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Abstract 
Placental health is a key component to healthy pregnancy. Placental insufficiency (PI), 

inadequate nutrient delivery to the fetus, is associated with preeclampsia (PE), a maternal 

hypertensive disorder, and intrauterine growth restriction (IUGR), pathologically poor fetal 

growth. PI is more common in early-onset PE (EOPE) than late-onset PE (LOPE). However, the 

relationship between these disorders remains unclear. While DNA methylation (DNAm) 

alterations have been identified in PE and IUGR, these entities can overlap and few studies have 

analyzed these separately. This study aims to identify altered DNAm in EOPE, LOPE, and 

normotensive IUGR, validate these alterations, and use them to better understand the 

relationships between these related disorders.  

 
Placental samples from a discovery cohort (43 controls, 22 EOPE, 18 LOPE, 11 IUGR) and 

validation cohort (15 controls, 22 EOPE, 11 LOPE) were evaluated using the Illumina 

HumanMethylation450 array. To minimize gestational age (GA) effects, EOPE samples were 

compared to pre-term controls (GA <37 weeks), while LOPE and IUGR were compared to term 

controls (GA >37 weeks). There were 1703 differentially methylated (DM) sites (FDR<0.05, 

∆β>0.1) in EOPE, 5 in LOPE, and 0 in IUGR. Of the 1703 EOPE sites, 599 were validated in the 

second cohort. These sites cluster samples from both cohorts into 3 distinct methylation clusters. 

Interestingly, LOPE samples diagnosed between 34-36 weeks with co-occurring IUGR clustered 

with the EOPE methylation cluster. DNAm profiling may provide an independent tool to refine 

clinical diagnoses into subgroups with more uniform pathology. The challenges in reproducing 

genome-wide DNAm studies are also discussed. 

Introduction 
Preeclampsia (PE) (OMIM 189800), a multi-system maternal hypertensive disorder of 
pregnancy, is the leading cause of maternal and perinatal morbidity and mortality worldwide, 
occurring in 2-8% of pregnancies (1). Intrauterine growth restriction (IUGR), defined as poor 
fetal growth due to an underlying pathology, often co-occurs with PE, but may also occur in 
normotensive pregnancies. Infants from pregnancies complicated by PE and/or IUGR are at risk 
for immediate and long-term adverse health outcomes (2,3). To date, there is no consistent test 
utilized to predict PE or IUGR prior to the onset of clinical symptoms. Protein biomarkers such 
as pregnancy-associated plasma protein A (PAPPA) and placental growth factor (PlGF) have 
been used to predict PE and/or IUGR (4); however, these methods may not be generalizable to 
other populations, as studies consist predominantly of high risk and Caucasian populations (5). 
Another limitation of current screening approaches is our poor understanding of the distinct 
pathological mechanisms and corresponding placental changes that may underlie these 
conditions. 
 
Both PE and IUGR are heterogeneous in etiology, with many different factors contributing to 
these phenotypes (6,7,8). Risk factors for PE include genetic abnormalities, such as triploidy, 
some trisomies, and point mutations, as well as maternal health factors, such as obesity, pre-
existing hypertension, and diabetes (9,10,11,12). Normotensive IUGR (nIUGR) can arise due to 
confined placental mosaicism, placental dysfunction, chronic inflammation of the placenta, 
poor maternal nutrition, smoking, stress, and other causes (12,13,14). Due to the heterogeneity 
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in etiology of PE and IUGR, the ability to sub-classify placentas into more homogeneous groups 
can aid in our understanding of disease pathogenesis and prediction. For example, by defining 
‘placental IUGR’ on the basis of a detailed scoring system for placental pathology, Benton et al. 
showed this subset was associated with very low maternal serum PlGF and also had the most 
severe perinatal and postnatal risks (15). In some cases, PE and nIUGR may represent two 
facets of a common underlying etiology, while in others the associated placental pathology and 
molecular changes may be distinct. Enforcing stringent criteria for defining and grouping 
samples may increase the reproducibility for reported molecular changes. For this study, we 
subdivide our samples into early-onset PE (EOPE), late-onset PE (LOPE), and nIUGR based on 
clinical obstetric criteria.  
 
