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Abstract 

Microbes form complex and dynamic ecosystems that play key roles in the health of the 

animals and plants with which they are associated. The inter-species interactions are often 

represented by a directed, signed and weighted ecological network, where nodes represent 

microbial species and edges represent ecological interactions. Inferring the underlying 

ecological networks of microbial communities is a necessary step towards understanding 

their assembly rules and predicting their dynamical response to external stimuli. However, 

current methods for inferring such networks require assuming a particular population 

dynamics model, which is typically not known a priori. Moreover, those methods require 

fitting longitudinal abundance data, which is not readily available, and often does not contain 

the variation that is necessary for reliable inference. To overcome these limitations, here we 

develop a new method to map the ecological networks of microbial communities using 

steady-state data. Our method can qualitatively infer the inter-species interaction types or 

signs (positive, negative or neutral) without assuming any particular population dynamics 

model. Additionally, when the population dynamics is assumed to follow the classic 

Generalized Lotka-Volterra model, our method can quantitatively infer the inter-species 

interaction strengths and intrinsic growth rates. We systematically validate our method using 

simulated data, and then apply it to experimental data from a synthetic soil microbial 

community. Our method offers a novel framework to infer microbial interactions and 

reconstruct ecological networks, and represents a key step towards reliable modeling of 

complex, real-world microbial communities, such as human gut microbiota.  

 

1. Introduction 

The microbial communities (MCs) established in animals, plants, soils, oceans, and 

virtually every ecological niche on Earth perform vital functions for maintaining the health of 

the associated ecosystems1-5. Recently, our knowledge of the organismal composition and 

metabolic functions of diverse MCs has markedly increased, due to advances in DNA 
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sequencing and metagenomics6.  However, our understanding of the underlying ecological 

networks of these diverse MCs lagged behind7. Mapping the structure of those ecological 

networks and developing ecosystem-wide dynamic model will be important for a variety of 

applications, from predicting the outcome of community alterations and the effects of 

perturbations8, to the engineering of complex MCs7,9. We emphasize that the ecological 

network is fundamentally different from the correlation-based association or co-occurrence 

network7,10,11, which is undirected and do not encode any causal relations or direct ecological 

interactions, and hence cannot be used to faithfully predict the dynamic behavior of the MC. 

To date, existing methods for inferring the ecological networks of MCs are all based 

on temporal abundance data12-16. The success of those methods has been impaired by two 

fundamental limitations. First, those inference methods require the a priori choice of a 

parameterized population dynamics model for the MC. These choices are hard to justify, 

given that species in the MC interact via a multitude of different mechanisms7,17,18,19 

producing complex dynamics even at the scale of two species20. Any deviation of the chosen 

model from the “true” model of the MC can lead to inference errors, regardless of the 

inference method that is used16. Second, a successful temporal-data based inference requires 

sufficiently informative time-series data16,21. However, for many host-associated MCs, such 

as the human gut microbiota, the available temporal data (i.e., time series of the abundance of 

each taxa in the MC) is often poorly informative. This is due to the fact that such 

communities often display highly intrinsic stability and resilience22,23, which leads to 

measurements containing only their steady-state behavior. For MCs such as the human gut 

microbiota, trying to improve the informativeness of temporal data is challenging and even 

ethically questionable, as it requires applying drastic and frequent perturbations to the MC, 

with unknown effects on the host.  

To circumvent the above fundamental limitations, here we develop a new inference 

method based on steady-state data. We rigorously prove that, if we collect enough 

independent steady states of the MC, it is possible to infer the microbial interaction types 

(positive, negative and neutral interactions) and the structure of the ecological network, 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 15, 2017. ; https://doi.org/10.1101/150649doi: bioRxiv preprint 

https://doi.org/10.1101/150649


4 

 

without requiring any population dynamics model. We further derive a rigorous criterion to 

check if the steady-state data of an MC is consistent with the Generalized Lotka-Volterra 

(GLV) model, a classic population dynamics model for MCs in human bodies, soils and 

lakes12-16. We finally prove that, if the MC follows the GLV dynamics, then the cross-

sectional steady-state data can be used to accurately infer the model parameters, i.e., inter-

species interaction strengths and intrinsic growth rates. We validated our inference method 

using simulated data generated from various classic population dynamics models. Then we 

applied it to real data collected from a synthetic soil MC in which experimental evidence of 

the microbial interactions is available. 

