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Abstract 47	
 48	
Object recognition is commonly described as a feedforward process, yet the tasks we carry out 49	
often affect what information in visual stimuli is diagnostic and may influence their processing. 50	
Surprisingly little is known about how task context is processed and when and how it interacts 51	
with the emerging representation of objects. Here we used magnetoencephalography (MEG) and 52	
multivariate decoding to investigate the temporal dynamics of task and object processing and 53	
their interaction. Participants viewed objects while we varied task context on a trial-by-trial 54	
basis, using both high-level conceptual and low-level perceptual tasks. Time-resolved 55	
multivariate decoding and temporal cross-classification revealed multiple distinct yet 56	
overlapping stages of task processing from the onset of a trial, likely reflecting a sequence of 57	
visual, semantic, mnemonic, and rule-related task representations. Object decoding was stronger 58	
in conceptual than perceptual tasks, with differences emerging around 530 ms after object onset. 59	
However, object decoding generalized well between task contexts, indicating differently strong 60	
but qualitatively similar brain responses. Using model-based MEG-fMRI fusion, we found that 61	
frontoparietal areas were strongly dominated by information about task context throughout the 62	
trial, while occipitotemporal regions reflected a mixture of both task and object category 63	
indicating their parallel encoding in the same brain area. Together, our results reveal the 64	
temporal evolution of task context representations and suggest that the impact of task context 65	
during object processing occurs late in time. 66	
 67	
Significance Statement 68	
 69	
While much work in the vision sciences has focused on perceptual processing of visual stimuli, 70	
much less is known about the task context in which these stimuli occur. Here we studied the 71	
neural dynamics of task context and how it influences object processing. Using MEG, 72	
multivariate decoding and MEG-fMRI fusion, we reveal that task context evolves in multiple 73	
distinguishable yet overlapping processing stages, affecting object processing late in time. While 74	
frontoparietal regions were dominated by task, occipitotemporal regions exhibited a mixture of 75	
both task and object information. Our findings highlight the importance of temporal information 76	
in unravelling different stages of task processing and demonstrate the value of model-based 77	
MEG-fMRI fusion for a spatiotemporal analysis of cognitive processes.  78	
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Introduction 79	
 80	
Our behavioral goals strongly influence how we interpret and categorize the objects around us. 81	
For example, the way in which we perceive and react towards a painting can vary quite 82	
dramatically when judging its period of art, whether it is hand-painted or a print, or whether it 83	
contains an animal or not. Despite the importance of task context in our everyday life, much 84	
work on the neural processing of objects has focused on single contexts only (e.g. fixation or 85	
discrimination). In part, this reflects the common view of object recognition as a hierarchical 86	
feedforward process localized to occipitotemporal cortex (Riesenhuber and Poggio, 2002; Serre 87	
et al., 2007; DiCarlo et al., 2012), with independent task-related processing in prefrontal and 88	
parietal cortex (Duncan, 2010). However, recent work suggests that task context can impact 89	
object representations not only in frontoparietal regions, but also in occipitotemporal visual 90	
cortex (Harel et al., 2014; Erez and Duncan, 2015; Bracci et al., 2017). In particular, task context 91	
has been reported to affect the strength (Erez and Duncan, 2015; Bracci et al., 2017) and 92	
qualitiative nature (Harel et al., 2014) of response patterns in occipitotemporal visual cortex. 93	
 While these studies demonstrate where in the brain task affects object processing, due to 94	
the low temporal resolution of fMRI they leave open the critical questions of (1) when the impact 95	
of task on object representations emerges and (2) how task is represented across time. Answers to 96	
these questions allow distinguishing alternative accounts for the mediating effects of task on 97	
object processing and in that way provide important insights into the neural mechanisms 98	
underlying task and object category. For example, changes in occipitotemporal cortex in 99	
response to task context could reflect an expectation-related top-down modulation of 100	
feedforward processing (Kok et al., 2012; Kok et al., 2013), potentially affecting the initial 101	
responses to visual stimuli. Alternatively, these responses may reflect a late, modulatory 102	
influence of task (McKee et al., 2014; see also Emadi and Esteky, 2014). 103	

Here we studied the time course of the processing of task context and the effect of task on 104	
object category processing using magnetoencephalography (MEG) and time-resolved 105	
multivariate decoding (Carlson et al., 2013; Van de Nieuwenhuijzen et al., 2013; Cichy et al., 106	
2014; Isik et al., 2014; Clarke et al., 2015; Kaiser et al., 2016). We measured the brain responses 107	
to object categories in four different task contexts, and used multivariate pattern classification to 108	
resolve the temporal dynamics of object category and task context, as well as their interaction. 109	
To locate the time-resolved task context and object category dynamics in the brain, we 110	
conducted model-based MEG-fMRI fusion (Cichy et al., 2014), using fMRI data from a previous 111	
study employing the same task (Harel et al., 2014). We found task context to be represented in a 112	
cascade of different processing stages across the time course of the trial. Task context affected 113	
the strength of object category representations late in time, however, we found no evidence for 114	
qualitatively different processing of objects between task types. MEG-fMRI fusion revealed 115	
strong task-related effects in frontoparietal regions, whereas task and category-related effects 116	
were mixed in occipitotemporal brain areas, suggesting their parallel processing of task and 117	
category.  118	

 119	
Materials and Methods 120	
 121	
Participants 122	
 123	
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22 healthy volunteers with normal or corrected-to-normal visual acuity took part in the study. 124	
Five participants were excluded due to at least one of the following exclusion criteria: behavioral 125	
performance below 90 % correct, excessive artifacts, or incomplete or corrupted recordings. Data 126	
from the remaining 17 participants (8 female, mean age 25.12, SD = 5.16) were used in all 127	
analyses throughout the study. All participants gave written informed consent as part of the study 128	
protocol (93-M-0170, NCT00001360) prior to participation in the study. The study was approved 129	
by the Institutional Review Board of the National Institutes of Health and was conducted 130	
according to the Declaration of Helsinki. 131	
 132	
Experimental Design and Stimuli 133	
 134	
The goal of this study was to investigate how task context is represented across time and when 135	
and how task context modulates the processing of visual object categories. For that purpose, we 136	
chose four tasks that could be carried out on a set of object images, two targeting low-level 137	
perceptual dimensions of the images, and two high-level conceptual dimensions (Figure 1A). 138	
The perceptual dimensions were Color (red / blue) and Tilt (clockwise / counterclockwise), and 139	
the conceptual dimensions were Content (manmade / natural) and Size (real world, large / small 140	
relative to an oven). Object images were chosen from 8 different categories (Figure 1B): 141	
Butterfly, cow, dresser, flower, motorbike, skate, tree, and vase. For each of the 8 object 142	
categories, we chose five different image exemplars. To allow participants to perform the Color 143	
and Tilt tasks, each object was presented with a thin red or blue outline, and objects were either 144	
tilted 30 degrees clockwise or counterclockwise relative to the principal axis of the object. The 145	
combination of stimulus types led to 160 unique stimulus combinations (8 categories ´ 5 146	
exemplars ´ 2 colors ´ 2 tilts). Each stimulus was presented once in each task context, making a 147	
total of 640 stimulus presentations per participant. The presentation order of these stimulus-task 148	
combinations was randomized. In addition, we interspersed 80 catch trials that were chosen to be 149	
random combinations of task and stimulus (see below). 150	

