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Abstract 

Continued advances in neuroimaging technologies and statistical modelling 

capabilities have improved our knowledge of structural brain development in children and 

adolescents. While this has provided an increasingly nuanced understanding of brain 

development, the field is still plagued by inconsistent findings. This review highlights the 

methodological diversity in existing longitudinal magnetic resonance imaging (MRI) studies 

on structural brain development during childhood and adolescence, and addresses how such 

variation might contribute to inconsistencies in the literature. We discuss the impact of 

method choices at multiple decision points across the research process, from study design and 

sample selection, to image processing and statistical analysis. We also highlight the extent to 

which different methodological considerations have been empirically examined, drawing 

attention to specific areas that would benefit from future investigation. Where appropriate, we 

recommend certain best practices that would be beneficial for the field to adopt, including 

greater completeness and transparency in reporting methods, in order to ultimately develop an 

accurate and detailed understanding of normative child and adolescent brain development. 
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1. Introduction 

Over the past two decades we have learnt a great deal about normative structural 

brain development during childhood and adolescence with the application of magnetic 

resonance imaging (MRI) in longitudinal projects. While the pioneer studies published in the 

1990s and 2000s continue to be among the most influential and often cited, more recent 

investigations have provided complementary, but also sometimes contradictory findings on 

normative structural brain development. This paper aims to highlight potential 

methodological causes of inconsistencies in findings on structural brain development across 

studies, focusing on the impact of specific method choices at multiple decision points along 

the research process, from study design and sample selection, to image processing and 

statistical analysis.  

A growing number of longitudinal projects aim to characterize typical structural brain 

development in children and/or adolescents, many of which are summarized in Table 1. 

While some characteristics of these projects overlap, differences are also evident for instance 

in sample size, age range, number of repeat assessments, and study design. Multiple studies 

commonly arise from each dataset, which often differ in methodology, as outlined in Table 2. 

The diversity of MRI processing techniques, structural measures of interest and statistical 

analytic methods used across these studies is a demonstration of the productivity and ever-

evolving nature of the fields of neuroimaging and developmental neuroscience. However, it is 

also important to consider how different methods impact the results of studies investigating 

typical brain developmental trajectories. Following a brief overview of current findings, we 

explore how each methodological step, from study design and image acquisition to model 

fitting, might influence findings and conclusions. We focus specifically on longitudinal 

studies of typically developing children (5 years and older) and adolescents. Younger age 

ranges were excluded due to methodological issues that are either unique or exemplified in 

this population (e.g., techniques to reduce anxiety and movement, such as scanning during 

natural sleep, the availability of child-appropriate equipment, and use of appropriate analytic 
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techniques such as pediatric brain templates; as described by Raschle et al., 2012. Further 

details regarding the search strategy and inclusionary criteria is presented in Box 1. 

 

Box 1. 

We searched PubMed using the following terms: brain AND development AND (childhood 

OR adolescence) AND (structure OR thickness OR volume OR surface area OR gyrification) 

AND MRI, to identify studies published in this field to date (January 2017). Inclusionary 

criteria for the review were: i) sample age range predominantly encompassing mid-childhood 

(5 years) to young adulthood, ii) focused on normative development, iii) use of structural 

MRI to examine grey matter brain structure, iv) longitudinal study design, v) total number of 

scans greater than 50, and vi) written in English. The reference lists of identified articles were 

also searched for further relevant articles. Identified studies are summarized in Table 2. 

 

2. Overview of findings 

Initial studies from the National Institute of Mental Health Child Psychiatry Branch 

(NIMH CPB) described inverted-U-shaped growth trajectories of cortical volumetric grey 

matter development (Giedd et al., 1999; Lenroot et al., 2007), reporting peak volumes around 

early adolescence that distinguished periods of growth during childhood from reductions 

during adolescence. However, results from subsequent studies using other longitudinal 

datasets have not identified such “peaks”; many studies report continued reductions in grey 

matter volumes from late childhood into adolescence (Aubert-Broche et al., 2013; Tamnes et 

al., 2013; Wierenga et al., 2014b). Studies have also reported temporal patterns of maturation, 

including rostral-to-caudal waves of growth in the corpus callosum (Thompson et al., 2000) 

and posterior-to-anterior growth in the frontal lobe (Gogtay et al., 2004), although few have 

attempted to replicate these effects in different samples. In contrast to cortical grey matter 

volume, studies have consistently reported an increase in white matter volume across 

childhood and adolescence (Aubert-Broche et al., 2013; Lebel and Beaulieu, 2011; Mills et 

al., 2016). A recent study highlighted convergence in developmental patterns of grey and 
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white matter volume across four longitudinal studies when employing the same pre-

processing stream and analytic methods (see Figure 1; Mills et al., 2016). However, others 

have noted variability in developmental trajectories at higher anatomical resolutions such as 

the vertex level (Mutlu et al., 2013; Vijayakumar et al., 2016).  

 

 

Figure 1. Development of a) cortical grey matter volume and b) cortical white matter volume 

across four longitudinal datasets. NCD = Neurocognitive Development, CPB = (National 

Institute of Health) Child Psychiatry Branch. Adapted from Mills et al. (2016). 

 

Over time, there has been an increasing emphasis on the examination of the 

subcomponents of cortical volume: thickness, defined as the distance between the white 

matter/grey matter cortical boundary and grey matter/CSF cortical boundary; and surface 

area, defined as the area of one of these two boundaries (or surfaces). While the majority of 

studies have identified reductions in cortical thickness between childhood and adulthood (e.g., 

Wierenga et al., 2014b), some have found nonlinear global development (e.g., Raznahan et 

al., 2011b). In contrast, studies consistently report global surface area increasing between 

childhood and early adolescence (Raznahan et al., 2011b; Wierenga et al., 2014b) before 

decreasing across the rest of the second decade (Alemán-Gómez et al., 2013). Regional 

differences have also been reported for these subcomponents of cortical volume (Mutlu et al., 

2013; Tamnes et al., 2017; Vijayakumar et al., 2016; Wierenga et al., 2014a).   

A small number of studies have investigated measures of gyri and sulci structure. The 

exposed outer cortical surface area, referred to as the convex hull area (CHA), has been found 
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to show both quadratic (Raznahan et al., 2011b) and linear (Alemán-Gómez et al., 2013) 

reductions with age, while linear reductions in the degree of gyrification have been found 

more consistently (ratio of total cortical surface area to CHA: gyrification index (GI); 

Alemán-Gómez et al., 2013; Raznahan et al., 2011b). However, one vertex-wise investigation 

reported that GI might not change in certain parts of the medial surface between childhood 

and adolescence (Mutlu et al., 2013).  

As studies try to unpack the complex relationships between these different brain 

measures, we are gaining a more nuanced understanding of how brain structure develops.  

While there is, overall, convergence in findings on a broad scale (i.e., overall direction of 

change), inconsistencies are evident when considering details such as the precise shape of 

developmental trajectories, presence/location of peaks, regional variability and sex 

differences. Following, we discuss each of the likely major methodological contributions to 

these inconsistences.    

 

3. Study and sampling design 

3.1 Study design. Since maturation (i.e., age) cannot be randomly assigned to 

participants in studies investigating brain development, it represents a correlational or quasi-

independent variable. The resultant quasi-experimental research designs can be broadly 

grouped into one of three categories: cross-sectional, complete longitudinal or single cohort 

design (SCD), and accelerated longitudinal design (ALD; Appelbaum and McCall, 1983; 

Bordens and Abbott, 2013). A limitation common to these designs is that a causal relationship 

cannot be directly inferred between age and the variables of interest, as third (confounding) 

variables cannot be fully accounted for. 

Inferences about developmental processes from studies with cross-sectional designs, 

where different participants at different ages are compared, can be misleading (Kraemer et al., 

2000). Also, because of large individual differences in brain structure, longitudinal designs 

with repeated measurements of the same participants have greatly increased statistical power 

(Steen et al., 2007). Therefore, cross-sectional studies are not reviewed here. SCD studies, 
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where all participants begin at the same age and are followed across the entire age-range of 

interest, have the advantage of simplicity and are more amenable to certain modelling 

techniques (King et al., this issue), but are time-consuming, costly, and may not be feasible 

for broad age ranges. Of the 34 studies reviewed (Table 2), only 4 were SCD studies: two 

studies from the same project focus on a narrow age-range (9-13 years; Swagerman et al., 

2014; van Soelen et al., 2012), and a further two studies from the same project focus on a 

broader age range (11-18 and 11-20; Dennison et al., 2013; Vijayakumar et al., 2016).  

Because of the limitations of SCD studies, nearly all longitudinal studies of structural 

brain development in childhood and adolescence have used ALD. In ALD, participants begin 

at different ages or years and contribute data to only part of the age-range of interest. These 

designs thus include both a cross-sectional and a longitudinal component. Compared to SCD, 

ALD can cover the age-range of interest with a shorter study duration, they are less affected 

by participant dropout (attrition), and this dropout tends to be less systematically related to 

age. ALD is also less vulnerable to the effects of unforeseen method or procedure changes 

during the data collection period (e.g., scanner change or upgrades); these confounding 

variables in SCD are often more systematically related to age. SCD also confounds age with 

potential cohort effects. However, the major trade-off of ALD is the inherent missing data for 

each participant (Galbraith et al., 2017), and some individuals may only contribute a single 

(i.e., cross-sectional) data point to the study.  

ALD studies differ widely in the number of participants and measurements, and the 

frequency and timing of measurements, factors that have implications for the duration and 

cost of the study, and also the statistical analyses (Galbraith et al., 2017). Many ALD 

developmental imaging studies appear to be structured such that individuals enter the study at 

pre-selected ages (i.e., age cohorts), which together span the age range of interest. The spans 

of the age cohorts overlap, and subjects are followed longitudinally over a shorter time span 

relative to the entire age range (Bell, 1954). However, it is of note that studies rarely describe 

this information in detail, and whether the design was tailored for separating the effects of 

age, cohort and/or time of measurement (see Appelbaum and McCall, 1983). Critically, small 
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samples not only reduce the chance of detecting a true effect, but also reduce the likelihood 

that a statistically significant result reflects a true effect. The consequences of this are 

unreliable research and overestimated effect sizes (Button et al., 2013). In the current review, 

we have not included small longitudinal studies defined as those analyzing fewer than 50 

scans. 

3.2 Sample size and scan numbers. The sample sizes of the 34 studies included in 

Table 2 were highly variable. The number of participants ranged from 13 to 974, and the 

number of scans from 52 to 1633 (note that the largest study also included adults). Mean 

number of scans per participant ranged from 1.3 to 4.0, but to our knowledge, only 16 of 34 

studies had on average more than two scans per participant, and only 3 (Gogtay et al., 2004; 

Mills et al., 2014a; Tiemeier et al., 2010) had three or more scans per participant on average. 

Thus, although several studies include relatively large samples, the amount of longitudinal 

data is generally low compared to many other areas of research, especially when considering 

that all except five of the ALD studies focused on an age-range of 13 or more years, with scan 

intervals typically being only a few years or less.  

