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ABSTRACT 

Meta-analyses of genome-wide association studies (meta-GWAS) and candidate gene studies 

have identified genetic variants associated with cardiovascular diseases, metabolic diseases, and 

mood disorders. Although previous efforts were successful for individual disease conditions 

(single disease), limited information exists on shared genetic risk between these disorders. This 

article presents a detailed review and analysis of cardio-metabolic diseases risk (CMD-R) genes 

that are also associated with mood disorders. Firstly, we reviewed meta-GWA studies published 

until January 2016, for the diseases "type 2 diabetes, coronary artery disease, hypertension" 

and/or for the risk factors "blood pressure, obesity, plasma lipid levels, insulin and glucose 

related traits". We then searched the literature for published associations of these CMD-R genes 

with mood disorders. We considered studies that reported a significant association of at least one 

of the CMD-R genes and "depressive disorder" OR "depressive symptoms" OR "bipolar 

disorder" OR "lithium treatment", OR "serotonin reuptake inhibitors treatment". Our review 

revealed 24 potential pleiotropic genes that are likely to be shared between mood disorders and 

CMD-Rs. These genes include MTHFR, CACNA1D, CACNB2, GNAS, ADRB1, NCAN, REST, 

FTO, POMC, BDNF, CREB, ITIH4, LEP, GSK3B, SLC18A1, TLR4, PPP1R1B, APOE, CRY2, 

HTR1A, ADRA2A, TCF7L2, MTNR1B, and IGF1. A pathway analysis of these genes revealed 

significant pathways: corticotrophin-releasing hormone signaling, AMPK signaling, cAMP-

mediated or G-protein coupled receptor signaling, axonal guidance signaling, serotonin and 

dopamine receptors signaling, dopamine-DARPP32 feedback in cAMP signaling, circadian 

rhythm signaling and leptin signaling. Our findings provide insights in to the shared biological 

mechanisms of mood disorders and cardio-metabolic diseases.  

Keywords: Depression, bipolar disorder, pleiotropy, pathway, cardio-metabolic diseases  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2017. ; https://doi.org/10.1101/150615doi: bioRxiv preprint 

https://doi.org/10.1101/150615


3 
 

INTRODUCTION 

Major depressive disorder (MDD), bipolar disorder (BPD), coronary artery diseases, type 2 

diabetes and hypertension are amongst the major causes of disability, morbidity and mortality 

worldwide (1, 2). While each of these conditions independently represent a major burden facing 

the health-care systems (1-3), their co-occurrence (co-morbidity) aggravates the situation and 

represents a challenge in psychosomatic medicine. Epidemiologically, MDD and BPD are bi-

directionally associated with cardio-metabolic diseases (4, 5). One explanation for these 

relationships could be the presence of pleiotropic (common) genes and shared biological 

pathways that function as a hub encoding for proteins connecting the disorders. Potential 

common biological mechanisms underlying mood disorders and cardio-metabolic disease 

comorbidity have been proposed, including altered circadian rhythms (6), abnormal 

hypothalamic-pituitary-adrenal axis (HPA axis) function (7), imbalanced neurotransmitters (8), 

and inflammation (5). However, the molecular drivers of these commonly affected mechanisms 

remain poorly understood.  

 The genetics of mood disorders and cardio-metabolic diseases  

Major depression, bipolar disorder and cardio-metabolic diseases are highly heritable and caused 

by a combination of genetic and environmental factors. Genetic factors contribute to 31-42% in 

MDD (9), 59% - 85% in BPD (10, 11), 30-60% in coronary artery diseases (12), 26-69% in type 

2 diabetes (13, 14), 24-37% in blood pressure (15), 40–70% in obesity (16), and 58-66% in 

serum lipids level (17). Moreover, twin studies have revealed high genetic co-heritabilities 

(genetic correlations) between mood disorders and the different cardio-metabolic disorders 

suggesting the influence of pleiotropic genes and shared biological pathways among them. For 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2017. ; https://doi.org/10.1101/150615doi: bioRxiv preprint 

https://doi.org/10.1101/150615


4 
 

instance, the genetic correlation of depression with hypertension is estimated to be 19%, and 

between depression and heart disease is about 42% (18). The genetic correlation of depressive 

symptoms with plasma lipids level ranges from 10% to 31% (19), and 12% of the genetic 

component for depression is shared with obesity (20).  

 

In the last decade, substantial amounts of univariate (single disease) meta-GWA studies and 

candidate gene studies have been published. Indeed, the meta-GWA studies and candidate gene 

studies have successfully identified a considerable list of candidate genes for major depressive 

disorder (21, 22), bipolar disorder (23), coronary artery diseases (24), type 2 diabetes (25), 

hypertension (26), obesity (27), plasma lipids level (28), insulin and glucose traits (25, 29, 30), 

and blood pressure (26, 31).  