Molecular profiling has the potential to refine these clinically-defined group definitions further 
and aid in understanding the etiology of EOPE, LOPE, and nIUGR and their relationship to one 
another. Placental transcriptome profiling from pregnancies associated with PE and healthy 
controls provide evidence for multiple subtypes of PE (16). DNA methylation (DNAm) profiling is 
an alternative or complementary approach to gene expression profiling to identify subgroups of 
placental phenotypes. DNAm is more stable than mRNA and hence is less subject to changes 
with sample processing time (17); it may also retain a “memory” of earlier in utero exposures 
and hence be linked to early effects in the disease process.   
 
We previously showed widespread DNAm alterations in EOPE (18) using the Illumina Infinium 
HumanMethylation450 Array (450K), measuring >480,000 CpG sites across the genome (19). 
We also demonstrated that placentas associated with confined placental trisomy 16, a 
condition that can be associated with PE, showed some overlapping changes with 
chromosomally normal EOPE, as well as a unique set of changes specific to the presence of the 
trisomy (20). Other groups have similarly found altered DNAm in PE and IUGR, though the 
differentially methylated sites or “hits” are not entirely consistent between studies 
(21,22,23,24,25,26,27). This inconsistency may be due to i) how sample groups are defined, ii) 
placental sampling differences, or iii) how groups define validated hits between the studies.  
 
The aims of the present study were to build on our understanding of DNAm changes in 
placental insufficiency and to i) reanalyze our previous EOPE data with newer approaches; ii) 
extend our analysis to LOPE and nIUGR to investigate the potential DNAm relationships 
between the three pathologies using hierarchical clustering and, iii) validate differentially 
methylated sites in an independent cohort. We will also discuss challenges to validation and 
future directions for epigenetics in the placental biology field. 
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Results 
 

Widespread DNAm changes are associated with EOPE but not LOPE and nIUGR in our 
Discovery cohort 
Our first goal was to confirm our previous report of widespread changes in EOPE (18) and then 
to test for similar changes in LOPE and nIUGR using the same approach. We chose less stringent 
cutoffs for significance in this analysis (FDR<0.05 & Δβ>0.1) as compared to Blair et al. (2013) 
(FDR<0.01 & Δβ>0.125) (18) as our aim was to identify a larger number of differentially 
methylated sites that could be used for further validation. Based on these criteria, a total of 
1703 sites were differentially methylated between EOPE and pre-term controls (Figure 1). As 
expected, the majority (261/286) of EOPE hits reported in Blair et al. were also identified as hits 
in this analysis. Differences between the two analyses are likely explained by the use of 
different normalization methods, correction for fetal sex in the present study, and the inclusion 
of a few additional samples in this study compared to the previous one.  
 
We used the same approach to identify differential methylation associated with LOPE or nIUGR 
as compared to the healthy term control group. In contrast to the EOPE comparison, only 5 
sites were differentially methylated between LOPE and term controls, and no sites were 
differentially methylated between nIUGR and term controls (Figure 1). The 5 differentially 
methylated sites between LOPE and term controls were not unique to LOPE, as they were also 
included amongst the 1703 sites identified as differentially methylated in EOPE. The weaker 
signal may be explained if only a few of the LOPE cases have an underlying pathology similar to 
that in the EOPE cases, driving these changes.  
 

Validation of the EOPE hits in an independent cohort  
We next investigated if the EOPE hits from our discovery cohort could be validated in an 
independent cohort.  We first tested whether the ∆β values in the discovery and validation 
cohorts were correlated using all sites that met an FDR<0.05 in the discovery cohort, without 
imposing an additional ∆β threshold. At these sites, the correlation was significant (R=0.62, 
p<2.2e-16, Figure 2a). This indicates that largely similar changes in DNAm are being observed in 
the EOPE placentas in both cohorts. Amongst the most highly significant hypermethylated sites 
(∆β >0.15) in both cohorts were CpGs associated with KRT15, FN1, TEAD3, JUNB, ST3GAL1, 
PKM2, NDRG1, PAPPA2, CHI3L2, and INHBA. Many of these genes have previously been shown 
to have altered gene expression in preeclampsia and JUNB has been specifically implicated as a 
key player in the response to hypoxia in trophoblast cells (28). Amongst the most highly 
hypomethylated sites (∆β <-0.10) in both cohorts were several sites associated with FAM3B, 
SYNE1, and AGAP1. However, it should be noted that there were also many sites with a high Δβ 
in the discovery cohort that had a much smaller or sometimes opposite direction Δβ in the 
validation cohort.  
 
