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Abstract  

The brain represents visual objects with topographic cortical patterns. To address how distributed 

visual representations enable object categorization, we established predictive encoding models 

based on a deep residual neural network, and trained them to predict cortical responses to natural 

movies. Using this predictive model, we mapped human cortical representations to 64,000 visual 

objects from 80 categories with high throughput and accuracy. Such representations covered both 

the ventral and dorsal pathways, reflected multiple levels of object features, and preserved 

semantic relationships between categories. In the entire visual cortex, object representations were 

modularly organized into three categories: biological objects, non-biological objects, and 

background scenes. In a finer scale specific to each module, object representations revealed sub-

modules for further categorization. These findings suggest that increasingly more specific 

category is represented by cortical patterns in progressively finer spatial scales. Such a nested 

hierarchy may be a fundamental principle for the brain to categorize visual objects with various 

levels of specificity, and can be explained and differentiated by object features at different levels.   
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Introduction  

The visual cortex performs rapid categorization of complex and diverse visual patterns or 

objects. This ability is attributable to hierarchical neural computation and representation of 

category information1,2. In particular, the ventral temporal cortex contains topologically 

organized maps of object representations3, spanning a high-dimensional space4 while being 

invariant against changes in low-level visual properties5,6. Evidence shows that category 

representations also exist in the dorsal stream7-9 or even beyond10, likely reflecting non-visual 

attributes needed for category dependent actions11,12. It has thus been proposed that distributed 

cortical networks extract and represent category information for robust, efficient, and flexible 

visual categorization in multiple levels of abstraction13,14.  

However, the computational understanding of distributed neural coding is still limited. 

Questions are unresolved as to how information is encoded in distributed patterns14, how object 

knowledge emerges from lower-level visual features2, and how cortical representations share and 

differ across categories3,12. Answering such questions requires a fully accessible computational 

model of hierarchical cortical processing for visual categorization15, and in principle to map the 

representations of as many categories as possible in a huge, if not infinite, dimension of object 

domains16. These challenges and requirements may be met by recent advances in deep neural 

networks (DNN)17 – a type of artificial neural networks built with conceptually similar 

architecture and computing principle as the brain itself 2.  

Recent studies show that convolutional neural networks offer hierarchical representations 

of any visual input to be able to model and predict cortical responses to natural picture18-22 or 

video23,24 stimuli. The predictive power of such network models is high and robust in the entire 

visual cortex24, rendering them more effective than other models that only account for either the 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/151142doi: bioRxiv preprint 

https://doi.org/10.1101/151142


lowest25,26 or highest16 level in the visual hierarchy. The DNN-based predictive model can be 

applied to novel (unseen) visual stimuli19,20,22,24. It thus enables to simulate the cortical 

representations of a large number of visual objects and categories22,24, far beyond what is 

attainable experimentally27-31.  

Extending from recent studies18-22,24, we used a deep residual network (ResNet)32 to 

define, train, and test a generalizable, predictive, and hierarchical model of natural vision by 

using extensive functional magnetic resonance imaging (fMRI) data from humans watching >10 

hours of YouTube videos. Taking this predictive model as a “virtual” fMRI scanner, we 

synthesized the cortical response patterns with 64,000 natural pictures including objects from 80 

categories, and mapped category representations in the human brain with high-throughput. We 

analyzed and compared the cortical representational similarity among categories against their 

semantic relationships, and quantitatively evaluated the differential contributions from different 

levels of visual features to the cortical organization of categories. Our results support the 

hypothesis that the brain uses nested spatial and representational hierarchies to perform multi-

level visual categorization. Object representations in large to small scales support coarse to fine 

categorization3. In addition, different levels of categorization are primarily attributed to different 

levels of object knowledge, with greater contributions from middle and high-level object features 

than from low-level image features.  

 

Results 

ResNet predicted widespread cortical responses to natural visual stimuli  
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In line with recent studies18-22,24, we used a deep convolutional neural network to 

establish predictive models of the cortical fMRI representations of natural visual stimuli. 

Specifically, we used the ResNet – a deep residual network pre-trained for computer vision32, 

with a much deeper architecture to yield more fine-grained layers of visual features than 

otherwise similar but shallower networks, e.g. AlexNet33 explored in prior studies18-22,24,34. From 

any visual stimuli, the ResNet-extracted features jointly predicted the fMRI response through a 

voxel-wise linear regression model. This encoding model was trained with a large amount of 

fMRI data during a training movie (12.8 hours for Subject 1, and 2.4 hours for Subject 2, 3), and 

tested with an independent testing movie (40 minutes).  

The encoding accuracy (i.e. the correlation between the predicted and measured fMRI 

signals during the testing movie) was overall high (r = 0.43±0.14, 0.36±0.12, and 0.37±0.11 for 

Subject 1, 2 and 3, respectively) and statistically significant (permutation test, corrected at FDR 

q<0.01) throughout the visual cortex in every subject (Fig. 1.a). The encoding accuracy was 

comparable among the higher-order ventral-stream areas, e.g. fusiform face area (FFA) and 

parahippocampal place area (PPA), as well as early visual areas, e.g. V1, V2, V3, and V4 (Fig. 

