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Abstract

Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal man-
ner. The current fMRI modeling literature lacks a generally applicable model appropriate for longitudinal designs.
In this work, we build a novel longitudinal functional connectivity (FC) model using a variance components ap-
proach. First, for all subjects’ visits, we account for the autocorrelation inherent in the fMRI time series data using
a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject
variance component shared across the population, 2) the FC network, and 3) the FC network’s longitudinal trend.
Our novel method seeks to account for the within-subject dependence across multiple visits, the variability due
to the subjects being sampled from a population, and the autocorrelation present in fMRI data, while restrict-
ing the number of parameters in order to make the method computationally feasible and stable. We develop a
permutation testing procedure to draw valid inference on group di↵erences in baseline FC and change in FC over
time between a set of patients and a comparable set of controls. To examine performance, we run a series of
simulations and apply the model to longitudinal fMRI data collected from the Alzheimer’s Disease Neuroimaging
Initiative database.

1 Introduction

Resting-state functional magnetic resonance imaging (fMRI) captures a series of images of the brain in subjects
who are not given a particular task to perform while in the scanner. The scanner repeatedly captures blood
oxygenation level dependent (BOLD) signals at hundreds of thousands of locations within the brain, creating a
time series of images of the brain in a resting state. By capturing the BOLD signal of the resting brain, this
imaging modality provides an opportunity for researchers to examine the intrinsic brain network of people from
a certain population. The primary tool for doing so is the analysis of functional connectivity (FC) networks.
We define FC as the temporal dependence, measured through cross-correlations, in the blood oxygenation level
dependent (BOLD) signals between brain regions [Friston et al., 1993].

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) collected resting-state fMRI images from patients
with Alzheimer’s disease (AD) and a comparable cognitively normal (CN) control group over the course of their
follow-up. The resulting data is collected from multiple subjects in 1-6 sessions over many years. We motivate the
challenges of a longitudinal FC analysis with the following preliminary analysis. Figure 1 shows spaghetti plots
of the FC between the time series obtained from two region-of-interest (ROI) pairs for the AD and CN groups.
The clustering of points within each line shows the within-subject dependence. In addition, there is considerable
within-subject and within-group noise present in the estimates of FC. Finally, what is not evident from the figure
is that the time series from which these correlations were obtained exhibit autocorrelation that contributes to
the overall variability in FC. To add another level of complication, the figure depicts the marginal relationship
between two ROIs, but to properly model the entire network we need a joint model that considers the network of
all possible pairwise groupings of the chosen ROIs.

⇤
Data used in preparation of this article were obtained from the Alzheimers Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or pro-

vided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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Figure 1: Spaghetti plots of the correlation between two regions of interest (ROI) against age. Each point represents
a visit, and each line represents a subject. The ROIs represented in these plots are the left and right hippocampus
(HCl and HCr), right precuneus (PQr), and right parahippocampus (PHCr).

Previous works have demonstrated the utility of FC analysis as a way to better understand the underlying
neurological process of a certain disease and its progression. For example, past research has identified altered FC
between healthy aging patients and those that su↵er from AD. Even among CN individuals, FC demonstrates aging
e↵ects that are heterogeneous between di↵erent brain regions [Chen et al., 2016]. Chase [2014] and Hafkemeijer
et al. [2012] showed altered FC patterns beyond healthy aging in patients with dementia and AD. Many other
works, including Ren et al. [2016] and Wang et al. [2007] have noted abnormal FC in various stages of AD. Wang
et al. [2012] even demonstrated the impact of family history of AD on FC. In addition, Xiang et al. [2013] and Li
et al. [2015] showed the link between decreased network FC and progression from a CN state, to mild cognitive
impairment (MCI), and finally, to AD. These previous works, however, used cross-sectional models. Our work
will build o↵ of these prior results on the clinical utility of FC as a potential biomarker for AD.

Of the previously mentioned studies, only Ren et al. [2016] utilized truly longitudinal data. Aging e↵ects
are often measured by comparing a young group with an elderly group rather than following the same group
of subjects over time. A comprehensive longitudinal model that tests for di↵erences in baseline and trend is
needed to verify and expand on previous results using a single modeling framework. Finn and Constable [2016]
demonstrated that CN patients have distinct brain signatures in fMRI images, implying that separate scans from
a single individual exhibit some level of dependence. This finding backs up the within-subject dependence visible
in Figure 1 and can be leveraged in a longitudinal framework which accounts for this dependence to better model
aging e↵ects.

In this work, we fill a gap in the literature by proposing a novel longitudinal model and inference procedure
that considers the network of all possible pairwise groupings of the chosen ROIs in resting-state fMRI data. Our
longitudinal variance components FC model accounts for the within-subject dependence across multiple visits,
the variability due to the subjects being sampled from a population, and any autocorrelation present in fMRI
time series. We also propose an e�cient permutation based inference procedure that allows for valid hypothesis
testing of group di↵erences in baseline FC networks and FC network aging e↵ects.