To narrow down the original 1703 EOPE hits from the discovery cohort to a high-confidence hit 
list, we first asked, how many of these hits met similarly stringent criteria (FDR<0.05 and 
∆β>0.1) in the validation cohort? We found that only 38 probes (2.2%) met these strict criteria.  
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Using such arbitrary cutoffs in both populations and a strict definition for a “hit” may not be a 
powerful approach to assess the degree of overlap in the data. Furthermore, requiring assay-
wide correction for multiple testing in the validation cohort is overly conservative and reduces 
power. Running the linear regression on only the 1703 sites differentially methylated in the 
discovery cohort reduces the number of multiple test corrections needed in the validation 
cohort. Based on the distribution of nominal p-values among the 1703 EOPE associated sites in 
the validation cohort, shown in Figure 2b, there are many more sites that meet a nominal p-
value<0.05 than expected, even if these do not meet a multiple test correction. Hence, we 
opted to use a nominal p-value<0.05 and a change in DNAm in the same direction as the 
discovery cohort to define validated (i.e. high confidence) hits. Based on these criteria, 599 of 
the 1703 (35.1%) EOPE hits were considered to be validated (Figure 2b). This is higher than 
what we would expect by chance (p=0.0001). This reproducibility rate was similar to the rate 
reported by Yeung et al. (2016), who validated their own differentially methylated regions with 
our published cohort (Blair et al. (2013))(29). As PE and IUGR are heterogeneous conditions, it is 
possible that the reproducibility rate may be affected by the samples chosen for each cohort. 
We were interested in whether the samples in the cohorts were similarly correlated (i.e. is one 
cohort more heterogeneous than the other).  We investigated these correlations in the control 
samples (Term and Pre-term) (Supplementary Figure 2) and the EOPE samples (Supplementary 
Figure 3). In both pathologies, samples in the discovery cohort were more heterogeneous than 
the samples in the validation cohort.  
 
These validated sites were not enriched for any gene ontology terms using ermineJ, with a 450K 
array specific background (30). A list of these sites and relevant gene information can be found 
in Supplementary Table 1. These sites include ones associated with genes known to be relevant 
to EOPE from gene expression studies including CGA, INHBA, PAPPA2, and ADAM12. 
 

Effects of varying the validation criteria 
 
To evaluate the effect of varying FDR and Δβ cutoffs to establish the most ‘reproducible’ 
results, we plotted the percentage of probes that showed Δβ concordance in directionality 
between the validation cohort and the discovery cohort using different FDRs and Δβ thresholds 
in the discovery set (Supplementary Figure 1a). Different FDR thresholds did not influence 
DNAm concordance rate when the ∆β thresholds were above 0.2. FDR thresholds appear to be 
more important when trying to identify small changes in DNAm.  We also investigated the 
number of hits that each threshold would obtain. Supplementary Figure 1b plots the number of 
hits at each FDR and Δβ cutoff. Allowing smaller changes in DNAm produces many more hits, 
but with a lower reproducibility rate. This is likely because this is in the range of normal 
variability for a site. This highlights the importance of considering both the biological and 
statistical thresholds depending on the magnitude of the anticipated DNAm change and the 
overall research objective.  
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Hierarchical Clustering  
Next, we evaluated the degree to which the 599 validated sites can discriminate EOPE from all 
other placentas in both cohorts, using hierarchical clustering (Figure 4). Although we expected 
an EOPE methylation cluster to be defined, since we are clustering based on our EOPE hits, this 
approach can tell us about the relationships between individual samples and, furthermore, 
allow comparisons to term controls, and LOPE and nIUGR cases which were not involved in the 
selection of these EOPE hits. Interestingly, both cohorts clustered into 3 stable methylation 
clusters, rather than just two as we had expected (Figure 3). When the cohorts were clustered 
on the 599 validated hits separately, methylation cluster 1 included almost all EOPE suggesting 
a consistent phenotype in this group. In the discovery cohort cluster, 6 LOPE samples clustered 
with the EOPE samples. In the validation cohort, 7 LOPE samples and 1 pre-term control 
clustered with the EOPE samples. Additionally, in both cohorts, methylation sub-clusters were 
identified within the larger EOPE group (methylation cluster 1), which were also stable and 
significantly different from one another, suggesting a possible further subdivision or distinct 
groups within methylation cluster 1. There was no obvious difference between these 
subclusters clinically (including sex, ethnicity, disease severity etc.); however, gestational age 
was decreased in the EOPE methylation subcluster 1 compared to subcluster 2 (p<0.01) in the 
validation cohort (Table 1).  
 