1.c), whereas it was relatively lower at such dorsal-stream areas as lateral intraparietal area (LIP), 

frontal eye fields (FEF), parietal eye fields (PEF), but not the middle temporal area (MT) (Fig. 

1.c). Different cortical regions were found to be preferentially correlated with distinct layers in 

ResNet. The lower to higher level visual features encoded in ResNet were gradually mapped 

onto areas from the striate to extrastriate cortex along both ventral and dorsal streams (Fig. 1.b), 

in agreement with previous studies20-24,34,35. The prediction accuracy was consistently higher with 

(the deeper) ResNet than with (the shallower) AlexNet (Fig. 1.c). These results suggest that the 

ResNet-based voxel-wise encoding models offer generalizable computational accounts for the 
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complex and nonlinear relationships between natural visual stimuli and cortical responses at 

widespread areas involved in various levels of visual processing.  

 

Encoding models predicted cortical representations of various object categories 

As explored before 22,24, the voxel-wise encoding models constituted a high-throughput 

computational workbench to synthesize cortical activations with a very large number of natural 

pictures, not realistically attainable with most experimental approaches. Here, we used this 

strategy to predict the pattern of cortical activation with each of the 64,000 natural pictures from 

80 categories with 800 exemplars per category. By averaging the predicted activation maps 

across all exemplars of each category, the common cortical activation within this category was 

obtained to report its cortical representation.  

For example, averaging the predicted responses to various human faces revealed the 

category-wide cortical representation of the “face” invariant of low-level visual features, e.g. the 

color, position, and perspective (Fig. 2.a). Such a model-simulated “face” representation was 

consistent with the fMRI-mapping result obtained with a block-design functional localizer that 

contrasted face vs. non-face pictures (Fig. 2.b). In a similar manner, cortical representations of 

all 80 categories were mapped (Fig. 3). The resulting category representations were not only 

along the ventral stream, but also along the dorsal stream albeit with relatively lower amplitudes 

and a smaller extent.  

For each voxel, the model-predicted response as a function of category was regarded as 

the voxel-wise profile of categorical representation. The category selectivity – a measure of how 

a voxel was selectively responsive to one category relative to others 36, varied considerably 
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across cortical locations (Fig. 4.a). Voxels with higher category selectivity were clustered into 

discrete regions including the bilateral PPA, FFA, lateral occipital (LO) area, the temporo-

parietal junction (TPJ), as well as the right superior temporal sulcus (STS) (Fig. 4.a). The profile 

of categorical representation listed in a descending order (Fig. 4.b), showed that FFA, OFA, and 

pSTS were selective to humans or animals (e.g. man, woman, monkey, cat, lion); PPA was 

highly selective to places (e.g. kitchen, office, living room, corridor); the ventral visual complex 

(VVC) was selective to man-made objects (e.g. cellphone, tool, bowl, car). In general, the ventral 

stream tended to be more category-selective than early visual areas (e.g. V1, V2, V3) and dorsal-

stream areas (e.g. MT, LIP) (Fig. 4.c). 

 

Distributed, overlapping, and modular representations of categories 

Although some ventral-stream areas (e.g. PPA and FFA) were highly (but not exclusively) 

selective to a certain category, no category was represented by any single region alone (Fig. 3). 

As suggested previously14, object categories were represented distinctly by distributed but 

partially overlapping networks (see examples in Supplementary Fig. S1 online). In the scale of 

the nearly entire visual cortex as predictable by the encoding models (Fig. 1.a), the spatial 

correlations in cortical representation between distinct categories were shown as a 

representational similarity matrix (Fig 5.a). This matrix revealed a modular organization 

(modularity Q=0.35), by which categories were clustered into three superordinate-level modules 

(Fig. 5.a, left). The categories being clustered based on their cortical representations exhibited a 

similarly modular pattern in terms of their semantic similarity (Fig. 5.a, middle), measured as the 

LCH similarity between the corresponding labels in WordNet 37. Interestingly, the similarity in 

cortical representation between categories was highly correlated with their semantic similarity 
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(Fig. 5.a, right), suggesting that categories with more similar cortical representations tend to bear 

more closely related semantic meanings.  

The representational modules in the entire visual cortex revealed coarse categories that 

seemed reasonable. The first module included non-biological objects, e.g. airplane, bottle and 

chair; the second module included biological objects, e.g. humans, animals, and plants; the third 

module included places and scenes (Fig. 5.b). The cortical representation averaged within each 

module revealed the general cortical representations of non-biological and biological objects, and 

background scenes (Fig. 5.b). As shown in Fig. 5.b, non-biological objects were represented by 

activations in bilateral sub-regions of ventral temporo-occipital cortex (e.g. VVC); biological 

objects were represented by activations in the lateral occipital cortex and part of the inferior 

temporal cortex (e.g. FFA) but deactivations in parahippocampal cortex (e.g. PPA); background 

scenes were represented by activations in PPA but deactivations in the lateral occipital complex, 

partly anti-correlated with the activations with biological objects.    