The remainder of the paper is laid out as follows. In Section 2 we formally introduce the model, including the
estimation and inference procedures. We also explain the design of the simulation study and more fully introduce
the ADNI data. Section 3 contains the results of the simulation study and the analysis of the ADNI data. We
discuss these results and future work in greater detail in Section 4 and close with a conclusion in Section 5. The
R code for implementing the methods proposed in this paper may be found at https://github.com/mfiecas/

longitudinalFC.
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2 Materials and Methods

2.1 Model Specification

Suppose we have a cohort of N individuals and let P denote the number of ROIs selected for a FC network
analysis. Then we collect a P -variate, detrended fMRI time series of length T from the preprocessed fMRI images
of each of the N subjects at each visit. To keep the dimensionality of the data reasonable in a whole network
analysis, we condense the data to the ROI level with a time series for each ROI at each visit. We define the ROI
level time series as the average of the time series from each voxel within a region of the brain. Let the subscripts
i and j denote subject and visit, respectively. A particular subject returns for Ji total visits, and the cohort has
a total of J =

PN
i=1 Ji visits. Let Yi represent the vector of sample correlation coe�cients of length QJi, where

Q = P (P �1)/2 is the number of ROI pairs. Within Yi, the Q correlations from the first visit, Yi1, are followed by
the Q correlations from the second visit, Yi2, and so on until the Ji-th visit. The full response vector Y is formed
by stacking the N di↵erent Yi vectors. Our longitudinal model for the FC network will be a linear model with
baseline e↵ect �0 and longitudinal trend �1, where each of these model parameters are vectors of length Q. We
denote the time at visit j for subject i as vij . The vector vi is formed by stacking the Ji distinct vij ⌦ Q vectors
for subject i, where J is a vector of ones of length Q. Likewise v is formed by stacking the N distinct vi vectors.
Depending on the nature of the data and the research questions at hand, vij can be set to the visit number, the
time since baseline, or the patient’s age. Then, denoting element-wise multiplication with ⇤, our model has the
following linear form:

Y = J ⌦ �0 + v ⇤ ( J ⌦ �1) + ", where Var (") = ⌃+ . (1)

The key element in our longitudinal linear model is the variance structure of the error term. We separate the
error variance into two components, ⌃ and  . Here ⌃ is block diagonal where each Q ⇥ Q block, ⌃ij , accounts
for the within visit variance present in visit j for subject i. The second variance component,  , is also block
diagonal with a QJi ⇥ QJi block for participant i. These diagonal blocks only vary from subject to subject in
their dimension due to potentially di↵ering visit numbers for each participant. Let  diag be an arbitrary diagonal
block of  . We then further break  diag into two components  0 and  1.  0 is a Q⇥Q block that is repeated
along the diagonal of each  diag. This term models the within-visit covariability not captured by ⌃.  1 is a
Q⇥Q block which populates the remaining o↵ diagonal blocks of  diag, modeling the within-subject, across visit
covariability. This term captures the dependence between multiple visits from the same subject.

We write Equation 1 in the form of a linear model with a vector response, which allows us to use existing
methods for estimating the vector parameters and for statistical inference. To this end, our model can also be
written in the standard linear model form with a design matrix X. Let Xij = [1 vij ]⌦IQ, where IQ is the Q⇥Q

identity matrix. To form Xi, the portion of the design matrix specific to subject i, we stack the Ji individual Xij

matrices. Likewise, to form X we stack the N individual Xi matrices. If we define � as a vector of length 2Q
where the first Q elements are �0 and the last Q elements are �1, then Equation 1 can be written as Y = X�+ ".

Figure 2 shows a workflow chart of the procedure used to estimate the model parameters and test hypotheses
which are subsequently described in more detail.

The model proposed here shares a basic structure with the model of Fiecas et al. [2017], but we make notable
advances allowing for much broader applicability and utility. Fiecas et al. [2017] was developed as a cross-sectional
model and thus is not suitable for the growing amount of longitudinal fMRI data available to the neuroimaging
community. The new method allows for a more complete variance structure that captures dependence present
in multiple visits from the same subject. At the same time, we increase the parameter space of the model by
adding slopes to measure change in FC over time. Adding a more complex variance structure and slope term also
necessitates a new inference procedure, since a simple permutation of group assignment will no longer be su�cient.
To keep the permutation test computationally feasible, we have designed our procedure to fit the increased number
of relevant hypotheses into one e�cient permutation schedule. These crucial technical advances open the door to
many new scientific applications. The addition of a slope term is crucial to using fMRI as a method to detect
di↵erential aging e↵ects in two populations. We capture in more detail the complexity of the data by modeling it
through time instead of collapsing everything into a single time point.

2.2 Estimating Within Visit Covariance

We start by estimating the sample correlation coe�cient between all ROI pairs for all visits and their corresponding
variances and covariances. Let (w1t, . . . , wPt)

0 for t 2 {1, 2, . . . , T} be the time series from a single visit. Then for
the p-th and q-th ROIs, where p, q 2 {1, 2, . . . , P}, we have

rpq =

PT
t=1(wpt � w̄p)(wqt � w̄q)qPT

t=1(wpt � w̄p)2
PT

t=1(wqt � w̄q)2
. (2)
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Figure 2: A workflow chart of the estimation and inferential procedure of our variance components model.

Frequently, a Fisher transform, g(x) = tanh

�1(x) = 0.5 log[(1+x)/(1�x)], is applied to the resulting correlations
as a variance stabilizing transformation. Unfortunately, this approach assumes the observations from the time
series are independent and therefore leads to invalid inference due to the inherent autocorrelation in fMRI time
series data. To resolve this issue, we use the large-sample variance estimation derived in Roy [1989] for any two
autocorrelated time series. To obtain a consistent estimator of this large-sample variance we use the method of
Melard et al. [1991]. We then populate the within-visit covariance matrix ⌃ij for each observed visit using these

results, which gives us the estimate b⌃.

2.3 Estimating Between Subject Covariance,  , and �

Utilizing a generalized least squares (GLS) approach, we now proceed with the estimation of the between subject
covariance  and the regression coe�cients �, conditional on the previously estimated within-visit covariances,
⌃̂ij .