The remaining non-EOPE samples also clustered into two methylation clusters in both cohorts. 
We refer to these clusters as methylation clusters 2 and 3. Methylation cluster 3 in both cohorts 
was predominantly composed of controls. Within the discovery cohort, methylation cluster 2 
consisted of the majority of the nIUGR and LOPE cases, a few EOPE cases, and some pre-term 
and term controls; Decreased birthweight (p<0.01) and a trend towards increased IUGR 
diagnosis (p<0.1) was observed in methylation cluster 2 vs. 3.  In the validation cohort, 
methylation cluster 2 consisted of pre-term controls and LOPE samples and was associated with 
decreased gestational age (p<0.01) (Table 1).  
 

Cluster Gene ontology  
 
As it was unexpected that the control samples divided into two distinct methylation clusters, 
and the EOPE samples divided into two distinct subclusters, we were interested in investigating 
the differences between the two control methylation clusters (methylation clusters 2 and 3) 
and between the EOPE methylation subclusters (EOPE methylation subclusters 1 and 2). Linear 
regression was used on the 599 persistent hits, accounting for fetal sex, to identify DNAm 
differences between methylation cluster 3 and methylation cluster 2 and between EOPE 
methylation subcluster 1 and EOPE methylation subcluster 2. Using a nominal p-value<0.05, 
244 of those sites were differentially methylated between methylation cluster 3 and 
methylation cluster 2 in both cohorts. Information on these sites can be found in 
Supplementary Table 1. There was no enrichment in gene ontology terms in either ermineJ 
(with a 450K array specific background), or DAVID. Between EOPE methylation subcluster 1 and 
EOPE methylation subcluster 2, 207 sites were differentially methylated in both cohorts. 
Information on these sites can be found in Supplementary Table 2. There was no gene ontology 
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enrichment by ermineJ and symporter activity was the only gene ontology term in DAVID to 
meet multiple test corrections.  
 

Discussion 
 
We previously reported widespread changes in DNAm associated with EOPE (18). In the present 
study, we extend this analysis to LOPE and nIUGR; however, using the same approach, we were 
unable to identify DNAm changes that were unique to these groups. While these latter 
comparisons were limited by small sample size, we were able to obtain significant associations 
with EOPE with similarly small sample sizes. The reduced number of changes in the LOPE and 
nIUGR groups can occur for two main reasons: 1) there may be much more limited placental 
pathology with these diagnoses and the phenotype is largely driven by maternal factors, or 2) 
they may be more heterogeneous etiology thereby limiting power to detect changes in the 
group as a whole. If we want to improve biomarker discovery in these groups, we may need to 
identify more homogeneous subgroups using a combination of clinical parameters, pathology 
reports and/or biomarkers themselves, along with larger sample sizes.  
 
The LOPE samples in the discovery cohort that clustered with the EOPE samples all presented 
with PE between 34.0 weeks and 35.9 weeks gestation and had co-occurring IUGR. While it’s 
possible that PE symptoms were present but not diagnosed until after 34.0 weeks, there may 
also be inaccuracies in dating the pregnancy and/or there is simply a grey zone in the distinction 
between EOPE (placenta-driven) and LOPE (maternal-health driven). There were also four cases 
of EOPE within the discovery cohort that did not cluster with other EOPE cases. One was 
diagnosed with hemolysis elevated liver enzymes and low platelet (HELLP) syndrome and 
delivered at 33.3 weeks gestation, one also had chorioamnionitis (which may have contributed 
to early delivery); one had preexisting hypertension and was diagnosed early but did not deliver 
until 37 weeks and hence may have been milder in presentation; the fourth was delivered at 
33.3 weeks with no other placenta or maternal health notes. Of note, none of the EOPE cases 
that clustered outside of the EOPE cluster had co-occurring IUGR and were generally diagnosed 
at close to 34 weeks gestation. Thus, the presence of IUGR in cases diagnosed between 32 and 
36 weeks may be the more defining feature as to whether an altered placental DNAm profile is 
observed or not. Powers et al. (2012) showed that there are two types of PE pregnancies: those 
with and without altered angiogenic factors (32). As alterations in the angiogenic factors have 
also been observed in IUGR cases (33,34), Myatt and Roberts suggested that an imbalance in 
these factors may represent a measure of placenta growth, development, and function (35). As 
such, the EOPE cases clustering outside the EOPE methylation cluster may be more likely 
related to other contributing factors than placental dysfunction. 
 