 

Despite the potential significance of studying pleiotropic genes and shared biological pathways, 

previous meta-GWAS and candidate gene studies were entirely focused on a single phenotype 

approach (single disease). A recent analysis of SNPs and genes from the NHGRI GWAS 

catalogue (32) has showed as 16.9% of the genes and 4.6% of the SNPs have pleiotropic effects 

on complex diseases (33). Considering such evidence, we hypothesized that common genetic 

signatures and biological pathways mediate the mood disorders to cardio-metabolic diseases 

relationship. Additionally, these genes and their signalling pathways can influence the response 

to treatments in mood disorder patients (figure 1). In this review, we systematically investigated 

the CMD-R genes that are possibly associated with mood disorders susceptibility, and with 

treatment response to MDD and BPD. We performed pathway and gene network analyses of 

these genes to provide additional insights in to the common pathways and biological mechanisms 
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regulating mood disorders and the CMD-Rs. Understanding of these common pathways may 

provide new insights and novel ways for the diagnosis and treatment of comorbid cardio-

metabolic and mood disorders. 
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Figure 1. Schematic model of the potential pleiotropic effects of a shared gene locus that is associated with mood disorders and cardio-

metabolic diseases. The red bold lines represent the pleiotropic effect of a genetic locus on CMD-Rs, MDD, BPD and treatment response in 

MDD and BPD. The bidirectional arrows indicate bidirectional relationships. MDD: Major depressive disorder, BPD: Bipolar disorder, 

CMD-Rs: cardio-metabolic diseases and risk factors.  
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METHODS AND MATERIALS  

SEARCH STRATEGY 

Step 1: Identification of published candidate genes for cardio-metabolic diseases 

We carried out a systematic search of candidate genes for the cardio-metabolic diseases 

and/or associated risk factors. The National Human Genome Research Institute (NHGRI) 

GWAS catalogue (32), Westra et al., 2013 (34) and Multiple Tissue Human Expression 

Resource (MuTHER)(35) databases were used to identify the CMD-R genes. We reviewed 

meta-GWA study papers published until January 2016 for the diseases "type 2 diabetes" OR 

"coronary artery disease" OR "hypertension" and (or) for the risk factors "blood pressure"OR 

"obesity or body mass index (BMI)" OR "plasma lipid levels (high-density lipoprotein, low-

density lipoprotein, triglycerides, total cholesterol)" OR "insulin and glucose related traits 

(fasting glucose, fasting insulin, fasting proinsulin, insulin resistance-HOMA-IR), beta cell 

function-HOMA-β and glycated haemoglobinA1C-HbA1C)".  

GWAS significant SNPs information (lead SNPs, reported genes, author (s), PubMed ID, 

date of publication, journal, discovery and replication sample sizes) was downloaded from 

the GWAS catalogue database. Additional information about the effect of the lead SNPs on 

nearby gene expression (cis-eQTLs) was collected from their respective publications. For the 

SNPs with no cis-eQTL information in their respective publications, we performed 

expression quantitative trait loci (cis-eQTL) analysis to verify the functional relationship 

between the reported genes and the lead SNPs using two publicly available databases: Westra 

et al., 2013 (34), and MuTHER (35). A CMD-R gene was considered as a candidate gene if, 

1) it was nearby to the lead SNP and its expression was influenced by the lead SNP (cis-

eQTL); or 2) the genes were biologically well known to influence at least one of the CMD-
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Rs. We took the identified CMD-R genes forward for the second literature review, as 

described below. 

Step 2: Exploration of the role of cardio-metabolic genes in mood disorders 

In the second systematic review, we conducted a literature search in PubMed (MEDLINE 

database) for any genome wide association, candidate gene, or gene expression analysis study 

published in the fields of mood disorders and mood disorders pharmacogenetics until January 

2016. We considered studies that reported at least one of the CMD-R genes for "depressive 

disorder" OR "depressive symptoms" OR "bipolar disorder" OR "mood disorder" OR 

"lithium treatment", OR "Selective Serotonin Reuptake Inhibitors (SSRIs) treatment".  

BIOLOGICAL PATHWAY AND NETWORK ANALYSIS  

The potential pleiotropic genes were further explored to identify the most enriched canonical 

pathways and visualize gene networks using QIAGEN's Ingenuity® Pathway Analysis 

(IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity). For the analysis, all the 

twenty-four potential pleiotropic genes were entered into the software. IPA compares the 

proportion of input genes mapping to a biological pathway to the reference genes in the 

Ingenuity databases. The significance of the overrepresented canonical pathways were 

determined using the right-tailed Fisher"s exact test. After correction for multiple testing, 

significance levels were expressed as the IPA p-value. A gene networks that connects the 

input genes with MDD, BPD and the cardio-metabolic disorders was also generated. 
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RESULTS 

Characteristics of meta-GWA studies for the cardio-metabolic disorders  

The literature search in the GWAS catalogue yielded 153 meta-GWA studies for the CMD-

Rs: 38 studies for type 2 diabetes, 17 studies for coronary artery disease, 15 studies for 

hypertension and blood pressure, 26 studies for obesity (BMI), 37 studies for lipids and 20 

studies for glucose and insulin traits (figure 2). As shown in figure 2, the meta-GWA studies 

reported 1047 lead SNPs and 682 nearby genes. Of these, 123 genes were biologically 

relevant to the cardio-metabolic diseases and associated risk factors. These genes were 

reviewed for their association with mood disorders and pharmacogenetics of mood disorders. 