3.3 Sample characteristics. A number of important questions must also be addressed 

when choosing and recruiting participants (Bordens and Abbott, 2013), such as deciding upon 

the target population and the sampling and recruitment procedures, and defining eligibility 

and exclusionary criteria (Greene et al., 2016). As imaging studies of typical brain 

development rely upon volunteers that are willing to undergo MRI scans multiple times, they 

typically include non-random samples from subpopulations of the actual target population. 

Samples are usually relatively socioeconomically advantaged, have relatively high IQ, and 

are comprised of mostly Caucasian participants. As one exception, the NIH MRI Study of 

Brain Development used a population-based sampling method to ensure their sample was 

socio-demographically representative of the population. 

Currently, the lack of detailed characterizations and reporting of the sampling 

procedure and final sample (e.g., approximately 40% of reviewed studies did not report 

sample IQ) prevents a good understanding of the generalizability of findings to the 
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population. Further, oftentimes, studies arising from the same dataset use different 

subsamples and descriptions of study-specific selection criteria are not clear.   

 

4. Image acquisition strategies and parameters 

4.1 Strategies. Before performing MRI of children/adolescents, it is essential to 

systematically prepare the participant using, for instance, age-appropriate instructional videos 

or mock-scan. During the scan, multiple strategies can be implemented to create a good 

experience and obtain adequate data based on the need of the participant, such as having a 

parent present in the scanner room, playing a movie of their choice, and talking to them via 

the intercom between sequences (Greene et al., 2016). Optimization of the physical 

environment, for example with head cushions, may also increase subject comfort and 

decrease in-scanner motion.  

Motion-related artefact can, to some extent, be mitigated by image acquisition 

methods. Perhaps most importantly, simple reductions in scanning time increase the 

probability of children remaining still throughout a scan. More involved methods can be 

broadly divided into retrospective techniques based on computational processing of scans 

(e.g., Atkinson et al., 1999) and prospective techniques that actually modify pulse sequences 

in response to detected motion (e.g., White et al., 2010). Even without explicit correction, 

tracking in-scanner motion, either via MR technology (Korin et al., 1990) or independently 

using external sensors (Qin et al., 2009), provides important information that can potentially 

be used in subsequent quality control (QC; see section 5 below).  

4.2 Acquisition parameters. Most of the reviewed studies used 1.5T scanners, while 

more recently started projects typically use 3T scanners (i.e., only four of the 33 studies listed 

in Table 2 were performed only using 3T scanners (Dennison et al., 2013; Sullivan et al., 

2011; Urosevic et al., 2012; Vijayakumar et al., 2016)). In addition, two studies included 

scans from both 1.5T and 3T, and analyzed them either independently (Mills et al., 2016) or 

together (Mutlu et al., 2013). Generally, higher field strength gives higher signal to noise ratio 
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and improved spatial resolution at a fixed scan time, but some artefacts also become more 

prominent (Bernstein et al., 2006; Tijssen et al., 2009).  

All studies reviewed used T1-weighted (T1w) pulse sequences, which give good soft 

tissue contrast. Sometimes, T2-weighted (T2w) sequences or a combination of T1w and T2w 

images are used, as T2w images offer a different type of contrast and can be particularly 

useful for instance to visualize and segment cerebrospinal fluid, which in turn may improve 

the accuracy of the reconstructed outer cortical surface for example (for an overview of MRI 

principles and sequences, see Westbrook et al., 2011). Similar to the discussion of field 

strength above, the spatial resolution of the pulse sequences have generally improved over 

time, and more recently started projects typically use ~1 mm isotropic voxels. Higher spatial 

resolution improves the accuracy of the measurements, particularly of smaller structures, and 

also allows for use of more fine-grained automated segmentation procedures, such as 

volumetric measurement of hippocampal subfields (Iglesias et al., 2015) and subdivisions of 

the cerebellum (Diedrichsen, 2006).  

Multiple studies on adults have directly tested the reliability of MRI-derived 

measures of brain volume or cortical thickness across field strengths, scanner vendors, 

scanner upgrades, pulse sequences, the number of acquisitions (single vs. multiple averaged), 

parallel imaging, and scan sessions (Han et al., 2006; Heinen et al., 2016; Jovicich et al., 2013, 

2009; Kruggel et al., 2010; Morey et al., 2010; Wonderlick et al., 2009). The studies generally 

conclude that these types of measurements are reliable. However, the results also clearly 

demonstrate that the effects of varying acquisition specifics are non-negligible. For example, 

in a recent study, 10 elderly subjects were scanned with 1.5T and 3T scanners of the same 

manufacturer and platform on the same day (Heinen et al., 2016). Brain volumes were 

relatively robustly measured for large compartments, including total grey matter and white 

matter (e.g., for FreeSurfer 5.3 (see section 6 below), mean absolute difference as % of mean 

volume: 1% and 2%, respectively). Nonetheless, effects of this magnitude clearly represent 

substantial sources of noise, or potentially systematic bias, in developmental studies of 

children or adolescents where annual change rates in most structures are in the 0-2% range 
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(Tamnes et al., 2013). Furthermore, image acquisition differences may potentially have even 

larger effects for smaller brain compartments. Of particular importance for longitudinal 

studies, scan-rescan reliability has been shown to vary across brain regions, with relatively 

low reliability e.g. for the nucleus accumbens and the amygdala (Morey et al., 2010). On 

average, scan-rescan reliability is proportional to the volume of a structure (Morey et al., 

2010) and improves when using longitudinal analysis pipelines (Jovicich et al., 2013; Reuter 

et al., 2012).  

The general recommendation is thus that it is highly important to consider all of these 

image acquisition variables in both the design and analysis of longitudinal studies. Advances 

in this dynamic field will continue to offer opportunities to optimize these variables in order 

to address specific research questions. However, the implementation of novel approaches can 

also be problematic for longitudinal studies that must place a premium on consistency over 

the course of the study. One should as far as possible strive for uniformity in image 

acquisition within a given study, and if this is not fully possible, e.g. due to unforeseen 

hardware of software changes, it is critical to try to avoid systematic relationships between 

image acquisition variables and the variables of interest such as age. If image acquisition 

parameters do vary across scans, the inclusion of redundant scans that differ only in terms of 

these parameters can help to partially address possible confounds in a statistical model. 

 

5. Quality control procedures 

Another aspect of data processing that is rarely reported is the procedure used to 

assess image and measurement quality. Anecdotally, there appears to be much variation 

within the field. This is not specific to neuroimaging, as certain practices evolve and are only 

widely adopted after systematic testing. For example, rigorous motion control procedures in 

resting-state functional connectivity studies were widely adopted after the publication of 

several reports illustrating the impact of motion on resulting inferences, including 

developmental differences (Power et al., 2013, 2012; Satterthwaite et al., 2013). 
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Data quality can be assessed at different stages in a structural MRI study, as recently 

outlined by Backhausen and colleagues (2016). In addition to checking data quality at the 

scanner console after running a structural sequence, which can allow for re-acquisition if 

needed, it is critical that data quality is assessed after processing images; even acceptable raw 

images can fail the processing stage. For example, one study found that almost half of a large 

number of scans showed cortical reconstruction errors within the anterior temporal cortex 

(Mills et al., 2014b). Data quality can be assessed manually or by outlier detection after 

quantification of structure. When a scan is considered to “fail” the processing procedure, it is 

possible to manually intervene and reprocess the image. Certain software packages (i.e., 

FreeSurfer) provide extensive detail on multiple methods to do so. Nevertheless, what degree 

to intervene, and how to intervene, is at the discretion of the researcher, and often these 

details are not included in manuscripts. Assessment of the quality of processed scans remains 

subjective, and studies vary in their methods employed and details reported. Given the current 

lack of reporting of QC procedures, it is hard to fully understand their impact on resulting 

developmental trajectories of anatomical brain measures.  

One of the most common artefacts in structural brain imaging is motion-induced 

artefact. Motion can be identified in a raw anatomical image by visual inspection (i.e. for 

ringing or waves at the periphery of the brain), and can also be systematically quantified 

based on predefined criteria. In addition, there are now automated Brain Images Database 

Structure (BIDS) apps that will assess raw anatomical MRI scans for quality and output 

quantitative measurements (Gorgolewski et al., 2017). However, there are no set standards for 

assessing motion artefact or clear cut-offs for when to consider an anatomical scan unusable. 

Already 15 years ago, the issue of how head motion during image acquisition could relate to 

anatomical brain measures in developmental neuroimaging studies was addressed in a study 

by the NIMH CPB (Blumenthal et al., 2002). Assessing the relationship between image 

quality (with motion artefact rated as “none”, “mild”, “moderate” or “severe”) and brain 

volume measures, findings revealed that quality was negatively correlated with age and grey 
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matter volumes. The authors cautioned that even minimal motion artefact had a significant 

impact on anatomical estimates.  

The same conclusion was drawn by a larger systematic investigation of head motion 

artefacts in MRI scans from adult participants conducted more than a decade later. Reuter et 

al., (2015) assessed the impact of visual inspection QC procedures on reducing motion-related 

artefact bias by categorizing scans as  “pass”, “warn”, or “fail”. A negative relationship 

between motion and grey matter volume remained even after “fail” scans were removed, 

suggesting that QC procedures that only exclude scans with blatant motion artefact do not 

adequately remove the confound of motion. However, the relationship between motion and 

grey matter volume was no longer significant when “warn” scans were also removed, 

suggesting that bias from motion artefact can be more appropriately dealt with when more 

stringent QC procedures are implemented. This study also collected navigator images at each 

TR during the scan, which allowed quantification of the actual amount of head motion. 

Findings revealed that motion reduced estimates of grey matter volume and thickness across 

the majority of the cortex, with some regional variability (including increased thickness in 

certain regions). Even small amounts of motion introduced a spurious result of up to 2% grey 

matter volume loss. Further, although the relationship between motion and cortical thickness 

estimates was significant in images processed using FreeSurfer’s longitudinal pipeline, the 

relationship was even greater when images were treated as independent from one another 

(processed with the regular pipeline).  

The impact of motion has been further confirmed and extended by recent papers 

using fMRI motion in the same scanning session as a proxy for motion during structural scans 

(Alexander-Bloch et al., 2016; Pardoe et al., 2016; Savalia et al., 2017). This proxy measure 

shows high inter-scan reliability and reasonable convergence with visual inspection for 

motion artefact in structural scans, supporting its use when explicit measurements of motion 

during structural scans are not available. Similar to visual inspection, scans with increased 

motion estimated using this proxy measure appear to exhibit decreased total brain and 

regional grey matter volume (Alexander-Bloch et al., 2016; Pardoe et al., 2016; Savalia et al., 
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2017); decreased lobar (Alexander-Bloch et al., 2016) and vertex-level thickness (Pardoe et 

al., 2016; Savalia et al., 2017); and increased lobar estimates of cortical curvature (Alexander-

Bloch et al., 2016). There is significant regional heterogeneity in the impact of motion, which 

may partially result from heterogeneity in the amount of physical motion itself related to 

differential distance from physiological axes of rotation. Motion may impact automated 

morphological estimates at least partially by decreasing grey-white tissue contrast (Pardoe et 

al., 2016). While there does appear to be broad similarities across image processing software 

to the extent that this has been tested, specific differences across platforms have also been 

reported, such as increases in thickness in medial occipital lobe in scans with high motion 

artefact in FreeSurfer (Alexander-Bloch et al., 2016; Pardoe et al., 2016) but not in CIVET 

(Alexander-Bloch et al., 2016). This begs the question of which measurement of fMRI motion 

is used as a proxy, as well as exactly how scans are assessed to be qualitatively motion-free, 

underscoring the need for transparency and consistency in these areas.  