While we expected to see an EOPE methylation cluster, as the validated hits were chosen based 
on differentially methylated sites between EOPE and pre-term controls, we were surprised that 
both the EOPE and control groups each formed two subclusters. The driving differences 
between these subclusters were not clear, though the tendency to lower gestational ages and 
fetal birth weights (SD) in cluster 2 could suggest features linked to preterm birth (Table 1). The 
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presence of two distinct subclusters within the EOPE methylation cluster could reflect PE 
severity, or perhaps unmeasured factors such as medical treatments given or duration of 
hypertension. Unfortunately, we had insufficient information on the treatment of each case to 
evaluate the influence of medical care on the placental methylation profile. 
 
While altered placental DNAm has been reported for pregnancies complicated by PE 
(21,22,23,25) and IUGR (24,26,27), only one study validated their findings, using the same 
technology, in an independent cohort (29). In this study, 35.1% (N=599) sites were found to be 
differentially methylated between EOPE and pre-term controls in both the discovery and 
validation cohorts using validation criteria of a nominal p<0.05 and change in DNAm in the 
same direction as the discovery cohort. The extent of validation, however, is dependent on the 
initial criteria chosen to define ‘hits’, the criteria for validation, the similarity of the populations 
of samples, the size of the study populations (power to detect changes), and the similarity in 
processing the samples. In our study, the validation cohort was from a roughly similar urban 
population (Vancouver vs. Toronto) from the same country (Canada). We also tried to minimize 
technical factors that may influence results by using similar placental sampling protocols, 
processing the arrays with a subset of the discovery and validation cohorts on the same 
microarray chips at the same time, with the same technicians, and using the same pre-
processing methods on the raw data. Even with these considerations, a significant number of 
our original hits were not validated. This may be because of chance variation in causes of PE 
and IUGR in the two cohorts due to limited sample size. Additionally, there are genetic, 
environmental, and maternal factors that pre-dispose a pregnancy to developing placental 
insufficiency, which may have varied between populations.  
 
Changes in DNAm could mean i) an average change in DNAm across our sample, or ii) a change 
in the cell type proportions within a sample, as DNAm varies widely across different cell types 
(40). In the context of EOPE, DNAm alteration may reflect a combination of altered gene 
expression pathways associated with PE (ex. related to known effects such as oxidative stress 
and altered angiogenesis (7,32)) or altered cell type proportions related to PE pathology (ex. 
decreased proliferation of extravillous trophoblast cells or alterations to the rate of trophoblast 
proliferation (41)).  As cell-type specific profiles have not been developed for all placental cell 
types, it is not possible to use the DNAm profile to estimate cell proportions, as it has been 
applied to blood (42). While reference-free methods for deconvolution of cell proportions have 
been developed (43), these methods remove variance within the data attributed to cell 
composition but cannot inform us of what cell types specifically are altered in EOPE.  
 

Summary 
Our data demonstrate some of the challenges in identifying changes specific to clinically 
defined etiologies. Heterogeneity and milder phenotypes in LOPE and nIUGR likely limit the 
power to detect differences using a differential methylation type approach and mask the subset 
of cases that do exhibit altered pathology (based on sample clustering using our EOPE defined 
hits). An alternative approach may be to reduce the dimensions in the data by 1) removing non-
variable probes across all cell types (36), 2) focusing on alterations in pathway modules, as in 
weighted gene co-expression network analysis (37), or 3) evaluating differentially methylated 
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regions (DMRs) rather than individual CpG sites to combat multiple test correction (38,39).In 
contrast, the more severe pathology underlying EOPE results in many readily detected DNAm 
changes.  However, even in the case of EOPE, where many large changes in DNAm are identified 
and can be validated based on a nominal p-value<0.05 in an independent cohort, those sites 
selected for having the highest magnitude of change rarely showed the same degree of 
difference in the second cohort. Techniques to reduce the dimensions in the data should be 
developed and utilized, focusing on altered pathways instead of specific changes, which may 
help in identifying subtypes of PE and IUGR to guide and change management in a useful way.  
 
In conclusion, whether in the context of PE, or other heterogeneous diseases, DNAm may be a 
useful tool to independently and qualitatively classify pathological groups prior to analysis.  This 
method may aid in creating more robust prediction algorithms for predicting pathology versus 
controls. Further studies with larger sample sizes and additional clinical variables are needed to 
confirm the presence of multiple subtypes of placental-mediated PE, and what is driving these 
different subtypes.  
 