 

Mid-level visual features primarily accounted for basic-level categorization 

Which levels of visual features accounted for such a modular organization were revealed 

by examining the representational similarity and modularity as attributed to the features extracted 

by each layer in the ResNet. Fig. 6.a (left) shows the inter-category representational similarity 

given the layer-wise features, thus decomposing the modular organization in Fig. 5.a by layers. 

The layer-wise modularity in cortical representation emerged progressively, being the lowest for 

the 1st layer, showing noticeable three modules from the 10th layer, and reaching the maximum at 

the 31st layer (Fig. 6.a).  
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To gain intuition about the types of visual information from the 31st layer, the features 

encoded by individual units in this layer were visualized. Fig. 6.b illustrates the visualizations of 

some example features, showing shapes or patterns (both 2-D and 3-D), animal or facial parts 

(e.g. head and eye), environmental components (e.g. house and mountain). Beyond these 

examples, other features were of similar types. Therefore, the mid-level features that depict 

object shapes or parts are modularly organized by their distributed cortical representations, 

supporting the superordinate-level categorization.  

 

More specific categories were modularly organized in finer scales 

We further asked whether the similar modular organization could be extended to a lower 

level of categorization. That is, whether object representations were modularly organized within 

each superordinate-level module. For this purpose, we confined the scope of analysis from the 

whole visual cortex (Fig. 1.a) to finer spatial scales highlighted by co-activation patterns within 

biological objects, non-biological objects, or background scenes (Fig. 7.a). For example, within 

the regions where biological objects were represented (Fig. 7.a, top), the representational patterns 

were further clustered into four sub-modules: terrestrial animals, aquatic animals, plants, and 

humans (Fig. 7.b, top). Similarly, the fine-scale representational patterns of background scenes 

were clustered into two sub-modules corresponding to artificial (e.g. bedroom, bridge, restaurant) 

and natural scenes (e.g. falls, forest, beach) (Fig. 7, middle). However, non-biological objects 

showed a much less degree of modularity in cortical representation; the two modules did not bear 

any reasonable conceptual distinction (Fig. 7, bottom).  

We also evaluated the layer-wise contribution of visual features to the fine-scale 

representational similarity and modularity. For biological objects, the modularity index generally 
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increased from the lower to higher layer, reaching the maximum at the highest layer (Fig. 8.a, 

top). Note that the highest layer encoded the most abstract and semantically relevant features, 

whose visualizations revealed the entire objects or scenes (Fig. 8.b) rather than object or scenic 

parts (Fig. 6.b). In contrast, the modularity index reached the maximum at the 28th layer for 

background scenes (Fig. 8.a, middle), but was relatively weak and less layer-dependent for non-

biological objects (Fig. 8.a, bottom).  

 

Discussion 

 This study demonstrates a high-throughput computational strategy to characterize 

hierarchical, distributed, and overlapping cortical representations of visual objects and categories. 

Results suggest that information about visual-object category entails multiple levels and domains 

of features represented by distributed cortical patterns in both ventral and dorsal pathways. 

Categories with similar cortical representations are more related in semantics. In a large scale of 

the entire visual cortex, object representations are modularly organized into three superordinate 

categories (biological objects, non-biological objects, and background scenes). In a finer scale 

specific to each module, category representation reveals sub-modules for finer categorization 

(e.g. biological objects are categorized into terrestrial animals, aquatic animals, plants, and 

humans). These findings support a nested hierarchy in distributed cortical representation for 

visual categorization: increasingly more specific category information is represented by distinct 

cortical patterns in progressively finer spatial scales 3, enabling the brain to identify, relate, and 

separate objects in various levels of abstraction. Meanwhile, the nested cortical organization of 

categories is primarily driven by object features from middle to high levels, rather than low-level 

image features.  
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 Central to this study is the use of the categorization-driven deep ResNet for synthesizing 

the cortical representations of thousands of natural visual objects from many categories. This 

strategy has a much higher throughput for sampling a virtually infinite object or category space 

22,24, compared to prior studies that are limited to fewer categories with much fewer exemplars 

per category27-31. The sample size could be further extendable, since the ResNet-based encoding 

models account for the relationships between cortical responses and hierarchical and invariant 

visual features. Such features are finite and generalizable to different and new natural images, 

objects, and categories which the models have not been explicitly trained with. The model 

predictions are highly accurate and consistent with experimentally observed cortical responses 

(Fig. 1.a) and object representations (Fig. 2). The encoding accuracy may be further improved 

given an even larger and more diverse video-fMRI dataset to train the model, and a more 

biologically relevant deep neural net that better matches the brain and better performs in 

computer-vision tasks19. In this sense, the encoding models in this study are based on so far 

largest video-fMRI training data from single subjects; and ResNet also outperforms AlexNet in 

categorizing images32,33 and predicting the brain (Fig. 1.c). The encoding models reported here 

are thus arguably more powerful in predicting and mapping hierarchical cortical representations 

across the entire visual cortex (Fig. 1), compared to conceptually similar models in prior studies 

18-22,24. 