Twenty-four of the 123 genes have been implicated in mood disorders and/or 

pharmacogenetics of mood disorders; and we named these genes the Cardio-Metabolic Mood 

disorders hub (CMMDh) genes. 

Table-1 summarizes the 24 CMMDh genes and specific genetic variants across mood 

disorders and cardio-metabolic diseases. These genes are MTHFR, CACNA1D, CACNB2, 

GNAS, ADRB1, NCAN, REST, FTO, POMC, BDNF, CREB, ITIH4, LEP, GSK3B, SLC18A1, 

TLR4, PPP1R1B, APOE, CRY2, HTR1A, ADRA2A, TCF7L2, MTNR1B, and IGF1 (for further 

details see table 1). These genes were over-represented in the following biological pathways; 

corticotrophin-releasing hormone signaling (BDNF, CREB1, GNAS, POMC); AMPK 

signaling (ADRA2A, ADRB1, CREB1,GNAS, LEP); cAMP-mediated and G-protein coupled 

receptor signaling (ADRA2A, ADRB1, CREB1, GNAS, HTR1A); axonal guidance signaling 

(BDNF, GNAS, GSK3B, IGF1); serotonin and dopamine receptors signaling (GNAS, HTR1A, 

SLC18A1, PPP1R1B); dopamine-DARPP32 feedback in cAMP (PPP1R1B, CACNA1D, 

CREB1, GNAS); leptin signaling (GNAS, LEP, POMC) and the circadian rhythm 

signaling(CRY2,CREB1) (table 2).  
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Figure 2: The flow chart shows the stages of literature search and evaluation of candidate 

pleiotropic genes for the CMD-Rs and mood disorders. CMD-R genes refers to the genes that 

were biologically well-known to influence at least one of the CMD-Rs or those genes nearby 

to the lead SNPs and their expression was influenced by the lead SNPs (cis-eQTL).  

CMD-R: Cardio-metabolic diseases and associated risk factors, MuTHER: Multiple Tissue 

Human Expression Resource, CMMDh: Cardio-Metabolic Mood Disorders hub genes, Cis-

eQTL: Cis (nearby) gene expression quantitative trait loci. 
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Table 1: An overview of the 24 CMMDh genes shared between mood disorders and the cardio-metabolic diseases 

Pleiotropic 

genes 

Function of the coded 

protein 

Polymorphisms associated with 

Cardio-metabolic disorders (lead 

SNP) 

Mood disorders (description) 

MTHFR 

 

Part of the process to build 

amino-acids and to form 

vitamin folate 

Blood pressure 

rs17367504-G/A (36)  

 

The common MTHFR C677T was associated with depression 

(37), and BPD (38). MTHFR gene polymorphisms interaction 

with childhood trauma increases the risk for depression (39). 

CACNA1D 

 

Mediates the entry of calcium 

ions into cells 

Blood pressure and hypertension 

rs9810888-G/T (26)  

Rare variants in the calcium channel genes (CACNA1B, 

CACNA1C, CACNA1D, CACNG2) contribute to BPD (40) 

and may influence treatment response to lithium (41).  

CACNB2 

 

 

 

Mediates the entry of calcium 

ions into cells 

Blood pressure  

rs4373814-G/C (31) 

rs12258967-G/C (36) 

rs11014166-A/T (42)  

CACNB2 gene polymorphisms were implicated in MDD and 

BPD (43). 

GNAS 

 

Control the activity of 

endocrine glands through 

adenylate cyclase enzyme 

Blood pressure and hypertension 

rs6015450-G/A (31)  

 

SNPs in the GNAS gene were associated with BPD 

(rs6064714, rs6026565, rs35113254) (44) and may influence 

antidepressant treatment response (45). 

ADRB1 

 

Mediates the effects of 

epinephrine and 

norepinephrine 

Blood pressure  

rs2782980-T/C (36)  

Gly389 polymorphism of the beta-1 adrenergic receptor might 

lead to better response to antidepressant treatment in patients 

with MDD (46)  
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REST 

 

Regulate neurogenesis Coronary artery disease  

rs17087335-T/G (24)  

Reduced expression of REST in MDD patients at depressive 

state (47), and alteration in the expression of the REST gene 

was revealed in the brain of women with MDD (48).  