Methods 
 

Sample Information 
Placental Sampling 
Chorionic villi samples were obtained from 2-3 sites in the placenta, each from distinct 
cotyledons, as previously described (18). Infarcts or necrotic regions of the placenta were 
avoided in sampling and DNA was extracted from each site, using a standard salting out method 
and pooled together in equal amounts to give a more accurate representation of the placenta’s 
molecular profile. The NanoDrop 1000 spectrophotometer (ThermoScientific, 
Wilington,DE,USA) was used to assess DNA purity and concentration.  
 
Discovery Cohort 
The discovery (Vancouver) cohort consisted of 22 EOPE, 18 LOPE, 11 nIUGR and 43 control 
placentas (Table 2). Ethics approval from both the University of British Columbia and BC 
Women’s and Children’s Hospital ethics committees in Vancouver, BC, Canada, was obtained 
(H04-704488). Placental samples were obtained with consent from patients from the Medical 
Genetics as well as the Obstetrics and Gynecology departments. Clinical information, including 
gestational age at delivery, fetal sex, fetal birth weight, and maternal age were collected. 
Criteria for exclusion were multi-fetal pregnancies and fetal and/or placental chromosomal 
abnormalities. A subset of 18 EOPE samples and 19 pre-term control samples in this study was 
previously used in Blair et al. (2013)(18).  
 
PE was defined according to the Society of Obstetricians and Gynecologists of Canada (SOGC) 
criteria as one of i) hypertension (BP>140/90mm Hg) and proteinuria (>300mg/day) arising 
after 20 weeks gestation (44); ii) HELLP syndrome without hypertension or proteinuria; or iii) 
eclamptic seizure without previous hypertension or proteinuria. Preeclampsia was separated 
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into early and late onset given the clinical evidence that these may be associated with distinct 
risk factors and outcomes (6).  Early-onset preeclampsia (EOPE) was defined as a diagnosis of PE 
prior to 34 weeks gestation, while LOPE was PE diagnosed after 34 weeks (6). nIUGR was 
defined as fetal birth weight <3rd percentile accounting for both fetal sex and gestational age at 
delivery or fetal birth weight <10th percentile accounting for both fetal sex and gestational age 
at delivery, with additional findings for poor fetal growth (44). As birthweight is strongly 
correlated with gestational age, we use the standard deviation of the birth weight corrected for 
fetal sex and gestational age (45). 
 
Technical batch effects, related to the plate, microarray chip, and sample position on the 
Illumina chip are potential confounding factors within our data. Our samples were run in 
various batches over a 4 year period, and pathology and gestational age were partially 
confounded with batch as EOPE and preterm controls were largely run earlier. In this situation, 
correction for batch effects can introduce spurious findings (31) (Supplementary Figure 4 and 
Figure 5). We, therefore, instead compared EOPE to pre-term birth controls and LOPE/nIUGR to 
term controls only, which were relatively matched for batch, and thus the confounding by GA 
and its interaction with batch was minimized. We acknowledge that some of the differentially 
methylated sites that we found may be due to technical artifacts, but focusing on those hits 
that are reproduced in the validation cohort largely eliminated these effects.  
 
As placental DNAm changes with gestational age, the comparison groups included placentas 
from healthy term births (>=37 weeks) and pre-term births (<37wks) with normally grown 
babies and no evidence of maternal hypertension. EOPE placentas were compared to 24 pre-
term controls (as in Blair et al. 2013). LOPE and nIUGR placentas were compared to a separate 
set of 19 term control placentas. This was to test for overlap between DNAm changes identified 
for LOPE and nIUGR with those for EOPE, we did not want the use of a control group driving any 
potential overlap. To reduce the chance of differences being driven by the preterm birth group, 
we used placentas from pre-term births from a variety of etiologies (ex. premature rupture of 
the membranes, incompetent cervix, chorioamnionitis), while any term control samples with 
evidence of pathology involving the chorionic villi were excluded.  
 
Validation Cohort 
The validation (Toronto) cohort consisted of 22 EOPE, 11 LOPE, and 15 control placentas (Table 
2). For the validation cohort, placental samples were purchased through the Research Centre 
for Women’s and Infants’ Health BioBank (Mount Sinai Hospital), details in the sample 
processing can be found in Leavey et al (2016) (46). DNA was extracted from the pooled 
placental tissue by ethanol precipitation using the Wizzard® Genomic DNA Purification Kit 
(Promega). Gestational age at delivery and fetal birth weight were collected for each case. For 
this cohort, ethics approval was obtained from both Mount Sinai Hospital (#13-0211-E) and the 
University of Toronto (#29435).  
 
