous:divergence:viRNA                36.579 <0.001 *** 
## nonsynonymous:divergence:miRNA                17.685  0.092 .   
## nonsynonymous:divergence:siRNA                 5.187  0.016 *   
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## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

The model output shows organisms (e.g. nonsynonymous:divergence:organismapis effect) and 
subpathways (e.g. nonsynonymous:divergence:viRNA effect) differ in their genome-wide level of 
positive selection. We test whether a homologue has an increased selection effect (e.g. Figure 4, 
Figure S4) by comparing the posterior distributions of the selection effect for control genes and 
the homologues. For example: 

ago2.selection.effect <- model.3A$Sol[,"nonsynonymous:divergence"] +  
  model.3A$Sol[,"nonsynonymous:divergence:viRNA"] + 
  model.3A$Sol[,"nonsynonymous:divergence.gene.ago2"] 
 
control.selection.effect <- model.3A$Sol[,"nonsynonymous:divergence"] 
 
control.minus.ago2.posterior <-  control.selection.effect - ago2.selection.effe
ct 
 
iterations.less.than.zero <- length(which(control.minus.ago2.posterior > 0)) 
total.chain.length <- length(control.minus.ago2.posterior) 
pMCMC <- iterations.less.than.zero/total.chain.length 
pMCMC*2 #Multiply by 2 to make a two tailed test 

## [1] 0 

We conclude that the Ago2 selection effect is greater than control genes (MCMCp < 0.001). 

In addition to homologue-specific random effects, we include gene-specific random effects in the 
SnIPRE model. The homologue-specific random effects are coded as "random=~us(1 + 
nonsynonymous+divergence+nonsynonymous:divergence):gene", very similar to the random 
effect structure of Eilertson et al (2012), except we have an average of 24 observations per gene (6 
species by 4 types of mutation). Instead of using the per-gene random effect structure from 
Eilertson et al (2012), we reparameterise the model so that residuals for each class of mutation 
would be estimated for each gene, and (by specifying pl=TRUE), the posterior distribution of each 
of these residuals stored. We code the different classes of mutation in the nfac column, where "0 
0" denotes synonymous polymorphism, "0 1" denotes nonsynonymous polymorphism, and so on. 
The unstructured covariance matrix between mutation classes (us(nfac)) is estimated for each 
gene (organism:gene:Duplicate), from which we extract the gene-level selection effect. The 
posterior distributions of these residuals are saved in the model.3A$Liab data structure, with 
columns in the same order as the rows in our original data table: 

nrow(dat) == ncol(data.frame(model.3A$Liab)) 

## [1] TRUE 

To extract the gene specific selection effect from each residual, we create the mapping matrix (X), 
the model matrix for all nonsynonymous:divergence effects (X.matrix, a template for which fixed 
effects link with the rows of data), the columns of the model.3A fixed effects which match 
X.matrix (X.model.hit), and a list of unique genes (unique.genes): 

X<-rbind(c(1,0,0,0), c(0,0,1,0), c(0,1,0,0), c(0,1,1,1)) 
X.model<-model.matrix(~nonsynonymous:divergence-1+(nonsynonymous:divergence):(p
iRNA+siRNA+miRNA+viRNA+gene), data=dat) 
colnames(X.model) <- gsub(colnames(X.model), pattern= ":gene", replacement = "\
\.gene\\.") 
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X.model.hit<-match(colnames(X.model), colnames(model.3A$Sol)) 
unique.genes<-unique(dat$gene.id) 
residuals.transform<-model.3A$Liab 
X.fixed.random.effects<-model.3A$Liab  