The issue of motion-related bias is particularly problematic for developmental 

studies, given evidence that younger individuals on average show higher in-scanner motion 

than older individuals (Power et al., 2012; Satterthwaite et al., 2013). The potential impact of 

this issue on the longitudinal imaging literature is unclear. The effect size of minimal motion 

on cortical thickness measurements appears to be relatively small compared to the effect size 

of age in developmental populations (Alexander-Bloch et al., 2016). Based on evidence for 

decreasing motion with age, and decreasing cortical thickness across the second decade of 

life, it is unlikely that motion would account for putative reductions in cortical thickness in 

adolescence. However, it is unclear what the impact of motion could be on developmental 

trajectories starting in childhood. It can thus not be ruled out that motion-related bias could be 

implicated in previous reports of increases in cortical thickness through late childhood and 

reports of regionally and developmentally heterogeneous cortical thickness peaks. This 

hypothesis is supported by a recent study investigating the impact of QC procedures on 

developmental trajectories of cortical thickness across ages 5-22 years (Ducharme et al., 

2016). While quadratic trajectories were identified when using a standard QC procedure (i.e. 
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excluding scans with gross deformation of brain anatomy, large truncated brain areas, or 

diffuse areas of problematic grey-white boundaries definition), many of these non-linear 

patterns were no longer present when using a stringent QC procedure (i.e. excluding scans 

with localized areas of imprecise cortical definition, inclusion of white matter within cortex, 

or vice versa; see Figure 2).  

 

 

Figure 2. Ducharme et al.’s (2015) investigation of nonlinear developmental trajectories at 

different levels of quality control. Greatest quadratic or cubic trajectories (areas highlighted in 

different shades of blue) were evident with (a) no quality control, followed by (b) standard 

quality control. In comparison, minimal nonlinear trajectories were identified when (c) 

employing stringent quality control.  

 

In general, scans with frank, qualitative motion artefact have greatly increased impact 

on morphometric estimates; but critically, motion-related bias appears to persist even within 

scans that are qualitatively free of motion. However, there is currently no standard, agreed-

upon, protocol for QC of structural scans. Backhausen et al., (2016) recently proposed one 

such protocol that shows promise, recommending that the degree of post-processing QC be 
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determined by the rating of pre-processed images. The adoption of such protocols will help 

increase transparency and reporting in manuscripts, which is currently lacking in the field as 

evident from the studies reviewed in this paper. Indeed, several reviewed studies did not 

include any description of QC. Others tended to focus on the quality of either raw or 

processed images, but rarely both (e.g., Cao et al., 2015). Limited detail was also provided 

about the criteria employed and manual corrections undertaken. As an exception to this, a 

couple of studies provided detailed information, including figures, about their QC procedures 

in supplementary materials (e.g., Ducharme et al., 2016; Raznahan et al., 2014). Such 

increased transparency and reporting in manuscripts will help us further our understanding of 

how different QC methods might impact the results of developmental structural imaging 

studies.  

 

6. Image processing strategy 

There are several programs available for processing anatomical brain images for 

morphometric analysis (see Table 2 in Mills and Tamnes, 2014). While earlier studies used a 

variety of manual and automated tools (Table 1), CIVET 

(http://www.bic.mni.mcgill.ca/ServicesSoftware/CIVET) and FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/) are the most commonly used contemporary automated 

software packages (the former used in 4/34 studies and the latter used in 16/34 studies). 

FreeSurfer is an openly available software package that provides global, regional and vertex-

wise estimates of several brain measures. It offers a longitudinal processing stream that 

generates a within-subject template to increases reliability and statistical power (Reuter et al., 

2012; Reuter and Fischl, 2011). However, this processing stream was developed for adult 

populations, and thus assumes intracranial volume (ICV) is stable in the participant across 

time, which is a potential drawback given that there is evidence that ICV continues to 

increase up to mid-adolescence (Mills et al., 2016). 

CIVET provides conceptually similar anatomical estimates to FreeSurfer, but does 

not currently have a longitudinal pipeline. This is an important consideration given that it has 
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been shown that using longitudinal pipelines may change developmental trajectories by 

reducing noise (i.e., variance) by taking advantage of the longitudinal consistency of the data 

(Aubert-Broche et al., 2013). Other less frequently used programs that facilitate longitudinal 

analysis include QUARC (Quantitative Anatomical Regional Change; Tamnes et al., 2013) 

and the LL Method (Aubert-Broche et al., 2013), which use a within-subject template for 

registration purposes alone and thus allows for variation in head size over time. Nevertheless, 

FreeSurfer’s (v5.3 onwards) longitudinal pipeline is the only one thus far that can be applied 

to scans from participants with single time points, thus ensuring consistent processing of all 

images used in analyses such as multilevel modelling. 

As discussed above, there are acquisition methods that can be used to attempt to deal 

with hardware/software upgrades in longitudinal studies. While multi-site projects have used 

site as a covariate in analyses to account for potential biases, post-acquisition processing steps 

have also been applied. For example, FreeSurfer’s longitudinal stream and the LL Method 

have been used to assess potential scanner upgrade bias by examining change in subsets of 

participants before and after upgrade (Aubert-Broche et al., 2013; Dennison et al., 2013; 

Mutlu et al., 2013; Vijayakumar et al., 2016). Methods have ranged from calculating 

Cronbach’s alpha or change values at the vertex level (Aubert-Broche et al., 2013; Mutlu et 

al., 2013), to estimating test-retest reproducibility errors for individual ROIs and testing 

whether the amount of change observed in the study population was likely to have occurred 

over and above those expected from upgrade effects alone (Dennison et al., 2013; 

Vijayakumar et al., 2016).  

In summary, while some work has been done to assess the effects of different 

software on age-related differences in structural brain measures (Walhovd et al., 2016), 

further investigation is needed to assess such effects across the full range of software 

packages and versions, and also with longitudinal data. Of note, recent work has re-analyzed 

existing longitudinal datasets using a single software package (Mills et al., 2016). While this 

is a positive step in elucidating potential software differences, other factors contributing to 
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differences between studies make it difficult to assess the influence of different software 

packages (and versions) on current findings.  

 

7. Statistical analyses 

7.1 Analytic methods. Given the longitudinal nature of data collected in this field, 

statistical analyses need to appropriately model interdependencies of observations within 

subjects. While there are multiple different methods to do so, most studies have employed 

multilevel modeling (MLM; also referred to as mixed-effects models), including 21 of the 34 

studies reviewed in Table 2. MLM is particularly suited to ALD studies that collect data from 

individuals at different ages and differing time intervals, which in combination with missing 

data, result in unbalanced datasets. MLM is able to handle all available data in these instances, 

and consequently increases power to detect developmental effects (Gibbons et al., 2010; 

Singer and Willett, 2003; Verbeke and Molenberghs, 2000; West et al., 2006). Furthermore, 

missing observations in SCD studies means that the final dataset might still be unbalanced in 

nature, thus highlighting the value of this methodology (e.g., Vijayakumar et al., 2016). 

Newer studies are beginning to employ more flexible approaches to modelling, such as spline 

modeling (e.g., Alexander-Bloch et al., 2014; Tamnes et al., 2013), which might provide 

better fit of the underlying data by stitching together several basis functions that best fit 

segments of the developmental span of interest (Reiss et al., 2014; see Figure 3 for an 

illustration of these trajectories).  

A small number of studies have chosen to calculate a change (i.e., difference or 

percentage change) score and conduct a single sample t-test on this index of development (5 

out of 34 studies; e.g., Sowell et al., 2004; van Soelen et al., 2012). In ALD studies, this 

approach has also been used to examine whether age is associated with calculated change 

indices (Tamnes et al., 2013), thus providing valuable information about the amount of 

change occurring at different ages. However, the value of general linear models decreases 

with increasingly complex samples with multiple waves of assessments (i.e., beyond a two 

wave study), variation in timing of assessments, and missing data. Therefore, it is not 
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surprising that most studies have chosen to employ MLM, which will be the predominant 

focus of this section. 

 

7.2 Trajectories and peaks. MLM uses a likelihood-based approach to statistics that 

provides information about the relative usefulness of a model to describe data in comparison 

to another model. It does not, however, provide information about the absolute worth of any 

given model. Consequently, findings are influenced by the set of models chosen a priori to be 

investigated. The developmental trajectories modeled in any given study are generally based 

on the study design and nature of the observations. While ALD studies can examine complex 

non-linear trajectories at a group-level due to variance in participants’ age during 

assessments, modeling in SCD designs is limited by the number of repeated assessments per 

individual. Trajectories examined by any given study are often also influenced by prior 

research and prevalent theories in the field. As such, there can be a tendency for studies to 

examine first- and higher-order polynomial models, arising from early studies in this field 

identifying nonlinear patterns of brain development (Giedd et al., 1999; Gogtay et al., 2004; 

Shaw et al., 2008). This is evident in 15 of the 21 studies listed in Table 2 that employed 

MLM. 

Polynomial models are popularly employed because they are able to give a rough 

approximation of the pattern of change in a dataset with few within-participant observations. 

The simplest first-order model with a linear age effect enables us to determine whether a 

brain measure is decreasing or increasing across development. Higher-order models impose 

inflection points, with a quadratic term creating a U or inverted-U pattern, and a cubic term 

creating an S shaped curve (see Figure 3 for an illustration of these trajectories). These 

inflection points have been used to provide a point estimate for when a certain brain measure 

“peaks.” However, there are several limitations to this procedure. “Peaks” or inflection points 

associated with nonlinear trajectories are often statistically reported and interpreted through 

solving higher-order age functions, as evident in 11 of the studies reported in Table 2. 
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Figure 3. Frontal lobe volume of the Neurocognitive Development sample (Tamnes et al., 

2013) modelled using different polynomial and spline modelling techniques. Figures 

represent a) linear, b) quadratic, and c) cubic polynomial trajectories, as well as spline 

modelling with d) three and c) five knots. 

 

Inflection points are theoretically appealing, being commonly interpreted as sensitive 

periods characterized by significant brain development. However, there is a possibility that 

inflection points are an artefact of the modelling strategy or age range studied (Fjell et al., 

2010), as opposed to a true effect in the data. Varying “peaks” have been identified within the 

same dataset when studies use differing inclusionary criteria and thus report on differing 

subsamples from the same project. For example, The NIMH CPB sample has reported 

different peak ages for frontal grey matter volume, with the group reporting younger peaks as 

the dataset grew in sample size over the years: Giedd et al. (1999) 12.1 years in males and 

11.0 years in females; Lenroot et al. (2007) 10.5 years in males and 9.5 years in females. 

Differences in time intervals between scans are also likely to influence identified “peaks”, as 

shorter time intervals between scans might be more sensitive to subtle non-linear 

development that might not be evident using longer intervals. Studies should be mindful of 
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these issues when discussing peaks, and at the very least, report confidence intervals around 

these point estimates (e.g., Raznahan et al., 2014). 