LEP 

 

Regulate body weight Type 2 diabetes  

rs791595-A/G (49)  

SNPs in the leptin gene, decreased leptin gene expression and 

leptin deficiency in serum were related to antidepressant 

resistance (50). A significant reduction of the mRNA 

expression was found in the brain of MDD and suicidal 

patients (51). 

ADRA2A Regulate neurotransmitter 

release from sympathetic 

nerves and from adrenergic 

neurons in the central nervous 

system 

Type 2 diabetes or fasting glucose 

rs10885122-G/T (25)  

ADRA2A gene polymorphisms (ADRA2A-1291G-male, 

ADRB2 Arg-female) were associated with sex-specific MDD 

(52), predicted antidepressant treatment outcome in MDD 

(53), and modified the effect of antidepressants for better 

improvement (54). However, they increased suicidal ideation 

during antidepressant treatment (55). Treatment with lithium 

produced an over expression of the ADRA2A gene in rats 

brain (56). 

TCF7L2 Regulate blood glucose 

homeostasis 

Type 2 diabetes  

rs7903146-T/C (57)  

Fasting glucose, proinsulin, insulin 

levels, or insulin resistance 

rs7903146-T/C (29)  

Genome-wide association study of BPD in European 

Americans identifies a new risk allele (rs12772424-A/T) 

within the TCF7L2 gene (58)  
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rs4506565-T/A (25, 30) 

HTR1A 

 

Receptor for serotonin Fasting insulin or insulin resistance  

rs16891077-A/G (59)  

Variants in the HTR1A gene (rs6295, rs878567) were related 

to MDD and BPD (60, 61). A significant decrease in HTR1A 

mRNA levels in the brain of patients with MDD and BPD was 

found(62). Other polymorphisms (5-HT1A-1019G, 

Gly272Asp) in this gene were associated with antidepressant 

treatment response in MDD (63-65) and in BPD (64). 

Increased DNA methylation in the promoter region of the 

HTR1A gene was also observed in patients with BPD (66).  

CRY2 Regulates the circadian clock Fasting glucose or insulin  

 rs11605924-A/C (25, 30)  

Polymorphisms in CRY2 gene were significantly associated 

with MDD (67) and BPD (67, 68). 

MTNR1B 

 

Receptor for melatonin that 

participate in light-dependent 

functions in the retina and 

brain. May be involved in the 

neurobiological effects of 

melatonin 

Type 2 diabetes or plasma glucose 

level  

rs3847554-C/T (30)  

rs10830962-C/G (69) 

 rs2166706-T/C (70) 

rs10830963-G/C (25)  

rs1387153-T/C (71, 72)  

Gałecka et al. 2011 reported the significance of the MTNR1B 

gene polymorphism (rs4753426) for recurrent MDD (73). 

Additional SNP on the MTNR1B gene (rs794837) increased 

mRNA level in MDD patients (73).  
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IGF1 

  

Involved in mediating body 

growth and development 

Fasting insulin, fasting glucose, or 

glucose homeostasis  

rs35767-G/A (25),  

rs35747-G/A (30)  

Elevated levels of IGF-I was associated with MDD and 

antidepressant treatment response (74). A long-term 

deficiency of IGF-1 in adult mice induced depressive 

behaviour (75). Polymorphisms in the IGF1 gene increased 

BPD risk (76). An over-expression of IGF1 gene of BPD 

patients who respond well for lithium treatment was also 

reported (77).  

FTO 

 

Regulates energy 

homeostasis, contributes to 

the regulation of body size 

and body fat accumulation  

Obesity  

rs7185735-G/A (27, 78)  

Type 2 diabetes 

rs9936385-C/T (57) 

HDL or triglycerides  

rs1121980-A/G (28)  

The FTO gene variant (rs9939609-A/T) was associated with 

depression (79). Other variants of the FTO gene were 

involved in the mechanism underlying the association 

between mood disorders and obesity(80).  

POMC 

 

Maintain the body"s energy 

balance and control sodium in 

the body  

Obesity (BMI)  

rs713586-C/T (81) 

rs1561288-T/C (82)  

rs10182181-G/A (78)  

Genetic variants in this gene were involved in treatment 

response to SSRIs (escitalopram or mirtazapine) in MDD 

patients (83).  

ITIH4 

 

Involved in inflammatory 

responses  

Obesity (BMI)  

rs2535633-G/C (84)  

Genetic variants located in the regions of ITIH1, ITIH3, ITIH4 

genes were associated with BPD (23), and suicidal attempt in 

BPD patients (85). 
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TLR4 Pathogen recognition and 

activation of innate immunity 

Obesity (BMI)  

rs1928295-T/C (27)  

 

The mRNA levels of the TLR3 and TLR4 genes were 

increased in depressed suicidal patients (86). TLR4 gene 

expression was related to severity of major depression (87).  

