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Abstract 

Cell autonomous cancer dependencies are now routinely identified using CRISPR loss-of-function 
screens. However, a bias exists that makes it difficult to assess the true essentiality of genes located 
in amplicons, since the entire amplified region can exhibit lethal scores. These false-positive hits can 
either be discarded from further analysis, which in cancer models can represent a significant number 
of hits, or methods can be developed to rescue the true-positives within amplified regions. We 
propose two methods to rescue true positive hits in amplified regions by correcting for this copy 
number artefact. The Local Drop Out (LDO) method uses the relative lethality scores within genomic 
regions to assess true essentiality and does not require additional orthogonal data (e.g. copy number 
value). LDO is meant to be used in screens covering a dense region of the genome (e.g. a whole 
chromosome or the whole genome). The General Additive Model (GAM) method models the 
screening data as a function of the known copy number values and removes the systematic effect 
from the measured lethality. GAM does not require the same density as LDO, but does require prior 
knowledge of the copy number values.  Both methods have been developed with single sample 
experiments in mind so that the correction can be applied even in smaller screens.  Here we 
demonstrate the efficacy of both methods at removing the copy number effect and rescuing hits 
from some of the amplified regions.  We estimate a 70-80% decrease of false positive hits in regions 
of high copy number with either method. 
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Introduction  

CRISPR based loss-of-function screens have emerged as a powerful tool to interrogate multiple 
species and models (1). The technology has been quickly adopted to identify essential genes in 
cancer, including several cancer cell line screens (2–4). However, as reported in two studies (5,6) and 
further discussed by others (7), genes in regions of copy number amplification display strong lethal 
phenotypes by CRISPR-Cas9 cutting (as opposed to CRISPRi (8)), regardless of the true biological 
essentiality of the targeted gene. This results in a significant number of false positive hits in samples 
with large copy number alterations. This is of particular relevance in cancer models, which typically 
display extensive copy number events.  

One way of mitigating the problem of false positives would be to simply discard any hits found in 
amplified regions. This is a viable strategy when considering aggregate profiles (9), but runs the risk 
of yielding many false negatives when looking at individual hits. Especially when copy number events 
are an important oncogenic driver and identifying the essential gene in the amplicon is of interest to 
target discovery (10). Therefore, to fully leverage CRISPR based screens, it is important to 
understand and correct for the observed copy number bias. Here, we propose methods to correct 
for the copy number artefact, while rescuing the true positives within the amplicons. The 
corresponding R scripts are also provided. 

We used the data published by Munoz et al. (5), where the copy number artefact has been observed 
(Fig. 1), i.e. a negative correlation of sensitivity (calculated as Log FC) with copy number. To illustrate 
the methods, we focused on the astrocytoma cell line sf268 and the gastric cancer cell line mkn45, 
as these two cell lines have amplicons where the driver has been well characterized, YAP1 and MET, 
respectively. The sgRNA library used targeted 2722 human genes with an average coverage of 20 
reagents per gene. In addition, a second screen performed on mkn45, using a different library of 
genes with a coverage of 10 reagents per gene, was used to evaluate the methods described herein. 

Local Drop Out (LDO) method 

To account for the copy number artefact, we propose the Local Drop Out (LDO) method. LDO aims to 
correct phenotype scores for each guide by taking into account guide scores targeting the other 
genes in its direct genomic neighbourhood.  It assumes that most genes display little or no 
phenotype upon knock-out in such screens (~2 weeks or less) and does not rely on copy number 
measurements. If multiple neighbouring genes show similarly strong drop out values, it is assumed 
that the observed phenotype is due to a copy number effect rather than a true dependence of the 
cell line. The density of the screen influences the size of the copy number events that can be 
detected: the higher the density of the genes selected to be included in the screen, the more focal 
the detected copy number events can be.  