The validation cohort represents a subset of samples from the Leavey et al. (2016) study (46). 
PE was defined as BP > 140/90mm Hg after 20 weeks gestation and proteinuria >300mg/day or 
>2+ by dipstick (47). As the time of diagnosis was unknown, we subdivided the PE samples from 
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this cohort into EOPE and LOPE based on the gestational age at delivery. Exclusion criteria 
included diabetes, sickle cell anemia, morbid obesity, and multi-fetal pregnancies. The division 
of the term and pre-term controls was also done in the validation cohort, which consisted of 6 
pre-term control and 9 term control placentas (Table 2).  
 

DNA methylation Analysis 
 
750ng of DNA purified using the Qiagen blood and tissue kit was bisulfite converted using the 
EZ DNA Methylation Kit (Zymo Research, Irvine, USA). Samples were run on the Illumina 
HumanMethylation450 BeadChip array platform (450K), measuring DNAm at 485,512 CpG sites 
across the genome (19). The samples, run on 27 chips in 4 batches, were hybridized to the 
microarray chip as per the manufacturer’s protocol, and microarray chips were scanned by a 
HiScan 2000 (Illumina). To minimize any effects of sample processing, arrays were run in the 
same batch and with the same operators as a subset of the samples from the discovery cohort 
(Chips 5013, 5015, 3024,3037,3038,3110, See Supplementary Figure 4 and Figure 5). This DNA 
methylation data for the discovery and validation cohorts is available from the Gene Expression 
Omnibus (GEO) database under the accession numbers [GEO### In Process] and GSE98224, 
respectively. 
 
Raw data (IDAT Files) were read into R statistical software, version 3.2.4, where functional 
normalization (48), background subtraction, and colour correction were performed. Blair et al. 
(2013), previously used subset within-array normalization (SWAN). Functional normalization 
performs all the benefits of SWAN normalization and, in addition, utilizes the 848 control 
probes on the array to mediate changes in DNAm that are due to technical effects (48). Bad 
quality probes and those that had a missing beta value in > 5% of samples or a detection p-
value<0.01 were removed from the analysis (Discovery N=1,402, Validation N=1,115). To 
minimize fetal sex effects, probes on the X and Y chromosomes (Discovery N= 11,648, 
Validation N=11,302), as well as probes that cross-hybridize to the X and Y chromosomes 
(Discovery N= 11,412, Validation N=10,734), and probes containing a SNP at the CpG of interest 
were also removed (Discovery N= 19,957, Validation N= 20,398) (49). This left 440,093 CpG sites 
for analysis in the discovery cohort and 441,963 CpG sites in the validation cohort 
(Supplementary Table 4).  
 

Differential Methylation Analysis 
All statistical analyses were performed using R version 3.2.4. Differentially methylated sites 
were identified using statistical, i.e. false discovery rate (FDR) <0.05, and biological, i.e. a 
change in DNAm (Δβ)>0.1, criteria. We corrected for fetal sex in our linear regression model, 
but we did not adjust for fetal birth weight, as it is closely related to pathology. As our groups 
were matched to controls of a similar gestational age, our final model where DNAm alterations 
were identified took into account fetal sex only. Only those sites that met both these criteria 
were then evaluated in the validation cohort. In this case, linear regression was used, and sites 
were considered to be persistent hits if the nominal p-value <0.05 and the change in DNAm was 
in the same direction as the discovery cohort. Bonferroni correction p <0.05 was also used to 
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investigate how many hits would be validated with a more stringent threshold. To compare the 
heterogeneity of the samples in each cohort, sample by sample Pearson’s correlations were 
performed, and the average correlation of each sample was compared between the two 
cohorts by Student’s t-test separately for the control (Term + Pre-term) and EOPE samples. 
 
To investigate whether the 42 Bonferroni corrected hits and the 599 nominal p-value validated 
hits were more than would be expected by chance, 1703 sites (number of EOPE hits in the 
discovery cohort) were randomly sampled from the validation cohort data and run through a 
linear model, correcting for fetal sex. One thousand permutations were run and the number of 
sites that met a nominal p-value<0.05 in each iteration was recorded. The number of randomly 
sampled sites to meet a nominal p-value<0.05 were compared to the actual number of sites 
that validated in our data (N=42 (Bonferroni corrected) and N=599 (nominal p-value)).  
 