All stimuli were presented on black background with a white central fixation cross 151	
present throughout the experiment. Object images were greyscale cropped images of objects and 152	
were a subset selected from a previous fMRI study (Harel et al., 2014). Both task cues (e.g. 153	
‘Content’) and possible responses (e.g. ‘manmade’ or ‘natural’) were shown as words in white 154	
font. Task cues were always presented centrally and possible responses were shown left and right 155	
of fixation. 156	
  157	
Procedure 158	
 159	
Prior to the experiment, participants were familiarized with the task by carrying out 36 randomly 160	
chosen trials outside of the MEG. For the actual experiment, participants were seated in an 161	
electromagnetically shielded MEG chamber with their head placed in the mold of the dewar 162	
while stimuli were backprojected on a translucent screen in front of them (viewing distance: 70 163	
cm, image size: 6 degrees of visual angle). Each trial was preceded by a white fixation cross (0.5 164	
s) that turned green (0.5 s) to prepare participants for the upcoming trial. A trial consisted of 165	
three major components: (1) A task cue which indicated the relevant task for the trial, (2) an 166	
object stimulus which was categorized according to the task, and (3) a response-mapping screen 167	
which indicated the task-relevant response options left and right of fixation (Figure 1C). Based 168	
on these components, in the following we separate each trial into three different time periods: a 169	
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“Task Cue Period”, an “Object Stimulus Period”, and a “Response Mapping Period”. Each trial 170	
lasted 5 s. A trial began with the Task Cue Period consisting of the presentation of a task cue (0.5 171	
s) followed by a fixation cross (1.5 s). This was followed by the Object Stimulus Period 172	
consisting of the presentation of an object stimulus (0.5 s) followed by another fixation cross (1.0 173	
s). Finally, the trial ended with the Response Mapping Period during which a response-mapping 174	
screen was displayed (1.5 s). Participants responded with the left or right index finger using an 175	
MEG-compatible response box. In addition to the button press, participants were instructed to 176	
make an eye blink during the response period to minimize the contribution of eye blink artifacts 177	
to other time periods. The order of the options on the response-mapping screen was intermixed 178	
randomly to prevent the planning of motor responses before the onset of the response screen 179	
(Hebart et al., 2012). 180	

Participants were instructed to encode the task rule as soon as being presented with the 181	
task cue and to apply it immediately to the stimulus. To encourage this strategy, they were asked 182	
to respond as fast and accurately as possible. To enforce a faster application of task to object 183	
category, we introduced catch trials for which the fixation period between stimulus offset and 184	
response-mapping screen onset was shortened from 1.0 s to 0.2 s. The experiment consisted of 185	
20 runs of 36 trials each (32 experimental trials, 4 catch trials). 186	
 187	

 188	
Figure 1. Experimental paradigm. On each trial (Procedure depicted in Panel C), participants were presented with a 189	
stimulus from one of eight different object categories (Panel B) embedded in one of four task contexts (Panel A, top) 190	
indicated at the beginning of each trial. Participants carried out a task that either targeted low-level features 191	
(perceptual tasks) of the object or its high-level, semantic content (conceptual tasks). After a short delay, a response-192	
mapping screen was shown that presented the possible response alternatives (Panel A, bottom) in random order 193	
either left or right of fixation to decouple motor responses from the correct response. 194	
 195	
MEG Recordings and Preprocessing 196	
 197	
MEG data were collected on a 275 channel CTF system (MEG International Services, Ltd., 198	
Coquitlam, BC, Canada) with a sampling rate of 1,200 Hz. Recordings were available from 272 199	
channels (dead channels: MLF25, MRF43, MRO13). Preprocessing and data analysis were 200	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/153684doi: bioRxiv preprint 

https://doi.org/10.1101/153684
http://creativecommons.org/licenses/by-nc/4.0/


	 5 

carried out using Brainstorm (version 02/2016, Tadel et al., 2011) and MATLAB (version 201	
2015b, The Mathworks, Natick, MA). The specifics of preprocessing and multivariate decoding 202	
(see below) were based on previously published MEG decoding work (Cichy et al., 2014; 203	
Grootswagers et al., 2016) and fine-tuned on a pilot subject that did not enter the final data set. 204	
MEG triggers were aligned to the exact presentation time on the screen that had been recorded 205	
using an optical sensor attached to the projection mirror. Data were epoched in 5.1 s trials, 206	
starting 100 ms prior to the onset of the task cue and ending with the offset of the response-207	
mapping screen. Then, data were bandpass filtered between 0.1 and 300 Hz and bandstop filtered 208	
at 60 Hz including harmonics to remove line noise. 209	