2. Results  

Microbes do not exist in isolation but form complex ecological networks7. The 

ecological network of an MC is encoded in its population dynamics, which can be described 

by a set of ordinary differential equations (ODEs): 

	d#$ % /d% = #$ % 	($ )(%) ,					- = 1,… ,0.	                                  (1) 

Here, ($()(%)) ’s are some unspecified functions whose functional forms determine the 

structure of the underlying ecological network; )(%) = #2(%), … , #3(%) 4  is an 0 -

dimensional vector with #$ %  denoting the absolute abundance of the --th taxon at time %. In 

this work, we don’t require ‘taxon’ to have a particular ranking, as long as the resulting 

abundance profiles are distinct enough across all the collected samples. Indeed, we can group 

microbes by species, genus, family or just operational taxonomical units (OTUs).  

Note that in the right-hand side of Eq. (1) we explicitly factor out #$ to emphasize that 

(i) without external perturbations those initially absent or later extinct species will never be 

present in the MC again as time goes by, which is a natural feature of population dynamics; 

(ii) there is a trivial steady state where all the species are absent; (iii) there are many different 

non-trivial steady states where at least one taxon is present. We assume that the steady-state 

samples collected in a dataset 5 correspond to those non-trivial steady states )∗ of Eq. (1), 
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which satisfy ($ #2∗, … , #3∗ = 0, - = 1,… ,0. For many host-associated MCs, e.g., the human 

gut microbiota, those cross-sectional samples collected from different individuals contain 

quite different collections of taxa (up to the taxonomic level of phylum binned from OTUs)22. 

We will show later that the number of independent steady-state samples is crucial for 

inferring the ecological network.  

To infer the ecological network underlying an MC, we make an explicit assumption: 

the nature of the ecological interactions (i.e., promotion, inhibition, or neutral) between any 

two taxa does not vary over time, though their interaction strengths might change. 

Mathematically, those ecological interactions are encoded by the Jacobian matrix 8 )(%) ∈
ℝ3×3 with matrix elements 8$< )(%) ≡ >($()(%))/>#<. The condition 8$<()(%)) > 0	(or < 0) 

means that taxon A promotes (or inhibits) taxon -, respectively. The diagonal terms 8$$()(%)) 
represent intra-species interactions. Note that 8$< )(%)  might depend on the abundance of 

many other taxa beyond - and A (due to the so-called “higher-order” interactions). Though the 

magnitude of 8$< )(%)  by definition may vary over different states, we assume its sign 

remains invariant, i.e., the microbial interaction type does not change. This assumption 

requires that those steady-state samples be collected from the MC under very similar 

environmental conditions (e.g., nutrient availability)25, and the MC is well-mixed to avoid 

strong spatial segregation. Notably, as we will show later, the assumption is valid for many 

classic population dynamics models26-30.  

Inferring interaction types. The above two assumptions enable us to mathematically prove 

that the sign-pattern of the Jacobian matrix 8 )  satisfies a strong constraint. Thus, by 

collecting enough independent steady-state samples, we can solve for the sign pattern and 

hence map the structure of the ecological network. 

The basic idea is as follows. Let ℐ$ be the set of all steady-state samples sharing taxon 

-. Then, for any two of those samples )C and )D, where the superscripts E, F	 ∈ ℐ$ denote the 

collections of present taxon in those samples, we can prove that the sign-pattern of the --th 

row of Jacobian matrix, denoted as a ternary vector G$ ∈ {−, 0, +}3, is orthogonal to ()C −
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)D). In other words, we can always find a real-valued vector L ∈ ℝ3, which has the same 

sign pattern as G$  and satisfies L4 ∙ )C − )D = 0. If we compute the sign patterns of all 

vectors orthogonal to )C − )D  for all E, F	 ∈ ℐ$, then G$ must belong to the intersections of 

those sign patterns, denoted as N$. In fact, as long as the number	Ω of steady-state samples in 

5  is above certain threshold Ω∗ , then N$  will be minimum and contain only three sign-

patterns {−P, Q, P}. To decide which of these three remaining sign-patterns is the true one, it 

is sufficient that we know the sign of only one non-zero interaction. If such prior knowledge 

is unavailable, one can at least make a reasonable assumption that G$$ = ‘−’, i.e., the intra-

species interaction 8$$ is negative (which is often necessary for community stability). When N$ 
has more than three sign-patterns, we proved that the steady-state data is not informative 

enough in the sense that all sign-patterns in N$ are consistent with the data available in 5. 