The LDO method uses a two-step process. First, LDO aims to identify as many guides as possible that 
may be true positives, which include both essential genes and growth enhancers. This is done in 
order to remove them from consideration for the second step and maximize the proportion of 
“neutral” genes used to estimate the CN specific effect.  Although not required, prior knowledge can 
be used, e.g. lists of pan-lethal genes available in the public domain can be leveraged to determine 
an initial list of essential guides for consideration. Additional cell line specific essential or growth 
enhancing genes can be identified by calculating, for each guide, a weighted mean sensitivity of 
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neighbouring guides. The weighting function is parameterized in the calculation.  To identify 
additional essential or growth enhancing genes, we used an exponential distribution with parameter 
𝜔 = 100’000 bp and performed the calculations independently for each chromosome. The guides 
targeting the same gene were not included in the calculation; neither were the guides targeting 
genes known to be essential as per the pan-lethal list. The latter group of guides was removed since 
we aimed to estimate the CN effect on only the guides whose drop out can only be attributed to the 
artefactual CN effect. Any guide targeting an essential gene is expected to display a true phenotype 
in addition to any potential CN effect and their inclusion is therefore likely to partially hide the signal 
we aim to detect. In this analysis, we have used a list of a priori essential genes compiled from [4] 
(see Mat & Met for more details). Removing the known pan-essential genes is however not a 
requirement of the method, but can improve the accuracy of the resulting CN correction. In 
particular in the case of successively located pan-essential genes which could otherwise be confused 
for a CN event.  

The weighted mean sensitivity is calculated as follows. Let 𝑔 be a guide in the set 𝐺 of all guides 
under consideration (e.g. all guides in a specific chromosome or chromosomal arm), with 𝑔𝑖ℎ the 𝑖th 
guide targeting gene ℎ and 𝐺ℎ be the set of guides targeting gene ℎ. Let 𝐸1 be the set of guides 
targeting known essential genes. Additionally, let the genomic position of guide 𝑔 be 𝑥𝑔 and the 
sensitivity induced by guide 𝑔 be 𝑆𝑔, then the weighted mean sensitivity, excluding essential guides 
and guides targeting the same gene,  𝑚𝑚�𝑔𝑖ℎ� for guide 𝑔𝑖ℎ can be written as: 

𝑚𝑚�𝑔𝑖ℎ� =
1
𝑁

 � 𝑆𝑔𝑒
−𝜔�𝑥
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For each guide, the first iteration of the corrected sensitivity 𝑆1 value is obtained from subtracting 
the weighted mean sensitivity for that guide to the original sensitivity value without correction ( 
𝑆𝑔𝑖ℎ
1 =  𝑆𝑔𝑖ℎ −  𝑚𝑚�𝑔𝑖ℎ� ). Using this measure, the guides with absolute values above the 𝜇𝑡ℎ 

percentile across the entire genome are considered as guides displaying potential true phenotypes 
and are not used in the second iteration of the method (by default 𝜇 = 85). Here 𝜇 = 85 is chosen 
to represent a prior belief that we can expect about 15% of genes (and therefore 15% of guides in 
our design) will display a true phenotype in the screen independent of the copy number. The 
parameter can be modified, e.g. one might expect a larger percentage of genes displaying a 
phenotype in longer screens. This procedure is equivalent to increasing the set of essential guides in 
set 𝐸2 which is then sample specific and contains the set 𝐸1 and all the guides identified above the 
𝜇𝑡ℎ percentile. 

In the second step of the LDO correction, all guides below the 𝜇𝑡ℎ percentile are used to fit two 
regression trees to estimate the copy number effect. The first regression tree is parametrized to 
capture short amplifications while the second regression tree is optimized to capture large 
chromosomal arm events. These guides are highly enriched in guides showing no phenotypes, i.e. 
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the set of guides 𝑔 ∈ 𝐺\𝐸2. Here, one dimensional regression trees are used to estimate the 
sensitivity of the guides as a function of the genomic location alone. The combined copy number 
effect of the two regressions is then removed from the original sensitivity score 𝑆𝑔 to obtain the LDO 
corrected sensitivity score 𝑆𝑔𝐿𝐿𝐿.  Specifically, the regression tree 𝑇 formulates the copy number 
induced sensitivity 𝑆𝐶𝐶 at position 𝑥 as follows: 

𝑆𝐶𝐶(𝑥|𝑇) =  𝑆𝐶𝐶(𝑥| {𝑆𝑚,𝑅𝑚}1𝑀) =  � 𝑆𝑚

𝑀

𝑚=1

𝟙(𝑥 ∈ 𝑅𝑚) 