We loop through rows of the stored latent variables (model.3A$Liab), with each row being an 
iteration of the MCMC chain, and subtract the fixed and random effects corresponding to each 
data point ((model.3A$X%*%model.3A$Sol[i,1:ncol(model.3A$X)])) from the ωA estimate 
(model.3A$Z%*%model.3A$Sol[i,(ncol(model.3A$X)+1):ncol(model.3A$Sol)])), resulting in 
residuals for each gene in each species. Then, for each gene (gene.id - a combination of gene 
name, organism, and duplicate) in each iteration, we map the residuals onto the design matrix X to 
solve for the random effects of each observation. (residuals.transform). Finally, we obtain the 
posterior distribution of the selection effect for a particular gene (selection.effects) by adding the 
random nonsynonymous:divergence:gene effect (residuals.transform) to the fixed and random 
nonsynonymous:divergence effects (X.fixed.random.effects). 

for(i in 1:nrow(model.3A$Liab)){ 
   residuals<-model.3A$Liab[i,]-(model.3A$X%*%model.3A$Sol[i,1:ncol(model.3A$X)
])@x -  
     (model.3A$Z%*%model.3A$Sol[i,(ncol(model.3A$X)+1):ncol(model.3A$Sol)])@x #
Subtract the fixed pathway effects and random homologue effects from the latent 
variables 
   # residuals for each observation at iteration i 
    for(j in 1:length(unique.genes)){ 
       hits<-which(dat$gene.id==unique.genes[j]) 
       # find positions of residuals gene j 
       if(length(hits)==4){ 
        beta<-solve(X,residuals[hits]) # Map the residuals from the difference 
between latent variables and fixed effects onto design matrix  
        residuals.transform[i,hits]<-beta 
        # solve for the (random) b effects for each observation  
        X.fixed.random.effects[i,hits]<-c(X.model[hits,]%*%model.3A$Sol[i,X.mod
el.hit]) 
        # get nonsynonymous+divergence predictions for each obseravtion  
      } 
    } 
} 
selection.effects<-data.frame(X.fixed.random.effects+residuals.transform) 
selection.effects <- selection.effects[,(dat$nfac == "1 1") & (dat$RNAi == 1)] 
colnames(selection.effects) <- dat$gene.id[(dat$nfac == "1 1") & (dat$RNAi == 1
)] 
head(selection.effects)[,1:5] 

##   anopheles ago1 A apis ago1 A bombyx ago1 A dmel ago1 A dpse ago1 A 
## 1        1.4193757   0.7722761     0.5842877  0.08680539   0.3625202 
## 2        0.8455055   0.6456496     0.4544315  0.23100181   0.1364505 
## 3        0.4975981   0.5436095     0.2534048 -0.33675612  -0.6107161 
## 4        1.4048516   0.6310795     0.1799840  0.83226188  -0.5621510 
## 5        1.2629835   0.3232525    -0.3350957  0.34226755  -0.1326866 
## 6        0.7548817   0.3769485    -0.4292804  0.56985419   0.1456308 

We calculate a "species-corrected" selection effect where nonsynonymous:divergence:organism 
effects are excluded in order to visualise differences between subpathways (e.g. Figure 3). We add 
these effects later when assessing positive selection in individual genes within a species. Also, in 
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this example, we have only solved for the gene-level nonsynonymous:divergence random effects, 
however, the other gene-level effects could be obtained in a similar way. 

SnIPRE was originally intended to identify genes in a single organism which shows signs of 
elevated positive selection. To do this, we add the organism specific selection effect to the 
"species-corrected" selection effect we have already obtained, and ask whether the selection 
effect overlaps zero. For example, to estimate the selection effect for the genes in Apis mellifera, 
we add the nonsynonymous:divergence:apis posterior to the columns of selection.effects which 
belong to Apis. 

apis <- model.3A$Sol[,"nonsynonymous:divergence:organismapis"] 
selection.effects.apis <- selection.effects[,grep("apis",colnames(selection.eff
ects))] + apis 

Then, using HPDinterval() and colMeans(), we can get the selection effect for each gene, along 
with the upper and lower 95% highest posterior density intervals. 

