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Abstract 

 

Purpose: To improve the accuracy of automated vein segmentation by combining susceptibility-

weighted images (SWI), quantitative susceptibility maps (QSM), and a vein atlas to produce a 

resultant image called a composite vein image (CV image). 

Method: An atlas was constructed in common space from 1072 manually traced 2D-slices. The 

composite vein image was derived for each subject as a weighted sum of three inputs; a SWI 

image, a QSM image and the vein atlas. The weights for each input and each anatomical 

location, called template priors, were derived by assessing the accuracy of each input over an 

independent data set. The accuracy of venograms derived automatically from each of the CV 

image, SWI, and QSM image sets was assessed by comparison with manual tracings. Three 

different automated vein segmentation techniques were used, and ten performance metrics 

evaluated.  

Results: Vein segmentations using the CV image were comprehensively better than those derived 

from SWI or QSM images (mean Cohen’s d = 1.1). Sixty permutations of performance metric 

and automated segmentation technique were evaluated. Vein identification improvements that 

were both large and significant (Cohen’s d>0.80, p<0.05) were found in 77% of the 

permutations, compared to no improvement in 5%. 

Conclusion: The accuracy of automated venograms derived from the composite vein image was 

overwhelmingly superior to venograms derived from SWI or QSM alone. 

 

Keywords: MRI, QSM, SWI, vein atlas, vein segmentation, cerebral vasculature.  
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1. Introduction: 

 

Mapping cerebral veins using magnetic resonance (MR) images has until recently been 

technically challenging. Cerebral venograms are increasingly important for advancing our 

knowledge of cerebral vascularisation, oxygenation, metabolism and studies of cerebrovascular 

topology. The use of venograms in clinical research applications is growing rapidly, including 

for quantifying oxygen saturation (Fan et al., 2014), measuring the metabolic rate of oxygen 

consumption (Rodgers et al., 2016) and analyzing possible fMRI confounders (Vigneau-Roy et 

al., 2014).  

 

Traditional vein imaging techniques require invasive contrast agents, have potential arterial 

confounds, and are limited to the large vessels, due to the reduced volume and flow of smaller 

cerebrovasculature segments. However, magnetic susceptibility provides an intrinsic contrast 

mechanism that is exquisitely sensitive to the presence of iron, particularly deoxygenated iron-

rich haemoglobin proteins within red blood cells, making susceptibility techniques very useful 

for imaging small as well as large veins. The magnetic susceptibility of blood is modulated by 

oxygen (Pauling and Coryell, 1936), which facilitates the separation of arteries and veins, whilst 

providing a mechanism to quantify oxygen saturation (Fan et al., 2014). 

 

Susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM) are MR 

techniques based on magnetic susceptibility that provide a non-invasive method of imaging the 

cerebral veins. QSM and SWI derive contrast from gradient-recalled echo (GRE) phase 

information and have been applied to stroke, multiple sclerosis, cerebrovascular disease, and 
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examined in clinical and preclinical studies (Fan et al., 2015; Fujima et al., 2011; Goodwin et al., 

2015; Jain et al., 2010; Li et al., 2013; Liu and Li, 2016; Rodgers et al., 2013; Santhosh et al., 

2009).  The way in which SWI and QSM process the phase information is very different. 

 

SWI multiplies a non-linear mapping of high-pass filtered GRE phase with the GRE magnitude 

image, compounding the effects of signal cancellation from incoherent signals within each voxel 

and phase accumulation due to local sources of magnetic susceptibility (Haacke et al., 2004). 

Non-local sources are also included, such as the extravascular phase information, resulting in the 

magnification of small veins. The presentation of non-local sources, and non-linear mapping, 

generates a non-quantitative image best suited to radiological interpretation. 

 

QSM estimates the magnetic susceptibility distribution directly by inverting the magnetic field 

information captured in the phase image (Marques and Bowtell, 2005; Salomir et al., 2003). 

Mathematically, QSM involves a linear system inversion that is ill-posed and requires 

regularization or fitting (Li et al., 2015; Liu et al., 2016; Wang and Liu, 2015; Wharton et al., 

2010). QSM has the benefits of being quantitative and is designed to resolve extravascular field 

effects, leaving only local sources of magnetic susceptibility contrast.  