Where {𝑅𝑚}1𝑀 are subregions of the genome, and 𝑥 is a genomic position. 𝑆𝑚 are the estimated 
copy number induced sensitivity values in region 𝑅𝑚. Using only the guides ∈ 𝐺\𝐸2 , we try to find 
the regression tree 𝑇 which minimizes the error: 

𝑒(𝑇) =  � �𝑆𝑔 −  𝑆𝐶𝐶𝑇 �𝑥𝑔| 𝑆𝑚,𝑅𝑚��
2

𝑔∈ 𝐺\𝐸2

 

with respect to 𝑆𝑚 and 𝑅𝑚. In practice, a regularization term is added to avoid overfitting. Thus, the 
objective is to identify the tree 𝑇 which minimizes the following term: 

min
𝑇∈𝕋(𝛽)

[𝑒(𝑇) +  𝛼|𝑇|] 

where |𝑇| is the number of terminal nodes of the tree and the complexity parameter 𝛼 measures 
the “cost” of adding another region 𝑅𝑚 to the model. The higher the cost, the shallower the tree. 
Also additional constraints can be set on the universe 𝕋(𝛽) of potential trees 𝑇. In particular, one 
can consider the universe 𝕋(𝛽) with a minimum number 𝛽 of guides per region 𝑅𝑚. 

The first regression performed attempts to identify short focal amplifications. As a result, relatively 
loose constraints are applied: the default parameters chosen were 𝛼1 = 0.001 and 𝛽1 = 1.5 times 
the mean number of guides per gene. Furthermore, only the regions 𝑅𝐹 ∈  {𝑅𝑚}1𝑀 with at least 3 

genes and with correction values |𝑆𝑚 | > 1.5 𝑚𝑚𝑚 �𝑆𝑔 − 𝑆𝐶𝐶�𝑥𝑔�� with 𝑚𝑚𝑚 = median absolute 

deviation are considered as true regions of focal copy number events. 

The second regression sets out to identify large chromosomal abnormalities from the remaining 
regions {𝑅𝑚}1𝑀\𝑅𝐹. Here, tighter constraints are used, specifically 𝛼2 = 0.01 and 𝛽2 = 10% of the 
number of guides in 𝐺. The resulting regions with their respective correction scores are combined 
with the regions identified in the focal amplification regression tree to build the final LDO tree 𝑇𝐿𝐿𝐿, 
i.e. the union of the disjoint first (𝑅𝐹) and second tree ({𝑅𝑚}1𝑀\𝑅𝐹) is considered. It follows that the 
LDO corrected sensitivity scores is defined by: 

𝑆𝑔𝐿𝐿𝐿 = 𝑆𝑔 −  𝑆𝐶𝐶�𝑥𝑔|𝑇𝐿𝐿𝐿� 

In Fig.2, the essentiality score before and after LDO correction is shown for the YAP1 amplicon in 
sf268. In Fig. 2 a), ANGPTL5, KIAA1377, C11orf70, BIRC3, BIRC2, TMEM123, MMP7, and MMP20 
display equivalently significant phenotypes believed to be entirely due to the copy number artefact. 
On the other hand, YAP1 shows a stronger phenotype relative to its neighbouring genes. 
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In Fig. 2 b), the resulting corrected sensitivity scores are shown in the YAP1 amplicon in sf268.  The 
copy number effect has been successfully removed and YAP1 still scores as significantly lethal, 
thereby being identified as the amplicon’s driver, as is expected from existing shRNA screens and 
reported elsewhere (11,12). 

Overall, LDO removes the copy number effect beyond the YAP1 amplicon in sf268 and in mkn45 cell 
lines, as shown in Fig. 3. The number of guides with log2(CNA) larger than 2 and LogFC below -0.5 is 
decreased from 84 to 25 guides in mkn45 and 274 to 50 guides in sf268. 

Library design and guide quality 

Although the method applied on this screen was able to successfully recover the driver in the YAP1 
amplicon, this is not always the case as shown in Fig 4. 