selection.effects.apis.summary <- data.frame(HPDinterval(as.mcmc(selection.effe
cts.apis))) 
selection.effects.apis.summary <- cbind(selection.effects.apis.summary,data.fra
me(selectioneffect=c(as.vector(colMeans(selection.effects.apis))))) 
head(selection.effects.apis.summary) 

##                  lower     upper selectioneffect 
## apis ago1 A -1.0316050 1.2296024      0.16360626 
## apis ago2 A  0.8680883 2.3909126      1.64137753 
## apis ago3 A -0.4233092 1.2884881      0.35796870 
## apis armi A -0.6455877 0.7797752      0.06855869 
## apis ars2 A -1.0879748 0.6938276     -0.13471034 
## apis arx A  -1.0893511 1.0259998     -0.06135972 

Finally, we identify genes with significantly positive selection effects. 

selection.effects.apis.significant <- selection.effects.apis.summary[selection.
effects.apis.summary$lower > 0,] 
print(selection.effects.apis.significant) 

##                   lower    upper selectioneffect 
## apis ago2 A 0.868088349 2.390913       1.6413775 
## apis piwi A 0.350946926 1.734872       1.0338514 
## apis dcr2 A 0.382093697 1.785551       1.0686899 
## apis hen1 A 0.125590039 1.452687       0.7121331 
## apis r2d2 A 0.007973288 2.385391       1.2971375 
## apis tud A  0.280620893 1.627606       0.9377881 
## apis vas A  0.615037761 2.525881       1.5089618 

 

Model 3B: SnIPRE-like analysis, with piRNA split into biogenesis factors, effectors, and 
transcriptional silencing 

prior.3B <-list(R=list(V=diag(4), nu=0.002),  
                G=list(G1=list(V=diag(4), nu=4, alpha.mu=rep(0,4), alpha.V=diag
(4)*1000))) 
model.3B <- MCMCglmm(count~log(length)+nonsynonymous + divergence+nonsynonymous
:divergence+organism+ 
                                 (nonsynonymous+divergence+nonsynonymous:diverg
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ence):(organism + effector + biogenesis + transcriptional + viRNA + miRNA + siR
NA),  
                               random=~us(1 + nonsynonymous + divergence + nons
ynonymous:divergence):gene, 
                               rcov=~us(nfac):organism:gene:Duplicate, family="
poisson",  
                               data=dat, pr = TRUE, pl=TRUE, prior = prior.3B, 
verbose = FALSE) 

We also fit the SnIPRE model (Model 3A) with the piRNA pathway split into different functional 
categories, akin to the Model 1B and 1C. We only used this model to estimate the selection effects 
associated with the piRNA categories (transcriptional silencing, effectors, and biogenesis 
machinery). 

 

Model 3C: SnIPRE-like analysis, without subpathway as a fixed effect 

prior.3C <- list(R=list(V=diag(4), nu=0.002), G=list(G1=list(V=diag(4), nu=4, a
lpha.mu=rep(0,4), alpha.V=diag(4)*1000))) 
model.3C <- MCMCglmm(count~log(length)+nonsynonymous + divergence+nonsynonymous
:divergence+organism+ 
                         (nonsynonymous+divergence+nonsynonymous:divergence):(o
rganism),  
                       random=~us(1 + nonsynonymous + divergence + nonsynonymou
s:divergence):gene, 
                       rcov=~us(nfac):organism:gene:Duplicate, family="poisson"
,  
                       data=dat, pr = TRUE, pl=TRUE, prior = prior.3C, verbose 
= FALSE) 

Finally, we fit the SniPRE model (Model 5A) without assuming genes belong to any particular 

subpathway,similar to the difference between Model 2A and 2B. Selection effects were then calculated in 

the same way, excluding the addition of a subpathway fixed effect. 