This situation is not a limitation of any inference algorithm but of the data itself. To uniquely 

determine the sign-pattern in such a situation, one has to either collect more samples (thus 

increasing the informativeness of 5) or use a priori knowledge of non-zero interactions to 

narrow down to just one possible sign-pattern. 

We illustrate the application of the above method to small MCs with unknown 

population dynamics (Fig. 1). For the two-taxa MC (Fig. 1a), there are three possible steady-

state samples, i.e., {){2}, ){R}, ){2,R}}, depicted as colored pie charts in Fig. 1b. In order to 

infer G2 = (sign 822 , sign 82R ), we compute a straight line (shown in green in Fig. 1b) that 

is orthogonal to () 2,R − ){2}) and passes the origin. The regions (including the origin and 

two quadrants) crossed by this green line provide a minimum set of possible sign-patterns 

N2 = 	 { −,+ , 0, 0 , +,− }  that G2  may belong to. A priori knowing that 822 < 0 , our 

method correctly concludes that G2 = 	 (−,+) . Note that 82R > 0  is consistent with the 

observation that with the presence of taxon 2, the steady-state abundance of taxon 1 increases 

(Fig.1b), i.e., taxon 2 promotes the growth of taxon 1. We can apply the same method to infer 

the sign-pattern of GR = 	 (−,−).  

For the three-taxa MC (Fig.1c), there are seven possible steady-state samples, i.e., 

{) 2 , ){R}, ) W , ) 2,R , ) 2,W , ) R,W , ){2,R,W}}. Four of them share taxon 1 (see colored pie charts 
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in Fig. 1d), and six line segments connect the X
R = 6  sample pairs of the form ()C −

)D), E, F ∈ ℐ2 ={{1},{1,2},{1,3},{1,2,3}}. Considering a particular line segment () 2,W −
) 2 ), i.e., the solid blue line in Fig. 1d, we compute a plane (shown in orange in Fig.1d) that 

is orthogonal to () 2,W − ) 2 ) and passes the origin. The regions (including the origin and 

eights orthants) crossed by this orange plane provide a set of possible sign-patterns that G2 

may belong to (see Fig. 1d). We repeat the same process for all other vectors ()C −
)D), E, F	 ∈ ℐ2, and compute the intersection of all the possible sign-patterns, finally yielding 

a minimum set N2 = 	 { −,0, + , 0,0,0 , +,0, − } that G2 may belong to. If the sign of one 

non-zero interaction is known (822 < 0 for this example), the method correctly infers the true 

sign-pattern	G2 = −,0, + .  

It is straightforward to generalize the above method to MCs of 0 taxa. But this brute-

force method requires us to calculate all the sign-pattern candidates first, and then calculate 

their intersection to determine the minimum set N$ that G$ may belong to. Since the solution 

space of sign-pattern is of size 33 , the time complexity of this brute force method is 

exponential with 0, making it impractical for MCs with 0 > 10 taxa. To resolve this issue, 

we develop a heuristic algorithm, which pre-calculates many intersection lines of 0 − 1  

non-parallel hyperplanes that pass the origin and are orthogonal to )C − )D , E, F ∈ ℐ$, and 

then determines N$ based on the most probable intersection line. The solution space of this 

heuristic algorithm is determined by a user-defined parameter, i.e., the number of pre-

calculated interaction lines (denoted as Ψ). Hence this algorithm naturally avoids searching 

the exponentially large solution space. 

In reality, due to measurement noise and/or transient behavior of the MC, the 

abundance profiles of the collected samples may not exactly represent steady states of the 

MC. Hence for certain 8$<’s their inferred signs might be wrong. Later on, we show that for 

considerable noise level the inference accuracy is still reasonably high.  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted June 15, 2017. ; https://doi.org/10.1101/150649doi: bioRxiv preprint 

https://doi.org/10.1101/150649


8 

 

Inferring interaction strengths. To quantitatively infer the inter-species interaction 

strengths, it is necessary to choose a priori a parameterized dynamic model for the MC. The 

classical GLV model can be obtained from Eq. (1) by choosing 

($ # = 	 \$<#< + ]<3
<^2 ,			-	 = 	1, … , 0,                                      (2) 

where ] = ]2, … , ]3 4 ∈ ℝ3 is the intrinsic growth rate vector and _ = \$< ∈ ℝ3×3 is the 

interaction matrix characterizing the intra- and inter-species interactions.  