Although the framework allows for many di↵erent structures for  , we assume a block compound symmetry
structure so that all diagonal blocks,  0, are equal and all o↵ diagonal blocks,  1, are equal. The block compound
symmetry assumption keeps the parameter space to a reasonable size. To initiate the estimation process we use
the ordinary least squares estimator �̂ = (X 0

X)�1
X

0
Y to provide a good starting estimate of �. We then update

the two components of  using the following formulas:

 ̂0 =
1

PN
i=1 Ji

NX

i=1

JiX

j=1

(Yij �Xij �̂)
0(Yij �Xij �̂)� ⌃̂ij , and (3)

 ̂1 =
1

PN
i=1

Ji(Ji�1)
2

NX

i=1

X

j 6=k

(Yij �Xij �̂)
0(Yik �Xik�̂). (4)

These estimators bear a resemblance to the mean squared error. For  ̂0, the sum of the squared residuals for all
visits are summed. Then to obtain the final estimate, we subtract the previously estimated variance component ⌃̂
and divide the covariance matrix by the total number of visits. We estimate  1 in a similar fashion. In this case,
we calculate and average the cross products of the residuals from all pairs of visits for each subject. We do not
subtract the ⌃̂ term here because ⌃̂ has been set to 0 for the o↵ diagonal blocks occupied by  1. These simple
estimators, obtained through matching moments, provide a significant reduction in computation in comparison
to a maximum likelihood approach.

With an estimate of  , we can now use the standard GLS formula to update the regression coe�cients as
follows: �̂ = (X 0(⌃̂+  ̂)�1

X)�1
X

0(⌃̂+  ̂)�1
Y . At this point we have two choices: to iteratively update  ̂ and �̂

until convergence (full convergence), or accept the estimates (one-step) and proceed with the inferential procedure.
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The one-step estimator provides a significant advantage in computing time as  ̂ and �̂ must be estimated for
each permutation of the inference procedure [Ganjgahi et al., 2015]. Additionally, Amemiya [1977] proved that
the one-step GLS estimator maintains consistency.

We estimate �̂,  ̂, and ⌃̂ for each group separately using this estimation procedure. Superscripts on the
parameter estimates denote the group (e.g. �̂G1

,  ̂G1 , and ⌃̂G1 are the estimates for group 1).

2.4 Inference

Two general hypothesis tests are of interest in a longitudinal FC model: the group di↵erence between the baseline
FC, and the group di↵erence in the rate of change in FC. For each hypothesis, we would like to test for the
significance of the group di↵erences in both the global FC networks and the local ROI pair FC. We refer to the
vector wide tests of di↵erences in the parameters �0 and �1 as global tests and refer to tests of group di↵erences in
single elements of �0 or �1 as local tests. To accomplish our hypothesis testing objectives, we use the Wald statistic,
(C(�̂G1 � �̂

G2))0(C(dVar(�̂G1) + dVar(�̂G2))C0)�1
C(�̂G1 � �̂

G2), and adjust the contrast matrix, C, depending on
the hypothesis of interest.

We estimate the variance of each group’s regression coe�cients using dVar(�̂) = (X 0(⌃̂+  ̂)�1
X)�1. While the

Wald statistic is asymptotically �

2 with degrees of freedom equal to the rank of C, the asymptotic distribution
poorly approximates the finite sample distribution with a moderate number of ROIs. Instead of relying on
asymptotics, we propose a permutation procedure for all inference. Chung and Romano [2013] showed that using
a studentized test statistic, such as the proposed Wald statistic, allows for valid inference in many permutation
test settings.

We use a permutation strategy suggested by Ganjgahi et al. [2015] and originally proposed by Ter Braak [1992].
A recent comparison of the performance of many di↵erent permutation strategies by Winkler et al. [2014] showed
that the Ter Braak permutation testing procedure maintains nominal Type I error and is fairly robust. This
method o↵ers the additional advantage that the data only needs to be permuted once and the model only fit twice
at each iteration of the permutation test in order to test all local and global hypotheses. Testing all hypotheses
under a single permutation schedule greatly reduces the computational burden of the testing procedure.

The permutation testing procedure is performed as follows:

1. Calculate residuals from the fitted model for each subject: ei = Yi �Xi�̂
G with subject i in group G.

2. Permute group assignments of ei.

3. Add the nuisance signal back to ei based on new permuted group assignments G

⇤. For the main e↵ect
(intercept) tests we add in the longitudinal trends by setting e

⇤
ij = eij +vij �̂

G⇤
1 . Likewise, for the interaction

(slope) tests we set e⇤ij = eij + �̂

G⇤
0 .

4. Refit the model on e

⇤, the permuted, adjusted, and stacked residuals from step 3.

5. Calculate a new Wald statistic for the fitted values of �̂G⇤
and  ̂G⇤

.

We repeat this process a large number of times to create a permutation distribution to be used as a reference
distribution of the originally calculated test statistic. Because the obtained p-values are estimated, we additionally
use the permutation p-value correction procedure of Phipson et al. [2010]. To account for the fact that 2Q local
hypotheses are tested simultaneously, we then apply the false discovery rate (FDR) controlling procedure of
Benjamini and Hochberg [1995] to the corrected p-values from the local tests. The Phipson correction helps
avoid unadjusted p-values with value 0 which may improperly maintain significance after a multiple comparisons
correction.