 

7.3 Model selection. In order to choose between different polynomial trajectories, 

two main strategies have been employed. Many of the seminal early studies used a top-down 

approach whereby the most complex developmental model was chosen to describe the data 

based solely on the significance of the polynomial parameter (Giedd et al., 1999; Gogtay et 

al., 2004; Lenroot et al., 2007). However, more recent studies have used model fit indices or 

likelihood ratio tests to ensure the most parsimonious model is selected (i.e., choosing a less 

complex model when the addition of parameters does not improve model fit (e.g., Mills et al., 

2016; Mutlu et al., 2013; Vijayakumar et al., 2016). These different approaches may 

contribute to some of the variation in results, as non-linear developmental trajectories for 

certain measures (i.e., cortical thickness) identified in studies using the top-down approach 

have not consistently been replicated in more recent studies employing model-fit indices (e.g., 

linear trajectories identified by Ducharme et al., 2016; vs. predominantly cubic trajectories 

identified by Shaw et al., 2008). However, we note that given these studies differ on a number 

of parameters, it is not possible to specifically attribute variation in results to the issue of 

model selection alone. 

Traditionally, MLM does not give preference to a specific model selection approach. 

Nevertheless, top-down approaches are best used when there is a strong theory to guide them 

(see King et al., this issue). But a problem can arise when guiding theories, themselves, are 

based solely on top-down approaches that bias results to more complex models. This is 

evident in our field, where the predominant theories about anatomical brain development 

(e.g., nonlinear trajectories) were inferred from studies using a top-down approach. This had a 

subsequent ripple-down effect as latter studies also employed similar top-down approaches, 

thus perpetuating the issue. In total, we identified 12 studies that used the top-down approach 

for selecting between different age-related trajectories, in comparison to only 5 studies using 

model fit indices. Nevertheless, there does appear to be a shift with more recent studies 
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increasingly employing model fit indices into their investigations on brain development, and 

we need to strive to incorporate these findings into our theories in order to progress the field. 

One way to compare across studies using different model selection criteria would be to reduce 

emphasis on the actual model fit (i.e., cubic, quadratic or linear) and instead focus on the 

overall pattern of change. This would, for example, emphasize similar periods of 

stability/change between quadratic and cubic trajectories, or similar overall direction of 

change between first- and higher-order polynomial trajectories. Further, the inclusion of 

confidence intervals lessens the stark differences between different polynomial trajectory 

shapes, and highlights the lack of specificity that can be derived from model fits (e.g., Mills et 

al., 2016).  

 

7.4 Group vs individual differences. Interestingly, all the identified studies in Table 2 

that employed MLM only obtained group-level (i.e., fixed effect) developmental trajectories. 

Although subject-level trajectories can be modeled as random effects to account for 

interdependencies in the data (Pinheiro and Bates, 2013; Verbeke and Molenberghs, 2000), 

only one study was identified that employed this technique (Aubert-Broche et al., 2013), with 

all others only incorporating a random effect for the subject (i.e. random intercept). 

Information regarding differences in model fit indices when incorporating random slopes 

would provide valuable information about variability between individuals in their trajectories. 

Furthermore, studies considering cross-level interactions between random and fixed effects 

would provide novel insight into whether individual differences interact with group-level 

heterogeneity in meaningful ways (e.g., Ordaz et al., 2013). Most studies have examined the 

interaction between age and sex in predicting brain structure, for example, but the fixed effect 

of age has exclusively been used in this interaction term, thus only utilizing information about 

group-level differences in the age term. Such group-level analysis is often necessitated in 

ALD designs that are interested in modeling complex developmental trajectories that cannot 

be examined at an individual level (i.e., cubic trajectories modeled despite some individuals 

only having three or less repeat assessments).  
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A small number of studies have tried to address this issue of intra-individual 

variability by describing both group- and individual-level change in their sample. For 

example, 3 out of the 34 identified studies in Table 2 graphically illustrate the percentage of 

individuals that exhibit increases, decreases, or no change, in a structure over time. Dennison 

and colleagues (2013) apply this technique to a SCD study, whereas Lebel and Beaulieu 

(2011) and Zhou et al. (2015) bin their subjects into age groups given the ALD nature of their 

sample. It is also beneficial to report the magnitude of change, which has been addressed in 

some studies using plots of raw within-subject change over time. However, the usefulness of 

this strategy can also vary based on other study characteristics (e.g., difficult with vertex-wise 

as opposed to region of interest analyses).  

Analyses of difference scores (e.g., annualized percentage change), described above, 

are also generally conducted at the group level. However, reporting variance in these 

measures, along with means, would provide some indication of the level of individual 

differences in a sample. To our knowledge, none of the current studies have done so. 

Percentage change scores are also valuable when interpreting the association between 

different developmental variables (i.e., how are individual differences in development on a 

particular measure associated with change in another measure). For example, one of the 

reviewed studies employed difference scores to qualitatively explore, through graphical 

illustration, the relative contributions of changes in thickness and surface area to volumetric 

development (Raznahan et al., 2011b).  

In summary, most studies fail to address the issue of individual differences in brain 

development, and those that do so use different strategies, each with their own benefits and 

limitations. While it is not possible to recommend one particular strategy, it is important that 

studies provide some report of individual variability in their sample. The role of individual 

differences will also become increasingly important as attention turns towards understanding 

interactions between group-level characteristics (e.g., environment, genes) and intra-

individual variation in trajectories.  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 23, 2017. ; https://doi.org/10.1101/153718doi: bioRxiv preprint 

https://doi.org/10.1101/153718


	 24	

7.5 Specificity of analyses. Statistical analyses can be conducted at differing levels of 

spatial specificity, varying from global to voxel/vertex-level indices. Between these two 

extremes lies the lobar- and parcellation-based approaches, which groups voxels/vertices into 

regions based e.g. on anatomical landmarks. A review of studies in Table 2 revealed roughly 

similar distribution of these approaches, with 10 studies each using global, lobar and vertex-

wise methods and 11 studies using parcellations. Note that many studies chose to employ 

more than one approach, in addition to a smaller subset that employed region-of-interest 

analyses. While voxel/vertex-level analyses provide the greatest spatial resolution, the 

parcellation-based approach can be easier to interpret given that uniform developmental 

patterns are attributed to each structurally homologous region, thus providing a middle 

ground between vertex-level and lobar/global measures. Vertex-level analyses typically 

employ a smoothing kernel to reduce noise, and prior research has shown that the size of 

kernels can impact on scan-rescan estimates (Han et al., 2006). However, the majority of 

studies do not report on the size of this kernel. While parcellation-based approaches do not 

require these smoothing procedures as boundaries are already defined based on anatomical 

landmarks, there are several parcellations to choose from, also with differing spatial 

resolutions (and associated boundary-defining procedures; e.g., FreeSurfer’s Desikan-Killiany 

vs Destrieux atlases vs Human Connectome Project’s multimodal parcellation).  

It is standard that vertex-level analyses involve correction for multiple comparisons, 

given that analyses are conducted across tens of thousands of data points, using procedures 

such as false discovery rate, random field theory or Monte Carlo simulations. However, these 

tend to be conducted on p-values of a single model, as opposed to model fit indices. On the 

other hand, studies using parcellation-based data have tended to focus on model-selection 

procedures without correction for multiple-comparisons (as evidenced by all but four of the 

studies in Table 2 that employed this approach), even though the coarsest parcellation map 

typically outputs a large number of different regions to test. While this approach might be 

acceptable given that likelihood based analyses are theoretically distinct from null-hypothesis 

significance testing, at the very least, these findings need to be discussed carefully so that 
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they are interpreted in terms of relative evidence as opposed to absolute conclusions (i.e., 

without reference to the comparison models). Plotting of effect sizes across different 

parcellations would also provide complementary information about the degree of change 

across the brain. Multivariate analyses that include all parcels within the same model are 

promising approaches that overcome the issue of multiple comparisons (Ziegler et al., 2016). 

 

7.6 Statistical programs There are a number of software programs available to 

conduct statistical analyses – either specialized or not – for neuroimaging data, and each with 

their own strengths and weaknesses. FreeSurfer provides easily accessible code for general 

linear modeling, and also computes change metrics (i.e., annualized percentage change) that 

can be used within such a framework. While FreeSurfer does not incorporate MLM into its 

main platform, there is a separate Matlab toolbox to support these analyses. SurfStat is 

another Matlab toolbox supporting MLM that was originally created for use with CIVET-

processed data. Both toolboxes provide easily accessible methods to conduct MLM at a 

vertex-wise level across the cortical surface, including tools to correct for multiple 

comparisons (i.e., false discovery rate and random field theory correction). However, neither 

program supports the use of model fit indices to ascertain the best-fitting developmental 

trajectory. Rather, these programs are limited to a top-down approach for model selection. 

In order to overcome this limitation, one of the reviewed studies employed both 

vertex-level top-down model selection and parcellation-based indices of fit selection, finding 

similar developmental maps with both approaches (Vijayakumar et al., 2016). Other studies 

have employed MLM within general statistical packages (i.e., nlmefit in Matlab and lme4 or 

nlme in R) to conduct vertex-level analyses with a model-fit approach, with one study 

additionally correcting for multiple comparisons across the cortical mantle following model 

selection (i.e., nlmefit in Matlab followed by Monte Carlo simulations in FreeSurfer, Mutlu et 

al., 2013). Thus while it is possible to overcome these software limitations using a 

combination of different approaches and programs, the development of statistical programs 
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specific to longitudinal neuroimaging analyses with more sophisticated options would be a 

welcome addition to the field (see Madhyastha et al., this issues). 

 

 
8. Treatment of important covariates 

8.1 Sex differences. The majority of studies in this field have investigated sex 

differences in developmental trajectories of brain structure (evident in 22 out of the 34 studies 

in Table 2), while a smaller number (3 out of 34 studies) have chosen to instead control for 

sex in their analyses. Almost all studies investigating sex differences have identified 

developmental trajectories across the sample prior to investigating whether the incorporation 

of sex main effects or interactions with age improve model fit. However, this approach 

precludes the identification of different trajectories (e.g., linear versus quadratic) between the 

sexes, and assumes that males and females exhibit similar developmental patterns (e.g., both 

present with linear growth, although rate of growth can differ). Furthermore, if differing 

developmental patterns do exist, identification of one developmental trajectory for the entire 

sample might not be truly reflective of either sex. In order to overcome this issue, some 

studies have chosen to analyze males and females separately (e.g., Goddings et al., 2014). 

However, these are limited to discussing qualitative differences between the sexes. Future 

studies may benefit from combining these approaches, as implemented by Lebel and Beaulieu 

(2011), such that each sex is first examined separately and only combined if similar 

trajectories are identified (to examine development of the group as a whole, as well as 

potential sex differences).  

Research on sexual dimorphism in the brain is also influenced by if, and how, studies 

account for differences in global brain size. Males exhibit larger global brain sizes than 

females from childhood through to adulthood (Giedd et al., 2012; Jahanshad and Thompson, 

2017; Paus et al., 2017). Therefore, studies attempt to control for overall brain size to reduce 

the risk of observing structural brain differences between sexes that is solely due to 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 23, 2017. ; https://doi.org/10.1101/153718doi: bioRxiv preprint 

https://doi.org/10.1101/153718


	 27	

differences in overall brain size. These methodologies, and their impact on sex differences, 

are further discussed in the following section. 