To further increase SNR and to reduce computational costs, we carried out (1) PCA 210	
dimensionality reduction, (2) temporal smoothing on PCA components, and (3) downsampling 211	
of the data. For PCA, data were concatenated within each channel across all trials. After PCA, 212	
the components with the lowest 1 % of the variance were removed (maximum removal: 50 % of 213	
components). All further analyses were conducted on the reduced set of principal components. 214	
Then, data were normalized relative to the baseline period (for task decoding: -0.1 to 0 s, for 215	
object category decoding: 1.9 to 2.0 s). To this end, for each channel we calculated the mean and 216	
standard deviation of the baseline period and subtracted this mean from the rest of the data 217	
before dividing it by the standard deviation (univariate noise normalization). Finally, the 218	
components were temporally smoothed with a Gaussian kernel of ± 15 ms half duration at half 219	
maximum, and downsampled to 120 Hz (621 samples / trial). 220	
 221	
Time-resolved Multivariate Decoding 222	
 223	
Multivariate decoding was carried out using custom-written code in MATLAB (Mathworks, 224	
Natick, MA), as well as functions from The Decoding Toolbox (Hebart et al., 2015), and 225	
LIBSVM (Chang and Lin, 2011) using linear support vector machine classification (C = 1). 226	
Classification was conducted for each participant separately in a time-resolved manner, i.e. 227	
independently for each time point. Each pattern that entered the classification procedure 228	
consisted of the principal component scores at a given time point. In the following we describe 229	
one iteration of the multivariate classification procedure that was carried out for the example of 230	
object category classification. In the first step, we created supertrials by averaging 10 trials of the 231	
same object category without replacement (Isik et al., 2014). In the next step, we separated these 232	
supertrials into training and testing data, with one supertrial pattern per object category serving 233	
as test data and all other supertrial patterns as training data. This was followed by one-vs-one 234	
classification of all 28 pairwise comparisons of the 8 object categories (chance-level 50 %). To 235	
test the trained classifier on the left-out data, we compared the two predicted decision values and 236	
assigned an accuracy of 100 % if the order of the two test samples was predicted correctly and an 237	
accuracy of 0 % if the order was the opposite (for two samples and two classes this is 238	
mathematically equivalent to the common area-under-the-curve measure of classification 239	
performance and represents a classification metric that is independent of the bias term of the 240	
classifier). In a last step, the resulting pairwise comparisons were averaged, leading to an 241	
estimate of the mean accuracy across all comparisons. This training and testing process was then 242	
repeated for each time point. This completes the description of one multivariate classification 243	
iteration for the decoding of object category. The procedure for task classification was 244	
analogous, with 4 tasks and 6 pairwise combinations. To achieve a more fine-grained and robust 245	
estimate of decoding accuracy, we ran a total of 500 such iterations of trial averaging and 246	
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classification, and the final accuracy time series reflects the average across these iterations. This 247	
provided us with time-resolved estimates of MEG decoding accuracy for object category and 248	
task classification, respectively.  249	
 250	
Temporal Generalization of Task 251	
 252	
To investigate whether the nature of task-related information remained stable across time or 253	
whether it changed, we carried out cross-classification across time, also known as the temporal 254	
generalization method (King and Dehaene, 2014). The rationale of this method is that if a 255	
classifier can generalize from one time point to another, this demonstrates that the 256	
representational format is similar for these two time points. If, however, a classifier does not 257	
generalize, then under the assumption of stable noise this indicates that the representational 258	
format is different. To carry out this analysis, we repeated the same approach as described in the 259	
previous section, but instead of testing a classifier only at a given time point, we tested the same 260	
classifier for all other time points separately. This cross-classification analysis was repeated with 261	
each time point once serving as training data, yielding a time–time decoding matrix that captures 262	
classifier generalization performance across time. 263	
 264	
Model-based MEG-fMRI Fusion for Spatiotemporally-Resolved Information 265	
 266	
To resolve task and category-related information both in time and space simultaneously, we 267	
carried out RSA-based MEG-fMRI fusion (Cichy et al., 2014, 2016). RSA allows comparison of 268	
brain patterns across modalities in terms of pattern dissimilarity, abstracting from the activity 269	
patterns of measurement channels (e.g. MEG sensors) to all pairwise distances of those patterns 270	
in form of a representational dissimilarity matrices (RDMs). RSA-based MEG-fMRI fusion 271	
allows a researcher to ask the following question: At what point in time does the representational 272	
structure in a given brain area (as determined from fMRI) match the representational structure 273	
determined from the time-resolved MEG signal? The reasoning for this approach is that if the 274	
fMRI RDM of a brain region and the MEG RDM of a time point show a correspondence, this 275	
suggests that there is a shared representational format in a given brain location and at a given 276	
point in time. Here we apply this approach to investigate the spatiotemporal evolution of object 277	
category and task representations. 278	
 FMRI RDMs for each combination of task and category (4 ´ 8 = 32 ´ 32 matrices) were 279	
available from five regions of interest (ROIs) in 25 participants who took part in a separate study 280	
employing the same task (Harel et al., 2014). None of these participants overlapped with the 281	
sample from the MEG study. The major difference between the MEG and the fMRI experiments 282	
were (1) that the fMRI study used an extended set of 6 tasks and (2) the exact timing of each trial 283	
was slower and jittered in the fMRI study. Details about data preprocessing have been described 284	
previously (Harel et al., 2014). RDMs were based on parameter estimates in a GLM for each 285	
condition which were converted to t-values (univariate noise normalization). Each entry in the 286	
matrix reflects 1 minus the correlation coefficient of the t-values across conditions, calculated 287	
separately for each ROI. RDMs were reduced to the relevant four task types. The five ROIs were 288	
early visual cortex (EVC), object-selective LO and pFS, lateral prefrontal cortex (lPFC) and 289	
posterior parietal cortex (PPC). EVC, LO and pFS were defined based on contrasts in an 290	
independent visual and object localizer session, and lPFC and PPC were defined by a 291	
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combination of anatomical criteria and responses in the functional localizer session to the 292	
presence of objects. 293	

For better comparability to this previous study, we created correlation-based MEG 294	
pattern dissimilarity matrices for all combinations of task and object category. In particular, for 295	
each combination of task and category, we created a mean pattern, yielding a total 32 brain 296	
patterns per participant (8 categories ´ 4 tasks). We then ran a Pearson correlation between all 297	
patterns and converted these similarity estimates to dissimilarity estimates (using 1 minus 298	
correlation), providing us with a 32 ´ 32 RDM for each time point and participant. 299	

Since different groups of participants were tested in the fMRI and MEG studies, we used 300	
the group average pattern dissimilarity matrices of each modality as the best estimate of the true 301	
pattern dissimilarity. These RDMs were symmetrical around the diagonal, so we extracted the 302	
lower triangular component of each pattern dissimilarity matrix and converted them to vector 303	
format for further analyses, in the following referred to as representational dissimilarity vector 304	
(RDV). 305	

For a given brain region, we conducted MEG-fMRI fusion by calculating the squared 306	
Spearman correlation between the fMRI RDV and the MEG RDV for each time point separately. 307	
The squared correlation coefficient is mathematically equivalent to the coefficient of 308	
determination (R2) of the fMRI RDV explaining the MEG RDV. This approach was repeated for 309	
each fMRI RDV of the five ROIs, providing us with five time courses of representational 310	
similarity between MEG and fMRI. 311	

While MEG-fMRI fusion provides a temporal profile of representational similarities for a 312	
given brain region, these MEG-fMRI fusion time courses do not distinguish whether MEG-fMRI 313	
representational similarities reflect task, object category, or a mixture of the two. To disentangle 314	
task and object category-related information with MEG-fMRI fusion, we extended this approach 315	
by introducing model RDMs of the same size (32 ´ 32). These RDMs reflected the expected 316	
dissimilarity for the representation of task and category, respectively, with entries of 1 for high 317	
expected dissimilarity (different task / category) and 0 for low expected dissimilarity (same task / 318	
category). This model-based MEG-fMRI fusion approach was carried out using commonality 319	
analysis (Seibold and McPhee, 1979), a variance decomposition approach that allows estimating 320	
the shared variance between more than two variables (see Greene et al., 2016, for a similar 321	
approach using multiple model RDMs). For a given brain region and time point, these variables 322	
reflect (1) an MEG RDV, (2) an fMRI RDV and (3) the two model RDVs for task and object 323	
category representations. 324	

