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Abstract: Studies of resting state functional MRI (rs-fRMI) are increasingly focused on 
“dynamics”, or on those properties of brain activation that manifest and vary on timescales 
shorter than the scan’s full duration. This shift in focus has led to a flurry of interest in 
developing hypothesis testing frameworks and null models applicable to the dynamical 
setting. Thus far however, efforts in this direction have been weakened by a number of 
crucial shortcomings, several of which are outlined and discussed in this short paper. The 
discussion below is important because the weaknesses exhibited by many of the recently 
proposed models are not merely quantitative or parametric. Rather they are fundamental, 
falling into categories that ultimately neutralize the ability of the resulting models to play 
a scientifically clarifying role, while simultaneously injecting distracting new vectors of 
murkiness and confusion into a young but promising research enterprise these efforts are 
surely intended to support. One key point emphasized in this paper is that since 
functionally relevant temporal variations in brain activation are undeniably continual in 
living human rs-fMRI subjects (e.g., the period of time during which all neural activity 
throughout a human brain carries no functional relevance whatsoever is something whose 
existence, even during stroke or seizure, seems highly improbable), “absence of brain 
dynamics” as a null hypothesis for fMRI imaging studies is neither scientifically interesting 
nor well-defined. As we learn more about the phenomenon of functionally relevant brain 
dynamics (FRBD) and its imaging correlates, scientifically meaningful null hypotheses 
and well-tuned null models will naturally emerge. In the course of our discussion, we 
revisit the important concept of stationarity, what it is, how to assess it from multiple 
realizations of a process and finally attempt to parse through the benefits and limitations 
of applying this property in models of rs-fMRI data. We hope that the discussions herein 
are useful, and promote thoughtful consideration of these important issues. 
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1. Introduction 

Studies of resting state functional magnetic resonance imaging (rs-fMRI) have been 

increasingly focused on properties of functional activation that manifest and vary on 

timescales shorter than the full duration of the scan1. This approach is a more natural way 

to analyze such data as we know the brain is a highly dynamic organ. In resting-state 

studies, we do not have the benefit of external indicators of either behavior or functional 

brain processes, other than the narrow case of subject wakefulness which can be studied 

using simultaneous electroencephalogram (EEG) recordings2-4. In the case of resting 

data, we are seeking evidence in the scan itself of shifts in a subject’s cognitive focus, 

emotional state, attention or consciousness level: e.g., we are attempting to locate the 

temporal and correlative signatures of complex internal (“ecologically authentic”) 

sequences of mental tasks. 

The growing focus on examining “dynamics” in rs-fMRI has spawned a number of 

efforts1,5-7 to formulate hypothesis testing frameworks aimed at statistically distinguishing 

variations (univariate, multivariate and relational/correlative) in network behavior that 

arise from reconfigurations of the subject’s cognitive, attentional, sensory, emotional 

(CASE) state from those that have a high likelihood of occurring when a subject’s brain 

is not undergoing or adapting to CASE shifts. The work on null models and hypothesis 

testing (e.g., 8-11) frameworks for shorter timescale analysis of network behavior and 

dynamics has produced some preliminary insights, but remains rather muddled with 

regard to: 

1) Creating an appropriate null space of network timecourses lacking the variations 

consistent with actual shifts in mental functioning, e.g., that  

a. there is no task, experimental or ecological condition whose signature 

presents as a type of epochal variation1 generically observable in that null 

space, and 

b. the timeseries features that occur most rarely in this space are exactly those 

that are most strongly consistent with a brain undergoing shifts in CASE 

state. 

2) Developing a metric that is sensitive to dynamic connectivity, i.e., that with some 

degree of specificity rises in the presence of those univariate or multivariate 

timeseries variations that are most plausibly connected with actual shifts in mental 

functioning 

3) Avoiding the scenario of self-contradictory null models, i.e., distributional tails of a 

non-dynamic null model are not easily replicated in explicitly dynamic null models. 

In this short position paper, we would like to address these points in particular as they 

relate to a recent paper 9. Our concerns are applicable well beyond the scope of 9 but this 

                                            
1 The term “epoch” has been used in this paper to refer to a duration, time period, and not necessarily of 
repetitive nature. 
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recent paper motivates us to discuss some of the inherent challenges of dynamic fMRI 

analyses, and helps illustrate the key pitfalls of employing naive null models in efforts to 

detect the presence of ubiquitous, complex and poorly understood phenomena such as 

functionally-relevant brain dynamics. We hope our discussion clarifies the implications of 
9, while also conveying the challenges of the project its authors undertook. 

2. Modeling Functionally Relevant Brain Dynamics vs. Modeling Their Absence 

(Data Models vs. Null Models) 

The relationship between well-constructed models of observed data and null models for 

a given phenomenon depends largely on the relationship between observed/observable 

data and the phenomenon being investigated. In situations such as those presented by 

the study of resting-state functionally relevant brain dynamics (rs-FRBD) using human 

subject fMRI data, where the null hypothesis is that a certain phenomenon is not present 

but the empirical data being modeled (in this case real fs-fMRI data) happens to be data 

in which this phenomenon is continually present, then the goals of building a null model 

for the phenomenon and accurately modeling the data can diverge significantly. Though 

there are many cases where highly accurate models of the data are also appropriate 

models of a setting in which the null hypothesis applies, e.g., they are also good null 

models. In the fMRI setting, since we tend to correct for motion artifacts, then a good 

model of this data that might, for example, be useful for identifying new scans that should 

be examined for motion contamination. 

One of the challenges in the field of brain dynamics is that it is difficult to generate null 

models as the phenomena of interest are rather poorly defined and are also continual in 

the material being recorded from. Thus, modeling this data with high fidelity is not going 

to be the same as producing a null model for brain dynamics. In fact, a valid null simulation 

model of multivariate signals lacking features corresponding to rs-FRBD would by 

necessity diverge from actual scans observed in living people. Depending on what turn 

out to be the most reliable timeseries indicators of CASE-driven brain dynamics, it is 

possible that some valid null model might exhibit some similarities with the observed data 

(or output from good models of that data). However, a model built on the null hypothesis 

of no brain dynamics would by necessity only rarely create realizations that look similar 

to real rs-fMRI multivariate timeseries. 

2.1.  Statistical Stationarity, Gaussianity and rs-Brain Dynamics 

Statistical stationarity is defined through the invariance of its joint probabilistic distribution 

across any number of samples, to any time shift, and as such, with real data, it can be 

only inferred using multiple realizations of a given stochastic process. A process is 

stationary if the statistical characterization computed over 𝑁 realizations of any 𝑘-tuple of 

timepoints of length 𝑗 {𝑡𝑗1 , … , 𝑡𝑗𝑘} and their 𝜏-translates {𝑡𝑗1 + 𝜏,… , 𝑡𝑗𝑘 + 𝜏} converge to 

identical values as 𝑁 → ∞. A practical way to infer stationarity is by estimating a finite set 

of moments as they are easier to compute than a full probability distribution. Of course, it 

is important to note that any definition of stationarity depends on the interval over which 
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it is evaluated. For a given interval over which stationarity holds it is quite possible for 

strong nonstationarities to manifest over shorter intervals as we demonstrate next. 

Matching white Gaussian noise to a template spectrum actually produces every possible 

signal with the given time-averaged spectral content given by the target. Statistical 

stationarity without other explicit constraints on the process does not imply that individual 

realizations of the univariate or multivariate timeseries (e.g., for fMRI these are individual 

subjects) are not featuring pronounced temporal epochs (see Figure 1). More specifically, 

even white Gaussian noise spectrally matched to a narrow-band spectral template can 

be markedly epochal on an average individual realization (see Figure 2). 