 
8.2 Whole brain correction. As highlighted in Table 2, some studies choose to 

account for global brain size in their analyses, but many choose to not do so. There are a 

number of issues faced by researchers when deciding to correct for global brain size, 

including potential measures to use and methods to employ. When considering methodology, 

most studies have included global brain size as a covariate in statistical analyses (6 out of 34 

studies reviewed), though some have chosen to correct using the proportion method that 

divides regional size by global size (5 out of 34 studies reviewed). The former covariate 

method is often preferred for vertex-wise analyses as it is easier to implement in comparison 

to the latter approach, which would require calculation of adjusted brain measures across the 

cortical mantle prior to statistical analyses. However, an important limitation of both these 

popular methods is the assumption of linear scaling between regional and global brain size. 

Scaling factors in the brain are constrained by metabolic and physical principles, such 

that neuronal size and other components of brain anatomy undergo a non-uniform 

enlargement of subcomponents with increasing overall size (Toro et al., 2009). These 

nonlinear relationships between structure and size, referred to as allometric principles, are 

demonstrated by exponential increases in white-to-grey matter ratios at a rate of 4:3 with 

increasing total brain volume (Zhang and Sejnowski, 2000). This might account for greater 

grey-to-white matter ratio in females due to their smaller overall brain size, supported by 

findings of minimal sex differences in this ratio when accounting for differences in overall 

brain size (Leonard et al., 2008). On a more regional scale, cross-species work has shown 

nonlinear scaling of subcortical volume with increasing whole brain volume (WBV; Finlay 

and Darlington, 1995), which was confirmed by a recent investigation in humans (Reardon et 

al., 2016). Furthermore, violations of these allometric principles by commonly used 

proportion and covariate correction methods confounds the effects of nonlinear scaling and 

group effects (i.e., sex) on subcortical volume (Reardon et al., 2016). Greater consideration of 
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regional allometric scaling laws may therefore provide greater clarity into the specificity of 

findings on sex (and other group) differences.  

Another important issue for developmental neuroimaging is that global brain size 

continues to change during adolescence, and differences in development rates across the brain 

could bias results when controlling for global size. Moreover, group differences in global 

measures could be a reflection of earlier maturation in one group, thus potentially eliminating 

differences of interest when it is controlled. In order to deal with this problem, some studies 

have controlled for ICV as initial research suggested it stabilized between early and mid-

adolescence (Courchesne et al., 2000; Pfefferbaum et al., 1994). Specifically, three out of 10 

studies that chose to control for global brain size in Table 2 used ICV. In comparison, 8 of 

these studies controlled for WBV (including one that employed both measures). However, as 

mentioned above, Mills and colleagues (2016) found that both ICV and WBV continued to 

develop during adolescence. Furthermore, controlling for these two measures influenced the 

resultant regional (i.e., grey vs white matter volume) trajectories differentially, and these two 

measures had varying impacts on sex differences based on the correction method employed. 

While both ICV and WBV accounted for sex differences when using the proportion method 

(i.e., the addition of sex to proportion-corrected models did not improve model fit), WBV 

alone was able to do so with the covariance method. Considered within the context of current 

findings in the literature, these results suggest that the estimate of global brain size employed 

by studies likely influenced the sex effects that were observed. Therefore, it is considered best 

practice to present both raw and corrected brain measures when examining the influence of 

sex on brain development (e.g., Dennison et al., 2013). Furthermore, to our knowledge, there 

has been no investigation into the effects of controlling for change in global brain size. While 

the scaling factors discussed above will still impact this methodology, it might be a valuable 

area for investigation as it accounts for continued changes in global brain size over 

development.  
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Global volumetric estimates are sometimes also used to control for whole brain size 

in analyses of non-volumetric measures (i.e., cortical thickness). This approach is not without 

fault as volume is driven by both thickness and surface area, with some research suggesting 

that it is largely driven by surface area (Im et al., 2008; Raznahan et al., 2011b). Only minor 

change has been identified in cortical thickness with enlargements of brain size, consistent 

with theoretical models by Van Essen (1997) and Rakic (1988). These findings and theories 

question the influence of increasing brain size on cortical thickness. On the other hand, 

matching the global measure with the metric of interest, particularly in relation to cortical 

thickness (i.e., controlling for average cortical thickness), has also been questioned given 

wide variability in thickness across the cortex (Palaniyappan, 2010). Therefore, the majority 

of research on non-volumetric measures have chosen not to control for whole brain size.  

Given these issues, due consideration needs to be given when choosing the method of 

correction/control and measure of global brain size, as well as interpretation of findings. Most 

researchers in this field are aware of these issues, and thus present uncorrected results if they 

choose to control for global brain size. However, as highlighted by Mills and Tamnes (2014), 

it would also be valuable to present the developmental effects of the global measure used, so 

that readers can fully understand whether results were driven by global or regional changes. 

Furthermore, investigation into developmental scaling relationships between global and 

regional measures of interest, as well as potential group differences, will help us better 

understand the influence of correction procedures and allow us to more appropriately interpret 

findings.  

 
8.3 Pubertal maturation. While most studies on brain development have indexed 

maturation using age, a growing number of studies are examining the influence of puberty. 

This interest partly stemmed from early studies identifying earlier “peaks” in cortical volume 

in females compared to males, which roughly corresponded to timing differences in the onset 

of puberty between the two sexes (Giedd et al., 1999; Lenroot et al., 2007). Although the 

exact age of these “peaks” has been found to vary significantly since these initial findings, 
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along with many studies failing to identify any sex differences for certain measures of cortical 

development (e.g., cortical thickness - Mills et al., 2014b; Vijayakumar et al., 2016; Wierenga 

et al., 2014b), there remains a growing interest in pubertal influences. There are a number of 

cross-sectional studies on puberty-related cortical development, but only a handful of 

longitudinal studies thus far (outlined in Table 3). These studies inevitably have to consider 

potential age effects, as pubertal maturation and age are highly covaried (Braams et al., 2015). 

Three of the studies either controlled for age-effects or examined interactions between age 

and pubertal measures. In comparison, two studies, from the University of Pittsburgh cohort, 

recruited participants within a minimal age span given the project’s primary focus was related 

to pubertal effects on brain development. However, as there remained some variance in age in 

this sample, the authors chose to control for baseline age within their analytic models 

(Herting et al., 2014). Therefore, studies choose the most appropriate methodology to deal 

with age depending on their study design. However, it is always important to check for 

multicollinearity when entering age and puberty into the same model, as well as recognizing 

that controlling for age might absorb much of the variance related to puberty given the 

strength of correlation between these two variables. These studies might therefore benefit 

from presenting results both with and without the inclusion of age in their models. 

Puberty-related studies also have to consider which index of pubertal maturation to 

investigate. Although a detailed discussion of this topic is beyond the scope of this paper (for 

a review, refer to Shirtcliff et al., 2009), it is interesting to note that all studies listed in Table 

3 have investigated pubertal/Tanner stage using self- or parent-report measures given ease of 

administration and minimal costs of processing data. However, most of them have also 

investigated associations between cortical development and gonadal sex hormones (i.e., 

testosterone and estradiol), and only one study thus far has investigated how cortical 

development may be related to interactions between different hormones (Nguyen et al., 

2013). Pubertal studies also have to deal with issues related to modeling sex differences 

described above, as well as sex differences in pubertal maturation. Given that females tend to 

exhibit physical signs of puberty 1-2 years earlier than males (Marshall and Tanner, 1969; 
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Sun et al., 2002), projects specifically interested in pubertal development sometimes recruit 

younger females at baseline compared to males, with the aim of capturing pre-pubertal stages 

in both sexes (e.g., University of Pittsburgh project; Herting et al., 2014). 

 

9. Discussion 

In summary, given that studies to date differ on a number of methodological issues, it 

is not surprising that there are variations in the normative brain developmental trajectories 

that have been identified. While it is beyond the scope of this paper (and perhaps impossible) 

to provide specific reasons as to why there is variation in reported results, we would like to 

point out that the evolution of methodological techniques used within and across projects over 

time is beneficial to the field. Although not to belittle the methods and results from earlier 

studies, the more recent papers have implemented certain strategies that are now widely 

accepted as improvements in our practices. For example, there appears to be a shift towards 

the identification of the most parsimonious models to describe the underlying data, as 

demonstrated by more recent studies favouring the use of model-fit indices or likelihood ratio 

tests in MLM. Nevertheless, there are also additional practices that would be beneficial for 

our field to adopt, which are outlined as recommendations in Table 4. For example, it has 

become apparent that many studies run independent multilevel models in regions across the 

brain, as defined by parcellation maps, without correction for multiple comparisons. Further 

consideration of this issue is required in the field, and at the very least, we need to 

appropriately interpret the findings of likelihood-based analyses (i.e., relative to comparison 

models) as opposed to a focus on p-values of each model individually.   

This review of the literature identified certain methodological considerations that 

have been empirically examined, and thus it is possible to draw stronger conclusions and 

make recommendations regarding them. For example, there is general consensus on the 

benefits of using longitudinal processing streams that create subject-specific templates when 

reconstructing the cortical surface. Similarly, it is widely acknowledged that efforts should be 

made to maintain the same image acquisition parameters across subjects and time, with 
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appropriate testing or accounting for any differences within the sample. In comparison, there 

has been no investigation of whether model selection procedures (i.e. step-down vs model fit 

indices) impact the resultant trajectories. Furthermore, although the importance of certain 

methodological issues has risen in prominence, there still remain no standardized practices to 

address many of these problems. For example, despite an increased awareness of the effect of 

motion and importance of QC, there are no systematic procedures that are agreed upon within 

the field. As such, our recommendations outlined in Table 4 are aimed towards i) ensuring 

that empirically supported ‘best-practices’ are incorporated, and ii) increasing transparency of 

other practices to support future empirical investigations and guidelines.  

 With an inevitable shift towards consensus regarding methodological approaches, the 

promise of more reliable data on normative brain development becomes likely, particularly 

with the ability to conduct meta-analyses. However, we are currently limited in our ability to 

conduct such analyses due to methodological variation. For example, it is difficult to 

amalgamate studies that have used parcellation versus vertex-wise approaches or raw versus 

percentage change analyses. One way to overcome this issue in the short term at least is for 

future studies to conduct replications across samples, whereby the same processing and 

analytic techniques are employed (e.g., Mills et al., 2016; Tamnes et al., 2017). Greater 

transparency and consensus regarding methods will also facilitate the implementation and 

interpretation of research beyond normative developmental trajectories, such as that 

examining the clinical and behavioral significance of brain development.  

 A limitation of this review is that we only included and reviewed studies assessing 

the development of independent grey matter structural properties (Table 2). A growing area of 

research in grey matter development is structural covariance, which refers to correlations 

across people in the morphological properties of pairs of brain regions (or larger brain 

networks; Alexander-Bloch et al., 2013a; Evans, 2013). Interest in this methodology lies 

largely in its potential to shed light on brain connectivity and connectomics using T1w scans. 

