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Abstract

 The spatial Principal Component Analysis (sPCA, Jombart 2008) is designed to 

investigate non-random spatial distributions of genetic variation. Unfortunately, the 

associated tests used for assessing the existence of spatial patterns (global and 

local test; Jombart et al. 2008) lack statistical power and may fail to reveal existing 

spatial patterns.

 Here, we present a non-parametric test for the significance of specific patterns 

recovered by sPCA. 

 We compared the performance of this new test to the original global and local tests

using datasets simulated under classical population genetic models. Results show 

that our test outperforms the original global and local tests, exhibiting improved 

statistical power while retaining similar, and reliable type I errors. Moreover, by 

allowing to test various sets of axes, it can be used to guide the selection of 

retained sPCA components. As such, it represents a valuable complement to the 

original analysis, and should prove useful for the investigation of spatial genetic 

patterns.
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INTRODUCTION

The principal component analysis (PCA; Pearson 1901; Hotelling 1933) is one of the most 

common multivariate approaches in population genetic (Jombart et al 2009). Although 

PCA is not explicitly accounting for spatial information, it has often been used for 

investigating spatial genetic patterns (Novembre and Stephens 2008). As a complement to

PCA, the spatial principal component analysis (sPCA; Jombart et al. 2008) has been 

introduced to explicitly include spatial information in the analysis of genetic variation, and 

gain more power for investigating spatial genetic structures.

sPCA finds synthetic variables, the principal components (PCs), which maximise both the 

genetic variance and the spatial autocorrelation as measured by Moran's I (Moran 1950). 

As such, PCs can reveal two types of patterns: 'global' structures, which correspond to 

positive autocorrelation typically observed in the presence of patches or clines, and 'local' 

structures, which correspond to negative autocorrelation, whereby neighboring individuals 

are more genetically distinct that expected at random (Jombart et al.. 2008). The global 

and local tests have been developed for detecting the presence of global and local 

patterns, respectively (Jombart et al. 2008). Unfortunately, while these tests have robust 

type I error, they also typically lack power, and can therefore fail to identify existing spatial 

genetic patterns (Jombart et al.. 2008). Moreover, they can only be used to diagnose the 

presence or absence of spatial patterns, and are unable to test the significance of specific 

structures revealed by sPCA axes.

In this paper, we introduce an alternative statistical test which addresses these issues. 

This approach relies on computing the cumulative sum of a defined set of sPCA 

eigenvalues as a test statistic, and uses a Monte-Carlo procedure to generate null 
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distributions of the test statistics and approximate p-values. After describing our approach, 

we compare its performances to the global and local tests using simulating datasets, 

investigating several standard spatial population genetics  models. Our approach is 

implemented as the function spca_randtest in the package adegenet (Jombart 2008; 

Jombart and Ahmed 2011) for the R software (R Core Team 2017).
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METHODS

Test statistic

As in most multivariate analyses of genetic markers, our approach analyses a table of 

centred allele counts or frequencies, in which rows represent individuals or populations, 

and columns correspond to alleles of various loci (Jombart et al 2008; Jombart et al 2009; 

Jombart et al 2010). We note X the resulting matrix, and n the number of individuals 

analysed. In addition, the sPCA introduces spatial data in the form of a n by n matrix of 

spatial weights L, in which the ith row contains weights reflecting the spatial proximity of all 

individuals to individual i.  The PCs of sPCA are then found by the eigen-analysis of the 

symmetric matrix (Jombart et al. 2008):

1/(2n) XT(LT + L)X  (1)

We note λ the corresponding non-zero eigenvalues. We differentiate the r positive 

eigenvalues λ+, corresponding to global structures, and the 's' negative eigenvalues λ-, 

corresponding to local structures, so that λ = {λ+,λ-}. Without loss of generality, we 

assume both sets of eigenvalues are ordered by decreasing absolute value, so that λ1
+ > 

λ2
+ > … > λr

+ and |λ1
-| > |λ2

-| > … > |λs
-|. 