The simulated null model of 9 is built from spectrally and covariance constrained 

multivariate Gaussian processes (SCC Gaussians). The use of an SCC Gaussian 

timeseries as a null model for functionally-relevant brain dynamics (FRBD) rests on an 

implicit assumption that (in the case of a 95% confidence level) fewer than 5% of the 

signals in this space exhibit characteristics consistent with FRBD. The use of fMRI as an 

imaging modality also rests on an implicit assumption that some significant proportion of 

the data being recorded reflects functionally relevant brain dynamics. It would be hard, 

for example, to justify studying even scan-length (static) spectral and 

relational/connectivity characteristics of timeseries whose fluctuations are believed to be 

largely artifactual. The functioning human brain during any state of wakefulness is 

(hopefully inarguably) continually engaged in myriad temporally-varying combinations of 

cognitive, sensorimotor, attentional, emotional, planning, imagination and memory-

related tasks. Many of these functions are in use even during sleep. Thus, any null model 

of multivariate timeseries whose characteristics are highly consistent with empirically 

observed fMRI-based brain measurements has little utility, since the phenomenon that it 

is testing for is ubiquitous rather than rare. The space of SCC multivariate Gaussians 

replicates real fMRI network timeseries with sufficient fidelity to induce broad consistency 

in measurable characteristics between the simulated data and the empirical data it was 

modeled upon 12. Moreover, there is no a priori reason to believe that aberrant or “tail” 

phenomena in this space should be more strongly associated with functionally-relevant 

brain dynamics than with measurement noise, motion or other artifacts, e.g., the sort of 

features that might warrant examining a scan for possible removal rather than positioning 

it as an exemplar of functionally-relevant resting state brain dynamics. 
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Figure 1 The function 𝑓 is a highly stylized example of a signal with distinguishable temporal epochs. The first, second, 

and final third have different means, variances and characteristic frequencies. The stochastic process 𝐹1, however, 

whose realizations are obtained through uniform random circular shifts of 𝑓, is statistically stationary in that that the 
statistical summaries assessed at distinct timepoints over large numbers of realizations are the same. All realizations 
have spectral and epochally clear variations, which would be reflective of FRDB, but as a stochastic process the 

collection of phase-shifted versions of 𝑓 are statistically stationary.  
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Figure 2 The signal 𝑆(𝑡) consisting of a low-amplitude 0.08Hz segment followed by a high-amplitude 0.08 Hz segment 
is one manifestation of a signal with a narrow-band spectrum (shown top left) focused at 0.08 Hz. Matching 60 
timeseries of Gaussian white noise to this spectrum yields (in sets of 20) the timeseries shown in the other three panels 
of this figure. It is evident that spectral-matching of Gaussian noise to a generic template spectrum can contain 
discernible temporal epochs with any given realization. Thus, such a model cannot be a good null model for dynamic 
connectivity as it will contain the very dynamics we are interested in studying. 

2.2. Multivariate Signals Lacking Plausible Markers of rs-Brain Dynamics (Null 

Models) 

The development of valid null models for rs-FRBD is substantially hindered by a dearth 

of fMRI recordings from living subjects under conditions that all but preclude the ongoing 

CASE shifts unavoidably present even in sleeping or mentally impaired subjects. Resting 

state fMRI data is generally recorded under conditions in which functionally relevant brain 

dynamics ought to be continually present. Thus, the measurable features of empirically 
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observed multivariate fMRI network timeseries are intractably “contaminated” from the 

standpoint of parameterizing a null space in which signal properties reflecting rs-FRBD 

are ensured to be rare.  

Another challenge for hypothesis testing of rs-FRBD resides in identifying quantifiable 

signal features for which every upward increment of the associated measure 

unambiguously yields stronger evidence for the presence of rs-FRBD. Without this 

property, observations from the distributional tails of the measure are simply improbable, 

but not necessarily in ways that relate to FRBD. Kurtosis, for example, rises with the 

number and magnitude of observations in a sample that would be outliers if the underlying 

process was stationary Gaussian, i.e., a Gaussian with constant mean and variance. 

Modestly elevated kurtosis might well reflect some unusually strong or active brain 

dynamics – this would have to be demonstrated, but is not implausible. However, 

extremely large kurtosis values occur when a sample contains numerous wildly large (in 

magnitude) observations. A brain recording with these characteristics is more likely to 

suggest noise, motion or a subject undergoing repeated electrical shocks than anything 

connected with actual rs-FRBD occurring during the scan (see Figure 4). More generally 

though, the effort to statistically validate the presence of a phenomenon that is almost 

axiomatically continual in any valid recording seems misguided. The more interesting 

hypotheses about fMRI dynamics would not focus on whether they exist, but rather on 

how they might manifest differentially over different timescales, spatial scales and 

functional scales. 

3. Measuring Functionally Relevant Brain Dynamics vs. Identifying Outlying 

Observations 

A valid metric of brain dynamics should rise monotonically with the strength of the signal 

features that are, at our current level of scientific knowledge, widely believed to have 

associations with CASE or task-driven shifts in brain function. The metric should also be 

as blind as possible to signal features believed to represent nuisance factors. The 

problem of quantifying signal features that have a high likelihood of representing evolving 

CASE states is admittedly very difficult. Every procedure will be biased by assumptions 

whose validity cannot be ensured based the current state of knowledge. The best we can 

hope for right now is for researchers to be clear about what signal properties they are 

seeking to quantify, and why they believe that a strong presence of these properties 

should be taken as evidence of FRBD (or of nuisance factors that are not easily separable 

from FRBD at current levels of measurement resolution). 

We show in this section that a measure based on kurtosis, while sensitive to outliers, is 

not an ideal metric to capture brain dynamics and it is quite easy to show that kurtosis 

can be more sensitive to very rare outliers than it will be to more prevalent FRBD. We 

show in both stylized examples but also in real data that kurtosis preferentially captures 

signal features likely to arise from measurement disruptions (e.g., motion), while 

suppressing evidence of more extended spectral epochs within network timeseries. We 

also propose a new metric, 𝚽 , which we believe shows some of the desired properties. 
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3.1. Univariate and Multivariate Kurtosis Under Stationary Gaussianity 

Univariate excess or normalized kurtosis, the fourth statistical moment rescaled by 

squared variance and centered by subtraction of 3 has a well-understood distribution 

under the Gaussianity assumption that is applicable to 9 and here. Under this assumption, 

there is a closed-form transformation (dependent on the sample size, 𝑛) that converts 

observed excess kurtosis 𝑏 =
𝔼((𝑋−𝜇𝑋)

4
)

𝔼((𝑋−𝜇𝑋)
2
)
2 − 3  into an unbiased estimator of true kurtosis, 

𝒷𝑛 (see Technical Supplement) that is distributed as a standard normal 𝒩(0,1) 13 and 

hence now has altered limits. The use of 𝒷𝑛 enables statistical evaluation of departures 

from stationary Gaussianity. When we refer to values of univariate kurtosis, these are 

values of the unbiased estimator 𝒷𝑛. Samples that yield elevated values of 𝒷𝑛 (say, 𝒷𝑛  >

1.96, so that 𝑝 < 0.05) contain high-magnitude observations that are too numerous and/or 

too extreme for the sample to have even a 5% chance of having been generated by a 

stationary Gaussian process. 

There is a similar transform for Mardia’s multivariate kurtosis (m.v. kurtosis), with a similar 

interpretation. The unbiased estimator ℬ𝑛.𝑝 (dependent on sample size, 𝑛, and vector 

length, 𝑝, see Technical Supplement) for Mardia’s multivariate kurtosis 14 is: 

𝐵𝑛,𝑝 =
1

𝑛
∑(𝒙𝑖−𝜇𝑖)

𝑇𝑪−1(𝒙𝑖−𝜇𝑖)

𝑛

𝑖=1

 

where 𝑪−1 is the 𝑛 × 𝑛 inverse covariance matrix of the time-indexed 𝑝-vectors 

{𝒙1, 𝒙2, … , 𝒙𝑛}. 

3.2. Wavelet-Based Metric of Spectrally-Distinguishable Temporal Epochs 

We briefly introduce a novel metric Φ:ℝ𝑇 → ℝ that explicitly captures the presence of 

spectrally distinguishable temporal epochs in a timeseries (see Figure 3 and the 

Technical Supplement). The metric has a natural multivariate extension Φ̃: ℝ𝑁×𝑇 → ℝ that 

evaluates spectrally distinguishable temporal epochs in multivariate timeseries. Φ is not 

a primary focus of this short paper, but it plays a role in the discussion that follows 

because it provides a more targeted measurement than, for example, kurtosis, of 

timeseries characteristics that could from FRBD. 
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Figure 3 The metric 𝛷 (details given in the Technical Supplement) is intended to capture spectral nonstationarities, or 
spectrally distinguishable temporal epochs (SDTEs), in univariate (top) and multivariate (bottom) timeseries. The 
univariate version uses wavelets to capture temporally-localized spectral information, yielding a set of time-indexed 
spectra (top middle), which we normalize to have total power equal to the product of the number of frequencies and 
the number of timepoints. We then compute pairwise L1 distances between the time-indexed spectra (top right) and 

compute the median off-diagonal value of the resulting 𝑇 × 𝑇 matrix. The multivariate extension 𝛷̃ of 𝛷 concatenates 
the time-frequency spectra of all univariate constituents along the frequency dimension (bottom middle), leaving the 
time dimension unaltered. In this case, we compute the median off-diagonal elements of the 𝑇 × 𝑇 matrix of pairwise 
differences between time-indexed concatenated spectra (bottom middle). The multivariate metric is higher when 
constituent univariate time-frequency spectra exhibit their largest within-signal spectral differences in mutually distinct 
temporal intervals. The case shown here does not illustrate the role of differential intervals of SDTEs among constituent 
timeseries. 