 

The differing approaches (QSM and SWI) have unique image contrasts, and each have their own 

vein-like confounders. SWI images, for instance, do not distinguish between signal cancellation 

due to venous blood, and low concentrations of free protons (Haacke et al., 2004). The lack of 

distinction is problematic when analyzing veins which reside near non-vein low signal structures, 

such as in the vicinity of the tentorium and in the interhemispheric fissure (due to the falx 
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cerebri). Both SWI and QSM also suffer different artefacts, such as cruciform artefacts in QSM 

images. 

 

As neither QSM nor SWI isolate blood signal intrinsically, unlike spin-labelling or contrast 

agent-based techniques, venous voxels within the brain must be identified before the veins can 

be analysed. The process of identifying venous voxels in the brain, or vein segmentation, 

produces a vein mask (or venogram) that can then be used to extract the vein signal from an 

image, or examined directly for topographic analysis. 

 

A number of algorithms for automatic segmentation of blood vessels in the body have been 

proposed,  including shape-driven, intensity-driven and hybrid approaches (Lesage et al., 2009). 

A common approach in the analysis of SWI and QSM data is to employ a preliminary filtering 

step, such as Hessian-based filtering (Frangi et al., 1998), before applying a simple threshold 

classification method (Vigneau-Roy et al., 2014). Recent work has combined Hessian-based 

filtering into a segmentation framework with diffusion techniques to overcome noise and low 

vein visibility (Bazin et al., 2016; Manniesing et al., 2006). Statistical modeling of spatial 

relations has also been proposed to improve continuity and smoothness in vein segmentation 

(Bériault et al., 2014; Ward et al., 2017b). 

 

The previously mentioned work focused upon SWI or QSM, and did not attempt to extract 

information from both images. Methods have been proposed that merge SWI with QSM (Ward 

et al., 2015), and R2* maps (Monti et al., 2015). Both approaches were globally homogeneous, 

i.e., they combined two images without consideration for anatomical location. As SWI and QSM 
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have differing image contrasts, and artefacts that are specific to anatomy, it is possible a superior 

segmentation could be achieved if the method for combining the two images was sensitive to 

location. 

 

Prior anatomical knowledge has recently been incorporated into a vein segmentation technique to 

reduce false positives in specific brain regions (Bériault et al., 2015). However, this approach 

was limited to specific deep-brain regions, it did not directly address boundaries between tissue 

types and neural structures, and it was hand-tuned. 

 

There are two anatomical factors that contribute to vein segmentation accuracy. The first is vein 

anatomy, i.e., expected vein occurrence, size and shape at an anatomical location. The second is 

image contrast, i.e., expected tissue signal relative to vein signal, which is specific to SWI and 

QSM. In this study, these two factors are exploited to improve cerebrovenous contrast and 

subsequent vein segmentation accuracy. We propose a vein identification and segmentation 

method that is based on a locally varying combination of SWI and QSM contrast which is 

informed by known vein anatomy in specific neuroanatomical structures. The proposed method 

derives a single composite vein image (CV image) that incorporates the strengths of SWI and 

QSM, with the anatomical knowledge of a vein atlas.  

 

The CV image is generated from three input images (SWI, QSM and atlas) that are combined 

using a weighted-sum. The weights are derived from template priors that capture the location-

specific venous contrast of the three input images throughout the brain. Separate vein atlases and 

template priors were calculated for each subject within the study from an independent sample of 
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the cohort to ensure data independence. Future applications of the technique would use a single 

template prior and atlas calculated from the entire cohort. The CV image was compared to SWI 

and QSM images for the purpose of vein segmentation using automated techniques. Segmented 

CV images were compared with segmented SWI and QSM images using a broad array of 

accuracy measures and three automated segmentation techniques.  

 

2. Methods: 

 

All procedures were reviewed and approved by the local ethics committee. Informed consent was 

obtained from all volunteers. The code and data used in this study have been available to the 

public using github and figshare respectively (Ward et al., 2016a, 2017). 