BDNF Promotes the survival of 

nerve cells 

Obesity (BMI)  

rs2030323-C/A (27, 78)  

rs925946-T/G (88) 

rs10767664-A/T (81)  

The Val66Met polymorphism was associated with depressive 

disorder (89), BPD (90) and suicidal behavior in depressed 

and BPD patients (91, 92). It was also associated with SSRIs 

(escitalopram) response in depressed patients (93). A 

significantly decreased expression of the BDNF gene was 

observed in the lymphocytes and platelets of depressed 

patients (94). Treatment responsive depressive patients have 

also shown a decreased mRNA levels of the BDNF gene (95). 

CREB1 

  

Involved in different cellular 

processes including the 

synchronization of circadian 

rhythmicity and the 

differentiation of adipose cells 

Obesity  

rs17203016-G/A (27)  

 

SNPs within this gene were associated with MDD risk in 

women (96) and antidepressants treatment resistance in MDD 

patients (97). An interaction of CREB1 gene variants with 

BDNF variants predicted response to paroxetine (98). The 

CREB1 gene variants (rs6785, rs2709370) increased BPD 

susceptibility (99) and other SNPs on CREB1 were suggested 

for BPD and lithium response (100). 

NCAN 

 

 

Modulation of cell adhesion 

and migration 

Total cholesterol  

rs2304130-G/A (101) 

LDL cholesterol 

A SNP (rs1064395) in NCAN gene was found to be a risk 

factor for BPD in the European population (104). This SNP 

might resulted in a structural change of the brain cortex 
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 rs16996148-G/T (102) 

rs10401969-C/T (103) 

Triglycerides  

rs17216525-T/C (103) 

rs16996148-G/T (102)  

folding (105)  

GSK3B 

 

Energy balance, metabolism, 

neuronal cell development, 

and body pattern formation 

HDL cholesterol 

rs6805251-T/C (28)  

Higher GSK3B activity was observed in MDD patients with 

severe depressive episode (106). Polymorphisms of this gene 

(rs334555, rs119258668, rs11927974) were implicated in 

MDD (107). In addition, rare variants in GSK3B gene 

increased BPD risk (108, 109). The GSK3B is a target gene 

for several mood stabilizers including lithium (110, 111). 

SLC18A1 

 

 

Accumulate and transport 

neurotransmitters 

Triglycerides 

rs9644568-A/G (112)  

rs79236614-G/C (113) 

 rs326-A/G (114)  

Variations in the SLC18A1 (rs988713, rs2279709, Thr136Ser) 

gene confer susceptibility to BPD (115). 

PPP1R1B A target for dopamine HDL cholesterol 

 rs11869286-G/C (28) 

DARPP-32 decreased in the prefrontal cortex of BPD patients 

(116), increased expression was also shown in BPD (117).  

APOE 

  

Maintaining normal levels of 

cholesterol 

HDL, LDL or total cholesterol 

rs4420638-A/G (28)  

rs1160985-C/T (118)  

 rs519113-C/G (119)  

Genetic variation at the APOE gene contributed to depressive 

symptoms (120). 
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CMD-R: Cardio-metabolic diseases and associated risk factors; SNP: Single nucleotide polymorphism; HDL: High-density lipoprotein; LDL: 

Low-density lipoprotein; BPD: bipolar disorder; MDD: Major depressive disorder
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Figure 2: IPA-generated network of genes, as indicated by the dashed lines, shared between 

coronary artery diseases, hypertension, diabetes mellitus, obesity, MDD and BPD, highlighting 

CMMDh genes that were related to bipolar disorder (orange) and depression (red).  
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Table 2: The top canonical signaling pathways enriched for the cardio-metabolic mood disorders 

hub genes 

Canonical pathways Enriched genes P-value  

Corticotrophin releasing hormone  BDNF, CREB1, GNAS, POMC 7.77x10-6 

AMPK signaling  ADRA2A, ADRB1, CREB1, GNAS, LEP 1.68x10-6 

cAMP-mediated ADRA2A, ADRB1, CREB1, GNAS, HTR1A 4.65x10-6 

G-Protein coupled receptor  9.92x10-6
 

Dopamine-DARPP32 feedback in 

cAMP  

CACNA1D, CREB1, GNAS, PPP1R1B 

 

3.36x10-5 

Serotonin receptor  GNAS, HTR1A, SLC18A1 1.78x10-5 

Dopamine receptor  SLC18A1, GNAS, PPP1R1B 9.94x10-5 

Axonal guidance  BDNF, GNAS, GSK3B, IGF1 1.47X10-3 

Leptin signaling  GNAS, LEP, POMC 8.5x10-5 

Cardiac hypertrophy  

 

ADRA2A, ADRB1, CACNA1D, CREB1, 

GNAS, GSK3B, IGF1 

4.65x10-9 

Circadian rhythm signaling CRY2,CREB1 6.7x10-4 

 

The table shows the top canonical pathways and enriched CMMDh genes as identified by IPA 

(P<0.05). The P-value indicates the likelihood of finding gene enrichment of the given pathway 

by chance. 