Simply put, each eigenvalue quantifies the magnitude of the spatial genetic patterns in the 

corresponding PC: larger absolute values indicate stronger global (respectively local) 

structures. We note V+ = {v1
+, …, vr

+} and V- = {v1
-, …, vs

-} the sets of corresponding 

PCs.The most natural choice of test statistic to assess whether a given PC contains 

significant structure would seem to be the corresponding eigenvalue. This would, however,

not account the dependence on previous PCs: vj
+ (respectively vj

-) can only be significant if

all previous PCs {v1
+, …, vj-1

+} are also significant. To account for this, we define the test 

statistic for vj
+ as:

fi
+ = Σi = 1, …, j  λi

+ 
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and as:

 fi
- = Σi = 1, …, j  |λi

-|

for vj
-.

Permutation procedure

fi
+ and fi

- become larger in the presence of strong global or local structures in the first ith 

global / local PCs. Therefore, they can be used as test statistics against the null 

hypotheses of absence of global or local structures in these PCs. The expected 

distribution of fi
+ and fi

- in the absence of spatial structure is not known analytically. 

Fortunately, it can be approximated using a Monte-Carlo procedure, in which individual 

genetic profiles are permuted randomly along the connection network, computing fi
+ and fi

- 

for each permutation. Note that the original values of the test statistic are also included in 

these distributions, as the initial spatial configuration is by definition a possible random 

outcome. The p-values are then computed as the relative frequencies of permuted 

statistics equal to or greater than the initial value of fi
+ or fi

-.

To guide the selection of global and local PCs to retain, this testing procedure can be used

with increasing numbers of retained axes. Because each test is conditional on the previous

tests, incremental Bonferroni correction is used to avoid the inflation of type I error, so that 

the significance level for the ith PC will be α / i, where α is the target type I error. The entire 

testing procedure is implemented in the function spca_randtest in the package 

adegenet (Jombart 2008; Jombart and Ahmed 2011) for R (R Core Team 2016).
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Simulation study

To assess the performance of our test, we simulated genetic data under three migration 

models: island (IS) and stepping stone (SS), using the software GenomePop 2.7 (Carvajal-

Rodríguez 2008), and isolation by distance (IBD), using IBDSimV2.0 (Leblois 2009). We 

simulated the IS and SS models with 4 populations, each with 25 individuals, and a single 

population under IBD with 100 individuals. 200 unlinked SNPs diploid loci were simulated. 

Populations evolved under constant effective population size θ = 20, and interchanged 

migrants at three different symmetric and homogeneous rates (0.005, 0.01, and 0.1). We 

performed 100 independent runs for each of the three migration rates, for a total of 300 

simulated dataset per migration model.

To quantify rates of errors type I for the spca_randtest, global and local tests, we extracted 

100 random coordinates from 10 square 2D grids, using the function spsample from the 

spdep package (Bivand et al. 2013). In order to evaluate the rate of false negatives for 

global patterns, we manually generated 10 sets of 100 pairs of coordinates simulating 

gradients and/or patches from 2D grids. To test for the rate of false negatives for local 

patterns, we perform a principal component analysis on 10 random datasets simulated 

under the SS model with 0.005 migration rate. We used the coordinates of the individuals 

on the first principal component and set the second coordinate to zero for all individuals 

(1D). With the coordinates so produced, we used the function chooseCN in adegenet to 

obtain 10 neighbouring graphs where the most genetically distinct individuals (falling in the

upper quartile of the pairwise genetic distances) are considered as neighbors, while the 

others are non-neighbors.

We tested 100 simulations each for all the 30 sets of geographic coordinates (random, 

positive and negative), for each of the three migration rates (0.005, 0.01 and 0.1), for each 
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of the three migration models (IS, SS, IBD; total of 9,000 tests per migration model). We 

repeated all tests using a subset of 40 SNPs per individual, for a total of 18,000 tests in the

absence of spatial structures, and  and 36,000 tests in the presence of global or local 

structures.
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RESULTS

Statistical power of the spca_randtest

We compared the performances of the spca_randtest with the global and local tests in 

three settings: in the absence of spatial structure, and in the presence of global, and local 

structures. The results obtained in the absence of spatial structure show that all tests have

reliable type I errors (Table 1 and 2). The spca_randtest exhibited consistently better 

performances for detecting  existing structures in the data than both global and local tests  