3.3. Epochal Stationarity and Kurtosis 

The presence of spectrally distinguishable temporal epochs across realizations, i.e., 

multiple subjects’ connectivity characteristics in individual or multivariate network TCs is 

one reasonable potential form of evidence for rs-FRBD. Although it is also possible that 

this type of phenomenon could arise from nuisance factors, epochal behavior has 

structure that makes it less likely to be sourced dominantly in nuisance factors such as 
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motion, measurement noise or physiological rhythms. Kurtosis, which can help identify 

the presence of outliers in Gaussian data, has been proposed as a metric to detect FRBD, 

however kurtosis is highly susceptible to unstructured amplitude variations. Moreover, as 

an outlier metric, kurtosis has greater sensitivity to sharp, transient, high-amplitude 

anomalous intervals than to signals with amplitude and frequency variation on more 

functionally relevant timescales (see Figure 4). In fact, the properties leading to elevated 

kurtosis are sometimes more present in an epochally stationary signal than in an 

epochally nonstationary signal (see Figure 5), i.e., one that is stationary except within a 

given duration. This is not to say that measuring epochal nonstationarity is 

straightforward. There are many features and timescales on which the nonstationarity 

might be exhibited, and most prospective metrics will present some combination of over-

sensitivity to irrelevant features and blindness to important features and/or timescales. 

We are currently working on a flexible, tunable approach to capturing the kind of epochally 

structured frequency domain variation that promises to provide valid evidence for brain 

dynamics after careful evaluation of sensitivity to nuisance factors. 
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Figure 4 (i) Highest kurtosis applies in a signal with a transient high-amplitude high-frequency interval, more consistent 
with a motion or noise than with shifting CASE states; 𝜱 is extremely low for this seeming artifact; (ii-iv) Much lower 

kurtosis in stylized signals with highly distinguishable temporal epochs are more consistent with FRBD; much higher 𝜱 
in these strong FRBD candidates; (v) Lowest kurtosis in stylized signal with very strong and distinguishable temporal 
epochs; much higher 𝜱 for this strong FRDB candidate. Positive univariate excess kurtosis indicates super-Gaussianity 
(and is not particularly useful for indicating functionally relevant dynamics). As such, kurtosis is high when there are a 
larger number of high-amplitude observations than should arise under the assumption of Gaussianity. Univariate 
kurtosis (transformed via equation (1) in the Technical Supplement) to distribute, assuming Gaussianity, as a standard 
normal random variable) is negative on each of the stylized examples (ii)-(v) that exhibit distinguishable temporal 
epochs consistent with functionally relevant brain dynamics. It is very large and positive only in the example containing 
a single high-amplitude, high-frequency “spike” (i). The behavior that appears in the upper tail of the kurtosis distribution 
is more consistent with motion artifacts or measurement error than anything previous imaging or EEG studies have 

found to be associated with experimental tasks. The metric, 𝛷, introduced in this work, is at least three times larger for 
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examples (ii)-(v) that exhibit distinguishable temporal epochs consistent with functionally relevant brain dynamics than 
for the case (i) that features a single high-frequency high-amplitude “spike” embedded in an otherwise spectrally 
epochless signal. As such 𝛷 exhibits the behavior we would expect, whereas kurtosis is not particularly useful for 
detecting behavior consistent with relevant brain dynamics for the examples shown above. 

 

Figure 5 Stylized signal pairs; (Left) two signals, each with highly distinguishable spectral epochs and whose 
connectivity switches sign on one epoch vs. (Right) two perfectly stationary pure sinusoids whose connectivity does 
not change at all; m.v. kurtosis is higher for the stationary pairs with unchanging connectivity than for the pairs with 
shifting connectivity. Note that 𝜱 is higher for the pair the includes epochs. Excess multivariate kurtosis indicates 
multivariate super-Gaussianity (and is not particularly useful for indicating functionally relevant dynamics). Multivariate 
kurtosis (transformed via equation (4)) from the Technical Supplement) is assumed to be distributed, assuming 
multivariate Gaussianity on the part of the random vector, as a multivariate standard normal random variable) on both 
stylized multivariate examples. The first (left) features two signals that each exhibit highly distinguishable spectral 
epochs and whose correlative behavior is also dynamic: they are perfectly correlated, then perfectly anti-correlated, 
then again perfectly correlated. This is a very dynamic context but not only presents negative multivariate kurtosis, its 
kurtosis value is even more negative than the second example (right) that features two spectrally unchanging signals 

whose mutual correlations are consistently zero. The multivariate measure 𝛷̃ is twice as large in the dynamic example 
(left) compared to the static example (right). 

3.4. Empirical Data and Simulation Regimes 

A set of network timecourses from a clinical rs-fMRI study on which dynamic functional 

network connectivity (FNC) results have already been published 15, and five simulation 

regimes modeled on that data are employed to explore and illustrate the role of 
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Gaussianity and statistical stationarity as well as, spectral and covariance stationarity in 

modeling rs-FRBD (and/or its absence). It is important to note that we refer to stationarity 

in the true sense as statistical (non)stationarity in what follows. We use the terms “spectral 

(non)stationarity” and “covariance (non)stationarity” to refer to other definitions used 

including 9 that invoke the concept of (non)stationarity through the analysis of a single 

realization either in the spectral domain (for the former definition) or using covariance 

function (for the latter definition). The approaches are lightly outlined here, with more 

details provided the Technical Supplement. 

Real Data: We used previously published 15 network timecourse data from a large 

multisite clinical resting-state fMRI study. These timecourses (314 subjects, 47 networks, 

158 timepoints), subsequently filtered for frequencies at most 0.08 Hz and z-scored, are 

referred to below as “Real Data”15 (see Figure 6; top left). The average power in each 

frequency bin in [0.003,0.08] Hz for all network TCs for all subjects is denoted 𝑷̅𝑑𝑎𝑡𝑎. The 

average cross-network covariance matrix for all subjects is denoted 𝐂𝑑𝑎𝑡𝑎. Every 

simulation regime described below consists of 1000 simulated subjects, each 

characterized by a set of 47, length-158 timeseries. 

SCC Gaussians: statistically stationarity without constraint on SDTEs: Following 9, 

each simulated subject in the SCC Gaussian regime is a multivariate timeseries resulting 

from the projection of a 47 × 158 matrix of low-pass filtered white noise spectrally 

matched to 𝑷̅𝑑𝑎𝑡𝑎 onto the eigenspace of 𝐂𝑑𝑎𝑡𝑎 (see Figure 6; top middle). 

Covariance-Dynamic SCC Gaussians: piecewise stationary, two distinct 

covariance regimes, no constraint on SDTEs (CD-SCC Gaussian): This regime 

introduces explicit covariance nonstationarity. Each CD-SCC Gaussian subject starts as 

a 47 × 158 matrix consisting of low-pass filtered white noise spectrally matched to 𝑷̅𝑑𝑎𝑡𝑎, 

which is then divided into three windows, determined by a middle window of randomly 

chosen length between 40 and 60 TRs. The middle window is projected onto the 

eigenspace of 𝐂𝑑𝑎𝑡𝑎, which has structure and is strongly connected, while the first and 

final windows are projected onto the eigenspace of 𝑪𝑤𝑒𝑎𝑘, a covariance matrix reflecting 

very weak unstructured network connectivity (see Figure 6; bottom left). 