 

2.1 Data Acquisition 

 

Ten healthy volunteers were scanned using a 3T Siemens Skyra with a 32-channel head and neck 

coil (6 females, mean age 56.2 years, standard deviation 25.2). The protocol was a single echo, 

flow-compensated, gradient-recalled echo (GRE) sequence (TE=20ms, TR=30ms, flip 

angle=15o, voxel=0.9×0.9×1.8mm anisotropic, matrix 256×232×72). Four of the subjects were 

acquired with a smaller voxel size (voxel=0.9mm isotropic, matrix=256×232×160). A T1-

Weighted MPRAGE scan was also acquired and used for registration purposes (TE=2ms, 

TR=2300ms, TI=900ms, voxel=1.0mm isotropic, matrix=240x256x192, flip angle=9o).  All 

registration was performed using FNIRT and FLIRT from the FSL toolkit 

(https://fsl.fmrib.ox.ac.uk/)(Jenkinson et al., 2012).  
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For all subjects, raw k-space data for the GRE acquisition was saved for each coil and 

retrospectively reconstructed to generate phase and magnitude images. Individual coil phase 

images were processed to remove phase wraps and background phase shifts using Laplacian 

unwrapping (Li et al., 2014) and V-SHARP (Wu et al., 2012). QSM maps were computed using 

LSQR in the STI-Suite (Li et al., 2014). The SWI images were taken directly from the scanner 

console.  

 

Six of the ten subjects were healthy elderly subjects recruited for the ASPirin in Reducing Events 

in the Elderly (ASPREE) clinical trial (Group, 2013) and scanned at baseline as part of the 

ASPREE NEURO sub-study (S. A. Ward et al., 2016).  

 

2.2 Manual vein tracing 

 

A mask containing venous voxels was created for each subject by manually labelling voxels as 

vein or non-vein, using FSLView (Jenkinson et al., 2012). Tracing was performed by author PW 

under the supervision of author NF (a clinical radiologist). The venous voxels were initially 

identified based upon SWI contrast and prior anatomical knowledge, in transverse 

reconstructions of the 3D SWI acquisition, and refined by reference to sagittal and finally 

coronal reformats. Initial SWI-only masks were then overlaid side-by-side on SWI and QSM 

images for editing. Editing was performed slice by slice in the sagittal plane, followed by the 

axial and finally the coronal plane. An example ground-truth venogram is shown in Figure 1. In 

total 1072 transverse slices were examined.  
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*** Figure 1 appears near here *** 

 

2.3 Composite vein image process 

 

The composite vein (CV) image (�̈�) was constructed by combining a vein atlas, with a SWI 

image and a QSM image. The three inputs are referred to as 𝐶, where 𝐶 = {𝑎𝑡𝑙𝑎𝑠 = 1, 𝑆𝑊𝐼 =

2, 𝑄𝑆𝑀 = 3}, and are denoted 𝑋𝑐.  

 

*** Figure 2 appears near here *** 

 

The CV method combines the three inputs with weights based on the relative predictive power of 

each input in different regions of the brain. The relative predictive power was captured in a 

template prior (𝑃𝑐) for each of the three inputs (Figure 2A). The inputs were normalized �̇�𝑐, and 

then combined using a weighted-mean with the weights derived from the priors, 𝑃𝑐. 

 

�̈�(𝑟) =
1

∑ 𝑃𝑐
𝐶
𝑐=1 (𝑟)

⋅ ∑ (𝑃𝑐(𝑟) ⋅ �̇�𝑐(𝑟))

𝐶

𝑐=1

 Eq. 1 

 

The CV image, �̈�(𝑟), for each subject used the atlas and priors pre-calculated from the training 

cohort (𝑀) (Figure 2A). For each subject in this study, the training cohort consisted of the other 

nine subjects to ensure independence of the atlas and priors for each subject specific CV image. 
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The atlas construction, normalization process, and details of the template priors are explained in 

the following sub-sections. 

 

2.4 Vein atlas 

 

Manually traced vein masks (𝑌) were weighted to reflect the variance and uncertainty of the 

human observer (𝑊).  

 

𝑊(𝑟) = {
0.9, 𝑌(𝑟) = 𝑣𝑒𝑖𝑛
0.1, 𝑌(𝑟) ≠ 𝑣𝑒𝑖𝑛

 Eq. 2 

 

The weighted tracings ( 𝑊𝑖 ) for each subject, 𝑖 , were interpolated into 0.5mm MNI space 

(Montreal Neurological Institute standard brain atlas) and the average (mean) calculated for each 

voxel, 𝑟, to construct a vein atlas.  