(Table 1 and 2, Figure 1). Although our simulated local spatial patterns turned out more 

difficult to detect than global patterns, the spca_randtest is twice to five times more 

effective than the local test (Table 1 and 2). Generally, the underlying migration model, the 

migration rate and the number of loci affect the ability of all tests to detect non-random 

spatial patterns. Both spca_randtest and global and local tests have in fact a lower 

sensitivity in presence of island migratory schemes, while results for stepping stone and 

isolation by distance models are more satisfying (Table 1 and 2). Increasing migration 

rates lead to a higher rates of false negatives for all tests, which can be overcome using 

more loci (Table 1 and 2).

Significant eigenvalues are assessed using a hierarchical Bonferroni correction which 

accounts for non-independence of eigenvalues and multiple testing (Figure 2). Strong 

patterns (e.g. IBD) tend to produce a higher number of significant components than weak 

patterns (e.g. island models with high migration rates), which are otherwise captured by 

fewer to no components.
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CONCLUSIONS

We introduced a new statistical test associated to the sPCA to evaluate the statistical 

significance of global and local spatial patterns. Using simulated data, we show that this 

new approach outperforms previously implemented tests, having greater statistical power 

(lower type II errors) whilst retaining consistent type I errors. Our simulations also suggest 

that   demographic settings and migratory models can substantially impact the ability to 

detect spatial patterns. The impact of specific factors such as the effective population size 

or the number of individuals sampled per population remain to be investigated.
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Legends

Figure 1. Graphical representation of the results reported in Tables 1 and 2. Only test with 

threshold 0.05 are plotted. 

Figure 2. Distributions of significant eigenvalues detected in the presence of global (blue 

bars) and local (green bars) spatial patterns after hierarchical Bonferroni correction, for 

100 significantly positive and 100 significantly negative patterns. Black bars correspond to 

eigenvalues which are significant  without Bonferroni correction. Bars' height indicates the 

frequency of observing a significant eigenvalue in a certain position (from most positive to 

most negative) over the 100 tested patterns.
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Table 1. Significant results for global test (g test), local tests (ll test), and spca_randtest (r test +/-) for random, global and local patterns 

using 200 loci per individual. IS, SS, IBD indicate the migration models (see Methods); different migration rates are coded by number: 1 =

0.005, 2 = 0.01 and 3 = 0.1. Results show the proportion of significant tests over 1,000 replicates, based on 1,000 permutations with 

thresholds .05 and .01.

200 SNPs Random Patterns Global Patterns Local Patterns

Models p-value* g test r test (+) l test r test (-) g test r test (+) l test rt est (-) g test r test (+) l test r test (-)