From Eq. (2) we can easily calculate the Jacobian matrix 8, which is nothing but the 

interaction matrix _  itself. This also reflects the fact that the value of \$<  quantifies the 

interaction strength of species A on species -. The GLV model considerably simplifies the 

inference of the ecological network, since we proved that P$ ⋅ )C − )D = 0, for all E, F ∈ ℐ$, 
where P$ ≡ \$2, … , \$3  represents the --th row of A matrix. In other words, all steady-state 

samples containing the --th taxon will align exactly onto a hyperplane, whose orthogonal 

vector is precisely scalable with the vector P$ that we want to infer (Fig. 2a). Thus, for the 

GLV model, the inference from steady-state data reduces to finding an (0 − 1)-dimensional 

hyperplane that “best fits” the steady-state sample points {)C|E ∈ ℐ$} in the 0-dimensional 

state space. In order to exactly infer P$, it is necessary to know the value of at least one non-

zero element in P$ , say, \$$ . Otherwise, we can just determine the relative interaction 

strengths by expressing \$< in terms of \$$. Once we obtain P$, the intrinsic growth rate ]$ of 

the i-th taxon can be calculated by averaging (−P$ ∙ )C) over all E ∈ ℐb, i.e., all the steady-

state samples containing taxon i. 

In case the samples are not collected exactly at steady states of the MC, those samples 

containing taxon - will not exactly align onto a hyperplane (Fig. 2b). A naive solution is to 

find a hyperplane that minimizes its distance to those noisy samples. But this solution is 

prone to induce false positive errors and will yield non-sparse solutions (corresponding to 

very dense ecological networks). This issue can be partly alleviated by introducing a Lasso 

regularization31, implicitly assuming that the interaction matrix _ in the GLV model is sparse. 

However, the classical Lasso regularization may induce a high false discovery rate (FDR), 
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meaning that many zero interactions are inferred as non-zeros ones. To overcome this 

drawback, we applied the knockoff filter32 procedure, which controls the FDR below a 

desired user-defined level c > 0. 

The observation that for the GLV model all steady-state samples containing the --th 

taxon align exactly onto a hyperplane can also be used to characterize how much the 

dynamics of an MC deviates from the GLV model. This deviation can be quantified by the 

normalized dR of multiple linear regression when fitting the hyperplane (Fig. 2b). If dR is 

close to 1 (the samples indeed align to a hyperplane), we conclude that the dynamics of the 

MC is consistent with the GLV model, and hence the inferred interaction strengths and 

intrinsic growth rates are reasonable. Otherwise, we should only aim to qualitatively infer the 

ecological interaction types that do not require specifying any population dynamics.  

Validation on simulated data.  

1. Interaction types. To validate the efficacy of our method in inferring ecological 

interaction types, we numerically calculate the steady states of a small MC with 0 = 8 taxa, 

using four different population dynamics models26-30: Generalized Lotka-Volterra (GLV), 

Holling Type II (Holling II), DeAngelis-Beddington (DB) and Crowley-Martin (CM) models. 

Note that all these models satisfy the requirement that the sign pattern of the Jacobian matrix 

is time-invariant. To infer the ecological interaction types among the 8 taxa, we employed 

both the brute-force algorithm (with solution space ~ 3f = 6,561) and the heuristic algorithm 

(with solution space given by the number of the pre-calculated intersections Ψ = 50 = 40).  

In the noiseless case, we find that when the number of steady-state samples satisfies 

Ω > 30 , the heuristic algorithm outperformed the brute-force algorithm for all the four 

datasets generated from different population dynamics models (Fig. 3a). This result is partly 

due to the fact that the former requires much less samples than the latter to reach high 

accuracy (the percentage of correctly inferred interaction types). However, when the sample 

size Ω is small, the heuristic algorithm completely fails while the brute-force algorithm still 

works to some extent.  
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We then fix Ω = 50, and compare the performance of the brute-force and heuristic 

algorithms in the presence of noise (Fig. 3b). We add artificial noise to each non-zero entry 

#$C   of a steady-state sample )C  replacing the value of its i-th entry #$C  by #$C + ij, where 

j~l[−#$C, #$C] is a random number uniformly distributed on the interval [−#$C, #$C] and i ≥ 0 

quantifies the noise level. We find that the heuristic algorithm again works better than the 

brute-force algorithm.  