 

S2 Text: Supplementary R code for models 

 To assess significance in the SweeD analyses, we used ms (Hudson, 2002) to perform 1000 

coalescent simulations for each gene region of interest in each species, given the observed number of 

segregating sites, reported recombination rate, and a previously published estimate of the demographic 

history of that species. When population scaled recombination rate estimates were not available, we used 

estimates of Ne to scale per-base rate estimates. Although the details of the demographic scenarios we 

modelled are unlikely to impact substantially upon our qualitative comparisons of between sweep 

frequency in different types of gene, we attempted to use null models consistent with the published 

literature. The demographic scenarios modelled for each species are illustrated in Figure S1. For D. 
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melanogaster, recombination rates from the Drosophila recombination rate calculator were used  with a 

constant Ne for African populations of 1.15x106 (Charlesworth, 2009). Some genes (ael, AGO3, pasha, and 

Rm62) are reported to lie in areas with zero recombination (Fiston-Lavier, et al., 2010), so we set the 

recombination rate in these genes at the lowest non-zero rate observed. For D. pseudoobscura, we 

simulated a population expansion (Haddrill, et al., 2010; Larracuente & Clark, 2014), and used the 

population scaled rates of recombination and gene conversion from Larracuente and Clark (2014). For 

Anopheles gambiae, we used demographic history parameters from Crawford and Lazzaro et al (2010) for 

the Cameroon population, and the recombination rates for each individual chromosome arm (1 cM/Mb for 

the X, 1.3 cM/Mb for 3L and 2R, 1.6 cM/Mb for 3R, and 2 cM/Mb for 2L) from Pombi et al (2006) and Stump 

et al (2007). Effective population size (Ne) was set to 2.4x106 estimated using the D. melanogaster mutation 

rate of Keightley et al (2014) and the Watterson’s theta (θW) estimate in Crawford and Lazzaro (2010). For 

H. melpomene, we simulated three Costa Rican populations corresponding to H. melpomene, H. cydno, and 

H. pachinus, using the migration rates provided in Table 2 of Kronforst et al (2006). We used a constant 

recombination rate of 7.51 cM/Mb across the entire genome with an Ne of 2.1x106 for H. melpomene, 

3.3x106 for cydno, and 2.7x106 for H. pachinus. For B. mandarina, we modelled the “gene-flow at 

bottleneck” scenario (Yang et al, 2014), with an Ne of 500,000 for B. mandarina and 73,000 for B. mori, and 

a recombination rate of 2.97 cM/Mb (Yamamoto et al, 2008; Yang et al, 2014). For A. mellifera, four 

subpopulations were modelled using Ne values in Table 1 of Wallberg et al (2014), following Figure 1F in 

Wallberg et al (2014) when modelling past subpopulation size changes. These subpopulations share 

migrants, and migration rates were estimated based on FST values between subpopulations reported in 

Whitfield et al (2006). A recombination rate of 19 cM/Mb is assumed to be constant across the genome 

(Beye et al, 2006). For C. briggsae, coalescent simulations and SweeD analyses were carried out on the 25 

“tropical” samples in order to avoid modelling complicated demographic scenarios. These are expected to 

have an effective population size of 60,000, and to have undergone a recent bottleneck 0.916 Ne 

generations in the past (Cutter et al, 2006; Denver et al, 2009), assuming a 60-day generation time (Barrière 

& Félix, 2005). We used recombination rates for C. briggsae from Ross et al (2011), which are estimated to 

be 9.97 x 10-8 per bp per generation in autosomes and 4.6 x 10-8 per bp per generation on the X 
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chromosome (Ross et al, 2011). Finally, for P. pacificus, four subpopulations were modelled corresponding 

to clade A1, A2, C, and 9 individuals whose clade was unknown (Rödelsperger, et al., 2014) which coalesced 

0.849 Ne generations in the past (McGaughran et al, 2013). Ne was estimated by calculating θW for each 

contig and assuming a mutation rate of2x10-9 (Weller et al, 2014).To minimise differences between the real 

data and simulations, sites were randomly chosen to be folded, ancestrally invariant, or fixed for a derived 

substitution, in each case matching the numbers observed in the real data before the SweeD analysis. 
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