SCC Gaussians with Noise: statistically stationary with a single spike randomly 

inserted into a small proportion of network timeseries (“Noisy SCC Gaussian”): 

This regime introduces extremely sparse, high-amplitude noise to the SCC Gaussian 

setting. Each Noisy SCC Gaussian subject starts as an SCC Gaussian subject, i.e., as a 

47 × 158 matrix consisting of low-pass filtered white noise spectrally matched to 𝑷̅𝑑𝑎𝑡𝑎 

then covariance matched to 𝐂𝑑𝑎𝑡𝑎. Of the 47 timeseries in this matrix, between 3 and 15 

are selected at random to carry a single high frequency spike centered at some randomly 

selected timepoint. The entire multivariate timeseries contains between 3 and 15 of these 

noise artifacts, with at most one in any given univariate timeseries (see Figure 6; top 

right). 
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Spectrally and Statistically Nonstationary: explicitly nonstationary both 

statistically and epochally (“SS Nonstationary”): This regime introduces simulated 

task-responsiveness to the SCC Gaussian setting. Each simulated SS Nonstationary 

subject starts as an SCC Gaussian subject (a 47 × 158 multivariate timeseries produced 

by subjecting white noise to spectral and covariance constraints exhibited by the real 

data). The 47 networks for each subject are divided into at most 17 task-positive networks 

(TPNs), at most 11 task-negative networks (TNNs), with the remaining 19 − 29 networks 

designated as nonresponders (NRs). Following the same procedure employed for the 

CD-SCC Gaussian regime, multivariate timeseries in the SS Nonstationary regime are 

divided into three windows determined by a middle window of randomly-chosen length 

between 40 and 60 TRs. The hypothetical task takes place during the middle window, in 

which (relative to the first and final window) the selected TPNs exhibit faster, higher 

amplitude behavior, the selected TNNs exhibit slower, lower amplitude behavior and the 

NRs exhibit no change in behavior (see Figure 6; bottom middle). 

Covariance-Dynamic Spectrally and Statistically Nonstationary: explicitly 

nonstationary both statistically and epochally with two distinct covariance regimes 

(“CD-SS Nonstationary”): This regime introduces explicit covariance nonstationarity to 

the SS Gaussian setting. Each simulated CD-SS Nonstationary subject starts as an SS 

Nonstationary subject (see immediately above). In this regime, however, the temporally 

task-responsive middle window is additionally subjected to explicitly different covariance 

constraints than the task-free first and final windows. Following the procedure from the 

CD-SCC Gaussian, the middle window of CD-SS Nonstationary subjects is projected onto 

the eigenspace of 𝐂𝑑𝑎𝑡𝑎, while the first and final windows are projected onto the 

eigenspace of 𝑪𝑤𝑒𝑎𝑘 (see Figure 6; bottom right). 
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Figure 6 (Top Left) Real Data: Multivariate timeseries consisting of network timecourses from an actual rs-fMRI subject 
15 (3 single network examples displayed immediately to the right); (Top Middle) SCC Gaussians: Multivariate timeseries 
of SCC Gaussians modeled on mean spectral content and mean mutual covariance of empirical network timecourses 
from the study shown at the top left.; (Top Right) Noisy SCC Gaussians: The same as SCC Gaussians but with between 
3 and 15 high-amplitude, high-frequency “spikes” interspersed, examples circled. No more than one spike is inserted 
in any individual timecourse and at most 15 of the 47 timecourses contain spikes. (Bottom Left) Covariance-Dynamic 
SCC Gaussians: This regime starts like the SCC Gaussians, in that the timeseries are spectrally matched to the mean 
spectral content of the target empirical dataset. However, the next stage involves covariance matching the middle 
interval to the mean mutual covariance of the empirical networks, while the first and final intervals are matched to a 
very weakly connected covariance structure. (Bottom Middle) Spectrally and Statistically Nonstationary: This regime 
also starts like the SCC Gaussians, in that the timeseries are spectrally and covariance matched to the mean spectral 
content and covariance structure of the target empirical dataset. Here though there is a middle window in which a 
subset of TPNs exhibits high-amplitude, high frequency behavior, a subset of TNNs exhibits low-amplitude, low-
frequency behavior and most networks are  NR to the stimulus. (Bottom Right) Covariance Dynamic and SS 
Nonstationary: This regime starts like the Covariance Dynamic SCC Gaussians, then a subset of TPNs and TNNs are 
chosen to respond in the same way as in the Spectrally and Statistically Nonstationary regime. 

3.5. Kurtosis is Overly Sensitive to Noise Artifacts and Very Rarely Identifies 

Explicit Spectral, Statistical and Covariance Nonstationarities 

As mentioned earlier, the utility of kurtosis as a measure of functionally relevant brain 

dynamics is mitigated by its highly-tuned sensitivity to spikes and outliers in the data. We 

saw this earlier in stylized univariate timeseries (see Figure 4). The issue is equally 

evident (see Figure 7) in more complex multivariate simulations involving different 

degrees of nonstationarity, exhibited in different ways. Employing m.v. kurtosis as a 
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measure of FRBD implies that timeseries on which it assumes values large enough to 

provide significant evidence (𝑝 < 0.05) against the null hypothesis of stationary 

multivariate Gaussianity are those in which the features associated with FRBD are most 

markedly present. More specifically, these features increase monotonically with m.v. 

kurtosis. In Figure 7 however, we see that that the only the simulation regime in which a 

non-negligible percentage (93%) of realizations is identified as exhibiting FRBD using 

m.v. kurtosis is the regime featuring a handful of spikes in an otherwise stationary 47 ×

158 multivariate Gaussian. Only 5.3% of realizations from the explicitly covariance-

dynamic regime are identified using the m.v. kurtosis metric as exhibiting FRBD, and for 

the other nonstationary regimes the percentage of realizations identified as exhibiting 

FRBD is less than a tenth of a percent. Similarly, the actual data recorded from subjects 

undergoing continual CASE-shifts exhibits no evidence by the m.v. kurtosis criterion of 

having arisen from a source in which functionally relevant brain dynamics are present. 

This clearly highlights the limitations of kurtosis as an indicator of FRBD. Elevated kurtosis 

indicates the sample contains too many points that are too extreme in magnitude under 

an assumption of stationary Gaussianity; it is less effective at capturing the dynamic 

changes in temporal behavior (including covariance) that are more plausible markers of 

FRBD and are richly present in most realizations of even stationary multivariate Gaussian 

processes. 

 

Figure 7 The percentage of multivariate timeseries from each indicated simulation regime (and the real rs-fMRI study 

on which the simulated data was modeled) that present significant evidence (𝑝 < 0.05) of having been generated by 
some process that is not a stationary multivariate Gaussian. The explicitly implemented spectral and statistical 
nonstationarities of the two SS Nonstationary regimes (columns 5 and 6) are effectively never found to exhibit significant 
evidence against being generated by stationary multivariate Gaussians. In the two explicitly covariance-nonstationary 
regimes (columns 4 and 6), one of which is also spectrally and statistically nonstationary variations (column 6), at most 
5% of the 1000 simulated subjects – each of which exhibits the explicit nonstationarity – are identified as unlikely to 
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have arisen from a stationary multivariate Gaussian process. Like the SCC Gaussian simulations (column 2), the SS 
Nonstationary simulations (columns 5 and 6) and the covariance-nonstationary simulations (columns 4 and 6), emprical 
observations from real subjects (column 1) in whom the phenomenon of interest (FRBD) is ubiquitous are not 
statistically distinguishable from realizations of a stationary multivariate Gaussian process. The only regime that 
multivariate kurtosis reliably distinguishes from realizations of a stationary multivariate Gaussian process is the case of 
SCC Gaussians in which a single high-amplitude, high-frequency spike is inserted into between 3 and 15 of the 47 
univariate timeseries from the multivariate observation (column 3). This regime is basically just a lightly contaminated 
version of the SCC Gaussian regime (column 1) and of all of the simulation regimes exhibits the least evidence of 
functionally relevant brain dynamics. The behavior underlying upper-tail observations of multivariate kurtosis looks 
more like scan contamination than anything task-paradigm fMRI studies suggest would be strongly associated with 
FRBD. 