IS-1 .05 0.054 0.059 0.041 0.047 0.947 0.985 0.029 0.001 0.047 0.071 0.061 0.284

.01 0.011 0.007 0.009 0.010 0.822 0.948 0.005 0.001 0.008 0.010 0.015 0.113

IS-2 .05 0.040 0.041 0.058 0.056 0.227 0.564 0.044 0.018 0.056 0.059 0.050 0.123

.01 0.007 0.009 0.009 0.013 0.067 0.302 0.005 0.002 0.011 0.007 0.012 0.026

IS-3 .05 0.051 0.040 0.053 0.041 0.055 0.049 0.045 0.047 0.049 0.047 0.044 0.059

.01 0.010 0.014 0.013 0.008 0.010 0.013 0.007 0.013 0.002 0.014 0.008 0.019

SS-1 .05 0.053 0.058 0.053 0.050 0.986 0.996 0.022 0.000 0.063 0.064 0.124 0.582

.01 0.007 0.011 0.010 0.010 0.960 0.988 0.002 0.000 0.017 0.010 0.041 0.398

SS-2 .05 0.044 0.058 0.058 0.063 0.798 0.909 0.047 0.004 0.034 0.044 0.059 0.316

.01 0.011 0.011 0.013 0.016 0.676 0.771 0.010 0.000 0.004 0.005 0.014 0.147

SS-3 .05 0.047 0.046 0.057 0.049 0.054 0.128 0.040 0.042 0.044 0.054 0.049 0.071

.01 0.014 0.007 0.011 0.013 0.014 0.036 0.006 0.010 0.003 0.009 0.006 0.009

IBD-1 .05 0.044 0.050 0.053 0.048 0.962 0.999 0.021 0.000 0.025 0.087 0.438 0.809

.01 0.008 0.012 0.009 0.010 0.926 0.997 0.003 0.000 0.009 0.023 0.192 0.694

IBD-2 .05 0.052 0.045 0.061 0.038 0.967 0.998 0.023 0.000 0.046 0.076 0.451 0.794

.01 0.009 0.008 0.011 0.009 0.932 0.997 0.004 0.000 0.009 0.018 0.208 0.672

IBD-3 .05 0.052 0.046 0.053 0.050 0.977 0.999 0.015 0.000 0.050 0.083 0.441 0.824

214

215

216

217
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.01 0.013 0.009 0.011 0.012 0.939 0.999 0.005 0.000 0.009 0.023 0.225 0.684

*p-values are in italic when non significant and in bold when the fraction of true positive is above 20% 218
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Table 2. Results for the same simulations reported in Table 1 using a subset of 40 loci per individual. 

40 SNPs Random Patterns Global Patterns Local Patterns

Models p-value* g test r test (+) l test r test (-) g test r test (+) l test r test (-) g test r test (+) l test r test (-)

IS-1 .05 0.052 0.061 0.046 0.050 0.591 0.807 0.033 0.004 0.036 0.000 0.055 0.077

.01 0.016 0.013 0.010 0.007 0.393 0.592 0.005 0.000 0.004 0.000 0.015 0.022

IS-2 .05 0.053 0.047 0.038 0.042 0.103 0.226 0.046 0.020 0.073 0.000 0.057 0.038

.01 0.011 0.009 0.006 0.006 0.022 0.072 0.011 0.005 0.012 0.000 0.010 0.006

IS-3 .05 0.047 0.050 0.050 0.045 0.048 0.060 0.044 0.042 0.036 0.000 0.053 0.026

.01 0.009 0.011 0.008 0.007 0.009 0.011 0.011 0.011 0.002 0.000 0.013 0.001

SS-1 .05 0.052 0.054 0.039 0.049 0.898 0.949 0.017 0.000 0.050 0.001 0.067 0.169

.01 0.009 0.012 0.005 0.011 0.826 0.865 0.006 0.000 0.007 0.000 0.021 0.052

SS-2 .05 0.046 0.045 0.050 0.046 0.528 0.588 0.044 0.009 0.052 0.000 0.048 0.081

.01 0.013 0.010 0.010 0.015 0.377 0.370 0.016 0.000 0.005 0.000 0.011 0.014

SS-3 .05 0.068 0.040 0.050 0.048 0.066 0.055 0.053 0.033 0.026 0.000 0.047 0.023

.01 0.014 0.005 0.013 0.012 0.012 0.009 0.005 0.006 0.006 0.000 0.008 0.000

IBD-1 .05 0.049 0.053 0.052 0.057 0.822 0.883 0.027 0.002 0.034 0.055 0.124 0.480

.01 0.005 0.008 0.013 0.013 0.755 0.742 0.004 0.000 0.005 0.008 0.032 0.278

IBD-2 .05 0.043 0.054 0.060 0.049 0.835 0.880 0.028 0.001 0.043 0.051 0.111 0.458

.01 0.011 0.007 0.015 0.009 0.755 0.732 0.005 0.000 0.008 0.015 0.026 0.259

IBD-3 .05 0.043 0.042 0.051 0.050 0.844 0.899 0.026 0.002 0.048 0.058 0.115 0.465

.01 0.012 0.013 0.012 0.010 0.763 0.756 0.007 0.000 0.009 0.010 0.023 0.263

*p-values are in italic when non significant and in bold when the fraction of true positive is above 20% 
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Figure 1221
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