A schematic of this model-based MEG-fMRI fusion is shown in Figure 5A. We 325	
conducted commonality analysis by comparing two squared semi-partial correlation coefficients 326	
(Spearman correlation), one reflecting the proportion of variance shared between MEG and 327	
fMRI partialling out all model variables excluding the variable of interest (e.g. task) from fMRI, 328	
and the other reflecting the proportion of shared variance when partialling out all model variables 329	
from fMRI including this variable of interest. The difference between both coefficients of 330	
determination (R2) then provides the commonality, which is the variance shared between MEG 331	
and fMRI that is uniquely explained by the variable of interest. Formally, the commonality at 332	
time t and location j can be described as: 333	

 334	
𝐶"#,(&',() = 	𝑅

-
"#,(&'./) −	𝑅

-
"#,(&'.(,/) 335	

 336	
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where X reflects MEG, Y reflect fMRI, A reflects task, and B reflects object category. Note that 337	
this variable can become slightly larger than the total R2 or slightly negative, due to numerical 338	
inaccuracies or the presence of small suppression effects (Pedhazur, 1997). In addition, 339	
commonality coefficients always reflect the shared variance relative to a target variable (in our 340	
case MEG), but depending on the relationship between the variables the estimate of shared 341	
variance can change when a different target variable is used (in our case fMRI). In the present 342	
study, the pattern of results was comparable irrespective of which variable served as a target 343	
variable. 344	
 345	
Statistical Testing 346	
 347	

Throughout this article, we used a non-parametric, cluster-based statistical approach to 348	
test for time periods during which the group of participants showed a significant effect (Nichols 349	
and Holmes, 2002), and bootstrap sampling to determine confidence intervals for peak latencies 350	
and peak latency differences. We did not compute statistics in time periods after the onset of the 351	
response-mapping screen, because (1) these time periods were corrupted by the instructed eye 352	
blinks and (2) information about task is contained in the response-mapping screen, making it 353	
difficult to uniquely assign these responses to task or response-mapping screen. For object 354	
category-related responses we did not compute statistics for time periods prior to the onset of the 355	
object stimulus, because it was not reasonable to assume that these periods would contain 356	
information about the category before its identity is revealed. For completeness, however, we 357	
plot these results in Figures 2 and 3. Please note that the pattern of results reported is very similar 358	
when including these time periods into our statistical analyses. 359	
 360	
Non-parametric Cluster-based Statistical Approach 361	

The cluster-based approach consists of two steps: first defining clusters as neighboring 362	
time points that all exceed a statistical cutoff (cluster-inducing threshold), and second 363	
determining significant cluster size. 364	

For the first step – the definition of a cluster-inducing threshold – we ran a sign-365	
permutation test. The null hypothesis is that any directional effect in the given sample of 366	
participants simply came about by chance. To test whether our sample was part of this null 367	
distribution, for each time series of accuracies we created all possible sign-permutations of 368	
measured accuracy values (217 = 131,072), and for each of these permutations generated a t-value 369	
for each time point. The permutations provided a null distribution of t-values of the group effect 370	
for each time point. The cluster-inducing threshold was defined as the 95th percentile of the 371	
distribution at each time point (equivalent to p < 0.05, one-sided).  372	

For the second step – determining significant clusters – we determined the maximum 373	
cluster size in each permutation (Nichols and Holmes, 2002). Using this null distribution, we 374	
determined whether candidate clusters in the original time series exceeded the 95th percentile of 375	
maximum cluster sizes (equivalent to p < 0.05, one-sided). This provided us with significant 376	
clusters at the pre-specified statistical cutoffs. 377	

For temporal generalization matrices, we extended the cluster-based approach described 378	
above to two dimensions, revealing significant 2D clusters. Because of computational 379	
limitations, we ran only a subset of 10,000 permutations drawn randomly without replacement 380	
from all available permutations. 381	
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For model-based MEG-fMRI fusion, we used the two-step approach as described above. 382	
However, instead of running a sign-permutation test across participants, we conducted a 383	
randomization test for which we created 5,000 MEG similarity matrices for each of the five 384	
ROIs. These matrices were based on random permutations of the rows and columns of the group 385	
average MEG similarity matrix (Kriegeskorte et al., 2008). We then carried out model-based 386	
MEG-fMRI fusion using these matrices to create an estimated null distribution of information 387	
time courses for each ROI. For each time point in each ROI, a cluster-inducing threshold was 388	
determined by choosing the 95th percentile of this estimated null distribution (equivalent to p < 389	
0.05, one-sided). This was followed by determining the maximum cluster sizes across all 390	
permutations as described above, but across all ROIs to correct for multiple comparisons 391	
(equivalent to p < 0.05, one-sided, corrected for multiple comparisons across ROIs). 392	
 393	
Determining Confidence Intervals for Peak Latencies 394	

We used bootstrap sampling to estimate the 95 % confidence intervals (CI) of peak 395	
latencies and peak latency differences, respectively. For each iteration of the bootstrap sampling 396	
approach, we calculated a time course based on the bootstrap sample. For multivariate decoding 397	
analyses, this was a time course of accuracy from an average of n=17 time courses of decoding 398	
accuracy sampled with replacement from the pool of subjects. For MEG-fMRI fusion, this was a  399	
time course of commonality coefficients, generated by sampling n=17 time courses of MEG 400	
similarity matrices from the pool of subjects with replacement, averaging them, and repeating the 401	
model-based MEG-fMRI fusion approach as described above. For each bootstrap sample time 402	
course, we then calculated timing estimates in the relevant time periods (for peak latency: timing 403	
of maximum, for peak latency difference: time difference between maxima). This process was 404	
repeated (100,000 times for multivariate decoding and 5,000 times for MEG-fMRI fusion), 405	
which generated a distribution of timing estimates. The 2.5 and 97.5 percentiles of this 406	
distribution reflect the 95 % confidence interval of the true timing estimate. Since we 407	
downsampled our data (bin width: 8.33 ms), the confidence intervals were conservative and 408	
overestimated by up to 16.67 ms. 409	
 410	
Results 411	
 412	
Behavioral Results 413	
 414	
Participants provided correct responses on average on 97.19 % of trials (SD: 2.40) and had a 415	
mean response time of 712.2 ms (SD: 121.8), with no significant differences between tasks 416	
(accuracy: F(3,48) = 0.6938, RT: F(3,48) = 0.039) or between object categories (accuracy: 417	
F(7,112) = 0.6024, RT: F(7,112) = 0.5431). On average, participants missed responses or 418	
responded too slowly (RT > 1,600 ms) in only 1.80 % of all trials (SD: 2.26). We included all 419	
trials in further analyses because (1) imbalances in the number of trials per condition would 420	
complicate multivariate analyses, requiring subsampling which would make the results less 421	
sensitive, and (2) there were no differences in accuracy or RT across tasks or objects, making it 422	
unlikely that the results would be biased by including a very small fraction of missed or incorrect 423	
trials. 424	
 425	
Time-resolved Representation of Task Context and Object Category 426	
 427	
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The primary aim of this study was to characterize the temporal evolution of task context 428	
representations in the human brain and elucidating at what time task context affects object 429	
category processing. We thus separately analyzed task and object category-related brain signals 430	
using time-resolved multivariate decoding across the trial (see Figure 1C). This allowed us to 431	
describe and compare the temporal profiles of the two resulting classification time courses, one 432	
for object category averaged across task, and one for task averaged across object category. 433	