From shRNA screens and other reports (13,14), MET is expected to be the driver of this amplicon. 
Therefore, one could expect the MET guides to display a stronger relative drop out compared to the 
rest of the genes in the amplicon. However this was not the case and thus applying the LDO 
correction did not enable the recovery of MET as the driver of the amplicon. The degree of 
amplification does not appear to explain the lack of differential MET effect in mkn45 considering 
that the amplification in sf268:YAP1 is equivalent to what is seen in mkn45:MET.  

One potential reason for this lack of relative drop out is the quality of the guides used. The screen 
was rerun with different guide designs. The result for the MET amplicon in sample mkn45 is shown 
in Fig. 5 and in this case, MET does display a stronger phenotype than the rest of the amplicon. This 
highlights the need for careful library design (Supp. Fig. 1).  

Generalized Additive Model (GAM) method 

The LDO method proposed above does not rely on any orthogonal data, such as copy number, and 
can even be used to estimate the copy number of the screened samples (see Supp Fig 1). However 
when available, the measured DNA copy number values can be used to adjust the sensitivity scores. 
To do this, we used a generalized additive model (GAM, (15)) framework and modelled the 
sensitivity to CRISPR-mediated gene knock-out as a function of copy number to yield an adjusted 
CRISPR-mediated gene knock-out estimate. The potential benefit of this framework compared to 
LDO is that it can be extended to consider any arbitrary number of additional features (both linked 
to artefactual or true effects) potentially relevant for the purpose of modelling the phenotype (e.g. 
gene expression, multi-alignment of guides, etc.). In this analysis, only the copy number 
measurements were used. Once the model has been fitted, the effect of the artefactual components 
of the sensitivity can be removed from the observed phenotype in order to keep the “biologically-
relevant” component (in this example only the artefactual copy-number effect is considered and 
removed). Unlike the LDO method, the GAM method is insensitive to the screen density and would 
be preferred should a sparse coverage of the genome be considered in the screen. Additionally the 
GAM method does not require a prior list of known essential genes to be performed. 

The GAM structure can be written as follows: 

𝐸�𝑆𝑔� =  𝛼 + 𝑠1�𝑥1
𝑔� +  ⋯  +  𝑠𝑝�𝑥𝑝

𝑔� 
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Where 𝐸�𝑆𝑔� is the expected sensitivity of guide 𝑔; 𝑥1
𝑔, … , 𝑥𝑝

𝑔 are the predictor variables for 𝑔 and 

𝑠1�𝑥1
𝑔�, … , 𝑠𝑝�𝑥𝑝

𝑔� denote the smoothing functions estimated by non-parametric means from the 
data. Finally, 𝛼 is the intercept. Note the lack of a linker function in the above equation compared to 
the canonical GAM framework, since we consistently use the identity function. For the purpose of 
fitting the GAM to the data, we use the R implementation from the mgcv package (16) with default 
parameters, so that penalized thin plate regression spline models are used for the smoothing. 

This framework enables us to take into account an arbitrary number of predictor variables to model 
both linear and non-linear dependencies of the data. The aim is to remove from the measured 
sensitivity 𝑆𝑔the components of the model, which are deemed to come from artefactual predictor 
variables (e.g. copy number) but keep those coming from variables which are considered true 
predictors of biological sensitivity (e.g. gene expression). Instead of 𝑥1

𝑔, … , 𝑥𝑝
𝑔  let us further 

differentiate the predictor variables into the artefactual variables 𝑥�1
𝑔, … , 𝑥�𝑙

𝑔 and the explanatory 
variables 𝑥𝑙+1

𝑔 , … , 𝑥𝑝
𝑔 so that the GAM corrected sensitivity can be written as 

𝑆𝑔𝐺𝐺𝐺 = 𝑆𝑔 −  �𝑠𝑖�𝑥�𝑖
𝑔�

𝑙

𝑖=1

 

In this presentation a single artefactual predictor 𝑥�1 is used which represents the copy number value 
at the position of guide 𝑔. The GAM corrected sensitivity score 𝑆𝑔𝐺𝐺𝐺 can then be used in lieu of the 
original sensitivity score with the same hit-defining thresholds and interpretation. 

The correction of the copy number artefact in sf268 and mkn45 using GAM is shown in Supp. Fig. 2. 