 What is also advantageous is that ResNet decomposes category information into multiple 

layers of features progressively emerging from low to mid to high levels. As such, ResNet offers 

a computational account of hierarchical cortical processing for categorization, yielding 

quantitative description of every object or category in terms of different layers of visual features. 
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Mapping the layer-wise features from the ResNet onto the brain helps to address what drives the 

cortical organization of object knowledge and supports various levels of categorization.    

 The ResNet is trained with large-scale image set (~1.3 million natural images) for 

recognizing 1,000 visual object categories32. Though specific categories are used in training the 

ResNet, the trained model is generalizable to represent the semantics in our training and testing 

stimuli (Fig. 1), and is transferrable for recognizing new categories based on the generic 

representations in the learned feature space for transfer learning38,39. The generalizability of the 

feature space allows to predict the cortical representations of a wide range of categories far 

beyond those that the network has been explicitly trained. For example, the model is able to 

predict the face representation even though the ResNet is not trained for recognizing faces (Fig. 

2). 

 Our results support the notion that visual-object categories are represented by distributed 

and overlapping cortical patterns 14 rather than clustered regions40-42. Given this notion, the brain 

represents a category not as a single entity but a set of defining attributes that span multiple 

domains and levels of object knowledge. Different objects may bear overlapping representational 

patterns that are both separable and associable, allowing them to be recognized as one category 

in a particular level, but as different categories in another level. For example, a lion and a shark 

are both animals but can be more specifically categorized as terrestrial and aquatic animals, 

respectively. The distributed and overlapping object representations, as weighted spatial patterns 

of attribute-based representations11, constitute an essential principle underlying the brain’s 

capacity for multi-level categorization.  

 Category representations, although distributed in general, may become highly selective at 

spatially clustered regions40-42. The category-selective regions are mostly in the ventral temporal 
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cortex (Fig. 4), e.g. the FFA, PPA, and LO. The existence of category-selective regions does not 

contradict with distributed category representation. Instead, the category specificity in a region is 

thought to emerge from its connectivity with other regions that also represent that category43, for 

processing domain-specific knowledge of particular importance to vision-guided action and 

cognition 44.   

 The cortical representational similarity between different categories is highly correlated 

with their semantic relationship (Fig. 5). In other words, the semantic relationship is preserved 

by cortical representation. This finding lends support for the notion of a continuous semantic 

space underlying the brain’s category representation16, which is a compelling hypothetical 

principle to bridge neural representation and linguistic taxonomy45. However, category 

information is not limited to semantic features, but includes hierarchically organized attributes 

that all define categories and their conceptual relationships. For example, “face” is not an 

isolated concept; it entails facial features (“eyes”, “nose”, “mouth”), each also having its own 

defining features. The similarity and distinction between categories may be attributable to one or 

multiple levels of features. In prior studies16, the hierarchical nature of category information is 

not considered as every exemplar of each category is annotated by a pre-defined label. This 

causes an incomplete account of category representation, leaving it difficult to pinpoint what 

dimensions of category information drive the representational similarity between categories. 

 We have overcome this limit by extracting multiple layers of features from visual objects 

and evaluating the layer-wise contributions to cortical category representation. Our results show 

that similarity in cortical category representation is contributed by multiple layers of visual 

features, while different layers contributed differently to the representational modularity. Coarse 

categories (i.e. biological objects, non-biological objects, and background scenes) are most 
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attributable to mid-level features, e.g. shapes, textures, and object parts (Fig. 6). In a finer level 

of categorization, terrestrial animals, aquatic animals, plants, and humans are most 

distinguishable in the semantic space; categorization of man-made and natural scenes is most 

supported by mid-level features (Fig. 8), likely reflecting the spatial layout of scene components 

46-48.   

Our results suggest that object representations in the entire visual cortex support coarse 

categorization (Fig. 5), and representations in a smaller scale specific to each coarse category 

support subsequently finer categorization (Fig. 7). This finding is in line with the notion of 

nested spatial and representational hierarchies3: increasingly specific categorization results from 

category representations in a progressively finer spatial scale on the cortex. Such a spatial 

hierarchy describes a functional architecture that complies with both distributed12,14 and regional 

40,42 representations of object knowledge, and their functional roles for categorization in multiple 

levels of specificity3. This nested hierarchy implies that widely distributed patterns of responses 

to visual objects are more distinguishable between coarsely defined categories than between 

relatively finer categories, as demonstrated in previous studies27,49. Finer object categorization 

may require representational differences in domain-specific regions40-42. 

The notion of spatial and representational hierarchies for graded categorization also has 

implications to decoding visual objects with multi-voxel pattern analysis14,50-55. No single spatial 

scale is optimal for decoding visual objects across all levels of categories. The optimal spatial 

scale for decoding object categories depends on how specific the categories are defined.  

 One of the unresolved questions about object categorization is about what dimensions 

drive the organization of categories in the brain3,43,56. A number of studies have suggested that 

the cortical representation in the ventral visual pathway is highly related to the categorical or 
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semantic information of visual objects31,49,57-59, which is also shown in our results (Fig. 5a). 