In the following, we describe and report results from the “Task Cue Period” (0 to 2,000 434	
ms) from onset of the task cue to onset of the object stimulus, and the “Object Stimulus Period” 435	
(2,000 to 3,500 ms) from onset of the object stimulus to onset of the response screen. We did not 436	
statistically analyze the ensuing “Response-Mapping Period” (3,500 ms to 5,000 ms), because it 437	
was contaminated by instructed blinks and response screen-related processes (see Materials and 438	
Methods, Statistical Testing). For completeness, we visualize results from this Response-439	
Mapping Period  in Figures 2 and 3. 440	
 Task Cue Period. Task-related information rose rapidly in response to the task cue, 441	
peaking around 100 ms (peak of group mean: 100 ms, 95 % CI: 96-121 ms). This was followed 442	
by a slow decay of information that remained significantly above chance until ~1,200 ms after 443	
cue presentation, outlasting the offset of the word cue by ~700 ms. Around 1,800 ms (~200 ms 444	
prior to onset of the object stimulus) task information was again found to be significantly above 445	
chance. As expected, during this time period – prior to the presentation of the object stimulus – 446	
classification of object category was at chance. 447	

Object Stimulus Period. After onset of the object stimulus at 2,000 ms, object category 448	
information increased sharply, peaking around 100 ms later (peak of group mean: 2,104 ms, 95 449	
% CI: 100-108 ms). This was followed by a gradual decline that remained significantly above 450	
chance until the onset of the response-mapping screen at 3,500 ms. This rapid increase in 451	
category-related information was accompanied by a slow rise of task-related information peaking 452	
around 600 ms after object onset (peak of group mean: 2,638 ms, 95 % CI: 2,517-2,825 ms). 453	
Information about task then remained well above-chance until the presentation of the response-454	
mapping screen. 455	

Together, these results show that both the presentation of task cue and object stimulus 456	
lead to rapid cortical processing. In addition, they suggest that maintained or reactivated task-457	
related information that is present before object onset becomes gradually and increasingly 458	
relevant during object category processing. 459	

 460	
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 461	
 462	
Figure 2. Time-resolved multivariate decoding of task and object category across the trial. After onset of the task 463	
cue (Task Cue Period), task-related accuracy increased rapidly, followed by a decay back towards chance, and was 464	
significantly above-chance ~200 ms prior to object onset. In contrast, category-related accuracy was at chance as 465	
expected. After onset of the object stimulus (Object Stimulus Period), object category-related accuracy increased 466	
rapidly, decaying back to chance with the onset of the response-mapping screen. This was paralleled by a gradual 467	
increase in task-related accuracy, peaking ~600 ms after object onset and remaining high until onset of the response-468	
mapping screen. Error bars reflect SEM across participants for each time-point separately. Significance is indicated 469	
by colored lines above accuracy plots (non-parametric cluster-correction at p < 0.05). Time periods after the onset of 470	
the response-mapping screen were excluded from statistical analyses, because they were contaminated by instructed 471	
eye-blinks and responses to the response-mapping screen itself, but are shown for completeness (see Methods and 472	
Results). 473	
 474	
Multiple Stages of Task Processing Revealed by Temporal Generalization Analysis 475	
 476	
The decoding of task at different time points as described above characterizes the temporal 477	
progression of task-related information across the trial. However, these results alone do not allow 478	
distinguishing whether the decoding of task reflects a single or a sequence of multiple cognitive 479	
processes across time. There are three pertinent candidates that might explain task decoding at 480	
different time periods. For one, early decoding of task after task cue onset may reflect an early 481	
visual representation of the task cue that is maintained in short-term memory and accessed when 482	
the object stimulus appears in order to carry out the task. Alternatively, the task representation 483	
during object processing may reflect an abstract representation of the participant’s choice that 484	
has been formed after initial visual and semantic processing of the task cue. Finally, the visual 485	
information about the task cue may reflect a more abstract representation of task rule that is 486	
maintained and applied to the object stimulus representation. 487	
 To characterize the processing stages of task, we conducted a temporal generalization 488	
analysis using multivariate cross-decoding that reveals the temporal evolution of representational 489	
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formats of task (Meyers et al., 2008; King and Dehaene, 2014). To this end, we trained a 490	
classifier at each time point during the trial to distinguish the four different tasks and then tested 491	
it at all other time points, providing us with a time ´ time temporal generalization matrix. The 492	
shape of the results informs about similarities and differences in the way information is 493	
represented across time. If the results show classification that generalizes to all time points, i.e. if 494	
the entire matrix carries information, this indicates that task information is maintained in a 495	
similar format across the entire trial. If the results show very little generalization across time, i.e. 496	
above-chance accuracies only very close to the diagonal, this indicates that task representation is 497	
highly dynamic across the trial. And if there are several quadratic blocks of cross-classification 498	
around the diagonal, this indicates that task representations change abruptly in different periods 499	
of the trial. 500	

The temporal cross-classification analysis revealed multiple separate, but partially 501	
overlapping stages of processing after the onset of the task cue (Figure 3A). At a coarse level, the 502	
temporal generalization matrix exhibited a block structure within the Task Cue Period and 503	
Object Stimulus Period (Within-Period Cross-Decoding, Figure 3B, left panel). This indicates a 504	
shared representational format within each time period of the trial, but a largely different 505	
representational format between those time periods, and an abrupt change in the representational 506	
format of task after onset of the object stimulus. Since visual and semantic representations of the 507	
task cue are likely to emerge early in the Task Cue Period, this result speaks against a visual or 508	
semantic representation during the Object Stimulus Period. However, this separation was not 509	
complete: some time points exhibited cross-decoding between time periods (Between-Period 510	
Cross-Decoding, Figure 3B, middle and right panel), as evidenced by the off-diagonals of the 511	
generalization matrix (i.e. training time 0 to 2,000 ms, testing time 2,000 to 3,500 ms, and vice 512	
versa). This indicates a partially shared representational format between these periods of the trial. 513	