Conversely, as shown in Figure 8, the proposed metric (defined in Figure 3 and the 

Technical Supplement) responds in a more reasonable way to those features of real and 

simulated multivariate timeseries that have strong likelihood of reflecting FRBD vs. those 

that are simply aberrant in some other way. Results show that, in contrast to multivariate 

kurtosis, the lightly contaminated SCC Gaussians in terms of Φ̃ exhibit significantly less 

evidence of reflecting FRBD than either of the SS Nonstationary regimes (Figure 8, row 

2, columns 5 and 6) and real data is statistically indistinguishable from the covariance-

dynamic SCC Gaussian regime (Figure 8, row 1, column 4). So Φ̃ is putting regimes 

exhibiting different kinds of temporally epochal behavior—including the epochal behavior 

seen in statistically stationary Gaussian processes—in what seems a plausible ordering 

with respect to dynamism: SCC Gaussians ≼ Real Data ≈ Covariance-Dynamic SCC 

Gaussians ≼ Noise-Contaminated SCC Gaussians ≼ SS Nonstationary ≼ Covariance-

Dynamic SS Nonstationary (where curly binary relations indicate ordinal evidence of 

potentially relevant multivariate epochal behavior as measured by Φ̃ (see legend for more 

details). 
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Figure 8 This table presents the t-statistic (where significant at the p<0.05 level) for pairwise T-tests of 𝛷̃ on the row 
regime vs. the column regime. From this standpoint, we see that the real network timecourses (row 1) exhibit 
significantly greater presence of SDTEs than the SCC Gaussians (column 2) modeled on them, significantly less 
evidence of SDTEs than the lightly contaminated “noisy” SCC Gaussians (column 3) and the explicitly SS Nonstationary 
Regimes (columns 5 and 6) and are statistically indistinguishable from the explicitly covariance-dynamic SCC 
Gaussians (column 4). Unlike what was found using multivariate kurtosis, the covariance-static SCC Gaussians (row 

2) are in terms of 𝛷̃ significantly less dynamic that the covariance-dynamic SCC Gaussians (column 4) and both SS 
Nonstationary regimes (columns 5 and 6). Again, in contrast to multivariate kurtosis, the lightly contaminated SCC 

Gaussians (row 3) in terms of 𝛷̃ are significantly less dynamic than both SS Nonstationary regimes (columns 5 and 6). 

𝛷̃ is putting regimes exhibiting different kinds of temporally epochal behavior – including the epochal behavior seen in 
statistically stationary Gaussian processes - in what seems a plausible ordering with respect to dynamism: SCC 

Gaussians ≼ Real Data ≈ Covariance-Dynamic SCC Gaussians ≼ Noise-Contaminated SCC Gaussians ≼ SS 
Nonstationary ≼ Covariance-Dynamic SS Nonstationary (where curly binary relations indicate ordinal evidence of 

potentially relevant multivariate epochal behavior as measured by 𝛷̃). 

4. Ensuring that the Null and Alternative Hypotheses Yield Different Distributional 

Tails 

One key challenge in creating null models is to ensure that the null distribution is truly a 

null, i.e., the behavior of interest is not generically present within the null itself. The field 

of dynamic connectivity in particular has struggled with this as there are multiple threads 

of research proposing different models of dynamic behavior including covariance 

dynamics1,15 and oscillatory dynamics16. In this context, it is very important to keep any 
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proposed null model within the narrow context within which it is able to reject a particular 

hypothesis about brain dynamics. For example, a null model of oscillatory dynamics may 

well contain within it dynamically changing covariances, and, as such, it is not a 

particularly good null model for that particular scenario10. In addition to that, even models 

of covariance dynamics have been shown to be limited to a rather particular set of 

parameters, which we do not yet fully understand how to set for the human brain8. There 

is also evidence that the brain functions as a nonlinear dynamical system17. The result is 

that many of the null models that have been proposed are making strong assumptions 

about brain dynamics which, while having some justification, are not able to rule out 

dynamics of a different sort. We provide some additional discussion on this important 

point below. 

4.1. Whole-Brain Windowed Connectivity States and Occupancies from 

Statistically Stationary and Explicitly Nonstationary Null Models Strongly 

Resemble Each Other 

As we have discussed previously, creating a valid null model is difficult without explicitly 

understanding the properties that multivariate network timeseries might exhibit in 

response to complex CASE variations. One approach, suggested recently by 9, employs 

a space of low-pass filtered multivariate white noise, spectrally matched to the average 

spectrum of empirical timecourse data and then projected onto the eigenspace of 

empirically observed mean network covariance. As discussed in Section 3, this is a space 

of timeseries explicitly modeled on real data recorded from a material in which the 

phenomenon of interest (i.e., functionally relevant brain dynamics) is continually present. 

It is therefore not a space in which univariate or multivariate temporal behavior plausibly 

sourced in CASE variations is vanishingly rare. Which is to say, it is not a useful null space 

for the identification of rs-FRBD. Moreover, it is a space of signals whose time-varying 

behavior is jointly determined by all simulation parameters and assumptions: the auxiliary 

spectral and covariance constraints as well as the Gaussianity assumption and the 

primary assumption of statistical stationarity. Above and beyond the problematic success 

of this simulation model in replicating empirical data recorded under circumstances in 

which the phenomenon of interest is uninterrupted and continual, this simulation regime’s 

value as a null model is further undermined by the unexamined role of auxiliary 

parameters in shaping key measures and distributions. This can be seen in Figure 9, 

rows 2 and 3, where we break the model’s core assumption of statistical stationarity, a 

property, arguably incorrectly, associated by the authors with an absence of FRBD, 

without discernibly disrupting either the clusters formed by short-timescale FNCs or the 

average cluster occupancy rates (see the Technical Supplement for a brief background 

on this approach). The distributional tails of occupancy rates for each connectivity state 

in the SCC Gaussian and the SS Nonstationary regimes have significant overlap (see 

Figure 10) and as such this model can quite easily rule both for and against dynamic 

connectivity at the same time, an obviously flaw in the approach. Setting aside for a 

moment whether stationary Gaussianity is a criterion that characterizes or excludes signal 

features reflecting rs-FRBD, the model as specified is not useful for finding evidence 
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against this assumption, that is not simultaneously providing evidence against its 

complement, i.e., the distributional tails of occupancy rate as a test statistic are not 

hypothesis-separating. This example illustrates the difficulties of building hypothesis-

testing frameworks for phenomena whose distinguishing quantifiable characteristics are 

not well understood. If, in contrast to 9, one realizes that the space within which one is 

working contains the very dynamics that one is trying to rule out (a point subsequently 

made by 12) the conclusions that can be made are unconvincing and uninteresting. 

 

Figure 9 As we have pointed out previously, statistical stationarity, even multivariate stationary Gaussianity, can be 
richly inclusive of the types of time-varying multivariate behavior consistent with known brain responses to experimental 
tasks. Thus, the windowed connectivity states that a statistically stationary multivariate process moves through have 
every reason to resemble those of the real data upon which the process was tightly modeled (rows 1 and 2). However, 
it is also the case that short-timescale connectivity measurements from explicitly nonstationary processes (see 
“Statistically and Spectrally Nonstationary” regime in Section 3.4) subjected to spectral and global covariance 
constraints drawn from the real data cluster in the same way (row 3) as both the real data and the stationary Gaussian 
simulation modeled upon it. This suggests that the short-timescale connectivity states and occupancies are driven more 
by auxiliary constraints on mean spectrum and mean covariance than by whether the underlying process is statistically 
stationary. As we have shown, statistical stationarity does not preclude a multivariate signal from passing through 
connectivity states resembling those potentially arising from FRBD in real data. But more importantly it passes through 
the same connectivity states in the same way as explicitly nonstationary processes subjected to the same auxiliary 
constraints and as such is not particularly useful as a null condition for detection relevant brain dynamics. 
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Figure 10 For a null model to be useful, it should exhibit evidence of the phenomenon being investigated extremely 
rarely. SCC Gaussians arguably present evidence of FRBD as ubiquitously as the real fMRI data does. It is also not 
clear a priori that tail phenomena in SCC Gaussians should have an especially strong association to FRBD rather than, 
for example, to motion artifacts or measurement noise. Moreover, the measures evaluated on a null model are only 
helpful in identifying behavior of interest if the distributional tails of the measure do not overlap with those of the same 
measure evaluated on a model that violates assumptions of the original null hypothesis. The upper tails of the 
distributions of occupancy rates on the windowed connectivity states from SCC Gaussians (red) and the SS 
Nonstationary simulation regime (blue) have substantial overlap (semi-transparent grey triangles indicate the 
overlapping part of the tails for each state). Insufficient clarity on the unique, distinguishing features of the phenomenon 
being studied and of the models/measures being employed neutralizes the measure’s role in hypothesis testing as the 
same observation can then present significant evidence against multiple, mutually contradictory null hypotheses. In 
terms of occupancy rates of windowed connectivity states, we see here that a newly scanned subject who spends 65% 
of their time in state 2 exhibits significant evidence against one statistically stationary null hypothesis and also against 
an explicitly nonstationary null hypothesis.  

5. Discussion 

In this position paper, we have attempted to clarify and develop some of the important 

issues related to dynamic connectivity within the resting brain. Our focus has mostly 

centered around the use of metrics to detect possible dynamic behavior and also the 

creation of appropriate null models of functionally relevant brain dynamics, including but 

not limited to dynamic connectivity. We have discussed crucial limitations hindering some 

existing proposed models, proposed a possible metric for detection of functionally 

relevant brain dynamics, and have, we hope, provided the context for a rich ongoing 

discussion of where the field should head from here. In the remainder of this paper, we 

highlight a few high-level questions that we hope make this point clear. 