Recent studies also suggest that the cortical organization of object categories can be explained by 

variance in low-level visual features60-62, shape similarity61,63-67, and the real-word or conceptual 

size of objects68,69. However, these known dimensions only partially explain the cortical 

organization, and it is currently unclear whether other dimensions, e.g. mid-level visual features 

70, might drive the organization3,43,56. Thus, it is more desirable to evaluate and compare a more 

complete set of visual dimensions in explaining the categorical organization.  

 In this study, we used a much larger set of visual dimensions defined in ResNet32, 

including low (e.g. edges), mid (e.g. object parts), and high-level (e.g. semantic meaning) visual 

features71, to investigate the cortical organization of 64,000 visual objects over 80 categories. By 

quantitatively evaluating the separate contributions of different levels of visual features, we 

found that the cortical organization of categories was explained by multiple levels of visual 

features but to different degrees. The spatial organization of biological objects was better 

explained by higher-level visual features (Fig. 8). This agreed with previous findings that higher 

layers in the CNN better explained the representational similarity of object categories in the 

inferior temporal cortex18,19,72. However, the spatial organizations of superordinate-level 

categories and background scenes were, surprisingly, best explained by mid-level visual features 

(Fig. 6 and Fig. 8). The difference in the best-explainable dimensions suggests that the cortical 

organizations of different categories are not uniquely driven by certain common dimensions. One 

possible interpretation of these findings is that the cortical organization of objects is attributable 

to various visual dimensions ranging from low to mid to high levels of visual features, and 

essentially to those dimensions that best characterize different objects. This organization 

principle also explains why the cortical representation of categories is partially, but not fully, 
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explained by low-level features60-62, shapes63,64, or semantic information59,65. Importantly, the 

mid-level features, while much less known than low- and high-level features, largely explained 

the spatial organization of category representations. 

 

Materials and Methods  

Experimental data  

We used and extended the human experimental data from our previous study24, according 

to experimental protocols approved by the Institutional Review Board at Purdue University with 

informed consent from all human subjects prior to their participation. Briefly, the data included 

the fMRI scans from three healthy subjects (Subject 1, 2, 3, all female) when watching natural 

videos. For each subject, the video-fMRI data were split into two independent datasets: one for 

training the encoding model and the other for testing it. For Subject 2 & 3, the training movie 

included 2.4 hours of videos; the testing movie included 40 minutes of videos; the training movie 

was repeated twice, and the testing movie was repeated ten times. For Subject 1, the training 

movie included not only those videos presented to Subject 2 and 3, but also 10.4 hours of new 

videos. The movie stimuli included a total of ~9,300 video clips manually selected from 

YouTube, covering a variety of real-life visual experiences. All video clips were concatenated in 

a random sequence and separated into 8-min sessions. Every subject watched each session of 

videos (field of view: 20.3o×20.3o) through a binocular goggle with the eyes fixating at a central 

cross (0.8o×0.8o). During each session, whole-brain fMRI scans were acquired with 3.5 mm 

isotropic resolution and 2 s repetition time in a 3-T MRI system. The volumetric fMRI data were 

preprocessed and co-registered onto a standard cortical surface template 73. More details about 

the movie stimuli, data preprocessing and acquisition are described elsewhere 24.  
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Deep residual network 

In line with previous studies18-22,24,34, a feedforward deep neural network (DNN) was 

used to model the cortical representations of natural visual stimuli. Here, we used a specific 

version of the DNN known as the deep residual network (ResNet), which had been pre-trained to 

categorize natural pictures with the state-of-the-art performance32. In the ResNet, 50 hidden 

layers of neuron-like computational units were stacked into a bottom-up hierarchy. The first 

layer encoded location and orientation-selective visual features, whereas the last layer encoded 

semantic features that supported categorization. The layers in between encoded increasingly 

complex features through 16 residual blocks; each block included three successive layers and a 

shortcut directly connecting the input of the block to the output of the block32. Compared to the 

DNNs in prior studies19-21,24,34,72, the ResNet was much deeper and defined more fine-grained 

hierarchical visual features. The ResNet could be used to extract feature representations from any 

input image or video frame by frame. Passing an image into the ResNet yielded an activation 

value at each unit. Passing a video yielded an activation time series at each unit as the fluctuating 

representation of a given visual feature in the video.  

 

Encoding models 

For each subject, we trained an encoding model to predict each voxel’s fMRI response to 

any natural visual stimuli74, using a similar strategy as previously explored20,22,24. The voxel-wise 

encoding model included two parts: the first part was nonlinear, converting the visual input from 

pixel arrays into representations of hierarchical features through the ResNet; the second part was 

linear, projecting them onto each voxel’s fMRI response. The encoding model used the features 
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from 18 hidden layers in the ResNet, including the first layer, the last layer, and the output layer 

for each of the 16 residual blocks. For video stimuli, the time series extracted by each unit was 

standardized (i.e. remove the mean and normalize the variance), and convolved with a canonical 

hemodynamic response function (HRF) with the peak response at 4s, and then down-sampled to 

match the sampling rate of fMRI.  

The feature dimension was reduced by applying principle component analysis (PCA) first 

to each layer and then to all layers in ResNet. The principal components of each layer were a set 

of orthogonal vectors that explained >99% variance of the layer’s feature representations given 

the training movie. The layer-wise dimension reduction was expressed as equation (1).  