The above encouraging results on the heuristic algorithm prompt us to systematically 

study the key factor to obtain an accurate inference, i.e., the minimal sample size Ω∗. Note 

that for an MC of 0 taxa, there are at most Ωpqr = (23 − 1) possible steady-state samples. 

(Of course, not all of them will be ecologically feasible. For example, certain pair of taxa will 

never coexist.) In general, it is unnecessary to collect all possible steady-state samples to 

obtain a highly accurate inference result. Instead, we can rely on a subset of them. We 

numerically calculate the minimal sample size Ω∗ we need to reach three different accuracy 

levels (85%, 90%, 95%). For this, we considered two different taxa presence patterns: (1) 

uniform: all taxa have equal probability of being present in the steady-state samples (inset of 

Fig. 3c); and (2) heterogeneous: certain taxa have higher presence probability than others, 

reminiscent of human gut microbiome samples22 (inset of Fig. 3d). We found that at all three 

accuracy levels Ω∗ scales linearly with N in both taxa presence patterns, though the uniform 

taxa presence pattern requires much less samples (Fig. 3c,d).  

Note that as 0  grows, the total possible steady-state samples Ωpqr increases 

exponentially, while the minimal sample size Ω∗  we need for high inference accuracy 

increase linearly. Hence, interestingly, we have Ω∗/Ωpqr → 0 as 0 increases. This implies 

that as the number of taxa increases, the proportion of samples needed for accurate inference 

actually decreases. This is a rather counter-intuitive result because, instead of a “curse of 

dimensionality”, it suggests that a “blessing of dimensionality” exists when using the 

heuristic algorithm to infer interaction types for MCs with a large number of taxa.  
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2. Interaction strengths. To validate our method in quantitatively inferring inter-

species interaction strengths, we numerically calculated steady states for an MC of 0 = 50 

taxa, using the GLV model.  For this we set \$$ = −1 for all taxa. During the inference, we 

just assume \$$’s follow a half-normal distribution −|u(−1, 0.2R)|. The inference results on 

inter-species interaction strengths and intrinsic growth rates are shown in Fig. 4. 

We find that the classical Lasso regularization could induce many false positives. 

Indeed, the false discovery rate (FDR) approaches 45.87%, indicating that almost half of 

inferred non-zero interactions are actually zero (Fig. 4a). In many cases, we are more 

concerned about low FDR than high false negative rates, because the topology of an inferred 

ecological network with even many missing links can still be very useful in the study of its 

dynamical and control properties33. To control FDR below a certain desired level c = 0.2, we 

further used the knockoff filter32 (Fig. 4b), and find that the knockoff filter succeeds in 

controlling the FDR below 20%, though it also introduces more false negatives.  

The results presented in Fig. 4a,b were obtained with v = 50 samples and artificial 

noise added such that #$C → #$C + ij, where j~l[−#$C, #$C] and i = 0.1. To study the minimal 

sample size Ω∗ required for perfect inference in the noiseless case, we again consider two 

different taxa presence patterns: (1) uniform; (2) heterogeneous. We find that for both taxa 

presence patterns Ω∗ scales linearly with N, though the uniform taxa presence pattern requires 

much less samples (Fig. 4c).  

Application to experimental data. We finally applied our method to analyze experimental 

data derived from a synthetic soil MC of eight bacterial species34. This dataset consists of 

steady states of a total of 101 different species combinations: all 8 solos, 28 duos, 56 trios, all 

8 septets, and 1 octet. For those steady-state samples that started from the same species 

collection but with different initial conditions, we average over their final steady states to get 

a representative steady state for this particular species combination. Note that true multi-

stability was observed in only one of the 101 species combinations, suggesting that our 

assumption is at least partly supported by the experimental data.  
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In the experiments, it was found that several species grew to a higher density in the 

presence of an additional species than in monoculture. The impact of each additional species 

(competitor) A  on each focal species -  can be quantified by calculating the relative yield, 

defined as: d$< = 	
wx
{x,y}zwx

{x}

wx
{x,y}	{wx

{x}	, which represents a proxy of the ground truth of the interaction 

strength between species -  and A. A negative relative yield indicates growth hindrance of 

species Aon -, whereas positive values indicated facilitation (Fig. 5a). Though quantifying the 

relative yield is conceptually easy and implementable for certain small MCs, for many host-

associated MCs with many taxa, such as the human gut microbiota, measuring these one- and 

two-species samples is simply impossible. This actually motivates the inference method we 

developed here.   