2.5 Simulated Data

A series of simulations were designed with di↵erent data generating mechanisms to assess model performance.
In all scenarios each time series contained 120 time points and had an autocorrelation structure that followed a
first-order autoregressive process with an AR parameter of 0.3. A multivariate time series was simulated for each
subject at three visits. For each visit, the Q correlations were simulated from a multivariate normal distribution
where the mean and variance varied by group based on the simulation setting. For group 1, the mean vector was
always assumed to be 0 and the covariance matrix was the same across all simulation settings. The simulations
used either 3, 5, or 10 as the dimension of the multivariate normal distribution. For the 3 and 5 dimension
settings only the first element of the group 2 mean vector was allowed to vary by simulation setting, while the
other elements were set to match group 1. For the 10 dimension settings the first 5 elements of the group 2 mean
vector varied by simulation setting. 1,000 Monte Carlo simulations were run for all simulation settings with 3 and
5 dimensions, and 500 simulations were run for the 10 dimensional simulation settings. Group sizes of 15 and 30
were considered. The true variance of the correlations was either equal for the two groups or the group 2 variance
was double the group 1 variance. 500 permutations were used for the permutation test for all settings.
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To increase model parsimony, di↵erent structures can be considered for ⌃ij ,  0, and  1. In the simulation
study, we used scaled identity or compound symmetry structures for the two  components. We estimated these
components by setting all diagonal elements of each matrix to the average of the diagonal elements and likewise
for the o↵ diagonal elements [Laird, 2004]. For ⌃ij we considered unstructured and diagonal options.

Three models were fit to each simulated dataset. The first was a full convergence model which iterated between
 ̂ and �̂ until convergence. It assumed an unstructured ⌃ij and compound symmetry for  0 and  1. This model
is referred to as the full convergence full variance model. The second was a one-step model which stops after one
iteration of solving for  ̂ and �̂. It also assumed an unstructured ⌃ij and compound symmetry for  0 and  1,
and it is referred to as the one-step convergence full variance model. The final model was a one-step model which
assumed a diagonal structure for ⌃ij and scaled identity structures for  0 and  1. The last model is referred to
as the one-step convergence reduced variance model.

2.6 ADNI Data

Data used in the preparation of this article were obtained from the ADNI database (http://adni.loni.usc.edu).
The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD. For up-to-date information, see www.adni-info.org.

A subset of the ADNI data was used to demonstrate a practical application of the model. The data consists
of longitudinal resting-state fMRI images collected at baseline, 3 months from baseline, 6 months from baseline,
12 months from baseline, and annually thereafter. There are two groups of interest, the CN group and the AD
group. We focused our attention on late-onset AD and included only patients that were 65 years of age or older at
baseline [van der Flier et al., 2011, Holland et al., 2012]. To better separate the AD and CN groups, only patients
that remained in one group for the entirety of the follow-up were considered in our analysis. The remaining CN
group consists of 111 visits from 30 patients (17 females and 13 males) with each patient having between 1 and
6 visits. The AD group consists of 79 visits from 26 patients (11 females and 15 males) with each patient having
between 1 and 5 visits. The average age was 75.9 for the CN group with a range of 65.2 to 95.7. The AD group
average age was 76.7 with a range of 66.5 to 88.6.

2.6.1 Preprocessing

We preprocessed the data using both FSL (version 5.0.9, https://fsl.fmrib.ox.ac.uk/) and AFNI (version
AFNI 17.0.15, https://afni.nimh.nih.gov/). The preprocessing steps were as follows. We 1) applied motion
correction to the images using FSL’s mcflirt (rigid body transform; cost function normalized correlation; reference
volume the middle volume) and then 2) normalized the images into the Montreal Neurological Institute space
using FSL’s flirt (a�ne transform; cost function correlation ratio). We used FSL’s fast to 3) obtain a probabilistic
segmentation of the brain to obtain white matter and cerebrospinal fluid (CSF) probabilistic maps, thresholded
at 0.75. Using FSL’s fslmaths, we 4) spatially smoothed the volumes using a Gaussian kernel with FWHM=5
mm. We used AFNI’s 3dDetrend to 5) remove nuisance signals, namely the six motion parameters, white matter
and CSF signals, and the global signal. Finally, 6) the linear trend was removed from each time series using linear
regression and a 4th order Butterworth low-pass filter with a 0.1 Hertz cuto↵ was applied to each fMRI time
series.

2.6.2 Analysis

P = 10 ROIs from the ADNI dataset were selected for analysis: left and right hippocampus (HC), parahippocam-
pus (PHC), posterior cingulate (PCC), precuneus (PQ), and prefrontal cortex (PFC). In all results that follow
an l su�x for an ROI denotes the left side of the brain and an r su�x denotes the right side. We selected these
ROIs because they make up the hippocampi and the default mode network (DMN) in which FC has been shown
to di↵er between CN and AD groups [Supekar et al., 2008, Greicius et al., 2004, Sorg et al., 2007].

Four versions of the model were fit to the ADNI data with di↵ering assumptions. The first (Model 1) is
a one-step estimation model which assumes a compound symmetry structure for  0 and  1 and unstructured
diagonal blocks for ⌃. The next (Model 2), makes the same assumptions for  0,  1, and ⌃ but uses the full
convergence estimator. Model 3 is a one-step estimation model assuming scaled identity structures for  0 and
 1 and a diagonal structure for ⌃. The final model (Model 4) is a one-step estimation model which assumes a
diagonal structure for  0, sets all elements of  1 to 0, and assumes a diagonal structure for ⌃. This final model
is equivalent to a massive univariate approach which ignores the within-subject dependence. 5,000 permutations
were run for the permutation test for all models. The intercept of each model represents the FC network of each
group at age 65.
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3 Results

Table 1: Type I error rates for simulation study for all globally null simulation settings. Type I errors for the main
e↵ect (group di↵erence in intercepts) and interaction e↵ect (group di↵erence in slopes) are reported both globally and
locally. The global Type I errors are averaged across all models. The local Type I errors reported are unadjusted and
averaged across all simulations and all null ROI pairs.