Next we focused on the fine-grained dynamics of task processing in the Task and Object 514	
Cue Period, respectively. During the Task Cue Period (0 to 2,000 ms) the results revealed a 515	
block of increased cross-classification lasting from ~100 to ~600 ms after cue onset. This block 516	
likely reflects the time the task cue was available to visual cortex (accounting for the delay 517	
between stimulus onset and cortical processing). After offset of the task cue at 500 ms and prior 518	
to the onset of the object stimulus at 2,000 ms, information continued to be present and was 519	
found to generalize to other time points in the Task Cue Period. This reinforces the notion that 520	
information about task was actively maintained throughout the Task Cue Period, as suggested by 521	
the time-resolved decoding analysis presented above. This short-term memory representation of 522	
task exhibited temporal generalization to most time points of the Task Cue Period, including the 523	
visual presentation of the task cue, indicating that the short-term representation of task included 524	
visual and semantic properties of the task cue. During the Object Stimulus Period, there was a 525	
gradual build-up of task-related information until ~200 ms after object onset. At that point, the 526	
results exhibited high levels of cross-classification until the onset of the response-mapping 527	
screen, indicating a maintained representation of task context that did not change until the onset 528	
of the response mapping screen. 529	

Significant cross-classification between the Task Cue and Object Stimulus Period was 530	
evident in two distinct phases. First, there was generalization from the Task Cue Period to the 531	
first ~200 ms of the Object Stimulus Period (training time ~300 to 2,000 ms, testing time 2,000 532	
to ~2,200 ms, Figure 3B, middle panel), possibly reflecting a maintained short-term 533	
representation that continued until the task rule could be applied to the object. Second, there was 534	
generalization from the end of the Task Cue Period to the Object Stimulus Period (training time 535	
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~1,500 to 2,000 ms, testing time 2,000 ms to ~3,300 ms, Figure 3B, right panel), indicating that 536	
the short-term memory representation of task was similar to the representation during application 537	
of the task rule to the object. Interestingly, this cross-classification was specific to the late short-538	
term memory representation and did not generalize to other time points of the Task Cue Period. 539	
Note that this cannot be explained by a representation of the correct response, because 540	
participants could not know the correct response during this short-term memory representation 541	
prior to the presentation of the object. Together, this pattern of results suggests that the 542	
representation of task during the Object Stimulus Period likely does not reflect visual or semantic 543	
processing of the task cue (which would predict cross-classification from the early Task Cue 544	
Period); nor does it reflect only a representation of the correct response. Rather, the results 545	
indicate that participants form an abstract representation of task rule during the short-term 546	
retention period prior to object onset, which they apply to the object stimulus when it is 547	
presented. 548	

In summary, the results indicate separate, but overlapping stages of task context 549	
processing. These stages likely reflect a cascade of visual, semantic, and mnemonic processes 550	
including an abstract representation of task rule which during object processing is converted into 551	
an abstract behavioral choice reflected in the participant’s response. 552	
 553	
Figure 3. Results of temporal generalization 554	
analysis of task. A. Temporal cross-classification 555	
matrix. The y-axis reflects the classifier training 556	
time relative to task cue onset, the x-axis the 557	
classifier generalization time, and the color codes 558	
the cross-classification accuracy for each 559	
combination of training and generalization time. 560	
The outline reflects significant clusters (p < 0.05, 561	
cluster-corrected sign permutation test). Results 562	
after the onset of the response-mapping screen are 563	
not included in the statistical evaluation but are 564	
shown for completeness. (see Results) B. Panels 565	
that schematically indicate three patters in the 566	
temporal generalization results. First, there was a 567	
block structure (Within-Period Cross-Decoding) 568	
separately spanning the Task Cue Period and the 569	
Object Stimulus Period, indicating largely different 570	
representations during the different periods of the 571	
task (left panel). At the same time, there were two 572	
separate patterns of temporal generalization in the 573	
off-diagonals (Between-Period I and Between-574	
Period II Cross-Decoding illustrated in middle and 575	
right panel, respectively), indicating a shared 576	
representational format between these time periods. 577	
 578	
 579	
 580	
 581	
 582	
 583	
Effects of Task Context on Object Category Representations 584	
 585	
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The robust decoding of task context that increases during object processing raises the question 586	
whether the task context representation is independent of object processing, or whether task 587	
context influences object category representations. If object category processing is influenced by 588	
task type, one prediction is that object information time courses would be different for different 589	
task types. To investigate this question, we conducted time-resolved multivariate decoding of 590	
objects separately for perceptual and conceptual task types and compared the time courses. The 591	
results of this analysis are presented in Figure 4A.  The overall time course of object decoding 592	
was very similar for conceptual and perceptual tasks as compared to that reported for object 593	
decoding across tasks, as expected (see Time-resolved Representation of Task Context and 594	
Object Category and Figure 2): accuracies increased sharply after stimulus onset, followed by a 595	
gradual decline, dropping back to chance level towards the end of the Object Period. Comparing 596	
the decoding curves for conceptual and perceptual tasks directly revealed higher accuracies for  597	
conceptual tasks. This result reveals that task context affects object representations late in time.  598	

 599	
 600	
Figure 4. Comparison of object category decoding for different task types (p < 0.05, cluster-corrected sign 601	
permutation test). Error bars reflect standard error of the difference of the means. A. Object category decoding 602	
separated by perceptual and conceptual task types. Initially, category decoding for conceptual and perceptual tasks is 603	
the same, followed by decoding temporarily remaining at a higher level for conceptual tasks than perceptual tasks 604	
between 500 and 750 ms post stimulus onset. B. Object category decoding within and across task types. A classifier 605	
was trained on data of different categories from one task type and tested either on category data from the same task 606	
type (within tasks) or on category data from the other task type (between tasks). There was no difference in within 607	
and between-task decoding. 608	
 609	
 In addition to these quantitative differences in object category representations across task 610	
types, we investigated whether the object representations were qualitatively similar but 611	
differently strong (more separable patterns), or whether they were qualitatively different across 612	
task types (different patterns). To this end, we compared object category classification within 613	
task to object category classification between tasks. The rationale of this approach is that if the 614	
between task cross-classification accuracy is lower than the within task accuracy, this 615	
demonstrates that the classifier cannot rely on the same source of information in these two 616	
conditions, i.e. the patterns must be qualitatively different between tasks. The results of this 617	
analysis are shown in Figure 4B. We did not find any differences in object decoding accuracies 618	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/153684doi: bioRxiv preprint 

https://doi.org/10.1101/153684
http://creativecommons.org/licenses/by-nc/4.0/


	 15 

within vs. between task types, indicating that the object category-related patterns were 619	
qualitatively similar across time. 620	
 Together, our results reveal that task context affects object representations late in time 621	
and provide further evidence for the notion that task affects the strength of object category 622	
representations. 623	
 624	
Model-based MEG-fMRI Fusion for Spatiotemporally-Resolved Neural Dynamics of Task and 625	
Object Category 626	
 627	
To investigate the cortical origin of the task and object category-related effects, we carried out 628	
MEG-fMRI fusion based on representational similarity analysis (Cichy et al., 2014, 2016). We 629	
calculated time-resolved MEG representational dissimilarity matrices (RDMs) for all 630	
combinations of task and category and compared them to fMRI RDMs derived from brain 631	
activity patterns from five ROIs of a previously-published study employing the same task (Harel 632	
et al., 2014). Similarity between an fMRI ROI RDM and MEG RDMs indicates a 633	
representational format common to that location and those time points. To separately assess the 634	
contributions of object category and task to the representational similarity between MEG and 635	
fMRI, we decomposed the shared variance between MEG and fMRI RDMs using commonality 636	
analysis (Seibold and McPhee, 1979). This procedure identifies the portion of variance shared 637	
between MEG and fMRI that is unique to either task of category (Figure 5A). The task and 638	
category model RDMs were constructed based on the expected dissimilarity matrix for task 639	
irrespective of category, and for category irrespective of task, respectively. 640	