 

𝑋𝐴𝑡𝑙𝑎𝑠(𝑟) =
1

|𝑀|
∑ 𝑊𝑖(𝑟)

𝑀

𝑖=1

 Eq. 3 

 

Visual inspection of the atlas was performed to explore the variability of vein location between 

subjects within the cohort. 

 

2.5 Normalisation 
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The SWI and QSM images were processed separately to remove biases and to normalize their 

voxel intensities using a Gaussian mixture model (GMM) with two components (vein and non-

vein). This approach has been explored previously (Ward et al., 2015, 2017b), and similar 

techniques have been used in blood vessel segmentation before (Bazin et al., 2016; Bériault et 

al., 2015, 2014; Hassouna et al., 2006).  

 

For each image (SWI and QSM), a GMM was fit using a log-likelihood expectation-

maximisation approach (Dempster et al., 1977). Both GMMs (one for SWI and one for QSM) 

used the same initial seed taken from the QSM images (𝑋𝑄𝑆𝑀 > 0.05𝑝𝑝𝑚) to impart prior 

knowledge of the components. High-pass filtering was also applied to 𝑋𝑆𝑊𝐼.  

 

The GMM process mapped the image contrasts to a unity space [0,1] and reduced the presence 

of subject specific biases. Normalized images (�̇�𝑄𝑆𝑀 and �̇�𝑆𝑊𝐼) were produced from the mixture 

coefficient of the vein component for each voxel.  

�̇�𝑖,𝑐 =
ϖ𝑐,𝑉𝑃𝑟(𝑉|𝑋𝑖,𝑐, 𝜇𝑐,𝑉, Σ𝑐,𝑉)

ϖ𝑐,𝑉𝑃𝑟(𝑉|𝑋𝑖,𝑐 , 𝜇𝑐,𝑉, Σ𝑐,𝑉) + ϖ𝑐,~𝑉𝑃𝑟(~𝑉|𝑋𝑖,𝑐, 𝜇𝑐,~𝑉, Σ𝑐,~𝑉)
 

Eq. 4 

 

where 𝑐  was the image (SWI or QSM), 𝑖  was the voxel, and 𝑃𝑟(𝑉|𝑋𝑐, 𝜇𝑐,𝑉, Σc,V)  was the 

posterior probability of being labelled vein (or not vein, ~𝑉) given the distribution parameters 

for the image-specific GMM: 𝜇, Σ, relative abundance ϖ, and the voxel intensity, 𝑋. Supporting 

information on this process has been published previously (Ward, 2017). 

 

The atlas (𝑋𝐴𝑡𝑙𝑎𝑠) is intrinsically normalized, and was interpolated into the subject space to 

provide the final input (�̇�𝐴𝑡𝑙𝑎𝑠). 
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2.6 Template priors 

 

Subject specific confidence maps, 𝑝𝑖,𝑐 , were calculated using log-loss scoring (Dowe, 2008; 

Good, 1952) for each input (𝑐 ∈ 𝐶) using Eq. 5. Voxel location (𝑟) and subject (𝑖) have been 

omitted from this equation for clarity. 

 

𝑝𝑐(�̇�𝑐, 𝑊) = − log(𝑊 ⋅ (1 − �̇�𝑐) + (1 − 𝑊) ⋅ �̇�𝑐) Eq. 5 

 

The template priors (𝑃𝑐) for SWI, QSM and the vein atlas were calculated by taking the cohort 

mean of the confidence maps interpolated into MNI space.  

𝑃𝑐(𝑟) =
1

𝑀
∑ 𝑝𝑐,𝑖 (�̇�𝑐,𝑖(𝑟), 𝑊𝑖(𝑟))

𝑀

𝑖=1

 Eq. 6 

 

The predictive power represented in the priors for each information source (𝑃𝐴𝑡𝑙𝑎𝑠, 𝑃𝑆𝑊𝐼 , and 

𝑃𝑄𝑆𝑀 ) was examined visually. In order to visualize all three values, each was normalized, 

�̇�𝑐(𝑟) = 𝑃𝑐(𝑟) ⋅ min
d

𝑃𝑑
−1(𝑟), and encoded in a colour channel of a colour image (blue, green, red 

for 𝑃𝐴𝑡𝑙𝑎𝑠, 𝑃𝑆𝑊𝐼, and 𝑃𝑄𝑆𝑀 respectively). 