Convergence Type: Full One-Step One-Step
Variance Structure: Full Full Reduced

Group
Size

Variance �0 �1 3
ROIs

5
ROIs

3
ROIs

5
ROIs

10
ROIs

3
ROIs

5
ROIs

Main
E↵ect
Global
Test

15
Equal 0 0 0.061 0.052 0.057 0.055 0.066 0.056 0.054

0 0.1 0.065 0.065 0.067 0.071 0.064 0.067 0.063

Group 2
Double

0 0 0.058 0.049 0.055 0.053 0.054 0.056 0.048

0 0.1 0.068 0.058 0.069 0.056 0.068 0.070 0.060

30
Equal

0 0 0.045 0.049 0.046 0.050 0.066 0.043 0.047

0 0.1 0.046 0.050 0.054 0.047 0.066 0.048 0.049

Group 2
Double

0 0 0.057 0.054 0.058 0.053 0.062 0.058 0.060

0 0.1 0.049 0.066 0.055 0.059 0.078 0.058 0.053

Main
E↵ect
Local
Test

15
Equal 0 0 0.071 0.061 0.073 0.061 0.066 0.066 0.062

0 0.1 0.064 0.067 0.067 0.069 0.069 0.064 0.067

Group 2
Double

0 0 0.064 0.063 0.061 0.062 0.071 0.064 0.064

0 0.1 0.068 0.062 0.069 0.063 0.069 0.065 0.063

30
Equal

0 0 0.050 0.059 0.048 0.058 0.058 0.048 0.057

0 0.1 0.053 0.058 0.051 0.058 0.056 0.052 0.057

Group 2
Double

0 0 0.063 0.055 0.062 0.055 0.057 0.060 0.056

0 0.1 0.054 0.059 0.055 0.058 0.059 0.053 0.057

Interaction
Global
Test

15
Equal 0 0 0.062 0.054 0.052 0.057 0.072 0.049 0.052

0.1 0 0.046 0.054 0.044 0.049 0.076 0.044 0.049

Group 2
Double

0 0 0.057 0.067 0.050 0.062 0.070 0.051 0.069

0.1 0 0.079 0.071 0.078 0.061 0.090 0.073 0.063

30
Equal

0 0 0.054 0.059 0.058 0.061 0.078 0.056 0.058

0.1 0 0.052 0.067 0.049 0.063 0.070 0.051 0.051

Group 2
Double

0 0 0.068 0.065 0.071 0.061 0.072 0.075 0.057

0.1 0 0.056 0.041 0.057 0.049 0.068 0.059 0.040

Interaction
Local
Test

15
Equal 0 0 0.059 0.062 0.058 0.062 0.067 0.059 0.064

0.1 0 0.055 0.060 0.054 0.057 0.071 0.057 0.060

Group 2
Double

0 0 0.063 0.065 0.065 0.061 0.072 0.064 0.063

0.1 0 0.074 0.067 0.071 0.061 0.067 0.074 0.064

30
Equal

0 0 0.050 0.055 0.049 0.054 0.059 0.049 0.055

0.1 0 0.054 0.059 0.053 0.058 0.056 0.058 0.059

Group 2
Double

0 0 0.061 0.059 0.062 0.057 0.060 0.063 0.060

0.1 0 0.057 0.055 0.057 0.055 0.058 0.058 0.055

3.1 Simulated Data

Tables 1 and 2 show results from the simulation study. Table 1 shows the global and local Type I error for the
main e↵ect and interaction across all simulations. The reported global test results are the average global Type I
errors across 500 or 1,000 Monte Carlo runs. The local test results are the average Type I errors of the unadjusted
p-values for all null hypotheses across the 500 or 1,000 Monte Carlo runs. While the local p-values would be
adjusted in practice, the numbers in the table provide easy reference to a nominal Type I error of 0.05. Table 2
shows the average global power and average local power using false discovery rate adjusted p-values. All p-values
were corrected using the method of Phipson et al. [2010]. Additional simulation study results can be found in
Table S1 in 7.

3.2 ADNI Data

Table 3 shows results from the global hypothesis tests and all local hypothesis tests that were significant before
p-value adjustment for Model 1. The results for the other three models can be found in Table S2 from 7. Neither
the overall main e↵ect or interaction term were found to be significantly di↵erent in the global tests for any of
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Table 2: The power calculations for the simulation study. Power results for the main e↵ect (group di↵erence in
intercepts) and interaction e↵ect (group di↵erence in slopes) are reported both globally and locally. The global
power results are averaged across all models. The local power results reported are unadjusted and averaged
across all simulations and all non-null ROI pairs.