The results of this model-based MEG-fMRI fusion are shown in Figure 5B-F separately 641	
for each ROI. The grey shaded area indicates the amount of variance captured by MEG-fMRI 642	
fusion. Blue and red lines indicate the amount of variance in the MEG-fMRI fusion uniquely 643	
explained by the task and object category model respectively. 644	

In all ROIs and at most time points either the task or object category models explained 645	
the majority of the shared variance between MEG and fMRI, as indicated by the close proximity 646	
of the colored lines to the upper boundary of the grey shaded area. This result demonstrates that 647	
task and category model RDMs are good models for describing the observed spatio-temporal 648	
neural dynamics.  649	

All regions carried information about task context and object category at some point 650	
throughout the trial, indicating overlapping representations of task and object category 651	
distributed across cortical location and time. However, regions differed in the predominance and 652	
mixture of the represented content. Both PPC and lPFC were clearly dominated by effects of task 653	
context, with much weaker object category-related commonality coefficients present in these 654	
areas. These regions exhibited high task-related commonality coefficients both during the Task 655	
Cue Period and the Object Stimulus Period. Interestingly, PPC exhibited significant task-related 656	
commonality coefficients throughout the short-term retention period that were not found in lPFC, 657	
which may speak towards a different functional role of these regions in the retention of task 658	
rules. 659	

In contrast to frontoparietal regions, occipitotemporal regions EVC, LO and pFS 660	
generally exhibited weaker but significant task-related commonality coefficients than PPC and 661	
lPFC. All three regions displayed significant task-related commonality coefficients in the Task 662	
Cue Period. Interestingly, in the Object Stimulus Period all three regions exhibited a mixture of 663	
task and object-category related commonality coefficients, indicating the concurrent encoding of 664	
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task and object category in these brain areas. Moreover, the relative size of task-related 665	
commonalities increased gradually from EVC through LO to pFS, indicating an increasing 666	
importance of task encoding when progressing up the visual hierarchy. In all five regions, after 667	
onset of the object stimulus category-related commonality coefficients peaked earlier than task-668	
related commonality coefficients (all p < 0.05, based on bootstrap CI for differences in peaks), 669	
mirroring the results of the time-resolved multivariate decoding analysis. 670	

Together, we found that the spatiotemporal neural dynamics as revealed by model-based 671	
MEG-fMRI fusion predominantly reflected task or object processing, with systematic differences 672	
across cortical regions: While PPC and lPFC were dominated by task and PPC carried task 673	
information throughout the Task Cue Period, EVC, LO and pFS exhibited a mixture of task and 674	
category-related information during the Object Stimulus Period, with relative increases in the 675	
size of task-related effects when moving up the visual cortical hierarchy. 676	
 677	

 678	
 679	
Figure 5. Model-based MEG-fMRI fusion procedure and results. A. Model-based MEG-fMRI fusion in the current 680	
formulation reflects the shared variance (commonality) between three dissimilarity matrices: (1) an fMRI RDM 681	
generated from voxel patterns of a given ROI, (2) a model RDM reflecting the expected dissimilarity structure for a 682	
variable of interest (e.g. task) excluding the influence of another variable of interest (e.g. category) and (3) an MEG 683	
RDM from MEG data at a given time point. This analysis was conducted for each MEG time point independently, 684	
yielding a time course of commonality coefficients for each ROI. B-F. Time courses of shared variance and 685	
commonality coefficients for five regions of interest (ROIs) derived from model-based MEG-fMRI fusion (p < 0.05, 686	
cluster-corrected randomization test, corrected for multiple comparisons across ROIs): PPC (Panel B), lPFC (Panel 687	
C), EVC (Panel D), LO (Panel E) and pFS (Panel F). Blue plots reflect the variance attributed uniquely to task, 688	
while red plots reflect the variance attributed uniquely to object category. Grey shaded areas reflect the total amount 689	
of variance shared between MEG and fMRI RDMs, which additionally represents the upper boundary of the 690	
variance that can be explained by task or category models. 691	
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 692	
Discussion 693	
 694	
We used MEG and time-resolved multivariate decoding to unravel the representational dynamics 695	
of task context, object category, and their interaction. Information about task was found rapidly 696	
after onset of the task cue and throughout the experimental trial, which was paralleled by 697	
information about object category after onset of the object stimulus. Temporal cross-decoding 698	
revealed separate and overlapping task context-related processes, suggesting a cascade of 699	
representations including visual and semantic encoding of the task cue, the retention of the task 700	
rule, and its application to the object stimulus. Investigating the interaction of task context and 701	
object category, we found evidence for late effects of task context on object category 702	
representations, with differerences in the strength rather than the quality of category-related 703	
MEG patterns. Finally, model-based MEG-fMRI fusion revealed that parietal and frontal regions 704	
were dominated by effects of task, whereas occipitotemporal regions reflected a mixture of task 705	
and object category representations following object presentation, with relative increases in task-706	
related effects over time and along the visual cortical hierarchy. 707	
 708	
Representational Dynamics of Task Context 709	
 710	
While previous fMRI studies investigated the cortical location of task effects on visual object 711	
processing (Harel et al., 2014; Erez and Duncan, 2015; Bracci et al., 2017; Bugatus et al., 2017), 712	
they could not provide insight into the temporal dynamics of task context. By manipulating task 713	
context on a trial-by-trial basis we were able to (1) map out the temporal evolution of task 714	
context effects across different stages of the trial, (2) uncover different stages of processing using 715	
temporal generalization analysis, and (3) localize task context-related information to different 716	
regions of the brain using model-based MEG-fMRI fusion. 717	
 The results from multivariate decoding and temporal generalization analyses indicate that 718	
following initial encoding of visual and semantic information about task cue (Task Cue Period), 719	
there was a weak but consistent short-term memory representation of this information, paralleled 720	
by a representation of the task rule. Temporal generalization analysis additionally revealed that 721	
after onset of the object stimulus (Object Stimulus Period) the task representation changed 722	
abruptly. This result is in line with previous work in non-human primates (Sigala et al., 2008; 723	
Stokes et al., 2013) demonstrating largely distinct representations of different task phases in 724	
prefrontal cortex. Since the representation of task after object onset did not generalize to early 725	
time periods during the initial processing of the task cue, this indicates that during object 726	
category processing task context is likely not represented in a purely visual or semantic format. 727	
Instead, our temporal generalization results suggest that at least part of the task-related 728	
information after object onset reflects a representation of task rule that is applied to the visually-729	
presented object stimulus (Wallis et al., 2001; Stoet and Snyder, 2004; Bode and Haynes, 2009; 730	
Woolgar et al., 2011). This interpretation is in line with a recent working memory study 731	
reporting a reemergence of task rule-related MEG patterns during stimulus presentation (Peters 732	
et al., 2016). 733	