 

2.7 Performance evaluation 

 

Vein contrast in the CV image was assessed in comparison to SWI and QSM images using 

automated vein segmentation techniques.  Three vein segmentation techniques were employed to 

compute venograms for each of the three image sets (the CV images, SWI images and QSM 
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images). The first segmentation technique was a Hessian-based vesselness filter followed by an 

Otsu threshold (VN) (Frangi et al., 1998; Otsu, 1975). The second was a statistical method based 

on an Ising model Markov random field using an anisotropic graph (MRF) (Bériault et al., 2014). 

The third was a recursive ridge-based filter (RR) (Bazin et al., 2016). 

 

The accuracy of the venograms from each image set was evaluated with standard metrics (Table 

1). Many standard overlap metrics are not informative due to the high surface-to-area ratio of 

cerebral vein masks. To overcome this limitation, dilated versions of many of the metrics were 

used (Bazin et al., 2016). The metric values for the SWI and QSM image based venograms were 

calculated as benchmarks, and the differences between these reference values and the venograms 

computed from the CV image were examined.  

 

Two techniques had parameters that required training (VN and MRF). A leave-one-out approach 

to training was taken, with the performance of the left-out subject recorded for comparison 

purposes. The parameters (𝛩) were optimized in a standardized space to minimize a composite 

cost function (𝑍), which included a regularization term (𝛬).  

 

𝑍 = (1 − 𝐷𝑆𝑆) +
𝑀𝐻𝐷

2
+

𝐴𝑉𝐷

2
+ 𝛬 Eq. 7 

𝛬 = √∑(𝛩𝑖 − 0.5)2

𝑁𝑝

𝑖

 

Eq. 8 

 

where 𝑁𝑝 is the number of parameters to train. Dice similarity score (DSS) (Dice, 1945), mean 

Hausdorff distance (MHD) (Shonkwiler, 1989) and average volume difference (AVD) are 
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described in Table 1. Scaling factors were chosen to normalize metric ranges as DSS is 

constrained to a unity range, whilst MHD and AVD are unbounded. 

 

A gradient descent algorithm was used to search the parameter space from an initial parameter 

estimate. The initial parameter estimate was the optimal parameter values from a uniform 

random sample of the entire parameter space (1000 samples). Each iteration of the search 

algorithm used 32 randomly sampled potential steps. Samples were taken from a hypercube with 

dimensions equal to 5% of the parameter space. In all cases the cost function was found to have 

converged before 50 iterations. All parameters are reported in Table 2. All operations were 

performed in MATLAB 2015b using the MASSIVE supercomputer (Goscinski et al., 2014). 

 

Ten sets of parameters were trained for each technique (Table 2), using a different subset of nine 

subjects from the ten available. The mean and standard deviation of the results are shown in 

Table 2. The difference in cost function value between the mean of the training set (nine subjects) 

and the left-out validation subject was low. In the majority of cases the validation score was 

better than the worst individual score in the training set. 

 

The difference in performance was assessed between the CV images and SWI images, and CV 

images and QSM images. The magnitude of performance difference was quantified using 

Cohen’s d (Cohen, 2013) and interpreted on a qualitative scale (Sawilowsky, 2009). The 

significance of the difference was tested using a paired two-tailed Wilcoxon signed-rank test 

(Wilcoxon, 1945). A description of all metrics used can be found in Table 1. 
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3. Results: 

All permutations of vein segmentation technique, performance metric and benchmark image 

(SWI or QSM) were explored, resulting in 60 comparisons. When using the CV image, 77% of 

the permutations showed a large or higher improvement (Cohen’s d > 0.80) that was statistically 

significant (p<0.05), compared to a negative effect in 5% of the permutations. The mean effect 

size across all permutations was 1.1 (large) and very large effects in favor of the CV image were 

found in 65% of comparisons. The results are shown pictographically in Figure 3. 

 

*** Figure 3 appears near here *** 

 

Negative results (5%) occurred in paired-metrics and were not observed in comprehensive 

balanced metrics, such as DSS, MCC and MHD, which overwhelmingly displayed performance 

improvements with the CV image. In paired-metrics, a corresponding positive effect was found 

for each negative effect in the metric pair, such as negative specificity and positive sensitivity for 

the QSM image when using the VN technique. In these paired cases the effect size was 

comparable for both positive and negative results. 