5.1. Are Functional Brain Dynamics Rare? 
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One of the key points we emphasized relates to the creation of a null simulation model. 

A useful null simulation model should be built on assumptions complementary to those 

that would apply if the phenomenon of interest were present, and then combined with a 

test statistic that is sufficiently sensitive to the null assumptions that it very rarely achieves 

extreme values when they are absent. One example of this latter concern is 10, in which 

a particular and carefully constructed null model was proposed. The test statistic 

employed however was variance, whose distributional tails on their static null simulation 

model matched the tails of variance computed on a wide range of explicitly dynamic 

variants of the model in which parameters were meaningfully changing with time. The 

study of functional brain dynamics presents challenges to this entire type of modeling. 

We know that functional brain dynamics are constantly present in conscious human 

beings, so the phenomenon is anything but rare empirically. 

5.2. Are Functional Brain Dynamics Separable from Nuisance Factors and 

Background Brain Rhythms? 

The null model for a phenomenon necessarily produces, with very low probability, values 

of some test statistic that are consistent with the phenomenon which is being tested. This 

kind of model makes sense primarily when there is a very clear understanding of the 

range of values a particular test statistic will assume in the presence of the hypothesized 

phenomenon. So although in this short paper we are focusing primarily on the 

insufficiency of null models built on many realizations of some statistically stationary 

multivariate process modeled on empirical timecourse spectra and covariance, the larger 

problem is really that our present understanding cannot rule out the possibility of nontrivial 

intersection between signal features foreseeably connected with brain dynamics and 

those arising from nuisance factors and background brain rhythms. Even a spectrally pure 

signal, e.g., a single-frequency sinusoid, features amplitude changes that could be 

consistent with the ebb and flow of a network’s contributions to temporally varying CASE 

demands. Certainly pure sinusoids and other epochally stationary signals (whose phase-

randomized stochastic analogues are statistically stationary) could provide evidence of 

network responsiveness in certain experimental task paradigms, e.g., those involving 

repetitive motor or sensory tasks. Since most temporal changes in a signal, including raw 

amplitude changes, could plausibly be correlated with some complex sequence of CASE 

conditions, the present state of knowledge makes it difficult to construct null models that 

can claim to yield, almost-exclusively, timeseries (multivariate or univariate) lacking 

features prospectively associated with brain dynamics.  

This is true even when the null model is narrow. Indeed, it can be difficult to ensure that 

the test statistic being assessed does not have distributional tails roughly matched to the 

distributional tails of that statistic on a similarly narrow but explicitly “dynamic” model. In 

that case, we can easily conceive of examples where we are in the position of having an 

empirical measurement of the test statistic that simultaneously leads to rejection of one 

static null hypothesis and various related dynamic null hypotheses. In such a case, the 

desired test has been rendered essentially useless. Absence of functionally relevant brain 
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dynamics in fMRI is the wrong null hypothesis for future research: the phenomenon is 

extremely high-dimensional and ill-defined and the question in this form is without 

scientific interest. As we have argued in this paper, the use of an “absence of brain 

dynamics” null model is not a particularly useful one for studying living humans as we 

expect functionally relevant temporal variations in brain activation to be constantly 

occurring throughout the experiment. As the phenomenon of FRBD is better understood, 

improved null models will naturally emerge and we hope that the discussions herein are 

useful and promote thoughtful consideration of these important issues. 

6. Conclusions 

To summarize, serious and continuing investigation of dynamic multivariate brain 

activation patterns (including dynamic connectivity) is scientifically important and central 

to many core open questions in brain science. The time-varying measurements provided 

by BOLD fMRI currently play a vital supporting role in this overall project. We have 

discussed some of the limitations of existing null models and metrics for capturing 

dynamics, and proposed a new wavelet-based metric which appears to provide sensible 

results in a number of simulated scenarios. Finally, we urge caution in the development 

of null models in the context of dynamic connectivity. Especially for studies in which 

subjects are not engaging in a common, narrow experimental task, the relevant features, 

temporal and spatial/functional scales are not yet well understood and moreover the 

question of whether functionally relevant brain dynamics “exist” in a living human subject 

seems both misguided and impossible to formulate in scientifically well-posed terms. 

Specific well-defined questions about how particular signal features evolve on a range of 

spatial and temporal scales could produce more useful and testable hypotheses about 

how the brain signals we measure relate to high-level processes by which the brain 

organizes, directs and rotates through some of its central tasks: e.g., cognition, sense-

making, generative thinking, memory-formation, memory-retrieval and emotion 

regulation, among others. 
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Technical Supplement 

 

SCC Multivariate Gaussian Processes 

  Let 𝑤𝑚,𝑇
(𝑖)

 be one 𝑚 × 𝑇 matrix of white Gaussian noise, 𝑷⃑⃑  the average power spectrum for all subjects and 

all 𝑚 network TCs in an actual resting state fMRI study, and 𝑪𝑚 the 𝑚 × 𝑚 population mean cross-network 

covariance. The set of timeseries one gets by inverse Fourier transforming a set of 𝑇 normalized random 

complex coefficients 𝜃𝑖 =
𝜔𝑖

||𝜔𝑖||
, 𝑖 = 1,2, … , 𝑇 weighted according to a fixed template spectrum 𝑷⃑⃑ =

{𝑝1, 𝑝2, … , 𝑝𝑇}, ie, the set: 

𝑆(𝑷,⃑⃑  ⃑ 𝑇) = {𝑠(𝑡): 𝑠(𝑡) = 𝑖𝐹𝐹𝑇({𝑝1𝜃1, 𝑝2𝜃2, … , 𝑝𝑇𝜃𝑇}, random 𝜽⃑⃑ . fixed 𝑷⃑⃑  )} 

includes the discrete analogue (as we are working with computers on finite samples) of all length-𝑇 

piecewise continuous functions with spectrum 𝑷⃑⃑ . In particular, these timeseries exhaustively exhibit the full 

range of epochal behavior possible under the global spectral constraint 𝑷⃑⃑ . Since 𝑷⃑⃑  is the average spectrum 

of network TCs from a real rs-fMRI study, this ensures that the epochal signatures of CASE-driven rs-FRBD 

are replicated in 𝑆(𝑷,⃑⃑  ⃑ 𝑇). The set of 𝑚 × 𝑇 multivariate timeseries 

𝑆𝑚(𝑷,⃑⃑  ⃑ 𝑇) = {𝒔(𝑡) = [𝑠1(𝑡); 𝑠2(𝑡); … ; 𝑠𝑚(𝑡)]: 𝑠𝑖(𝑡) ∈ 𝑆(𝑷,⃑⃑  ⃑ 𝑇), 𝑖 = 1,2, … ,𝑚} 

similarly exhaust the range of m-fold jointly realizable within-timeseries epochs subject to the duration 𝑇 

and spectral constraint 𝑷⃑⃑ .  Finally, the set  

𝑆(𝑷,⃑⃑  ⃑ 𝑇, 𝑪𝑚) = {𝒔(𝑡, 𝑪𝑚) ≡ [𝒔(𝑡)]𝑻(𝐄(𝑪𝑚)√𝐕(𝑪𝑚)): 𝒔(𝑡) ∈ 𝑆𝑚(𝑷,⃑⃑  ⃑ 𝑇)} 

of projections 

𝒔(𝑡, 𝑪𝑚) ≡ [𝒔(𝑡)]𝑻(𝐄(𝑪𝑚)√𝐕(𝑪𝑚)) 

of 𝒔(𝑡) ∈ 𝑆𝑚(𝑷,⃑⃑  ⃑ 𝑇) onto the eigenspace of 𝑪𝑛 is also a collection of Gaussian multivariate process with 

average spectrum 𝑷⃑⃑  (where 𝐄(𝑪𝑚), 𝐕(𝑪𝑚) are respectively the eigenvectors and diagonal matrix of 

eigenvalues of 𝑪𝑚). The multivariate Gaussian timeseries in 𝑆(𝑷,⃑⃑  ⃑ 𝑇, 𝑪𝑚) exhibit the joint-spectral and 

covariation epochs that can arise in 𝑚 × 𝑇 multivariate timeseries with average spectrum 𝑷⃑⃑  and whose  full-

duration covariance is brought into close approximation to 𝑪𝑚 by projection onto its eigenspace. No explicit 

constraints are imposed on shorter-timescale epochs of covariation within elements of 𝑆(𝑷,⃑⃑  ⃑ 𝑇, 𝑪𝑚); the set 

of possibilities is shaped primarily by ancillary constraints such as 𝑷,⃑⃑  ⃑ 𝑇, 𝑪𝑚 and the linear projection by which 

𝒔(𝑡) is aligned toward 𝑪𝑚. 