𝒇# 𝐱 = 	𝒇#' 𝐱 𝐁#                (1) 

where 𝒇#' 𝐱  (1×𝑝#) is the original feature representation from layer 𝑙 given a visual input 𝐱, 𝐁# 

(𝑝#×𝑞#) consists of unitary columnar vectors that represented the principal components for layer 

𝑙, 𝒇# 𝐱  (1×𝑞#) is the feature representation after reducing the dimension from 𝑝# to 𝑞#.  

Following the layer-wise dimension reduction, the feature representations from all layers 

were further reduced by using PCA to retain >99% variance across layers. The final dimension 

reduction was implemented as equation (2). 

𝒇 𝐱 = 𝒇-:/ 𝐱 𝐁-:/                (2) 

where 𝒇-:/ 𝐱 = 𝒇0 𝐱
10
, … , 𝒇4 𝐱

14
  is the feature representation concatenated across 𝐿 layers, 𝐁-:/ 

consists of unitary principal components of the layer-concatenated feature representations of the 

training movie, and 𝒇 𝐱  (1×𝑘) is the final dimension-reduced feature representation.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/151142doi: bioRxiv preprint 

https://doi.org/10.1101/151142


 For the second part of the encoding model, a linear regression model was used to predict 

the fMRI response 𝑟8(𝐱) at voxel 𝑣 evoked by the stimulus 𝐱 based on the dimension-reduced 

feature representation 𝒇 𝐱  of the stimulus, as expressed by equation (3).   

𝑟8 𝐱 = 𝒇 𝐱 	𝐰8 + 𝜀8            (3) 

where 𝐰8 is a columnar vector of regression coefficients specific to voxel 𝑣, and 𝜀8 is the error 

term. As shown in equation (4), L2-regularized least-squares estimation was used to estimate 𝐰8 

given the data during the training movie (individual frames were indexed by 𝑖 = 1,⋯ ,𝑁), where 

the regularization parameter was determined based on nine-fold cross-validation. 

	𝐰8 = argmin
	𝐰H

	-
I

𝑟8 𝐱J − 𝒇 𝐱J 	𝐰8
LI

JM- + 𝜆 	𝐰8 L
L     (4) 

 After the above training, the voxel-wise encoding models were evaluated for their ability 

to predict the cortical responses to the novel testing movie (not used for training). The prediction 

accuracy was quantified as the temporal correlation (r) between the predicted and observed fMRI 

responses at each voxel given the testing movie. Since the testing movie included five distinct 

sessions, the prediction accuracy was evaluated separately for each session, and then averaged 

across sessions. The significance of the voxel-wise prediction accuracy was evaluated with a 

block-permutation test75 (corrected at false discovery rate (FDR) 𝑞 < 0.01), as used in our prior 

study24. 

 We also evaluated the correspondence between the hierarchical layers in ResNet and the 

hierarchical cortical areas underlying different stages of visual processing, in line with previous 

studies18-24,34. For this purpose, we calculated the variance of the response at a voxel explained 

by the visual features in single layers. Specifically, the features extracted from the testing movie 

were kept only for one layer in the ResNet, while setting to zeros for all other layers. Through 
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the voxel-wise encoding model, the variance (measured by R-squared) of the response explained 

by the single layer was calculated. For each voxel, we identified the best corresponding layer 

with the maximum explained variance and assigned its layer index to this voxel. The assigned 

layer index indicated the processing stage this voxel belonged to.  

We also tested whether the deeper ResNet outperformed the shallower AlexNet33 in 

predicting cortical responses to natural movies, taking the latter as the benchmark given its state-

of-the-art encoding performance in prior studies20,21,24. For this purpose, we trained and tested 

similar encoding models based on the AlexNet with the same analysis of the same dataset. We 

compared the prediction accuracy between ResNet and AlexNet for regions of interest (ROIs) 

defined in an existing cortical parcellation76, and further evaluated the statistical significance of 

their difference using a paired t-test (p<0.001) across all voxels within each ROI. Considering 

the noise in the data, we also calculated the noise ceiling of the predictability at each voxel. The 

noise ceiling indicated the maximum accuracy that a model could be expected to achieve given 

the level of noise in the testing data77. The noise and signal in fMRI were assumed to follow 

Gaussian distribution and the mean of noise was zero. For each testing session, we estimated the 

noise level and the mean/SD of the signal for every voxel. We	 used Monte Carlo simulation to 

obtain the noise ceiling. For each simulation, we generated a signal from the signal distribution, 

and generated a noisy data by adding the signal and the noise drawn from the noise distribution, 

and calculated the correlation between the signal and the data. We performed 1,000 simulations 

for each testing session, and took the median correlation as the noise ceiling. The ceiling was 

then averaged across sessions.  