AMPK: 5' adenosine monophosphate-activated protein kinase, cAMP: Cyclic Adenosine 3',5'-

monophosphate, CMMDh: Cardio-Metabolic Mood Disorders hub genes. 
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DISCUSSION  

This is the first cross-disorder review that systematically evaluated candidate pleiotropic genes 

and biological pathways that are likely to be shared with mood disorders, cardiovascular diseases 

and metabolic disorders. We revealed 24 cardiovascular and metabolic disease genes implicated 

in either depression, bipolar disorder or both. These genes belong to interrelated signaling 

pathways important in the hypotheses of both cardio-metabolic diseases and mood disorders: 

corticotrophin-releasing hormone signaling, AMPK signaling, cAMP-mediated and G-protein 

coupled receptor signaling, axonal guidance signaling, serotonin and dopamine receptors 

signaling, dopamine-DARPP32 Feedback in cAMP signaling, leptin signaling and circadian 

rhythm signaling. 

The corticotrophin-releasing hormone (CRH) signaling is one of the top canonical pathways that 

may underlie the link between CMD-Rs and mood disorders. The CRH signaling pathway 

comprises of CRH, CRH receptors (CRHR1, CRHR2), and other CRH-related peptides. It is the 

principal regulator of the hypothalamic–pituitary–adrenal (HPA) axis. There are consistent 

findings in the literature that support the role of the HPA axis dysregulation in mediating the risk 

of mood disorders and cardiovascular outcome (121). Our analysis found enriched CMMDh 

genes in the CRH signaling pathways (BDNF, CREB1, GNAS, POMC). Genetic variants of the 

genes for BDNF, CREB1, GNAS, and POMC increased the risk of MDD (89, 96), BPD (44), 

obesity (27, 81), blood pressure and hypertension (31, 36). These genes could be stress 

responsive, and their activity could be modulated through the activation of the HPA-axis. In 

animal studies, the expression of BDNF (122) and CREB1 (123) genes was dysregulated by 

chronic stress. It is therefore possible that an interaction of BDNF, CREB1, GNAS, and POMC 

genes with exposure to chronic stress or traumatic life events increase the risk of cardio-
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metabolic and mood disorders either simultaneously, or through mediating factors. The CRH 

signaling pathway is an important mediator of stress responses (124). Following an exposure to 

stress, the hypothalamus releases CRH, stimulating secretion of adrenocorticotrophic hormone 

(ACTH) from the anterior pituitary gland ACTH. This in turn stimulates the adrenal gland to 

produce glucocorticoids (principally cortisol). Cortisol will then act on several organs including 

the brain through its receptors (124). In acute conditions, the production of cortisol helps the 

body to fight pathogens (stress) and alleviate inflammation. However, when stressors are long 

lasting (chronic) they can cause cortisol receptor resistance and failure of the HPA-axis negative 

feedback mechanism. This increases the duration and chronicity of inflammation, and a failure to 

down-regulate the inflammatory response. Ultimately, failure in the HPA-axis processes may 

cause dysfunctions in the brain and body, causing both somatic and brain disorders. Hence, it is 

imperative to recognize the sources of the stress, especially chronic stress. Stress can either 

originate from the external environment as chronic extrinsic stress (CES) or within the internal 

body system as chronic intrinsic stress (CIS). Both CES and CIS can influence the CRH pathway 

genes mainly through gene expression and DNA methylation mechanisms (125). In relation to 

stress, there are two possibilities to explain mood disorders to cardio-metabolic diseases 

association. The first is that the human body system may consider the CMD-Rs as CIS and then 

dysregulate the HPA-axis through the CRH signaling pathway. Another possibility is that CES 

and/or CIS interact with the CRH signaling genes to cause both CMD-Rs and mood disorders. In 

either of the conditions, the CRH signaling genes interacts with the stressors to cause a 

dysfunction in the HPA-axis. 
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The second main canonical pathway was the adenosine monophosphate-activated protein kinase 

(AMPK) signaling pathway. This pathway regulates the intercellular energy balance. It inhibits 

or induces ATP consuming and generating pathways as needed. This pathway is especially 

important for nerve cells, as they need more energy with small energy reserves (126). 

Abnormalities in the pathway can disturb normal brain functioning. In animal studies, Zhu et al., 

2014 showed chronically stressed mice developed symptoms related to mood and metabolic 

abnormalities, such as significant weight gain, heightened anxiety, and depressive like behavior. 

They also reported decreased levels of phosphorylated AMP-activated roteinkinase α (AMPKα), 

confirming the involvement of the AMPK pathway and its regulatory genes in metabolic 

disorders and depression (127). Recent studies also reported the activation of the AMPK 

pathway in rat hippocampus after ketamine treatment exerting rapid antidepressant effect (128). 