Clustering Analysis 
Hierarchical clustering was performed on the persistent hits to investigate whether samples 
clustered according to their clinically diagnosed pathology, or whether DNAm profiling could 
suggest an improved definition of pathological groups. The pvClust package in R (50) assessed 
how stable any resulting clusters were, using 1000 iterations. The sigClust2 package (51) 
determined if any clusters were significantly different from one another, also using 1000 
iterations. To investigate whether differences in DNAm between the clusters were enriched for 
any specific pathway(s), linear regression was used to identify differentially methylated sites 
between clusters. Differentially methylated sites were annotated to genes using the Price et al. 
Annotation, closest transcriptional start site (49), and then inputted into ermineJ, a gene 
ontology tool (30). ErmineJ allows us to input a background gene list specific to the Illumina 
450K array, accounts for multifunctionality (gene ontology terms that appear frequently due to 
the number of genes involved in the pathway), and allows for multiple iterations to be run to 
strengthen the power of the analysis.  
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Figure Captions 

 
Figure 1. Volcano plots depicting differentially methylated sites between A) EOPE and pre-term 
controls, B) LOPE and term controls, and C) IUGR and term controls. –log10 of the adjusted p-
value is plotted on the y axis and the change in DNAm (∆β) is plotted on the x axis. Sites 
highlighted in red are hypomethylated in the pathology compared to controls. Sites highlighted 
in green are those that are hypermethylated in the pathology compared to controls. 
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Figure 2. A) The correlation between the change in DNAm (∆β values) between EOPE and pre-term controls, between the discovery 
and validation cohorts. The sites highlighted in red are the top sites labeled by the gene the CpG site is located in. B) P-value 
distribution of the 1703 EOPE hits from the discovery cohort, in the validation cohort.
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Figure 3. Hierarchical clustering (Euclidean) on the 599 validated hits in both the discovery (left) and validation (right) cohorts. 
Numbers represent the percentage of times these clusters formed when using 1000 iterations with pvclust. Those highlighted in 
green are considered stable, where clusters formed >75% of the time. Those highlighted in red were unstable. p values signify 
clusters are significantly different from one another.
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Table 1. Clinical information on samples assigned to methylation cluster 2 compared to 
methylation cluster 3 and samples assigned to EOPE methylation subcluster 1 and EOPE 
methylation subcluster 2.  
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Table 2. Discovery and validation cohort clinical information 
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Supplementary Figure 1. A) The concordance rate (sites where DNAm change is in the same direction in both cohorts) for different 
FDR and ∆β thresholds. Concordance rates (%) are plotted on the y-axis and FDR thresholds are on the x-axis. B) The number of 
identified hits for different FDR and ∆β thresholds. The number of hits is plotted on the y-axis and the FDR thresholds are on the x-
axis.
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Supplementary Figure 2. Sample-sample correlations for both the discovery and validation cohort in the control samples (both term 
and pre-term). P-value from Student’s t-test indicates that the discovery cohort is more heterogeneous (less correlated) than the 
validation cohort. 
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Supplementary Figure 3. Sample-sample correlations for both the discovery and validation cohort in the EOPE samples. P-value from 
Student’s t-test indicates that the discovery cohort is more heterogeneous (less correlated) than the validation cohort. 
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Supplementary Figure 4.  Sample placement on the 96 well plates (Plate) and the microarray chips for the discovery cohort. 
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Supplementary Figure 5. Sample placement on the 96 well plates (Plate) and the microarray chips for the validation cohort.
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Supplementary Table 1. List of the 599 validated hits and relevant gene information 
 
Supplementary Table 2. List of 244 CpG sites that are differentially methylated between 
methylation cluster 3 and methylation cluster 2 in both the discovery and validation cohorts. 
 
Supplementary Table 3. List of 207 sites that are differentially methylation between EOPE 
methylation subcluster 1 and EOPE methylation subcluster 2 in both the discovery and 
validation cohorts. 
 
Supplementary Table 4. List of probes on the 450K array that were filtered from each of the 
cohort. 
 

Abbreviations 
Δβ- Delta beta 

450K- Illumina infinium humanmethylation450 array 

DM- differentially methylated 

DNAm- DNA methylation 

EOPE- early-onset preeclampsia 

FDR- false discovery rate 

GA- gestational age 

IUGR- Intrauterine growth restriction 

LOPE- late-onset preeclampsia 

nIUGR- normotensive intrauterine growth restriction 

PE- Preeclampsia 

PI- placental insufficiency 
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