Before we apply our inference method, we remove all these steady states involving 

one- or two species, and analyse only the remaining 65 steady states. (Note that for 0 = 8, 

the number of total possible steady-state samples is Ωpqr = 255.)  

During the inference, we first check if the population dynamics of this MC can be 

well described by the GLV model. We find that all the fitted hyperplanes show very small dR, 

indicating that the GLV model is not suitable for none of the eight species. Hence, we have to 

aim for inferring the ecological interaction types, without assuming any specific community 

dynamics model.  

Since this MC has only eight species, we can use the brute-force algorithm to infer the 

sign pattern of the 8×8 Jacobian matrix, i.e., the ecological interaction types between the 8 

species. Compared with the ground truth obtained from the relative yield (Fig. 5a), we find 

that 50 (78.13%) of the 64 signs were correctly inferred, 10 (15.62%) signs were wrong 

(denoted as ‘×’), and 4 (6.25%) signs cannot be determined (denoted as ‘?’) with the 

information provided by the 65 steady states (Fig. 5b).  

We notice that the relative yield of many incorrectly inferred interactions is weak 

(with the exception of d2W and d2|). We conjecture that these errors are caused by noise or 
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measurement errors in the experiments. To test this conjecture, we analyzed the robustness of 

each inferred }$< by calculating the percentage of unchanged }$< after adding perturbations to 

the samples (Fig. 5c). Similar to adding noise on simulated data, here we add noise to each 

non-zero entry #$C  of a sample )C  such that #$C → #$C + ij, where j~l[−#$C, #$C]. The more 

robust the inferred results are, the larger the percentage of unchanged signs as i is increased. 

We found that most of the inferred signs were robust: the percentage of unchanged signs 

remained nearly 80% up to noise level i = 0.3 (Fig. 5c). Specifically, Fig. 5d plots the 

percentage of unchanged signs of the inferred Jacobian matrix when i = 0.04. We found that 

even if the perturbation is very small, 5 of 10 false inferred }$< in Fig. 5c changed their signs 

very frequently (blue entries with false label in Fig. 5d). It demonstrated that those 

interactions were very sensitive to the difference of sample pairs, suggesting the validity of 

the hypothesis that some false inferences in Fig. 5c were caused by the noise.  

 

3. Conclusion 

We developed a new inference method to map the ecological networks of MCs using 

steady-state data. Our method can qualitatively infer ecological interaction types (signs) 

without specifying any population dynamics model. Furthermore, we show that steady-state 

data can be used to test if the dynamics of an MC can be well described by the classic GLV 

model. If yes, our method can quantitatively infer inter-species interaction strengths and the 

intrinsic growth rates.  

The proposed method bears some resemblance to previous network reconstruction 

methods based on steady-state data35. But we emphasize that, unlike the previous methods, 

our method does not require any perturbations applied to the system. For certain MCs such as 

the human gut microbiota, applying perturbations may raise severe ethical and logistical 

concerns. 

Note that our method requires the measurement of absolute taxon abundances. It fails 

on analyzing the relative abundance data. The compositionality of relative abundance profiles 
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also causes serious trouble for inference methods based on temporal data12,16. Fortunately, for 

certain small synthetic MCs, we can assess the total cell density by measuring the optical 

density (OD) and species fractions (relative abundance) can be determined by plating on 

nutrient agar plates34. For host-associated MCs, we can combine two sources of information 

to measure absolute abundances: (1) data measuring relative abundances of microbes, 

typically consisting of counts (e.g., high-throughput 16S rRNA sequencing data); and (2) data 

measuring overall microbial biomass in the sample (e.g., universal 16S rRNA quantitative 

PCR (qPCR)12,13. 