Major contributing CMMDh genes enriched in the AMPK pathway were ADRA2A, ADRB1, 

LEP, CREB1 and GNAS genes. Variations in one or more of these genes can influence the 

activity of the AMPK pathway, subsequently impairing energy homeostasis in the brain and 

possibly in other cells (126). This can later cause energy shortage for the brain and somatic cells. 

Since brain cells are the most vulnerable units that require substantial amount of energy supply, 

any energy shortage would severely affect first the brain. Symptoms of mood change such as 

depressive behavior can be observed during this process. Moreover, AMP activation, for instance 

during stress, could induce insulin resistance promoting metabolic syndrome i.e. obesity, 

diabetes and cardiovascular diseases (129, 130). Hence, it is very likely that inappropriate 

activity of the AMPK pathway can imbalance the energy needs of the cells and be a cause to 

mood disorders and cardio-metabolic diseases. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted June 15, 2017. ; https://doi.org/10.1101/150615doi: bioRxiv preprint 

https://doi.org/10.1101/150615


24 
 

Axonal guidance signaling was also among the top overrepresented canonical pathways. Axonal 

guidance signaling is related to neuronal connections formed by the extension of axons, which 

migrate to reach their synaptic targets. Axon guidance is an important step in neural 

development. It allows growing axons to stretch and reach the next target axon to form the 

complex neuronal networks in the brain and throughout the body. The patterns of connection 

between nerves depend on the regulated action of guidance cues and their neuronal receptors that 

are themselves encoded by axonal guidance coding genes. Activation of specific signaling 

pathways can promote attraction or repulsion and affect the rate of axon extension. One 

important observation in the axonal guidance pathway is the role of calcium and voltage-

dependent calcium channels. The pathway is regulated by the entrance of calcium through the 

plasma membrane and release from intracellular calcium store. Calcium has been implicated in 

controlling axon outgrowth (131). CMMDh genes overrepresented in the axonal guidance-

signaling pathway include the BDNF, GNAS, GSK3B, and IGF1 genes. Mutant axonal guidance 

genes followed by abnormal axon guidance and connectivity could cause a disorder primarily in 

the brain and subsequently to the peripheral organs (132). 

Other strong candidate mechanisms underlying mood disorders and cardio-metabolic diseases 

are the serotonin and dopamine receptors signaling pathways. The serotonin pathway is mainly 

regulated by serotonin and its receptors known as 5-hydroxytryptamine (5-HT) receptors. 

Serotonin is a monoamine neurotransmitter synthesized in the central nervous system and its 

signaling modulates several physiological processes including regulation of appetite, mood and 

sleep, body temperature and metabolism. The SLC18A1, HTR1A and GNAS gene were among 

the CMMDh genes involved in the serotonin receptor-signaling pathway. The SLC18A1 gene 

encodes for the vesicular monoamine transporter that transports for monoamines. Its proper 
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function is essential to the correct activity of the monoaminergic systems that have been 

implicated in several human neuropsychiatric disorders (133). The HTR1A gene encodes a 

receptor for serotonin, and it belongs to the 5-hydroxytryptamine receptor subfamily. 

Dysregulation of serotonergic neurotransmission has been suggested to contribute for the 

pathogenesis of mood disorders (60, 61) and it is implicated in the action of selective serotonin 

reuptake inhibitors (63-65). Moreover, animal studies have consistently demonstrated the 

influence of the serotonin pathway on both mood disorders and cardio-metabolic disorders. Ohta 

et al., 2011 have previously revealed as there is a converge in insulin and serotonin producing 

cells that can lead to metabolic diseases (diabetes) and mood disorders (134). The products of the 

insulin-producing cells (beta-islet cells) are involved to express the genes that synthesize 

serotonin, and serotonin also plays a role in the synthesis of insulin in the beta-islet cells (134).  

The dopamine receptors pathway, centrally regulated by dopamine, also appears to underlie the 

relationship between mood disorders and cardio-metabolic diseases. Dopamine serves as a 

chemical messenger in the nervous system and its signaling plays important roles in processes: 

emotion, positive reinforcement, motivation, movement, and in the periphery as a modulator of 

renal, cardiovascular and the endocrine systems (135). The SLC18A1 and GNAS genes are 

among the CMMDh genes that belong to this pathway. The dopamine-signaling pathway further 

induces the dopamine-DARPP32 Feedback in cAMP signaling. The central regulator of this 

pathway is the PPP1R1B gene that encodes a bifunctional signal transduction molecule called 

the dopamine and cAMP-regulated neuronal phosphoprotein (DARPP-32). Other important 

CMMDh genes in this pathway include CACNA1D, CREB1, and GNAS. The CACNA1D gene 

encodes the alpha-1D subunit of the calcium channels that mediates the entry of calcium ions 
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into excitable cells. Calcium channel proteins are involved in a variety of calcium-dependent 

processes, including hormone or neurotransmitter release, and gene expression (136).  