Additionally the corrections based on LDO and GAM in the genomic regions with measured copy 
number values are consistent as shown in Supp. Fig. 3. 

Discussion 

The use of high-throughput CRISPR screens to identify cell autonomous cancer dependencies has 
become routine. However, as shown in previous studies, these screens display high rates of false 
positive hits in regions of high copy number amplifications.  In this report, we describe two methods, 
Local Drop Out (LDO) and General Additive Model (GAM), to correct for this copy number bias, 
thereby enabling the identification of true positive hits while reducing false positives substantially.  
In both cases the methods were developed with experimental setups in mind utilizing only a few 
number of cell lines, including single model experiments. Thus making these methods appropriate 
for a broad range of experiments. As a result the CN artefact corrections proposed are performed at 
the level of single samples. We applied both methods to previously published screening data of 2722 
genes performed in the sf268 and mkn45 cell lines. The utility of the methods were shown by way of 
two examples: first, the YAP1 dependency in sf268 was recovered, while removing 8 false positive 
genes from the hit list (ANGPTL5, KIAA1377, C11orf70, BIRC3, BIRC2, TMEM123, MMP7, and 
MMP20); second, the MET dependency in mkn45 was recovered in one of the two screens, while 
removing 3 false positive hits (CAV1, ST7, and ING3). Overall, the number of guides with log2(CNA) 
larger than 2 and LogFC below -0.5 is decreased from 98 to 29 guides in mkn45 and 267 to 41 guides 
in sf268 when using LDO; with GAM the number of guides are reduced to 28 and 37 guides for 
mkn45 and sf268 respectively. 
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These methods, however, do have limitations. We observed that rescuing true positives within 
amplicons is only possible if the driver mutation in the amplicon of interest is indeed displaying a 
stronger relative drop out than the neighbouring genes. Depending on the guides used, this is not 
always the case as demonstrated with MET in mkn45 in our first screen. Despite this caveat both 
methods are still able to remove false-positives, although the true positive is not rescued. We would 
argue that in a typical screening effort, the loss of a few true positives is less damaging than the 
large amount of false positives proposed by the first alternative of using the uncorrected scores. 
Indeed, a lot of effort and resources can be spent chasing an elusive false positive. The second 
obvious alternative is to remove any amplified region from the subsequent analysis, which means a 
large amount of false negative hits, since those would not even be considered for further analysis, 
but also relies on prior available copy number measurements which is not always the case. 

Another limitation is that these methods are highly dependent on guide scores obtained in the 
screen which can be variable.  In our mkn45: MET example, it is unclear what the reason for the 
difference in drop out of the driver is. Guide design could be an explanation, however if CRISPR 
genome editing does indeed generate two cellular responses in cancer cells as suggested in (6): an 
early anti-proliferative DNA damage response and a later gene dependant effect, the number of 
doublings before harvesting could also be an explanation. Whereby cell lines with long doubling 
times would only undergo enough doublings to sustain the DNA damage response but not enough to 
signal a differential effect from the driver genes. This hypothesis however does not seem to fit with 
the doubling times of 29h and 44h for mkn45 and sf268 respectively as reported in the Cancer Cell 
Line Encyclopedia (CCLE) (17). 

Outside of these limitations, each of the two methods presented offer different advantages to the 
correction for the copy number induced false positives in loss-of-function CRISPR screens. The LDO 
method can correct for the copy number artefact even when copy number is not known beforehand 
as long as the density of the CRISPR screen is high enough to capture the copy number events with 
confidence. On the other hand, the GAM correction method requires copy number measurements, 
but it is not dependent on high density screens and can additionally incorporate an arbitrary number 
of predictor variables in its model. The fact that LDO does not need any copy number information 
also enables the user to estimate the underlying copy number of its sample by exploring the 
magnitude of the correction that was applied to the different genomic regions (Supp. Fig. 3). 