Indeed, there is evidence that patterns of structural covariance partially (though not entirely) 

recapitulate known functional boundaries (Chen et al., 2011; Li et al., 2013), resting state 
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fMRI connectivity patterns (Kelly et al., 2012; Seeley et al., 2009) and white matter 

connectivity derived from diffusion MRI (Gong et al., 2012). Studies of children and 

adolescents have begun to map out developmental changes in structural covariance. A brief 

discussion of existing cross-sectional and longitudinal studies, and methodological issues 

specific to this methodology, is provided in Box 2. 

 Moving beyond the characterization of normative brain development, many 

researchers are now turning their attention towards how individual differences in brain 

development might relate to various aspects of functioning, including cognition, affect, and 

behavior. While several studies have found that greater cortical thinning is related to better 

functioning (e.g., Ducharme et al., 2012, 2014; Shaw et al., 2006, 2011; Vijayakumar et al., 

2014a, 2016), inconsistencies exist both within and across studies. While this research 

enables us to better understand how various developmental processes might relate to one-

another, there are a number of additional methodological considerations that might be 

influencing these findings. A brief discussion of some of these issues is presented in Box 3.  

Building on knowledge gained from research on normative brain development, a 

number of projects are focused on characterizing aberrant trajectories of brain development 

associated with psychiatric and developmental disorders or subclinical symptoms, with the 

aim of identifying underlying neurobiological mechanisms that might be targeted in future 

interventions. The majority of research has thus far concentrated on attention deficit 

hyperactivity disorder (ADHD), autism spectrum disorders (ASD) and schizophrenia. Studies 

on childhood-onset schizophrenia have identified diffuse cortical thickness differences during 

childhood in comparison to healthy controls, possibly with reductions in thickness becoming 

localized to the frontal and temporal lobes during adolescence (Greenstein et al, 2006). ASD 

research has produced conflicting findings, with some identifying reductions (Hardan et al., 

2006), and others finding exaggerations (Wallace et al., 2010), in cortical thinning over time. 

Research on children with ADHD or attention problems suggest that these children have 

thinner cortices during childhood, and delayed or slowed thinning during adolescence (Shaw 

et al., 2007; Ducharme et al., 2012). The significance of these findings is limited by the same 
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issues as have been discussed in this review. However, they are additionally limited by 

heterogeneity within each disorder, as well as the lack of specificity of findings to one 

particular disorder. Future studies on these and other disorders thought to have 

neurodevelopmental origins (e.g. depression, substance-use, conduct disorder) should attempt 

to identify whether there are consistent patterns of aberrant trajectories of brain development, 

and whether patterns can be differentiated across different disorders. 

In conclusion, we have identified a number of methodological factors and issues, 

from image acquisition to data modelling, where variation in approaches taken in the current 

literature are likely to have contributed to differing results, and hence differing interpretations 

about grey matter structural brain development during childhood and adolescence. As such, it 

is important that results are interpreted within the context of these (and other) methodological 

choices. There is also wide variability in the extent to which different methodological 

considerations have been empirically examined. Future research should, in addition to 

adopting greater transparency of practices, seek to empirically examine the effects of varying 

methods on results, in order to promote best-practice guidelines, and ultimately, a solid and 

accurate understanding of child and adolescent brain development. 

 

Box 2. 

Structural covariance is an increasingly used methodology, referring to correlations across 

people in the morphological properties of pairs of brain regions (or larger brain networks; 

Alexander-Bloch et al., 2013a; Evans, 2013). While cortical thickness and grey matter 

volume have been the most commonly examined morphological substrates, there is evidence 

that other phenotypes such as cortical surface area may have specific patterns of covariance 

(Sanabria-Diaz et al., 2010). Studies of children and adolescents have begun to map 

developmental changes in structural covariance. Generally, structural covariance appears to 

become more widely anatomically distributed over time, but different sub-networks also 

follow different developmental patterns (Khundrakpam et al., 2013; Zielinski et al., 2010). 

For example, a study of 5-18 year-olds found grey matter covariance of primary sensory and 
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motor areas to peak in early adolescence, while covariance patterns of regions subserving 

higher cognitive functions expanded linearly throughout the age range (Zielinski et al., 2010). 

The balance between integrative and segregative graph-theoretic properties, derived from 

large-scale covariance of cortical thickness between regions, was also reported to follow a 

nonlinear trajectory in 5-18 year olds (Khundrakpam et al., 2013). Developmental studies of 

structural covariance may reflect developmental changes in brain function, for example, a 

negative association was found between amygdala volume and prefrontal cortical thickness in 

children and adolescents, mirroring reports of amygdala functional connectivity (Albaugh et 

al., 2013).  

Complementary to these cross-sectional studies, longitudinal studies have used the 

approach of ‘maturational covariance’ - covariance in longitudinal changes across subjects. 

Similar to cross-sectional studies, these longitudinal analyses have found regionally 

heterogeneous maturational covariance, with stronger correlations reported with association 

areas compared to primary sensory areas of cortex (Raznahan et al., 2011a). These statistical 

relationships also appear to recapitulate known functional relationships, for example, 

longitudinal changes in hippocampal volume were found to covary with longitudinal changes 

in cortical areas involved in episodic memory (Walhovd et al., 2015). Maturational 

covariance, reflecting coordinated development between brain regions, may in fact cause 

cross-sectional structural covariance (Alexander-Bloch et al., 2013b), as a generalizable 

biological link may hold between phenotypic covariance and coordinated maturation (Riska, 

1986). In the brain, covariance patterns are likely to be established very early in development, 

and a recent study of children under two years old found maturational covariance to predate 

structural covariance (Geng et al., 2016). Notably, longitudinal studies to date have 

investigated the covariance of longitudinal phenotypes, as opposed to longitudinal changes in 

structural covariance per se, as covariance patterns have only been defined at the group level. 

Novel methodological approaches may be required to optimally leverage longitudinal data in 

future analyses. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 23, 2017. ; https://doi.org/10.1101/153718doi: bioRxiv preprint 

https://doi.org/10.1101/153718


	 36	

 In general, developmental studies of structural covariance confront an expanded array 

of methodological issues in addition to those of developmental anatomical imaging in 

general. An analogy can be drawn between functional connectivity (derived from correlations 

across time in brain activity) and structural covariance (derived from correlations across 

people in brain morphology). Comparable methodological principals should thus be applied 

when using multivariate analyses such as seed-based regression, principal components or 

graph-theoretical analyses. Brain parcellation may particularly impact covariance studies as 

the size of a brain region may influence its covariance patterns; we therefore advocate the use 

of uniformly-sized brain regions when possible. Some estimate of global effect such as total 

brain volume is generally also included as a covariate in studies of structural covariance, as 

are gender and age within experimental groups. Ideally, pending a consensus regarding 

appropriate statistical approaches, analyses will be presented both with and without covariates 

likely to impact the outcome of interest. Although specific studies of the effect of motion 

artefact on structural covariance have not been performed, it is likely that regions 

disproportionately affected by motion will manifest artefactually elevated covariance. For 

future research, the complexity of these methodological issues will necessitate a proportional 

investment in both rigor and transparency. 

 

 
Box 3. 

Aside from the methodological factors affecting studies of normative brain development, 

there are a number of additional challenges faced by studies examining how individual 

differences in developmental trajectories relate to cognitive, affective and behavioral 

development. While some studies have found that greater cortical thinning is related to better 

affective and cognitive functioning (e.g., Ducharme et al., 2012, 2014, Shaw et al., 2006, 

2011; Vijayakumar et al., 2014a), others have found that less thinning is related to better 

functioning (Friedel et al., 2015). Apart from the influence of differences in the behavioral 

(i.e. functioning) measures employed, results of these studies are influenced by the age range 
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of participants, as faster rates of thinning might be adaptive in certain ages but not others. 

Adaptive patterns of cortical development may also vary across the brain, and might be 

moderated by sex for certain behaviors that differentially develop in males and females (e.g., 

emotion regulation; Vijayakumar et al., 2014b). Development prior to the examined period 

might also influence identified brain-behavior associations in unknown ways. Given these 

caveats, care needs to be placed on the conclusions drawn from such research. It also 

highlights the need for further studies that replicate findings in order to confirm inferences 

drawn from this line of research.    

From a statistical perspective, the majority of this literature has only examined 

behavior at one or two time points, which can be incorporated as an absolute or change (i.e., 

difference or residualized change) value. However, analyses will become more complex as 

studies incorporate three or more time points of behavioral data along with a similar number 

of imaging data, which would enable investigation of nonlinear patterns of correlated brain-

behavior development. While MLM can handle time varying covariates along with a time 

varying dependent variable, it does not model change in the covariate and thus cannot 

examine the association between changes in two variables. MLM can examine whether the 

association between brain and behavior varies with age, and while this question is of no doubt 

of interest to many researchers, patterns of correlated brain-behavior change are also likely to 

provide valuable information about developmental processes. Parallel process models within 

the structural equation modeling framework are ideal for investigating the association 

between development of two or more variables, achieved via estimation of an underlying 

latent “change” factor for each variable and associated correlation between these factors. 

However, structural equation modeling is not currently supported by statistical programs for 

neuroimaging data, and can thus only be carried out using a region-of-interest or parcellation-

based approach. Moreover, many non-imaging statistical packages do not support unbalanced 

datasets for structural equation modelling, and thus cannot be easily utilized on many samples 

without excluding a substantial amount of data. Further consideration of these factors and 
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potential development of software packages to support this type of analyses is required for 

our field to progress in this area of research. 