We also performed a gene network analysis of the CMMDh genes to the mood disorders and 

cardio-metabolic diseases. Based on the network analysis, the CMMDh genes were centrally 

involved in the link between mood disorders and the cardio-metabolic diseases. For instance, 

ADRB1 and ADRA2A genes linked the four most common cardio-metabolic diseases (coronary 

diseases, hypertension, diabetes, obesity) with BPD and depressive disorder. The CACNB2 and 

CACNA1D genes have shown network with coronary diseases, hypertension, diabetes, BPD and 

depression. Similarly, the other CMMDh genes acted as a hub between at least one of the cardio-

metabolic disorders and BPD and/or depression (figure 2).  

Overall, genes that encode for molecules involved in HPA-axis activity, circadian rhythm, 

inflammation, neurotransmission, metabolism and energy balance were found to play a central 

role to link mood disorders with cardio-metabolic diseases. It is also worth noting the impact of 

the environment, such as the CES and CIS, on the genes associated with these diseases. First, it 

could be that cardio-metabolic disorders and associated risk factors alter the intrinsic body 

environment, and this change interacts with the genes to cause mood disorders or influence 

treatment response in patients with mood disorders. Second, a biochemical change following the 

mutation of genes could result in both disease conditions simultaneously.  

IMPLICATIONS OF THE REVIEW FINDINGS 

Knowledge of genes and molecular pathways that are shared between mood disorders and 

cardio-metabolic disorders could have several important implications for future research and 

clinical practice. It is expected that increasing sample size, and consequently increasing power, 
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will identify many more of these variants in the near future. Here we identify four implications 

of our findings. 

Firstly, the identification of shared molecular pathways implicated in disease susceptibility 

supports a growing evidence base for cross-diagnostic treatment paradigms. Shared molecular 

pathways could help explain recent findings of reduced cardiovascular mortality (137), or 

improved diabetic control (138), in MDD patients treated with SSRIs. Secondly, further 

exploration of overlapping molecular pathophysiology has the potential to unveil novel targets 

for drug development, and may give clues for the re-purposing of existing medications.  

Thirdly, cardio-metabolic disorders are associated with an increased risk of poor response to 

standard treatments in mood disorders (139, 140). Genetic profiling for cardio-metabolic risk and 

stratified diagnosis of patients may help to classify treatment responders and treat them 

accordingly, thereby reducing the costs of ineffective exposure to medicines for the individuals 

and for the society. Early identification of at-risk individuals would also guide practitioner"s 

treatment recommendations, which may involve alternative somatic (e.g. electroconvulsive 

therapy, repetitive Transcranial Magnetic Stimulation, ketamine) or specific psychological 

therapies as first- or second line treatments.  

Fourthly, studying the mechanisms of pleiotropic genes and shared pathways of mood disorders 

and somatic diseases could help untangle the clinical and genetic heterogeneity that characterizes 

these illnesses. It is possible that a "cardio-metabolic" endophenotype exists among mood 

disorders patients that may be identifiable through genetic profiling or analysis of blood protein 

biomarkers. Preliminary evidence for such a phenotype, approximating the concept of "atypical 

depression" characterized by increased appetite, weight gain, and increased need for sleep, is 
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emerging(141, 142). Working towards personalized care that allows for precise diagnostic, 

treatment and prevention strategies, research could then focus on genetically stratified patient 

cohorts instead of the very diverse patient pool currently diagnosed with MDD or BPD. There is 

a growing consensus that such stratification approaches have the potential to substantially 

improve the quality of mental health research and mental healthcare over the coming decades 

(143).  

Our review has limitations. Perhaps the most fundamental limitation was that almost all of the 

reviewed studies were performed in a univariate manner (single diseases approach). Secondly, 

the review included studies that reported positively associated genes, and neither negative 

findings nor inconsistent evidences were assessed. Thirdly, only meta-GWA studies were 

reviewed for the CMD-Rs. Hence, our review should be viewed as complementary to future 

mood disorders to cardio-metabolic diseases gene investigation, providing an initial thorough 

summary of potential pleiotropic genes. 

CONCLUSION 

Our review revealed potential pleiotropic genes and biological pathways that are likely to be 

shared between mood disorders and cardio-metabolic diseases. While our review provides some 

insight into common mechanisms and the role of pleiotropic genes, in-depth understanding of 

how these genes (and possibly others) mediate the association between mood disorders and 

cardio-metabolic diseases requires future comprehensive cross-disorder research in large-scale 

genetic studies. This will enable us to better understand why patients suffer from multiple 

diseases at a time, and how multi-morbidities influence pharmacological treatment response to 

diseases.  
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