 

Human-face representations with encoding models and functional localizer 
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The ResNet-based encoding models were further used to simulate cortical representations 

of human faces, in comparison with the results obtained with a functional localizer applied to the 

same subjects. To simulate the cortical “face” representation, 2,000 human-face pictures were 

obtained by Google Image search. Each of these pictures was input to the voxel-wise encoding 

model, simulating a cortical response map as if it were generated when the subject was actually 

viewing the picture, as initially explored in previous studies22,24. The simulated response maps 

were averaged across all the face pictures, synthesizing the cortical representation of human face 

as an object category.  

To validate the model-synthesized “face” representation, a functional localizer78 was used 

to experimentally map the cortical face areas on the same subjects. Each subject participated in 

three sessions of fMRI with a randomized block-design paradigm. The paradigm included 

alternating ON-OFF blocks with 12s per block. During each ON block, 15 pictures (12 novel and 

3 repeated) from one of the three categories (face, object, and place) were shown for 0.5s per 

each picture with a 0.3s interval. The ON blocks were randomized and counter-balanced across 

the three categories. Following the same preprocessing as for the video-fMRI data, the block-

design fMRI data were analyzed with a general linear model (GLM) with three predictors, i.e. 

face, object, and place. Cortical “face” areas were localized by testing the significance of a 

contrast (face>object and face > place) with p<0.05 and Bonferroni correction. 

 

Synthesizing cortical representations of different categories 

Beyond the proof of concept with human faces, the similar strategy was also extended to 

simulate the cortical representations of 80 categories through the ResNet-based encoding models. 

The category labels were shown in Fig. 3. These categories were mostly covered by the video 
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clips used for training the encoding models. For each category, 800 pictures were obtained by 

Google Image search with the corresponding label, and were visually inspected to replace any 

exemplar that belonged to more than one category. The cortical representation of each category 

was generated by averaging the model-simulated response map given every exemplar within the 

category.  

 

Category selectivity  

Following the above analysis, cortical representations were compared across categories to 

quantify the category selectivity of various locations and ROIs. For each voxel, its selectivity to 

category 𝑖 against other categories 𝑖R was quantified with equation (5), as previously suggested36. 

𝑑JT =
UV	W	UVX

YV
Z[YVX

Z L
                (5) 

where 𝑟J and 𝜎JL are the mean and variance of the responses to the exemplars in category 𝑖, and  

𝑟JX and 𝜎JX
L  were counterparts to all exemplars in other categories 𝑖R. Irrespective of any specific 

category, the general category-selectivity for each voxel was its maximal 𝑑T index among all 

categories, i.e. 𝑑T = max
J

𝑑JT . A 𝑑T index of zero suggests non-selectivity to any category, and a 

higher 𝑑T index suggests higher category-selectivity. The category selectivity of any given voxel 

was also inspected by listing the categories in a descending order of their representations at the 

voxel. We also obtained the ROI-level category selectivity by averaging the voxel-wise 

selectivity across voxels and subjects. ROIs were defined in an existing cortical parcellation76. 

 

Categorical similarity and modularity in cortical representation  
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To reveal how the brain organizes categorical information, we assessed the similarity (i.e. 

spatial correlation across the predictable voxels with q<0.01 in permutation test and prediction 

accuracy r>0.2) in cortical representations between categories. Based on such inter-category 

similarity, individual categories were grouped into clusters using k-means clustering 79. The 

goodness of clustering was measured as the modularity index, which quantified the inter-

category similarities within the clusters relative to those regardless of the clusters80.  

 The similarity in cortical representation between different categories was compared with 

their similarity in semantic meaning. The semantic similarity between categories was evaluated 

as the Leacock-Chodorow similarity37 between the corresponding labels based on their 

relationships defined in the WordNet81 – a directed graph of words (as the nodes) and their is-a 

relationships (as the edges). The correlation between the cortical and semantic similarities was 

evaluated across all pairs of categories.   

 

Layer-wise contribution to cortical categorical representation  

We also asked which levels of visual information contributed to the modular organization 

of categorical representations in the brain. To answer this question, the cortical representation of 

each category was dissected into multiple levels of representations, each of which was attributed 

to one single layer of features. For a given category, the features extracted from every exemplar 

of this category were kept only for one layer in the ResNet, while setting to zeros for all other 

layers. Through the voxel-wise encoding model, the single-layer visual features were projected 

onto a cortical map that only represented a certain level of visual information shared in the given 

category. The similarity and modularity in cortical representations of individual categories were 

then re-evaluated as a function of the layer in the ResNet. The layer with the highest modularity 
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index contributed the most to the modular organization in cortical categorical representation. The 

features encoded by this layer were visualized for more intuitive understanding of the types of 

visual information underlying the modular organization. The feature visualization was based on 

an optimization-based technique82. Briefly, to visualize the feature encoded by a single unit in 

the ResNet, the input to the ResNet was optimized to iteratively maximize the output from this 

unit, starting from a Gaussian random pattern. Four optimized visualizations were obtained given 

different random initialization.  