 In contrast to the difficulties encountered in attempts to enhance the informativeness 

of temporal data that are often used to infer ecological networks, the informativeness of 

cross-sectional data can be enhanced by simply collecting more steady-state samples with 

distinct taxa collection (For host-associated MCs, this can be achieved by collecting steady-

state samples from different hosts). Our numerical analysis suggests that the minimal number 

of samples with distinct taxa collections required for robust inference scales linearly with the 

taxon richness of the MC. Our analysis of experimental data from a small synthetic MC of 

eight species shows that collecting roughly one quarter of the total possible samples is 

enough to obtain a reasonably accurate inference. Furthermore, our numerical results suggest 

that this proportion can be significantly lower for larger MCs.  

This blessing of dimensionality suggests that our method holds great promise for 

inferring the ecological networks of large and complex real-world MCs, such as the human 

gut microbiota. There are two more encouraging facts that support this idea. First of all, it has 

been shown that the composition of the human gut microbiome remains stable for months and 

possibly even years until a major perturbation occurs through either antibiotic administration 

or drastic dietary changes36-39. The striking stability and resilience of human gut microbiota 

suggest that the collected samples very likely represent the steady states of the gut microbial 

ecosystem. Second, for healthy adults the gut microbiota displays remarkable universal 

ecological dynamics40 across different individuals. This universality of ecological dynamics 

suggests that microbial abundance profiles of steady-state samples collected from different 
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healthy individuals can be roughly considered as steady states of a conserved “universal gut 

dynamical” ecosystem and hence can be used to infer its underlying ecological network. 

We expect that additional insights into microbial ecosystems will emerge from a 

comprehensive understanding of their ecological networks. Indeed, inferring ecological 

networks using the method developed here will enable enhanced investigation of the 

stability41 and assembly rules42 of MCs as well as facilitate the design of personalized 