Convergence Type: Full One-Step One-Step
Variance Structure: Full Full Reduced

Group
Size

Variance �0 �1 3
ROIs

5
ROIs

3
ROIs

5
ROIs

10
ROIs

3
ROIs

5
ROIs

Main
E↵ect
Global
Test

15
Equal

0.1 0 0.382 0.223 0.369 0.229 0.482 0.372 0.211

0.1 0.1 0.389 0.214 0.390 0.203 0.466 0.391 0.204

Group 2
Double

0.1 0 0.300 0.196 0.294 0.185 0.356 0.303 0.185

0.1 0.1 0.328 0.180 0.321 0.170 0.386 0.316 0.177

30
Equal

0.1 0 0.674 0.491 0.679 0.489 0.902 0.682 0.469

0.1 0.1 0.684 0.468 0.686 0.470 0.884 0.670 0.456

Group 2
Double

0.1 0 0.582 0.383 0.581 0.385 0.836 0.579 0.367

0.1 0.1 0.582 0.383 0.580 0.380 0.800 0.572 0.371

Main
E↵ect
Local
Test

15
Equal

0.1 0 0.412 0.413 0.413 0.379 0.270 0.427 0.458

0.1 0.1 0.424 0.406 0.417 0.372 0.233 0.446 0.410

Group 2
Double

0.1 0 0.294 0.293 0.296 0.267 0.206 0.292 0.307

0.1 0.1 0.326 0.304 0.291 0.253 0.160 0.330 0.324

30
Equal

0.1 0 0.807 0.822 0.810 0.815 0.778 0.811 0.813

0.1 0.1 0.817 0.800 0.818 0.790 0.759 0.816 0.786

Group 2
Double

0.1 0 0.689 0.696 0.693 0.701 0.670 0.687 0.697

0.1 0.1 0.707 0.691 0.708 0.693 0.638 0.704 0.694

Interaction
Global
Test

15
Equal

0 0.1 0.757 0.525 0.765 0.492 0.742 0.771 0.550

0.1 0.1 0.767 0.537 0.753 0.494 0.728 0.783 0.557

Group 2
Double

0 0.1 0.706 0.502 0.694 0.444 0.726 0.719 0.515

0.1 0.1 0.674 0.460 0.679 0.422 0.668 0.667 0.483

30
Equal

0 0.1 0.983 0.881 0.983 0.877 0.942 0.986 0.888

0.1 0.1 0.977 0.899 0.980 0.894 0.936 0.977 0.906

Group 2
Double

0 0.1 0.959 0.842 0.958 0.831 0.922 0.954 0.838

0.1 0.1 0.950 0.839 0.952 0.821 0.890 0.945 0.828

Interaction
Local
Test

15
Equal

0 0.1 0.866 0.885 0.868 0.853 0.728 0.868 0.875

0.1 0.1 0.876 0.861 0.872 0.850 0.740 0.876 0.883

Group 2
Double

0 0.1 0.843 0.831 0.834 0.800 0.664 0.850 0.843

0.1 0.1 0.808 0.793 0.811 0.761 0.612 0.818 0.805

30
Equal

0 0.1 0.997 0.997 0.997 0.996 0.982 0.998 0.994

0.1 0.1 0.992 0.993 0.993 0.991 0.983 0.994 0.991

Group 2
Double

0 0.1 0.991 0.987 0.991 0.985 0.954 0.990 0.986

0.1 0.1 0.989 0.984 0.988 0.982 0.947 0.989 0.986
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the four models considered. The only ROI pair level di↵erence that remained significant after p-value adjustment
and correction in any of the models was the di↵erence in the CN and AD group slopes in the FC between the left
HC and the right PCC in Models 1 and 2. These models conclude that the FC between the left HC and the right
PCC declines at a much quicker rate in the AD population than in their CN counterparts. The estimated group
intercepts, group longitudinal trends, group di↵erences in intercepts and longitudinal trends, and � log10 p-values
after correction and adjustment from local hypothesis tests are presented graphically in Figure 3 for Model 1 and
Figures S1, S2, and S3 from 7 for Models 2, 3, and 4, respectively.

Table 3: Hypothesis tests on the ADNI data. Global tests and all local tests with unadjusted p-values of < 0.05 are
shown for Model 1.

�CN �AD Test Statistic Unadjusted p-value Adjusted p-value

Model 1: One-step, Compound Symmetry  0 and  1, and Unstructured ⌃

Main E↵ects 42.86 0.154
HCl and PCCl 0.037 0.189 3.39 0.024 0.315
HCl and PCCr 0.043 0.232 5.26 0.004 0.108
HCr and PCCr 0.011 0.168 3.63 0.018 0.315
PHCl and PQl 0.089 -0.093 4.83 0.030 0.315
PHCr and PQl 0.041 -0.136 4.59 0.031 0.315

Interactions 41.85 0.197
HCl and PCCl 0.004 -0.011 5.85 0.002 0.090
HCl and PCCr 0.003 -0.014 7.82 0.001 0.045
HCr and PCCr 0.005 -0.009 4.49 0.009 0.209
PHCl and PCCr 0.008 -0.002 2.67 0.032 0.315

4 Discussion

4.1 Simulated Data

The Type I error results from Table 1 show roughly nominal Type I error rates for all three models fit to the
simulated data. While there was some slight inflation in all three models, especially for the 10 ROI simulations, the
inflation was somewhat attenuated by the increase in sample size from 15 to 30 per group. Table 2 demonstrates
adequate power, both locally and globally for all three models. As expected, power increased with larger group
size and decreased with a larger true group 2 variance.

There was no consistent di↵erence in performance between the three models in terms of power or Type I error
across the di↵erent simulation settings. The two full variance settings match the true model of the simulated
data, yet the reduced variance model did not su↵er in comparison. While the reduced variance model was not the
true model, it may have o↵ered similar performance because the smaller parameter space allowed for improved
estimation. The reduced variance model did not capture the full true variance, but it still performed well by
allowing the FC for each ROI pair to be correlated across multiple visits for a given subject.

Overall, the full convergence results did not consistently improve on the one-step estimator results. With
little to nothing to gain in terms of power and Type I error, the additional computational resources used by the
full-convergence model did not o↵er any practical advantage. One of the main di↵erences in the performance of
the three models was the computational time. Table 4 shows the relative timing of the three models fit to each
simulation scenario. The full convergence model took, on average, over 2.5 times longer to run without seeing
any notable boost in performance. For reference, using a 3.7 GHz Quad-Core Intel Xeon with 16GB ram, the
average times for fitting the one-step full variance model with 30 subjects per group for 3, 5, and 10 ROIs were
3.8 seconds, 54.9 seconds, and 87.2 minutes, respectively. These results show that the time increases quickly with
the dimension of the model. The computational time is largely driven by the permutation procedure. Thus, if a
larger number of permutations is desired for the testing procedure, then the computational time will also increase.

Table 4: Average relative timing of the three models considered in the simulation study.