 

Wavelet-Based Metric of Spectrally-Distinguishable Temporal Epochs 

The metric Φ:ℝ𝑇 → ℝ (still under active development) of within-timeseries spectrally distinguishable 

temporal epochs is computed on a univariate timeseries 𝑆(𝑡), 𝑡 ∈ {𝑡0, 𝑡1, 𝑡2, … , 𝑇} as follows (see Figure 5 in 

the main text): 

1. Apply Matlab’s continuous wavelet transform (with the Morse wavelet) to 𝑆(𝑡). This gives an 𝐹 × 𝑇 

matrix 𝑊(𝑆) of wavelet coefficient magnitudes. The rows of 𝑊(𝑆) are timeseries of the power in 
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each of the 𝐹 frequencies. First rescale 𝑊(𝑆) by the inverse of its mean, making its elements sum 

to 𝐹𝑇.  

2. The 𝑇 × 𝑇 symmetric matrix 𝐷𝑆𝑝𝑒𝑐(𝑆) of pairwise L1 distances between the columns of 𝑊(𝑆) 

contains evidence of temporal variation in the core spectrum of 𝑆. 𝐷𝑆𝑝𝑒𝑐(𝑆) contains evidence of 

epochal spectral variation in 𝑆.  

3. Finally, we set Φ(𝑆) ≡
1

𝐹𝑇
median (uppertri(𝐷𝑆𝑝𝑒𝑐(𝑆))) to be the median off-diagonal values of 

𝐷𝑆𝑝𝑒𝑐(𝑆) rescaled by the average time-frequency power in 𝑊(𝑆).  Rescaling by the inverse 

summed power in 𝑊(𝑆) keeps the value of  Φ strictly bounded in [0, 𝑇]. 

The multivariate extension Φ̃ of Φ assumes that 𝑊(𝑆) of size 𝐹 × 𝑇 has already been computed for some 

collection 𝑺 of 𝑁 length-𝑇 timeseries 𝑆𝑖 , 𝑖 = 1,2, … , 𝑁. Let 𝑾̃( 𝑺 ) be the 𝑁𝐹 × 𝑇 matrix of vertically 

concatenated 𝑊(𝑆𝑖)’s. Now 𝑫̃𝑆𝑝𝑒𝑐(𝑺) is the matrix of pairwise L1 distance between columns of 𝑾̃( 𝑺 ) the 

concatenated spectra of the 𝑆𝑖 ’s, and Φ̃(𝑺) ≡
1

𝑁𝐹𝑇
median (uppertri(𝑫̃𝑆𝑝𝑒𝑐(𝑺))) is the appropriately rescaled 

median off-diagonal value of L1 distances between the time-indexed concatenated spectra of the timeseries 

𝑆𝑖 , 𝑖 = 1,2, … , 𝑁. 

Empirical Data and Simulation Regimes 

Real Data 

We used previously published [1] network timecourse data from a large multisite clinical resting-state fMRI 

study. Preprocessing and network identification followed protocols detailed in [1] that we simply outline 

here. Resting state functional magnetic resonance imaging data (160 volumes of echo planar imaging BOLD 

fMRI, TR = 2 sec.) was collected from 163 healthy controls (117 males, 46 females; mean age 36.9) and 151 

age and gender matched patients with schizophrenia (114 males, 37 females; mean age 37.8) during eyes 

closed condition at 7 different sites across United States. After standard preprocessing, the fMRI data from 

all subjects was decomposed using group ICA into 100 maximally spatially independent spatial maps 

(http://mialab.mrn.org/software) of which 47 were identified as functionally meaningful networks. The 

networks fell into seven broad categories: sub-cortical (SC), auditory (AUD), visual (VIS), sensorimotor (SM), 

cognitive control (CC), default mode network (DMN) and cerebellar (CB). Subject specific spatial maps and 

timecourses were obtained from the group level spatial maps via spatio-temporal regression. The 

timecourses were detrended, despiked and subjected to additional postprocessing steps detailed in [1].  

These timecourses (314 subjects, 47 networks, 158 timepoints), further filtered for frequencies at most 0.08 

Hz and then z-scored, are referred to below as “Real Data”. The average power at each frequency bin in 

[0.003,0.08] Hz for all network TCs for all subjects is denoted 𝑷̅𝑑𝑎𝑡𝑎. The average cross-network covariance 

matrix for all subjects is denoted 𝐂̅𝑑𝑎𝑡𝑎 .   

Every simulation regime described below consists of 1000 subjects, each characterized by a set of 47, length-

158 timeseries. 

SCC Gaussians: statistically stationary without constraint on SDTEs 

Following [2], each simulated subject in the SCC Gaussian regime is a multivariate timeseries resulting from 

the projection of a 47 × 158 matrix of low-pass filtered white noise spectrally matched to 𝑷̅𝑑𝑎𝑡𝑎 onto the 

eigenspace of 𝐂̅𝑑𝑎𝑡𝑎 (Figure 6 from the main text (top middle)). 
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Covariance-Dynamic SCC Gaussians: piecewise stationary, two distinct covariance regimes, 

no constraint on SDTEs  (CD-SCC Gaussian) 

Each simulated subject in the CD-SCC Gaussian regime starts as a set of 47 length-158 low-pass filtered 

white noise timeseries (organized in a 47 × 158 matrix)  spectrally matched to 𝑷̅𝑑𝑎𝑡𝑎 . The multivariate 

timeseries is divided into three windows, determined by a middle window of randomly-chosen length 

between 40 and 60 TRs initially centered about the temporal midpoint 𝑡𝑚 = 79 then translated a random 

distance in [0,8] either forward or backward. This gives a middle window ([𝑡1, 𝑡2], 40 ≤ |𝑡2 − 𝑡1| ≤ 60, 41 ≤

𝑡1 ≤ 𝑡2 ≤ 117) that is roughly central but differs in extent and in degree of centrality between subjects. This 

simulation regime employs two target covariance matrices: one, as usual, is the mean covariance 𝐂̅𝑑𝑎𝑡𝑎 of 

the real data; the other 𝑪𝑤𝑒𝑎𝑘  is modeled on 𝐂̅𝑑𝑎𝑡𝑎 but with much weaker connectivity (except for preserved 

variances along the diagonal) and an additive layer of very low-magnitude Gaussian noise. For each subject, 

the random length middle window described above is projected onto the eigenspace of 𝐂̅𝑑𝑎𝑡𝑎 , a modularly 

structured covariance matrix, while the first and final windows are each projected onto the eigenspace of 

𝑪𝑤𝑒𝑎𝑘 . The resulting multivariate timeseries are explicitly undergoing a covariance shift as they enter and 

leave a 40-60TR window spanning the temporal midpoint of the scan (Figure 6 from the main text (bottom 

left)). 

SCC Gaussians with Noise: statistically stationary with a single spike randomly inserted into 

a small proportion of network timeseries (“Noisy SCC Gaussian”) 

Each simulated subject in the Noisy SCC Gaussian regime starts as an SCC Gaussian subject (a 47 × 158  

multivariate timeseries produced by subjecting white noise to spectral and covariance constraints exhibited 

by the real data). Of the 47 timeseries in this matrix, between 3 and 15 are selected at random to carry a 

single high frequency spike. This spike is a high-frequency, high-amplitude artifact centered at some 

randomly chosen timepoint in each of the selected networks The entire multivariate timeseries contains 

between 3 and 15 of these noise artifacts, with at most one appearing in any given univariate timeseries 

(Figure 6 from the main text (top right)). 

Spectrally and Statistically Nonstationary: explicitly nonstationary both statistically and 

epochally (“SS Nonstationary”) 

Each simulated subject in the Nonstationary regime starts as a SCC Gaussian subject (a 47 × 158  

multivariate timeseries produced by subjecting white noise to spectral and covariance constraints exhibited 

by the real data). We designate 22 of the 47 simulated networks, (with row-indices corresponding to those 

of auditory, visual, sensorimotor and select cognitive control networks in 𝑪𝑑𝑎𝑡) as task-positive (TPNs). 