 

Inconclusive results were most common for average-volume difference (AVD) (50% of 

comparisons). AVD measures bias in the errors of the final masks, rather than a direct measure 

of performance. Greater improvement was shown in comparison to the QSM based venograms 

relative to SWI based venograms. 

 

*** Figure 4 appears near here *** 
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The similarity of vein locations between subjects was represented in the vein atlas (Figure 4). 

High atlas values indicated consistent vein locations between subjects. The highest value voxels 

were found near the major veins, including in the superior sagittal sinus, dural sinuses, straight 

sinus and internal cerebral veins (green regions in Figure 4). The deep gray matter structures, the 

inferior frontal and inferior temporal regions showed lower values.  

 

*** Figure 5 appears near here *** 

 

The relative predictive power of the atlas, SWI and QSM template priors was observed to be 

heterogeneous across brain regions (Figure 5). QSM was found to have comparatively higher 

power in the falx cerebri and lower power in the deep-gray matter structures, relative to SWI and 

the atlas. The atlas was highest in the deep-gray matter, particularly on the edge of structures. 

SWI had higher predictive power on the superior surface of the cortex, and lower power on the 

inferior surface of the brain. 

 

4. Discussion 

 

In this work a composite vein (CV) imaging technique was proposed that combined three sources 

of vein information, an atlas, a SWI image, and a QSM image. The CV image showed a large 

improvement in vein segmentation accuracy when compared with SWI and QSM images. A 

robust improvement was observed in the majority of permutations across ten performance 

metrics and three segmentation methods.  
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The CV image was found to combine the complementary strengths of SWI and QSM, and 

produce an image with significantly improved vein contrast by incorporating the relative 

predictive power of SWI and QSM in a weighted-average approach. A comprehensive analysis 

was performed using over 1000 MRI slices, including anisotropic and isotropic acquisitions, 

multiple automated segmentation techniques, and multiple performance metrics. 

 

The template priors characterized the anatomically heterogeneous value of the three inputs. The 

atlas template prior (𝑃𝐴𝑡𝑙𝑎𝑠) had higher relative values to SWI and QSM in the deep gray matter 

structures possibly due to non-venous iron deposits in tissue. However, the relative predictive 

power of SWI increased towards the center of these structures. High-pass filtering in SWI may 

be the cause of this effect by reducing the low-frequency spatial contrast of these iron sources 

and increasing the sharpness of structure boundaries. A common trend observed in the larger 

veins, particularly those in the interhemispheric region, was higher SWI predictive power in the 

center and higher QSM predictive power at the vessel wall, extending into the surrounding 

tissue. Extravascular enhancement on SWI images may be the source of the decrease in SWI 

predictive power at the vessel wall. Two exceptions to the greater predictive power of SWI in the 

center of larger veins were the superior sagittal sinus and the transverse sinus, where the 

predictive power of the atlas was higher. Decreased anatomical variability and hyper-intense 

GRE signal due to imperfect flow compensation are possible causes of the reduction in SWI 

predictive power relative to the atlas. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/152389doi: bioRxiv preprint 

https://doi.org/10.1101/152389
http://creativecommons.org/licenses/by-nc-nd/4.0/


There was minimal discrepancy between performance of the training and validation datasets. The 

tuned parameter values for each of the ten-independent datasets had low variance (Table 2) 

despite the stochastic nature of the initial parameter values. These two results indicate minimal 

over-fitting occurred when optimizing the technique parameters. 

 

Comparative analysis of published automated vein segmentation techniques is difficult for a 

number of reasons. Manually traced ground truth vein masks typically cover small manually 

traced regions and/or minimum-intensity projections (Bazin et al., 2016; Bériault et al., 2014; 

Monti et al., 2015). The small regions may not be indicative of performance across the entire 

brain, and are a source of variability between studies that cannot be controlled for. Studies also 

use different performance metrics including sensitivity and specificity (Monti et al., 2015), 

positive-predictor value, negative predictor value and overlap (Bazin et al., 2016), and accuracy 

(Bériault et al., 2014). The use of different metrics may be due to the specific application that 

each technique has been designed for. However, the selective use of metrics can result in one-

sided conclusions being drawn, and can frustrate meta-analysis efforts.  