Convergence Type Variance Structure Relative Time

Full Full 2.56
One-Step Full 1.02
One-Step Reduced 1.00
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Figure 3: Model 1 results. Top left: A plot of the estimated intercept terms for the CN group (bottom left triangle)
and AD group (top right triangle). Top right: A plot of the estimated slope terms for the CN group (bottom
left triangle) and AD group (top right triangle). Bottom left: a plot of the group di↵erences (AD estimates - CN
estimates) for the estimated intercepts (top right triangle) and slopes (bottom left triangle). Bottom right: A plot
of the � log10 corrected and adjusted p-values from all local hypothesis tests of group di↵erences (AD estimates -
CN estimates) for the estimated intercepts (top right triangle) and slopes (bottom left triangle).
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4.2 ADNI Data

The four models fit to the ADNI data present slightly di↵erent results. The di↵erence between Model 1 and Model
2 is very minimal. The nearly identical results provide further support of the conclusion from the simulation study
that the full convergence and one-step estimator models lead to very similar estimates and inference. Some more
pronounced di↵erences in results arise when Model 1 is compared with Models 3 and 4. These di↵erences make
sense considering that Model 4 does not account for the within-subject dependence of the FC and thus appears
to su↵er from diminished power to detect group di↵erences.

The more interesting di↵erences exist in comparing Models 1 and 3, but some common patterns run throughout
both sets of results. In both models, many of the local hypotheses that were significant prior to the FDR correction
appear between the HC/PHC and the PCC. These groups di↵erences strengthen the one local hypothesis that is
significant after FDR correction from Models 1 and 2 which shows a significantly larger decrease in FC between
the HCl and PCCr in the AD group than in the CN group. While the significant results disappears after FDR
correction, the fact that many other HC/PHC connections with the PCC see a similar pattern helps to indicate
di↵ering baseline and longitudinal trend e↵ects in the FC of the two groups. This clustering of group di↵erences
can be seen in Figure 3 with the smallest p-values (red and orange circles) appearing between the HC/PHC and
PCC. Furthermore, this apparent di↵erence in FC between the HC and PCC supports previous reports in the
literature. Wang et al. [2006], Sorg et al. [2007], and Greicius et al. [2004] all noted decreased FC between the
HC and PCC in patients with AD in analyses of cross-sectional data. Similar results from Supekar et al. [2008]
showed decreased clustering coe�cients for the HC. Our analysis confirms these results with the addition of a
longitudinal component to the analysis. Our results not only conclude that AD and CN patients have di↵ering
FC between the HC and PCC, as the previous works have shown, but we also more clearly describe the di↵erences
in baseline and longitudinal trend in FC between these two regions.

4.3 Current Limitations and Future Work

Our familiar linear model framework utilized in this paper allows for easy adoption and understanding of the
model and its results. Additionally, the linear model framework o↵ers many natural extensions, including terms
for additional covariates such as scanner e↵ect or gender and di↵erent structures for the variance components to
capture a wider range of possible correlation structures.

Our current method has the advantage of allowing for joint modeling of a complete FC network rather than
taking a massive univariate approach. We see this joint modeling as a significant step forward, but complete brain
analyses are still not yet feasible due to high computational demands of a model fit to many ROIs and the limited
sample size of many fMRI studies. Here we have fit models to 10 ROI networks, but many brain atlases include
at least 100 regions. In the future, some form of regularization could be introduced into the model to allow for
analysis of an entire brain atlas.

The selection of the proper structure for the variance components deserves more attention. While a block
compound symmetry structure for  has a natural interpretation similar to that of a random intercept, it is
certainly possible to conceive of other viable structures. Choosing between structures is not a trivial task. One
way to alleviate the model selection dilemma is to introduce a more robust sandwich type estimator of dVar(�̂), in
which case incorrect specification of the variance would only lead to reduced power.

5 Conclusions

We have introduced a novel variance components longitudinal model to estimate and draw inference on the group
di↵erences in FC using resting-state fMRI data. The model properly accounts for the correlation inherent in
repeated measures data and the autocorrelation present in fMRI time series. A permutation testing procedure
performs global and local two-sample testing in an e�cient manner. The linear model framework and utilization
of generalized least squares estimators o↵ers great simplicity and a large number of natural extensions. This work
fills a current gap in the literature by providing a general framework for estimation and hypothesis testing of
longitudinal FC data.

As a practical example, we applied the method to resting-state fMRI data from the ADNI database. Our
analysis found a faster decline in FC between the left hippocampus and the right posterior cingulate cortex in
AD patients compared to the CN control group. This finding confirms the results of previous studies and helps
solidify the central roles of the hippocampus and default mode network in AD.
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7 Supplement
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1

Table S1
Type I error rates for simulation study. Type I errors for the main e↵ect (group di↵erence in intercepts) and interaction e↵ect
(group di↵erence in slopes) are reported both globally and locally. The global Type I errors are averaged across all models. The

local Type I errors reported are unadjusted and averaged across all simulations and all null ROI pairs.