Importantly, given the observational nature of this line of research, it is not possible 

to comment on causality when examining brain-behavior associations; i.e., does engagement 

in behavior affect brain maturation or vice versa. Studies on training and practice effects 

provide some support for a causative role of experience and activity-dependent plasticity 

(Dehaene et al., 2010; Draganski et al., 2004; Gaser and Schlaug, 2003). However, it remains 

plausible that trophic effects influence neurobiological development that supports adaptive 

functioning (Burgoyne et al., 1993). Therefore, it is important that conclusions are not drawn 

about causality, which should rely on future animal research that attempts to fully unpack and 

better understand these associations.  
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Table 1. Overview of longitudinal structural MRI datasets 

Project Age-
range, 
years 

n participants 
(longitudinal*) 

N 
scans 

Average 
scans per 
participant 
(i.e. N/n) 

Range 
scans 

Longitudinal 
study design 
(ALD vs 
SCD) 

Field strength / 
voxel size 

Alberta 
Canada sample 

5 - 32  103 (103) 221 2.15 1 - 4 ALD 1.5T 
1x1x1 

BrainSCALE 
UMCU - NTR 

9 - 13  224 (178) 346 1.54 1 - 3 SCD 1.5T  
1×1×1.2 

Braintime 8 - 28  271 (241) 680 2.51 1 - 3 ALD 3T 
0.875x0.875x1.2  

Leonard 
Florida sample 

5 - 11  45 (45) 90 2.00 2 ALD 1.5T 
0.98x0.98x1.25 

Mother-Child 
Cohort Study 

4 - 10  428 (304) 732 1.71 1 - 2 ALD 1.5T 
1.25x1.25x1.2 

Neurocognitive 
Development 

8 - 25  191 (148) 407 2.13 1 - 3 ALD 1.5T 
1.25x1.25x1.2 

NICHE cohort 7 - 23  147 (53) 233 1.59 1 - 3 ALD Two scanners: 1.5T 
1x1x1.2 

NIH MRI 
Study of 
Normal Brain 
Development 

5 - 22  538 (527) 1381 2.56 1 - 3 ALD 6 scanners: all 1.5T 
In-plane 1x1, slice 
thickness ranged 
from 1-1.8mm 

NIMH Child 
Psychiatry 
Branch 

3 - 30 647 (376) 1274 1.93 1 - 7 ALD 1.5T 
0.94x0.94x1.5 

Orygen 
Adolescent 
Development 
Study 

11 - 
20  

166 (128) 367 2.21 1 - 3 SCD 2 scanners: both 3T 
1: 0.48x0.48x1.5 
2: 0.9x0.9x0.9 

University of 
Minnesota 
cohort 

9 - 24  149 (149) 298 2.00 2 ALD 3T 
1x1x1 

University of 
Pittsburgh 
cohort 

10 - 
14  

126 (81) 226 1.79 1 - 2 SCD 3T 
1x1x1 

NB: This table only reports longitudinal datasets that have been published, including both projects that 
are completed and still ongoing. Details were acquired by contacting investigators, or from studies 
published using the datasets. a Longitudinal participants refers to the number of participants that have 2 
or more scans. ALD = Accelerated longitudinal; SCD = Single cohort design; NIH = National Institute 
of Health; NIMH = National Institute of Mental Health; UMCU – NTR = University Medical Center in 
Utrecht - Netherlands Twin Register 
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Table 2. Details of longitudinal studies investigating normative structural brain development between childhood and young adulthood. 

Study (Project) N (males) N Scans, 
n per subject, 
approximate 
interval  

Age (y) Image processing 
software (version) 

Measures: 
vol/sa/ct/others 

Specificity of 
analyses 

Index of analyses: 
absolute or change 
values, 
whole brain 
correction 

Statistical analyses: 
analysis method (software),  
effects, 
model fit, 
trajectories, 
multiple comparison 

Lebel & Beaulieu, 
2011 (Alberta, 
Canada) 

103 (51) 221, 
2-4 per 
subject, 
4 year  

5 - 32 FreeSurfer Volume Global Absolute values and 
difference score for 
within subject change 
(based on change 
>1SD) 

Mixed models 
Effects: age, controlling for sex 
Model selection: step-down 
Trajectories: linear, quadratic 

Zhou et al., 2015 
(Albeta, Canada) 

90 (42) 180,  
2 per subject, 
4 year  

5 - 32 Civet 1.1.11 CT, SA Global and lobar Absolute values and 
difference score for 
within subject change 
(based on change 
>1SD) 

Student's t-test compared mean thinning rates 
across age groups 
Kruskal–Wallis test of differences in ratio of 
increased/decrease/no change between age 
groups 
Trajectories: linear 

Swagerman et al., 
2014 
(BRAINSCALE) 

224 (112) 346, 
1-2 per 
subject, 
3 year  

9 - 12 FreeSurfer 5.1 Volume Segmentation Absolute values and 
ICV-corrected 

Bivariate analyses of twin data: OpenMX 
Effects: age within each sex, sex at each time 
point 
MC: Bonferroni for number of independent 
dimensions in data 

van Soelen et al., 
2012 
(BRAINSCALE) 

113 (60) 226, 
2 per subject, 
3 year  

9 - 13 Automated: Peper et 
al., 2008; Brouwer et 
al., 2010. 
CLASP algorithm 

CT Vertex-wise Change (difference) One sample t-test 
Effects: sex, controlling for handedness and 
duration of scan-interval. 
Trajectories: linear 
MC: FDR 

Aleman-Gomez et 
al., 2013 (Child 
and adolescent 
first-episode 
psychosis study) 

52 (32) 104, 
2 per subject, 
2 year  

11 - 17 FreeSurfer 5.1 LP; 
BrainVisa 4.2.1 

CT, SA, GI, 
gyral WM 
thickness, 
convex hull SA, 
sulcal 
length/depth/wi
dth. 

Global and lobar Percentage change 
(average or summed 
across hemispheres) 

GLM: SPSS 
One sample t-test 
Effects: lobe, age, sex, interaction of age and 
sex, scanner, time between acquisitions. 
MC: FDR 
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Sowell et al., 2004 
(Leonard Florida) 

45 (23) 
 

90, 
2 per subject, 
2 year  

5 - 11 Automated: 
MacDonald et al., 
1994, Thompson et al., 
2000a, Sowell et al., 
2001b;  
Manual tracing of 
sulcal delineation 

CT and brain 
growth 
(distance from 
center of 
brain/hemispher
e) 

Vertex-wise, 
lobar, and 
perisylvian ROI 

Change (i.e. 
difference) 

One-sample t-test 
MC: permutation testing 

Tamnes et al., 
2013 (NCD) 

85 (47) 170, 
2 per subject, 
2.6 year  

8 -22 FreeSurfer 5.1; 
QUARC 

Volume Vertex-wise and 
segmentation 

Percentage change 
(vertex and 
subcortical) 

GLM (change differs from zero): FreeSurfer, 
SPSS, R 
Effects: age, sex, and interaction, controlling 
for scan interval 
Trajectories: linear 
Assumption-free models used for description 
(no statistical testing)  
MC: FDR & Bonferroni 

Wierenga et al., 
2014a (NICHE) 

135 (92) 201, 
1 - ≥3 per 
subject, 
1.5-5.5 year 

7 - 23 FreeSurfer 5.1 CT, SA, CV Parcellation Absolute Mixed models 
Effects: Age, sex, and interactions 
Model selection: Step-down for age, BIC for 
sex 
Trajectories: linear, quadratic, cubic 

Wierenga et al., 
2014b (NICHE) 

147 (94) 223 
≥1 per subject, 
1.5-5.6 year  

7 - 23 FreeSurfer 5.1 Volume Segmentation Absolute Mixed models 
Effects: age, sex, and interactions 
Model selection: stepdown for age, BIC for 
sex 
Trajectories: linear, quadratic, cubic 

Aubert-Broche et 
al., 2013 (NIH 
MRI) 

292 882, 
2-4 per 
subject,  
2 year  

4 - 19 Longitudinal pipeline 
(“LL method”) 

Volume Global and 
regional/segmenta
tion 

Absolute Mixed models: R 
Effects: age, sex, and interactions 
Model selection: AIC 
Trajectories: linear, quadratic 

Cao et al., 2015 
(NIH MRI) 

303 (142) 418, 
1-2 per 
subject, 
2 year  

5 - 18 FreeSurfer Volume Parcellation and 
segmentation 

Absolute LASSO: multivariate linear regression 
Effects: age 

Ducharme et al., 
2015 (NIH MRI) 

384 (343) 753, 
1-3 per 
subject, 
2 year  

5 - 22 CIVET 1.1.11 SA, CV Vertex-wise and 
lobar 

Absolute Mixed models: SurfStat, R 
Effects: age with and without controlling for 
WBV 
Model selection: Step-down (vertex) & AIC 
(lobar) 
Trajectories: linear, quadratic, cubic 
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Ducharme et al., 
2016 (NIH MRI) 

383 (343) 753, 
1-3 per 
subject, 
2 year  

5 - 22 CIVET 1.1.11 CT Vertex-wise and 
lobar 

Absolute Mixed models: SurfStat, R 
Effects: age, sex, with and without controlling 
for WBV  
Model selection: Step-down (vertex) & AIC 
(lobar) 
Trajectories: linear, quadratic, cubic 

Krongold et al., 
2015 (NIH MRI) 

335 (155) 724, 
1-2 per 
subject 

4 - 22 FreeSurfer 5.3 (LP) CT, SA, CV Parcellation Absolute Mixed models: R (lme4) 
Effects: age with sex as nuisance regressor 
Trajectories: linear 

Nie et al., 2013 
(NIH MRI) 

445 (127) 951 3 - 20 Automated: Zhang et 
al. 2001 & Liu et al. 
2008 

CT Regional Absolute Linear regression 

Giedd et al., 1999 
(NIMH CPB) 

145 (89) 280 scans, 
1-5 per 
subject, 
2 year  

4 - 22 Automated: Zijdenbos 
et al., 2002 

GM Volume Lobar Absolute Mixed models 
Effects: age, sex and interactions 
Model selection: Step-down 
Trajectories: linear, quadratic 

Gogtay et al., 
2004 (NIMH 
CPB) 

13 (6) 52, 
≥3 per subject, 
2 year  

4 - 21 Automated: Thompson 
et al. 2001 

GM volume, 
GM density 

Lobar and vertex-
wise 

Absolute Mixed models 
Effects: age 
Model selection procedure: Step-down 
Trajectories: cubic, quadratic, linear 

Gogtay et al., 
2006 (NIMH 
CPB) 

31 (16) 100 
≥2 per subject, 
2 year  

4 - 25 Manual tracing from 
single individual; 
surface mesh applied to 
hippocampus 

GM Volume ROI and vertex-
wise 

Absolute Mixed models 
Effects: age, sex and interactions; WBV used 
as a covariate 
Model selection procedure: Step-down 
Trajectories: cubic, quadratic, linear 

Harezlak et al., 
2005 (NIMH 
CPB) 

300 (159) 619,  
1-5 per 
subject 

3 - 25 

 

Volume Total cerebral 
volume and ROIs 

Absolute Parametric (polynomial) vs. semiparametric 
(reduced rank penalized regression models) 
Effects: age, sex 

Lenroot et al., 
2007 (NIMH 
CPB) 

387 (209) 829 
1-7 per 
subject, 
2 year  
 

3 - 27 Automated Nonlinear 
Image Matching and 
Anatomical Labelling 

GM volume, 
WM volume 

Global and lobar Absolute and 
percentage change 

Mixed models  
Effects: sex, with and without adjustment for 
WBV at the same age 
Model selection: Step-down 
Trajectories: cubic, quadratic and linear 

Mills et al., 2014a 
(NIMH CPB) 

33 (23) 
 

152,  
3-6 per 
subject, 
2 year  

7 - 30 Freesurfer 5.3 (LP) Volume ROI Absolute Mixed models: R 
Effects: age, and interactions 
Model selection: AIC 
Trajectories: linear, quadratic, cubic 

Mills et al., 2014b 288 (164) 857 (ATC: 7 - 30 Freesurfer 5.1 CT, SA, CV ROI Absolute Mixed models: R 
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(NIMH CPB) ATC: 221 447), 
2-7 per 
subject, 
2 year  

Effects: age, sex, and interactions 
Model selection: AIC 
Trajectories: linear, quadratic, cubic 

Raznahan et al., 
2011a (NIMH 
CPB) 

647 (328) 1274, 
1 - ≥3 per 
subject, 
2 year  

3 - 30 MNI anatomical 
pipeline 

CT, SA, CV, 
GI, CHA 

Global Absolute values and 
rate of change 

Mixed models: R 
Effects: age, sex, and interactions 
Model selection: Step-down for age, 
likelihood ratio tests for sex 
Trajectories: linear, quadratic, cubic 