Another of 15 of the remaining 25 networks (with row-indices corresponding to default mode networks and 

select subcortical networks in 𝑪𝑑𝑎𝑡) as task-negative (TNNs). For each subject, a randomly selected 50%-

75% of the TPNs and 50-75% of the TNNs are selected to exhibit stylized responsiveness to a hypothetical 

stimulus, leading each simulated subject to have at least 19 and most 29 responders among their 47 

networks. Following the same procedure employed for the CD-SCC Gaussian regime, multivariate timeseries 

in the Nonstationary regime are divided into three windows whose endpoints are determined by a middle 

window of randomly-chosen length between 40 and 60 TRs initially centered about the temporal midpoint 

𝑡𝑚 = 79 ,then translated a random distance in [0,8] either forward or backward. As mentioned above, this 

gives a middle window ([𝑡1, 𝑡2], 40 ≤ |𝑡2 − 𝑡1| ≤ 60, 41 ≤ 𝑡1 ≤ 𝑡2 ≤ 117) that is roughly central but differs in 

extent and in degree of centrality between subjects. In those networks selected as responding TPNs, the 
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middle window is filtered for frequency content in [0.06,0.08] Hz, then rescaled to have amplitude slightly 

higher than the first and last windows. In responding TNNs, the middle window is filtered for frequency 

content in [0.006,0.05] Hz and rescaled to have amplitude slightly lower than the first and last windows. So 

TPNs get faster and stronger in response to the hypothetical task or stimulus, while TNNs go into a slower 

shallower activation regime. The 19-29 nonresponding networks remain as they were following the initial 

spectral and covariance-matching steps. This yields a 47 × 158 matrix in which 11-17 rows contain TPN 

timeseries, each with a fast high-amplitude middle window, 7-11 rows contain TNN timeseries, each with 

slow shallow middle window and 19-29 low-pass filtered (non-windowed) SCC Gaussians unchanged after 

the initial spectral and covariance-matching step. This set of multivariate timeseries is explicitly spectrally 

and statistically nonstationary (Figure 6 from the main text (bottom middle)). 

Covariance-Dynamic Spectrally and Statistically Nonstationary: explicitly nonstationary 

both statistically and epochally with two distinct covariance regimes (“CD-SS 

Nonstationary”) 

Each simulated subject in the CD-Nonstationary regime starts as a Nonstationary subject as defined 

immediately above. However, following the CD-SCC Gaussian regime, this simulation regime employs the 

two, distinct target covariance matrices detailed above in the description of the CD-SCC Gaussian regime. 

For each subject, the random length middle window in which a subset of networks is spectrally perturbed 

(as detailed in the section immediately preceding) is projected onto the eigenspace of the modularly 

structured covariance matrix 𝐂𝑑𝑎𝑡𝑎 while the first and final windows are each projected onto the eigenspace 

of 𝑪𝑤𝑒𝑎𝑘 . The resulting multivariate timeseries are explicitly undergoing spectral, amplitude and covariance 

shifts as they enter and leave a 40-60TR window spanning the temporal midpoint of the scan (Figure 6 from 

the main text (bottom right)). 

 

Univariate and Multivariate Kurtosis  

Univariate kurtosis, is the fourth statistical moment, 𝑚4 = 𝔼((𝑋 − 𝜇𝑋)4) of a random variable 𝑋, rescaled by 

the variance 𝑚2 = 𝔼((𝑋 − 𝜇𝑋)2)   squared. For a normal random variable 𝔼 (
 𝑚4

𝑚2
2⁄ ) = 3, so excess 

univariate kurtosis indicative of super-Gaussianity (unusually heavy tails) is given by 𝑏 =
𝑚4

𝑚2
2 − 3.  An unbiased 

estimator of excess univariate kurtosis [3] is: 

 
𝒷𝑛 =

bn

𝑆𝐸(bn)
 (1) 

where 

 
bn =

𝑛 − 1

(𝑛 − 2)(𝑛 − 3)
((𝑛 + 1)𝑏 + 6) (2) 

and 

 

𝑆𝐸(bn) = 2√
6𝑛(𝑛 − 1)(𝑛2 − 1)

(𝑛 − 2)(𝑛 + 1)(𝑛 − 3)(𝑛 + 3)(𝑛 + 5)
 (3) 

Multivariate kurtosis is a generalization of univariate kurtosis introduced by [4]. For a given length-𝑛 

multivariate process consisting of 𝑝 univariate timeseries, Maria’s multivariate kurtosis is defined as 
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𝐵𝑛,𝑝 =

1

𝑛
∑(𝒙𝑖−𝝁)𝑇𝑪−1(𝒙𝑖−𝝁)

𝑛

𝑖=1

 (4) 

where  

 𝐶𝑖,𝑗 = 1

𝑛
∑ (𝒙𝑖−𝝁)(𝒙𝑗−𝝁)

𝑇𝑛
𝑖=1 . (5) 

For a multivariate Gaussian process consisting of 𝑝 univariate timeseries of length 𝑛 → ∞, 𝔼(𝐵𝑛,𝑝) =

𝑝(𝑝 + 2). Excess multivariate kurtosis, 𝐵𝑛,𝑝 − 𝑝(𝑝 + 2) is evidence of multivariate super-Gaussianity. An 

unbiased estimator [5] of excess 𝐵𝑛,𝑝 is:  

 

ℬ𝑛.𝑝 =
𝐵𝑛,𝑝 − 𝑝(𝑝+2)(𝑛−1)

(𝑛+1)

√8𝑝(𝑝+2)
𝑛

. (6) 

ℬ𝑛.𝑝 has a standard normal distribution 𝒩(0,1) when the underlying process is actually 

multivariate Gaussian, so the upper tail represents strong evidence against the null 

hypothesis that all observations all arose from fixed Gaussian distributions in each 

dimension. 

Sliding Window Dynamic Connectivity  

Short-timescale network or region of interest (ROI) connectivity estimates evaluated on successive sliding 

windows through activation timecourses are a commonly employed [1, 6-9] vehicle through which to 

investigate so-called dynamic connectivity in resting-state fMRI. The general idea is straightforward: starting 

from a set of 𝑅 length-𝑇 network or ROI timecourses that emerges from a standard pre-preprocessing 

pipeleine for rs-fMRI, slide a window of fixed length 𝐿 vertically through each subject’s 𝑇 × 𝑅 multivariate 

timeseries, advancing stepwise by some increment 𝑙 until the whole timeseries is exhausted. The window 

can be rectangular or have tapered edges; the pipeline that selects networks or ROIs and processes the 

resulting timeseries is generally unaltered relative to the non-windowed setting, and the metric of 

connectivity – often but not always correlation or covariance – is typically not unaltered from the non-

windowed setting, in part to allow for comparisons between static (i.e., scan-length) findings and windowed 

(short time-scale) findings.  There is considerable debate [2, 10, 11] regarding appropriate window-length 

subject for example, to the spectral content of the signal and other considerations. Due to the number of 

connectivity measurements this approach generates per subject, it is common to attempt to summarize the 

short-timescale connectivity patterns in the study by clustering, using 𝑘-means, the entire set of windowed 

observations, leading to some collection of 𝑘 summary connectivity states. These 𝑘 connectivity states 

summarizing transient connectivity patterns in the entire population yield easily computable information 

(e.g., occupancy rates, mean dwell times and transition probabilities) about subject-level time-varying 

connectivity. 

As indicated above, in the section about empirical data and simulation regimes, we used previously 

published [1] network timecourse data from a large multisite clinical resting-state fMRI study as the 

empirical basis for simulation models. The original study filtered timecourses for spectral content under 

[0.003, 0.125] Hz, but in keeping with [2], in this paper we filtered for content [0.003, 0.08] Hz. Otherwise 

our initial pipeline leading up to windowing was identical to that published in [1] (and outlined above in the 

section on empirical data and simulation regimes).  Again following the published study [1], our windows 

had length 22 TR and were advanced by 1 TR at each step, leading to a total of 136 windows per subject. 
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Although [1] used Gaussian tapering, here we employed rectangular windows. There was no discernible 

difference between the two approaches, so the simpler approach was utilized. Connectivity between 

networks on each window is measured as pairwise correlation between the windowed network timecourses. 

In the original study, the elbow criterion suggested 𝑘 = 5 clusters for this data, a choice that we retain here.  

 

For consistency and comparability between empirical data and the various simulation regimes, all simulation 

regimes were windowed and clustered (using 𝑘 = 5) with the same protocols and parameters as the 

empirical data 
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