Convergence Type: Full One-Step One-Step
Variance Structure: Full Full Reduced

Group
Size

Variance �0 �1 3
ROIs

5
ROIs

3
ROIs

5
ROIs

10
ROIs

3
ROIs

5
ROIs

Main
E↵ect
Local
Test

15
Equal 0.1 0.1 0.050 0.062 0.050 0.067 0.069 0.054 0.066

0.1 0 0.054 0.060 0.050 0.057 0.067 0.056 0.061
Group 2
Double

0.1 0.1 0.061 0.064 0.056 0.062 0.067 0.057 0.062
0.1 0 0.066 0.065 0.068 0.061 0.064 0.066 0.063

30
Equal

0.1 0.1 0.052 0.057 0.053 0.057 0.054 0.053 0.059
0.1 0 0.048 0.058 0.046 0.057 0.054 0.048 0.057

Group 2
Double

0.1 0.1 0.054 0.059 0.057 0.057 0.056 0.052 0.057
0.1 0 0.056 0.059 0.057 0.057 0.056 0.060 0.057

Interaction
Local
Test

15
Equal 0.1 0.1 0.060 0.062 0.060 0.068 0.073 0.060 0.063

0 0.1 0.072 0.062 0.074 0.068 0.073 0.072 0.060
Group 2
Double

0.1 0.1 0.058 0.067 0.055 0.065 0.069 0.061 0.065
0 0.1 0.068 0.060 0.070 0.061 0.073 0.066 0.062

30
Equal

0.1 0.1 0.056 0.054 0.054 0.056 0.054 0.056 0.057
0 0.1 0.058 0.058 0.054 0.057 0.057 0.054 0.058

Group 2
Double

0.1 0.1 0.062 0.053 0.064 0.055 0.056 0.063 0.053
0 0.1 0.064 0.054 0.062 0.053 0.060 0.062 0.053
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2

Table S2
Hypothesis tests on the ADNI data. Global tests and all local tests with unadjusted

p-values of < 0.05 are shown for Models 2-4.

�CN �AD Test Statistic Unadjusted p-value Adjusted p-value

Model 2: Full Convergence, Compound Symmetry  0 and  1, and Unstructured ⌃

Main E↵ects 42.06 0.156
HCl and PCCl 0.037 0.189 3.35 0.024 0.317
HCl and PCCr 0.043 0.232 5.14 0.004 0.111
HCr and PCCr 0.010 0.168 3.57 0.019 0.317
PHCl and PQl 0.089 -0.093 4.79 0.030 0.317
PHCr and PQl 0.042 -0.136 4.56 0.029 0.317

Interactions 41.26 0.199
HCl and PCCl 0.004 -0.011 5.77 0.002 0.081
HCl and PCCr 0.003 -0.014 7.65 ¡0.001 0.027
HCr and PCCr 0.005 -0.009 4.41 0.010 0.218
PHCl and PCCr 0.008 -0.002 2.61 0.032 0.317

Model 3: One-step, Scaled Identity  0 and  1, and Diagonal ⌃

Main E↵ects 47.75 0.312
HCl and PCCl 0.058 0.228 3.95 0.021 0.367
HCl and PCCr 0.068 0.269 5.51 0.005 0.150
PHCl and PQl 0.125 -0.074 5.37 0.033 0.367
PHCr and PQl 0.056 -0.164 6.57 0.009 0.207
PCCl and PFCr 0.381 0.240 2.86 0.033 0.367

Interactions 54.90 0.238
HCl and PCCl 0.002 -0.013 5.14 0.005 0.150
HCl and PCCr 0.000 -0.017 6.49 0.017 0.150
PHCl and PCCr 0.007 -0.003 2.75 0.037 0.367
PHCl and PQl -0.011 0.003 4.71 0.049 0.403
PHCr and PQl -0.007 0.006 3.66 0.047 0.403
PQl and PQr 0.007 0.000 1.31 0.035 0.367

Model 4: One-step, Scaled Identity  0, Zero  1, and Diagonal ⌃

Main E↵ects 62.65 0.412
HCl and PCCr 0.078 0.281 8.41 0.013 0.513
PHCr and PQl 0.040 -0.162 6.61 0.023 0.513
PCCl and PFCr 0.402 0.223 4.35 0.018 0.513

Interactions 68.63 0.317
HCl and PCCl 0.000 -0.013 5.60 0.036 0.592
HCl and PCCr -0.001 -0.018 9.11 0.006 0.513
PHCl and PCCr 0.006 -0.004 3.83 0.040 0.592
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Fig S1. Model 2 results. Top left: A plot of the estimated intercept terms for the CN
group (bottom left triangle) and AD group (top right triangle). Top right: A plot of the
estimated slope terms for the CN group (bottom left triangle) and AD group (top right
triangle). Bottom left: a plot of the group di↵erences (AD estimates - CN estimates) for
the estimated intercepts (top right triangle) and slopes (bottom left triangle). Bottom right:
A plot of the � log10 corrected and adjusted p-values from all local hypothesis tests of group
di↵erences (AD estimates - CN estimates) for the estimated intercepts (top right triangle)
and slopes (bottom left triangle).
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Fig S2. Model 3 results. Top left: A plot of the estimated intercept terms for the CN
group (bottom left triangle) and AD group (top right triangle). Top right: A plot of the
estimated slope terms for the CN group (bottom left triangle) and AD group (top right
triangle). Bottom left: a plot of the group di↵erences (AD estimates - CN estimates) for
the estimated intercepts (top right triangle) and slopes (bottom left triangle). Bottom right:
A plot of the � log10 corrected and adjusted p-values from all local hypothesis tests of group
di↵erences (AD estimates - CN estimates) for the estimated intercepts (top right triangle)
and slopes (bottom left triangle).
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Fig S3. Model 4 results. Top left: A plot of the estimated intercept terms for the CN
group (bottom left triangle) and AD group (top right triangle). Top right: A plot of the
estimated slope terms for the CN group (bottom left triangle) and AD group (top right
triangle). Bottom left: a plot of the group di↵erences (AD estimates - CN estimates) for
the estimated intercepts (top right triangle) and slopes (bottom left triangle). Bottom right:
A plot of the � log10 corrected and adjusted p-values from all local hypothesis tests of group
di↵erences (AD estimates - CN estimates) for the estimated intercepts (top right triangle)
and slopes (bottom left triangle).
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