 

The quantification of vein segmentation performance is a contentious issue (Gerig et al., 2001). 

To capture compensatory behavior, where one metric is optimized at the expense of another, 

metrics are often reported in quasi-orthogonal pairs, such as specificity and sensitivity. Although, 

when one label (vein) is less numerous in abundance than the other (non-vein) the trade-off 

between pairs will not be even due to the disparate magnitude of the denominators. Non-paired 

metrics, such as overlap and volume difference metrics, are more robust in these scenarios, albeit 
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at the expense of interpretability. Comprehensive reporting of multiple metrics should be 

adopted to enhance both interpretability and transparency.  

 

The template priors, vein atlas, and manual vein tracings are publicly available (Ward et al., 

2016a). The manual vein tracing required hundreds of hours to complete, and the release of the 

segmented data may facilitate future work in vein segmentation techniques. The data sharing 

may result in a large, publicly available set of cross-validated ground truth vein images for future 

collaborative studies. 

 

4.1 Limitations  

 

A distinction should be considered between accurate vein segmentation and accurate imitation of 

manually traced vein masks. The tracings are not a direct measure of veins, but a subjective 

radiological interpretation (Drew et al., 2013), and are produced in the presence of the artifacts 

that occur in susceptibility-based MRI. A ground truth that is independent of MRI-based artifacts 

would be required to directly quantify vein segmentation accuracy.  

 

Furthermore, only binary masks have been addressed in this work. However, vein geometry does 

not conform to a cubic grid. Recent work has found significant error associated with binary 

representations of veins in simulated QSM images (Ward et al., 2017a). Further work will 

explore non-binary manual tracings to incorporate both partial volume and marker uncertainty. 

 

5. Conclusions 
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A large improvement in venogram accuracy was achieved using the composite vein image 

technique. The composite vein image technique incorporates the heterogeneous vein contrast 

profile across the brain to extract the complementary information available from SWI and QSM 

images, and a vein atlas. The technique’s performance was evaluated with multiple segmentation 

techniques and metrics. The accuracy provided by the composite vein image allows improved 

quantification of cerebrovenous topology and cerebrovascular oxygenation using MRI. 
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Table 1 Venogram accuracy metrics. The metrics compare the manual mask of veins (𝑽) and non-veins 

(𝑵) with an automated estimate (𝑽′ and 𝑵′). A mask morphologically dilated by one-voxel is preceded by 

a 𝜹, e.g. 𝜹𝑽 is the dilated manual vein mask. Dilation was used as the boundaries of small vein may be 

uncertain due to bloom and partial volume. The Hausdorff distance (41), 𝕯(𝑿, 𝒀), is the mean value in a 

minimum distance map, i.e., the minimum distance from each surface voxel in mask 𝑿 to a surface voxel 

in mask 𝒀. The surface is defined as all voxels removed by a one-voxel morphological erosion. 

Name Equation 

Number of true-positives (veins) 
𝑇𝑃 = |𝑉 ∩ 𝑉′| 

𝛿𝑇𝑃 =
1

2
(|𝛿𝑉 ∩ 𝑉′| + |𝑉 ∩ 𝛿𝑉′|) 

Number of true-negatives (non-

veins) 

𝑇𝑁 = |𝑁 ∩ 𝑁′| 

𝛿𝑇𝑁 =
1

2
(|𝛿𝑁 ∩ 𝑁′| + |𝑁 ∩ 𝛿𝑁′|) 

Number of false-positives 𝐹𝑃 = |𝑁 ∩ 𝑉′| 

Number of false-negatives 𝐹𝑁 = |𝑉 ∩ 𝑁′| 

Accuracy 𝐴𝐶𝐶 =  
𝛿𝑇𝑃 + 𝛿𝑇𝑁

|𝑉 ∪ 𝑁|
 

Sensitivity 𝑆𝐸 =  
|𝛿𝑉′ ∩ 𝑉|

|𝑉|
 

Specificity 𝑆𝑃 =
|𝛿𝑁′ ∩ 𝑁|

|𝑁|
 

Positive-predictor value 𝑃𝑃𝑉 =
|𝛿𝑉 ∩ 𝑉′|

|𝑉′|
 

Negative-predictor value 𝑁𝑃𝑉 =
|𝛿𝑁 ∩ 𝑁′|

|𝑁′|
 

Dice similarity score (Dice, 1945) 𝐷𝑆𝑆 =
2 ⋅ 𝛿𝑇𝑃

|𝑉| + |𝑉′|
 

Matthews correlation coefficient 

(Matthews, 1975) 
𝑀𝐶𝐶 =  

𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Mean Hausdorff distance 

(Shonkwiler, 1989) 
𝑀𝐻𝐷 =

1

2
(𝔇(𝑉, 𝑉′) + 𝔇(𝑉′, 𝑉)) 