Raznahan et al., 
2014 (NIMH 
CPB) 

618 (312) 1171, 
1 - ≥3 per 
subject, 
2 year  

5 - 25 Volume: MAGeT 
Brain 
SA: Marching cubes 
and AMIRA 
CV: CIVET 

Volume, SA Segmentation and 
global CV 

Absolute Mixed models: R 
Effects: age, sex, and interactions 
Model selection: Step-down for age, 
likelihood ratio tests for sex 
Trajectories: linear, quadratic, cubic 

Shaw et al., 2008 
(NIMH CPB) 

375 (196) 764, 
1-≥4 per 
subject, 
2 year  

3 - 33 Automated: Zijdenbos 
et al., 2002 

CT ROI and 
vertexwise 

Absolute Mixed models  
Effects: age 
Model selection: Step down 
Trajectories: cubic, quadratic and linear 

Tiemeier et al., 
2010 (NIMH 
CPB) 

50 (25) 183, 
≥3 per subject, 
2 year  
 

5 - 24 Automated: Zijdenbos 
et al., 2002;  
Manual tracing of 
subregions 

Volume Parcellation of 
cerebellum 

Absolute Mixed models  
Effects: sex, with and without adjustment for 
WBV 
Model selection: Step-down 
Trajectories: linear, quadratic, cubic 

Dennison et al., 
2013 (OADS) 

60 (32) 120, 
2 per subject, 
4 year  

11 - 18 FreeSurfer 5.1 Volume Segmentation Absolute values and 
WBV-corrected 

Hierarchical linear models: Stata 
Effects: Age, hemisphere, sex, and 
interactions 
Trajectories: linear 
MC: B-Y method 

Vijayakumar et 
al., 2016 (OADS) 

90 (49) 192, 
1 - 3 per 
subject, 
3 year  

11 - 20 FreeSurfer 5.3 (LP) CT, SA, CV Parcellation and 
vertex-wise 

Absolute Mixed models: SPSS, FreeSurfer LMM 
toolbox 
Effects: Age, sex, and interactions 
Model selection: BIC (parcellation), step-
down (vertex) 
Trajectories: linear, quadratic 
MC: FDR 

Sullivan et al., 
2011 (Stanford 
Research Institue) 

28 (16)  
 

56, 
2 per subject, 
7.3 months 

11 - 14 FSL FAST Volume Lobar and ROI Absolute Percent change 
Effects: age, sex 
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NB: Inclusionary criteria are presented in Box 1. Studies are grouped by project, and subsequently ordered by author surname and year published. AIC = Akaike Information 
Criteria; ANCOVA = analysis of covariance; BIC = Bayesian information criterion; B-Y = Benjamini-Yekutieli; CT = cortical thickness; CV = cortical volume; FDR = false 
discovery rate; GI = gyrification index; GLM = general linear model; GM = grey matter; ICV = intracranial volume; LMM = linear mixed models; LP = longitudinal 
processing; LRT = likelihood ratio test; MCCN = Mother Child Cohort Study; NCD = Neurocognitive Development; NIH = National Institute of Health; NIMH CPB = 
National Institute of Mental Health Child Psychiatry Branch; OADS = Orygen Adolescent Development Study; ROI = region of interest; SA = surface area; WBV = whole 
brain volume; WM = white matter 

Mutlu et al., 2013 
(Switzerland) 

137 (68) 209, 
1-4 per 
subject 
 

6 - 30 FreeSurfer CT, GI Vertex-wise Absolute Mixed models: Matlab (nlmefit) 
Effects: age, sex, and interactions 
Model selection: BIC for age, LRT for sex 
Trajectories: linear, quadratic and cubic 
MC: Monte Carlo simulation in FreeSurfer 

Tanaka et al., 
2012 (Toyama, 
Japan) 

114 (60) 209, 
1-4 per 
subject 
 

1m - 25 Manual tracing Volume Global and lobar Absolute values and 
ICV-corrected 

Linear regression 
Effects: age, controlling for sex and 
hemisphere 
Model selection: R squared 
Trajectories: linear, quadratic and cubic 

Urosevic et al., 
2012 (University 
of Minnesota) 

149 298,  
2 per subject,  
2 year  

9 - 26 FreeSurfer 4.5 (LP) Volume ROIs WBV-corrected  Repeated-measures ANCOVAs: SPSS 
Effects: time, age (covariate), sex, time*age, 
time*sex, controlling for scanner upgrade 
Trajectories: linear 

Fjell et al., 2015 
(NCD, MCCN 
Study, Cognitive 
and Plasticitiy 
throug the 
Lifespan) 

974 (466) 1633, 
1-3 per 
subject, 
2.5 year  

4 - 89 FreeSurfer 5.3 (LP) CT Parcellation based 
on genetic 
clustering 

Absolute and 
percentage change 

General additive mixed models: R; Linear 
mixed models: Matlab 
Effects: age (sex not found to influence 
preliminay results) 
Model fit: AIC and BIC 
Trajectories: linear, smoothing spline 
MC: FDR 

Mills et al., 2016 
(Braintime, NIMH 
CPB, NCD, 
Pittsburgh) 

391 (191) 852 
≥2 per subject 

7 - 30 FreeSurfer 5.3 (LP) Volume Global Absolute Mixed models: R 
Effects: age, sex, with and without controlling 
for ICV or WBV 
Model selection: AIC 
Trajectories: linear, quadratic, cubic 
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Table 3.  

Details of longitudinal studies investigating pubertal maturation in relation to structural brain development. 

Studies N (M) N Scans, 
n per 
subject, 
interval, 
range 

Age (y) Image processing 
software 
(version) 

Pubertal 
measures 

Measures: 
vol/sa/ct/others 

Specificity of 
analyses 

Index of analyses: 
absolute or change 
values, 
whole brain 
correction 

Statistical analyses: 
analysis method (software)  
variables 
model fit 
trajectories 
multiple comparison 

Nguyen et al., 
2013a 
(NIH MRI) 

281 (117) 479, 
1-3 per 
subject, 
2 year 
interval 

4 - 22 CIVET Stage 
Testosterone 

CT Vertex-wise Absolute Mixed models: SurfStat 
Effects: puberty (testosterone, stage), age, 
sex and hemisphere interactions, 
controlling for WBV, testosterone 
collection interval 
Trajectories: linear 
MC: RFT 

Nguyen et al., 
2013b 
(NIH MRI) 

255 (112) 407, 
1-3 per 
subject, 
2 year 
interval 

4 - 22 CIVET Stage 
Testosterone 
DHEA 

CT Vertex-wise Absolute Mixed models: SurfStat 
Effects: 1. DHEA, age and sex interactions, 
controlling for WBV, salivary collection 
times, scanner, handedness; 2. DHEA, 
testosterone and sex interactions. 
Trajectories: linear 
MC: RFT 

Goddings et al., 
2014 
(NIMH CPB) 

275 (158) 711, 
≥2 per 
subject, 
2 year 
interval 

7 - 20 FreeSurfer 5.1 Stage Volume  Segmentation Absolute and 
percentage change 

Mixed models: R 
Effects: pubertal stage, age, and 
interactions (separate models for males and 
females) 
Model selection: step-down for age, 
LRT/AIC for age*puberty models 
Trajectories: linear, quadratic, cubic 

Herting et al., 
2014 

126 (63) 162, 
2 per 

10 - 14 FreeSurfer 5.1 Stage 
Testosterone 

CV Global 
ROIs 

Absolute Mixed models: R 
Effects: age, sex, puberty, and interactions, 
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NB: Studies are grouped by project, and subsequently ordered by year published and author surname. AIC = Akaike Information Criteria ; CT = cortical thickness ; CV = 
cortical volume; DHEA = Dehydroepiandrosterone; ICV = intracranial volume; LRT = likelihood ratio test; NIH = National Institute of Health; NIMH CPB = National 
Institute of Mental Health Child Psychiatry Branch; ROI = region of interest; RFT = Random Field Theory; SA = surface area; UPitt = University of Pittsburgh 

UPitt subject, 
2 year 
interval 

Estradiol controlling for ICV 
Model selection: LRT and AIC 
Trajectories: linear 

Herting et al., 
2015 
UPitt 

81 (33) 162, 
2 per 
subject, 
2 year 
interval 

10 - 14 FreeSurfer 5.1 Stage 
Testosterone 
Estradiol 

CT, SA Vertex-wise Average and 
percentage change 

Linear regressions: FreeSurfer 
Effects: pubertal change, sex, and 
interactions, control for baseline age, 
puberty (and scan interval for models 
predicting average measures) 
Trajectories: linear 
MC: Monte Carlo simulations 
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Table 4. Guidelines for reporting methodological detail in longitudinal structural brain 

imaging studies 

Sample  
• Report number of participants (total and per sex)  
• Report total number of scans, and broken down by number of assessments  
• Report mean number (and range) of scans per participant 
• Report timing of scans (i.e. age of measurements)  
• Report details on sampling strategy: 

o Type and aim of design for structured ALD studies. 
• Consider generalizability of sample during recruitment and report details. 

o i.e., SES, ethnicity and race characteristics 
o information on missing data and attrition  

• Report criteria for inclusion in study from the larger project’s sample pool (if relevant).  
Acquisition 

• Consider implementation of protocols to improve child/adolescent comfort, thus reducing 
motion, and report details. 

• Consider acquisition techniques (e.g., fMRI) for motion-correction. 
• Minimize changes in scanner variables across time and across participants. 

o If not possible, account for scanner differences in analyses or conduct inter-
scanner reliability studies.  

Processing 
• Employ same software (and version) across all images within a study (i.e., also across 

time in longitudinal studies) 
• Give preference to software that creates subject-specific templates (i.e., software that uses 

longitudinal streams) 
• Report software versions. 
• Report on quality control procedure details: 

o Inspection of the quality of raw images, including procedure for inspection, 
criteria used to determine exclusion, and number of scans excluded.  

o Inspection of the quality of processed images, including procedure for inspection, 
criteria used to determine exclusion, and number of scans excluded.  

o Extent of manual intervention of processed images, including the protocol and 
number of scans that were successfully processed post-intervention and included 
in analyses. 

Analyses 
• Account for interdependencies of scans within each subject. 
• Specific to MLM: 

o Employ model fit indices or LRT to identify the most parsimonious model, and 
report these statistics. 

• Use confidence intervals if reporting ages of “peak” estimates. 
• Examine the possibility of differing trajectories across groups (e.g., sex) by analyzing 

each group separately, and only combining groups if they exhibit the same trajectory. 
• Consider individual differences through 

o comparison of models with and without random effects in MLM 
o reporting variance in change indices (e.g., annualized percentage change) 

• Appropriately account for the multivariate nature of the data by: 
o correcting for multiple comparisons 
o conducting multivariate analyses 

• If correcting for global brain size: 
o Report analyses using both raw and corrected brain measures. 
o Take into account different effects of ICV and WBV on group differences. 
o Consider developmental scaling relationships between global and regional 

measures 
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Conclusions 
• Interpret findings within the bounds of the analytic techniques 

o With MLM, discuss results in terms of “better fit” (in comparison to other 
models), consistent with the theory of likelihood-based analyses.  
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