 

Categorical representation in nested hierarchical spatial scales  

Considering object categories were defined hierarchically in semantics81, we asked 

whether there were spatial and representational hierarchies underlying the hierarchy of 

categorization3. More specifically, we tested whether the representational similarity and 

distinction in a larger spatial scale gave rise to a coarser level of categorization, whereas the 

representation in a smaller spatial scale gave rise to a finer level of categorization. To do so, we 

first examined the category representation in the scale of the entire visual cortex predictable by 

the encoding models, and clustered the categories into multiple modules by using the modularity 

analysis of the representational similarity in this large scale. The resulting modules of categories 

were compared with the superordinate-level semantic categories. Then, we focused on a finer 

spatial scale specific to the regions where category representations overlapped within each 

module in contrast to 50,000 random and non-selective objects (p<0.01, two-sample t-test, 

Bonferroni correction). Given the spatial similarity of category representation in this finer scale, 

we defined sub-modules within each module using the same modularity analysis as for the large-
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scale representation. The sub-modules of categories were compared and interpreted against 

semantic categories in a finer level.  

 

Data Availability  

The datasets generated during and/or analyzed during the current study are available from the 

corresponding author on reasonable request. 
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Figure1. DNN-based Voxel-wise encoding models. (a) Performance of ResNet-based encoding models 
in predicting the cortical responses to novel testing movies for three subjects. The accuracy is measured 
by the average Pearson’s correlation coefficient (r) between the predicted and the observed fMRI 
responses across five testing movies (q<0.01 after correction for multiple testing using the false discovery 
rate (FDR) method, and with threshold r>0.2). The prediction accuracy is displayed on both flat (top) and 
inflated (bottom left) cortical surfaces for Subject 1.  (b) Explained variance of the cortical response to 
testing movie by the layer-specific visual features in ResNet. The right shows the index to the ResNet 
layer that most explains the cortical response at every voxel. (c) Comparison between the ResNet-based 
and the AlexNet-based encoding models. Each bar represents the mean±SE of the prediction accuracy 
(normalized by the noise ceiling, i.e. dividing prediction accuracy (r) by the noise ceiling at every voxel) 
within a ROI across voxels and subjects, and * represents a significance p-value (p<0.001) with paired t-
test. 
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Figure2. Human-face representations with encoding models and functional localizer. (a) Model-
simulated representation of human face from ResNet-based encoding models. The representation is 
displayed on both inflated (top) and flat (bottom) cortical surfaces. (b) Localizer activation maps 
comprising regions selective for human faces, including occipital face area (OFA), fusiform face area 
(FFA), and posterior superior temporal sulcus (pSTS).  
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Figure3. Cortical representations of 80 object categories. Each panel shows the representation map of 
an object category on flat cortical surface from Subject 1. The category label is on top left. The color bar 
shows the cortical response. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 10, 2017. ; https://doi.org/10.1101/151142doi: bioRxiv preprint 

https://doi.org/10.1101/151142


 

Figure4. Category-selectivity at individual cortical locations. (a) The category-selectivity across the 
cortical surface. (b) The category-selectivity profile of example cortical locations. For each location, top 
10 categories with the highest responses are showed in descending order. (c) Category-selectivity within 
ROIs (mean±SE) in the early visual areas (red), ventral stream areas (green), and dorsal stream areas 
(blue). 
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Figure5. Categorical similarity and modularity in cortical representation at the scale of the entire 
visual cortex. (a) The left is the similarity matrix (r) of the cortical representations between categories. 
Each element represents the average cortical similarity between a pair of categories across subjects (see 
individual results in Supplementary Fig. S2 online). It is well separated into three modules with 
modularity Q=0.35. The middle is the similarity matrix of the semantic content between categories 
(measured by LCH). The right is a plot of the mean±SE of cortical similarity (Fisher’s z-transformation of 
r) vs. the semantic similarity (LCH takes discrete values). (b) These three modules are related to three 
superordinate-level categories: non-biological objects, biological objects, and background scenes. The 
average cortical representations across categories within modules are showed in the bottom on both 
inflated and flat cortical surfaces.  
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Figure6. Contribution of layer-wise visual features to the similarity and modularity in cortical 
representation. (a) The left shows the similarity between categories in the cortical representations that 
are contributed by separated category information from individual layers. The order of categories is the 
same as in Figure 6.a. The right plot shows the modularity index across all layers. The visual features at 
the middle layers have the highest modularity. (b) 18 example visual features at the 31st layer are 
visualized in pixel space. Each visual feature shows 4 exemplars that maximize the feature representation. 
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Figure7. Categorical similarity and modularity in cortical representation within superordinate-
level categories. (a) Fine-scale cortical areas specific to each superordinate-level category: biological 
objects (red), background scenes (green) and non-biological objects (blue). (b) The cortical similarity 
between categories in fine-scale cortical representation. The categories in each sub-module were 
displayed on the right. See individual results in Supplementary Fig. S2 online. 
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Figure8. Contribution of layer-wise visual features to the similarity and modularity in cortical 
representations within superordinate-level categories. (a) The left shows the similarity between 
categories in fine-scale cortical representations that are contributed by separated category information 
from individual layers. The order of categories is the same as in Figure 8. The right plot shows the 
modularity index across all layers. The highest-layer visual features show the highest modularity for 
biological objects. (b) 15 example visual features at the 50st layer are visualized in pixel space. Each 
visual feature showed 4 exemplars that maximize the feature representation. 
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