microbe-based cocktails to treat diseases related to microbial dysbiosis8.  
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Figure 1 | Inferring ecological interaction types for small MCs. The interaction types are coded as the sign-
pattern of the Jacobian matrix. a. For an MC of 2 taxa, its ecological network and the sign pattern of the 
corresponding Jacobian matrix are shown. b. There are three possible steady-state samples (shown as colored 
pie charts), and two of them ){2,R}, 	) 2  share taxon 1. We can calculate the green line that passes the origin and 
is perpendicular to the vector () 2,R − ) 2 ) (shown as a blue line segment). This green line crosses the origin, 
and two other orthants (shown in light cyan and green), offering a set of possible sign patterns: 0, 0 , (−, −) 
and (+, −), for which G2 = (sign 822 , sign(82R)) may belong to. Provided that 822 < 0, we conclude that G2 =
(−,+). c. For an MC of 3 taxa, its ecological network and the sign pattern of the corresponding Jacobian matrix 
are shown. d. There are seven possible steady-state samples, and we plot four of them that share taxon 1. 
Consider a line segment ){2,W} − ){2} (solid blue). We calculate the orange plane that passes the origin and is 
perpendicular to this solid blue line. This orange plane crosses 9 regions: the origin and the other 8 regions 
(denoted in different color cubes, color lines), offering 9 possible sign-patterns for G2. We can consider another 
line segment that connects two steady-state samples sharing taxon 1, say, ){2,W} and ){2,R,W}, and repeat the above 
procedure. We do this for all the sample pairs (dashed blue lines), record the regions crossed by the 
corresponding orthogonal planes. Finally, the intersection of the regions crossed by all those orthogonal 
hyperplanes yields a minimum set of sign-patterns N2 = 	 { −,0, + , 0,0,0 , +,0, − } that G2 may belong to. If 
we know that 822 < 0, then we can uniquely determine G2 = (−,0, +). 
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Figure 2 | Consistency check of the GLV model and the observed steady-state samples. For an MC 
following exactly the GLV dynamics, all its steady-state samples sharing one common taxon will align onto a 
hyperplane in the state space. a. Here we consider an MC of three taxa. There are four steady-state samples 
{){2}, ){2,R}, ){2,W}, ){2,R,W}} that share common taxon 1. Those four steady-state samples represent four points in 
the state space, and they align onto a plane (light red).  The normal vector of this plane is scalable to the first 
row P2 of the interaction matrix _ in the GLV model. Given any one of entries in P2, we can determine the 
exact values of all other entries. Otherwise, we can always express the inter-species interaction strengths \$< 
(A ≠ -) as a function of the intra-species interaction strength \$$. b. Here we again consider an MC of three taxa. 
Taxon-1 and taxon-2 follow the GLV dynamics, but taxon-3 doesn’t. Then those steady-state samples that share 
common taxon-3 will not align onto a plane anymore. Here we show the best fitted plane (in green) by 
minimizing the distance between this plane and the four steady states, with the coefficient of determination 
dR = 0.77. 
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 Figure 3 | Validation of inferring interaction types using simulated data. a-b: Consider a small MC of 0 =
8 taxa. We generate steady-state samples using four different population dynamics models: Generalized Lotka-
Volterra (GLV), Holling Type II (Holling II), DeAngelis-Beddington (DB) and Crowley-Martin (CM). We 
compare the performance of the brute-force algorithm (with solution space ~ 3f = 6,561) and the heuristic 
algorithm (with solution space ~ Ψ = 50 = 40). a. In the noiseless case, we plot the inference accuracy as a 
function of sample size Ω. b. In the presence of noise, we plot the inference accuracy as a function of the noise 
level i. Here the sample size is fixed: Ω = 50 = 40. c-d. We calculate the minimal sample size Ω∗ required for 
the heuristic algorithm to achieve high accuracy at different system sizes. We consider two different taxa 
presence patterns: uniform and heterogeneous (see insets). The simulated data is generated from the non-linear 
population dynamics (Holling II) without adding any noise. a-d: The underlying ecological network is generated 
from a directed random graph model with connectivity 0.4 (i.e., with probability 0.4 there will be a directed 
edge between any two taxa).  
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Figure 4 | Validation of inferring interaction strengths using simulated data. Here we simulate steady-state 
samples using the GLV model with intra-species interaction strengths set to be \$$ = −1. a-b. Comparing the 
inferred interaction strengths (and the growth rates) with the ground truth. Here the system size 0 = 50, and the 
noise is added to steady-state samples as follows: #-E 	→ #-E + i	j , where the random number j  follows a 
uniform distribution l[−#$C, #$C], and the noise level i = 0.1.  During the inference, we just assume that the 
intra-species interaction strengths \$$  follows a half-normal distribution. a. The inference using the Lasso 
regularization induces high false discovery rate (FDR) ~ 45.87%. b. For the same dataset, we use the knockoff 
filter to control the FDR below a certain level c = 0.2.  c. Here we calculate the minimal sample size Ω∗ 
required to correctly infer the interaction strengths in the ideal case: (1) noiseless i = 0; and (2) we know 
exactly \$$ = −1 . We consider two different taxa presence pattern: uniform and heterogeneous. a-c: The 
underlying ecological network is generated from a directed random graph model with connectivity 0.4. 
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Figure 5 | Inferring interaction types using experiment data. The steady-state samples are experimentally 
collected from a synthetic soil MC of eight bacterial species. Those steady-state samples involve 101 different 
species combinations: all 8 solos, 28 duos, 56 trios, all 8 septets, and 1 octet.  a. From the 8 solos (monoculture 
experiments) and 28 duos (pair-wise co-culture experiments), one can calculate the relative yield d$< , 
quantifying the promotion (positive) or inhibition (negative) impact of species A on species - . The absolute 
values shown in the matrix d = (d$<) indicate the strengths of promotion and inhibition effects. The sign pattern 
of this matrix serves as the ground truth of that of the Jacobian matrix associated with the unknown population 
dynamics of this MC. b. Without considering the 8 solos and 28 duos, we analyze the rest steady-state samples. 
We use the brute-force method to infer the ecological interaction types, i.e., the sign pattern of the Jacobian 
matrix. Blue (or red) means inhibition (or promotion) effect of species A on species -, respectively. The color 
depth of each entries represents the corresponding absolute value of relative yield shown in a. 10 signs were not 
correctly inferred, 4 signs are undetermined by the analyzed steady-state samples. c-d. The robustness of the 
inference results in the presence of artificially added noise: #-E 	→ #-E + ij, where the random number j follows 
a uniform distribution l[−#$C, #$C] , and i  is the noise level. c. At each noise level, we run 50 different 
realizations. We can see many of inferred 8$< remain their signs in the presence of noise up to noise level i=0.3. 
d. At i = 0.04 , we plot the percentage of unchanged signs for inferred Jacobian matrix in 50 different 
realizations. The ‘x’ labels correspond to the 10 falsely inferred signs shown in (b). We find that 5 of the 10 
falsely inferred results change their signs frequently even when the perturbation is very small, implying that the 
false inference in (b) could be due to measurement noise in the experiments.  
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