Average volume difference 𝐴𝑉𝐷 =
|𝐹𝑃 − 𝐹𝑁|

|𝑉|
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Table 2. Tuned parameter descriptions for each automated segmentation technique. The trained value 

represents the mean and standard deviation across the 10 parameter sets trained. 

Technique Parameter Description 
Trained value 

CV SWI-Only QSM-Only 

MRF 

𝛽𝑟𝑎𝑡𝑖𝑜 Weighting factor between 

vein and non-vein in 

neighbours in clique 

potential calculation. 

0.10 ± 0.02 0.58 ± 0.02 0.48 ± 0.01 

VN 

𝛼 Non-plane like factor 0.24 ± 0.01 0.19 ± 0.02 0.61 ± 0.13 

𝛽 Non-blob like factor 0.77 ± 0.09 0.34 ± 0.21 0.16 ± 0.02 

𝛾 Intensity factor 1.61 ± 0.08 3.89 ± 0.22 7.65 ± 1.23 

scale Maximum scale explored 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 

RR 
Recommended parameters specified by creator suitable for contrasts used (none 

trained). 

 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 20, 2017. ; https://doi.org/10.1101/152389doi: bioRxiv preprint 

https://doi.org/10.1101/152389
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 1. Example images of the manual vein tracings. Minimum-intensity projections for SWI (A and C) 

and maximum-intensity projections for QSM (B and D), with a semi-transparent vein mask overlay in 

red. Sagittal (9mm slab, A and B) and axial (18mm slab, C and D) slices are shown from a single subject. 
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Figure 2. Schematic describing data flow and process for training the priors and atlas (A) and producing a 

composite vein image (B). The training data sets (manual vein tracings, SWI images, QSM images) in (A) 

are used to calculate the vein atlas and template priors. Operations in (A) occur within MNI template 

space. The vein atlas, atlas prior, SWI prior and QSM prior in (A) are inputs to (B) once they are 

interpolated into subject space. The training data set in (A) does not include the subject images in (B) to 

ensure independence. 
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Figure 3. The improvement in performance of three automated segmentation techniques when 

using the CV image compared to two alternative images.   The size of the improvement 

(Cohen’s d) and the statistical significance of the improvement (p-values) are displayed in 

colour and size respectively. Red circles indicate superior performance using the CV image. 

Large circles indicate more significant results. Each row corresponds to an automated 

segmentation technique (RR, MRF, or VN) and input image (SWI or QSM). Each column 

denotes a different performance metric. All metric abbreviations are provided in Table 1. 

Statistical significance was measured using a two-tailed Wilcoxon signed-rank test and is 

uncorrected.   
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Figure 4. Vein frequency atlas (𝑿𝑨𝒕𝒍𝒂𝒔) demonstrating high reproducibility in vein location across subjects 

in the major veins (e.g. sagittal sinus, green/yellow) and low reproducibility in the deep grey matter 

structures. Values of 0% are transparent. Slice coordinates (red) are in MNI atlas space, with axial 

projections (A-C), coronal projections (D-F) and sagittal projections (G-I). 
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Figure 5. Slices from the atlas, SWI and QSM template priors (𝑷𝑨𝒕𝒍𝒂𝒔, 𝑷𝑺𝑾𝑰, and 𝑷𝑸𝑺𝑴 respectively), 

color-coded to represent the relative weights of each. Blue regions show where 𝑷𝑨𝒕𝒍𝒂𝒔 is highest, green 

regions where 𝑷𝑺𝑾𝑰  is highest and red regions where 𝑷𝑸𝑺𝑴  is highest. A triangular colour-map is 

included.  Slice coordinates (red) are in MNI atlas space, with axial projections (A-C), coronal projections 

(D-F) and sagittal projections (G-I). 
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