Of note, the representation of task context in monkey prefrontal cortex has been shown to 734	
be even more dynamic than described above and not to generalize at all between different 735	
periods of the task (Stokes et al., 2013). Since our results demonstrate phases of cross-736	
classification between these time periods, this suggests that in the present study the source of the 737	
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cross-classification between these periods of the task may not originate from prefrontal cortex, 738	
but from other brain regions such as posterior parietal cortex. Indeed, this interpretation is 739	
supported by our MEG-fMRI fusion results that show no significant prefrontal representations of 740	
task context during the delay period prior to the onset of the object stimulus, but a representation 741	
of task in posterior parietal cortex. 742	
 743	
Differential Involvement of Frontoparietal and Occipitotemporal Brain Areas in Task and 744	
Object Category Representations 745	
 746	
Previous research has suggested a dominance of parietal and prefrontal cortex in representing 747	
task context (Duncan, 2010; Woolgar et al., 2011), while the processing of object category has 748	
been attributed to occipitotemporal cortex (Grill-Spector et al., 1999; Kravitz et al., 2010; Cichy 749	
et al., 2011). More recently, this view has been challenged: First, object category representations 750	
have been found – with some dependence on task context – in both parietal (Konen and Kastner, 751	
2008; Jeong and Xu, 2016; Bracci et al., 2017) and prefrontal cortex (Harel et al., 2014; Erez and 752	
Duncan, 2015; Bracci et al., 2017). Second, there is some evidence for task context effects in 753	
occipitotemporal cortex, although the extent of such effects remains debated (Harel et al., 2014; 754	
Erez and Duncan, 2015; Lowe et al., 2016; Bracci et al., 2017; Bugatus et al., 2017), and the time 755	
course of any such effects has remained elusive. 756	

Our model-based MEG-fMRI fusion results provide a nuanced spatiotemporal 757	
characterization of task and object category representations in frontoparietal and 758	
occipitotemporal cortex. Frontoparietal cortex was strongly dominated by task context, with 759	
much weaker representations of object category. This result reinforces the notion that the 760	
dominant role of frontoparietal cortex is the representation of task, with a secondary role in 761	
representing object category. In contrast, in occipitotemporal cortex, responses reflected a 762	
mixture of object category and task-related effects after object onset, with an increasing 763	
dominance of task over time and along the visual cortical hierarchy from low- to high-level 764	
visual cortex (EVC, LO, pFS). These results reveal that both task and object category are 765	
encoded in parallel in the same regions of occipitotemporal cortex and suggests an increasing 766	
role of task context in high-level visual cortex. 767	

The finding of parallel effects of category and task suggests an interaction of task context 768	
and object category already in occipitotemporal cortex. This result contrasts with the view of a 769	
“passive” role of occipitotemporal cortex in the processing of object category, according to 770	
which object representations are read out by prefrontal cortex (Freedman et al., 2003). Instead, 771	
our results suggest that task biases late components of object processing along occipitotemporal 772	
cortex, an influence that may originate in brain regions strongly dominated by task in 773	
frontoparietal cortex (Waskom et al., 2014). In addition, our results suggest that this influence 774	
may increase along the visual cortical hierarchy. Indeed, pFS but not EVC or LO was found to 775	
represent task context immediately prior to object onset, suggesting that task context has the 776	
potential to affect the early stages of visual processing through a top-down bias. This bias may 777	
reflect a task-specific modulation of the representational strength of task-relevant object features 778	
after object onset. The concurrent representation of both task and category in the same brain 779	
region may be beneficial for optimizing the tuning of categorical brain responses to the demands 780	
of the task. 781	
 782	
Interaction of Task Context and Object Category 783	
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 784	
The direct investigation of the temporal dynamics of task context and object category 785	
interactions revealed three key findings. First, we found that differences in object category 786	
processing between low-level perceptual and high-level conceptual tasks emerged late in time, 787	
suggesting a late top-down modulation of object processing after initial object processing has 788	
been completed, arguing against an early expectation-related modulation of feedforward 789	
processing. This result is consistent with a previous EEG study using natural images in an animal 790	
and vehicle detection task, finding an initial category-related signal followed by a late task-791	
related response signaling the presence of a target stimulus (VanRullen and Thorpe, 2001). 792	
Similarly, a more recent MEG study (Ritchie et al., 2015) reported results for visual category 793	
processing in two different tasks (object categorization vs. letter discrimination) that are 794	
indicative of late differences in task-dependent stimulus processing. Overall, these combined 795	
results suggest that task representations affect late, rather than early processing of visual 796	
information.  797	

Second, object category-related information leveled off more slowly for conceptual than 798	
perceptual tasks, indicating different neural dynamics for different task types. This suggests that 799	
for conceptual tasks encoding and maintenance of object category may be beneficial for carrying 800	
out the task, in contrast to perceptual tasks that do not necessitate categorical representations. 801	
While differences in the difficulty of the tasks could account for this pattern of results, we found 802	
no differences in response times or accuracy for the different tasks, arguing against the relevance 803	
of task difficulty. In support of this view, a previous study emploing a speeded version of the 804	
same tasks and categories found no differences in response times between tasks (Harel et al., 805	
2014). 806	
 Finally, while task context affected the separability of object-related MEG patterns 807	
between task types, object classification showed no reduction in classification accuracy between 808	
task contexts, indicating that the overall structure of those patterns did not change. This result 809	
contrasts with our prior study demonstrating qualitatively different object-related patterns in 810	
lateral prefrontal and high-level object-selective cortex (Harel et al., 2014). However, the 811	
contribution of multiple brain regions to the MEG response may be masking an interaction 812	
between object category and task context. Indeed, our MEG-fMRI fusion data suggest that both 813	
task context and object category are being processed in parallel in pFS, although future work 814	
with independent data will be needed to resolve this issue. 815	
 816	
Conclusions 817	
 818	
Our results suggest that task is represented in multiple distinct yet overlapping processing stages 819	
and that the impact of task context during object processing occurs late in time. Our MEG-fMRI 820	
fusion results support the view of strong task-related responses in frontoparietal regions, while 821	
demonstrating the concurrent processing of both task and object category in occipitotemporal 822	
regions. Our findings provide a nuanced spatiotemporally-resolved view of task processing 823	
throughout the human cerebral cortex. 824	
 825	
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