 

 

Material and Methods 

Essential Genes 

To collect an initial list of essential genes the results from (18) was used. In particular the essentiality 
of each gene was established in (18) using a genome-wide single guide CRISPR screen in 4 cancer cell 
lines. The strength of the essentiality is reported as an adjusted p-value in the accompanying data. 
Here, the genes with a maximum adjusted p-value of 0.05 across all 4 cell lines are used as de facto 
essential genes if and only if the accompanying CRISPR score is also smaller than -1. This results in a 
list of 814 potential essential genes (Supp. Table 1). 
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LDO 

The choice of the exponential decay function in the weighted mean calculation is arbitrary (and any 
weighing function can easily be used instead in the provided scripts). Any monotonously decreasing 
function could be used, or, for example, a simple sliding window. The size of the window, or the 
value picked for 𝜔 in the exponential decay case, should be chosen so as to borrow the information 
from as many genes as possible while still remaining within the bounds of the expected copy number 
event sizes that are expected to be observed. The exponential decay function has the advantage of 
putting more weight to the genes in the direct neighbourhood of the gene of interest and thus even 
if the size of the window considered is relatively large the estimate remains relatively robust. 

Similarly the values for 𝛼1, 𝛽1, the minimum number of three genes per short CN event and the 
choice of only considering events with correction values larger than the 1.5 times the median 
average deviation of the background noise were chosen arbitrarily based on a priori expectation of 
the effects we wish to correct for. 
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Figure Legends 

Figure 1. CN effect on CRISPR knock-out sensitivity The sensitivity to CRISPR-mediated knock-out is 
dependent on the level of amplification of the underlying genomic region. Above for mkn45, 84 out 
of 191 guides in amplified regions (CN of at least 4 (log2(CN)=2)) score below -0.5, while 274 out of 
397 guides score below -0.5 in sf268. 

Figure 2. YAP1 Specific LDO correction Sensitivity, calculated as LogFC, conferred by each guide 
(black dots) within the YAP1 amplicon in the sf268 cell line summarized by a boxplot for each gene in 
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the amplicon. To ease the interpretation, the red line displays the inverted copy number value 
scaled to the data. The left panel displays the uncorrected sensitivity scores, while the right panel 
shows the sensitivity scores after LDO correction. 

Figure 3. Global LDO Correction The sensitivity to CRISPR-mediated knock-out after LDO correction 
is not dependent on the level of DNA amplification of the underlying genomic region anymore. 

Figure 4. MET Specific LDO correction in mkn45 Sensitivity conferred by each guide (black dots) 
within the MET amplicon in mkn45 summarized by a boxplot for each gene in the amplicon. The red 
line displays the inverted copy number value scaled to the data. 

Figure 5. MET Specific LDO correction in mkn45’s second screen Sensitivity conferred by each guide 
(black dots) within the MET amplicon in mkn45 summarized by a boxplot for each gene in the 
amplicon. The red line displays the inverted copy number value scaled to the data. 
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 Figure 1. CN effect on CRISPR knock-out sensitivity The sensitivity to CRISPR-mediated knock-out is 
dependent on the level of amplification of the underlying genomic region. Above for mkn45, 84 out 
of 191 guides in amplified regions (CN of at least 4 (log2(CN)=2)) score below -0.5, while 274 out of 
397 guides score below -0.5 in sf268. 
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 Figure 2. YAP1 Specific LDO correction Sensitivity, calculated as LogFC, conferred by each guide 
(black dots) within the YAP1 amplicon in the sf268 cell line summarized by a boxplot for each gene in 
the amplicon. To ease the interpretation, the red line displays the inverted copy number value 
scaled to the data. The left panel displays the uncorrected sensitivity scores, while the right panel 
shows the sensitivity scores after LDO correction. 
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 Figure 3. Global LDO Correction The sensitivity to CRISPR-mediated knock-out after LDO correction 
is not dependent on the level of DNA amplification of the underlying genomic region anymore. 
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 Figure 4. MET Specific LDO correction in mkn45 Sensitivity conferred by each guide (black dots) 
within the MET amplicon in mkn45 summarized by a boxplot for each gene in the amplicon. The red 
line displays the inverted copy number value scaled to the data. 
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Figure 5. MET Specific LDO correction in mkn45’s second screen Sensitivity conferred by each guide 
(black dots) within the MET amplicon in mkn45 summarized by a boxplot for each gene in the 
amplicon. The red line displays the inverted copy number value scaled to the data. 
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