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Abstract 7!

Single cell RNA-sequencing technology (scRNA-seq) provides a new avenue to discover and 8!

characterize cell types, but the experiment-specific technical biases and analytic variability 9!

inherent to current pipelines may undermine the replicability of these studies. Meta-analysis of 10!

rapidly accumulating data is further hampered by the use of ad hoc naming conventions. Here 11!

we demonstrate our replication framework, MetaNeighbor, that allows researchers to quantify 12!

the degree to which cell types replicate across datasets, and to rapidly identify clusters with high 13!

similarity for further testing. We first measure the replicability of neuronal identity by comparing 14!

more than 13 thousand individual scRNA-seq transcriptomes, sampling with high specificity 15!

from within the data to define a range of robust practices. We then assess cross-dataset 16!

evidence for novel cortical interneuron subtypes identified by scRNA-seq and find that 24/45 17!

cortical interneuron subtypes have evidence of replication in at least one other study. Identifying 18!

these putative replicates allows us to re-analyze the data for differential expression and provide 19!

lists of robust candidate marker genes. Across tasks we find that large sets of variably 20!

expressed genes can identify replicable cell types and subtypes with high accuracy, suggesting 21!

a general route forward for large-scale evaluation of scRNA-seq data. 22!
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Single cell RNA-sequencing (scRNA-seq) has emerged as an important new technology 26!

enabling the dissection of heterogeneous biological systems into ever more refined cellular 27!

components. One popular application of the technology has been to try to define novel cell 28!

subtypes within a given tissue or within an already refined cell class, as in the lung1, pancreas2-29!
5, retina6, 7, or others8-10. Because they aim to discover completely new cell subtypes, the 30!

majority of this work relies on unsupervised clustering, with most studies using customized 31!

pipelines with many unconstrained parameters, particularly in their inclusion criteria and 32!

statistical models7, 8, 11, 12. While there has been steady refinement of these techniques as the 33!

field has come to appreciate the biases inherent to current scRNA-seq methods, including 34!

prominent batch effects13, expression drop-outs14, 15, and the complexities of normalization given 35!

differences in cell size or cell state16, 17, the question remains: how well do novel transcriptomic 36!

cell subtypes replicate across studies? 37!

In order to answer this, we turned to the issue of cell diversity in the brain, a prime target of 38!

scRNA-seq as neuron diversity is critical for construction of the intricate circuits underlying brain 39!

function. The heterogeneity of brain tissue makes it particularly important that results be 40!

assessed for replicability, while its popularity as a target of study makes this goal particularly 41!

feasible. Because a primary aim of neuroscience has been to derive a taxonomy of cell types18, 42!

already more than twenty single cell RNA-seq experiments have been performed using mouse 43!

nervous tissue19. Remarkable strides have been made to address fundamental questions about 44!

the diversity of cells in the nervous system, including efforts to describe the cellular composition 45!

of the cortex and hippocampus11, 20, to exhaustively discover the subtypes of bipolar neurons in 46!

the retina6, and to characterize similarities between human and mouse midbrain development21. 47!

This wealth of data has inspired attempts to compare data6, 12, 20 and more generally in the 48!

single cell field there has been a growing interest in using batch correction and related 49!

approaches to fuse data across replicate samples or across experiments6, 22, 23.  Historically, 50!

data fusion and modeling of experimental confounds have been necessary steps precisely 51!
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where individual experiments are underpowered or results do not replicate without correction24-26 52!

but even sophisticated approaches to merge data come with their own perils27.  The technical 53!

biases of scRNA-seq have motivated interest in correcting them as a seemingly necessary fix, 54!

yet evaluation of whether results replicate in the first place remains largely unexamined and no 55!

systematic or formal method has been developed for accomplishing this task.  56!

To address this gap in the field, we propose a simple, supervised framework, MetaNeighbor 57!

(meta-analysis via neighbor voting), to assess how well cell type-specific transcriptional profiles 58!

replicate across datasets. Our basic rationale is that if a cell type has a biological identity rooted 59!

in the transcriptome then knowing its expression features in one dataset will allow us to find 60!

cells of the same type in another dataset. We make use of the cell type labels supplied by data 61!

providers, and assess the correspondence of cell types across datasets by taking the following 62!

approach (see schematic, Figure 1):  63!

1) We calculate correlations between all pairs of cells that we aim to compare across 64!

datasets based on the expression of a set of genes. This generates a network where 65!

each cell is a node and the edges are the strength of the correlations between them.  66!

2) Next, we do cross-dataset validation: we hide all cell type labels (‘identity’) for one 67!

dataset at a time. This dataset will be used as our test set. Cells from all other datasets 68!

remain labeled, and are used as the training set.  69!

3) Finally, we predict the cell type labels of the test set: we use a neighbor voting algorithm 70!

to predict the identity of the held-out cells based on their similarity to the training data.  71!

Conceptually, this resembles approaches for the validation of sample clustering28, 29, which have 72!

primarily been applied to compare microarray results with respect to tumor subtyping30, 31. Our 73!

method builds on these ideas, adapting and applying them for the first time to the question of 74!

cell identity in single cell RNA-seq, and specifically exploiting the patterns of co-expression 75!

believed to drive results32. Because our implementation is extremely fast, this approach readily 76!
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permits carefully defined control experiments to investigate the data features that drive high 77!

performance, such as the dependence on expression variability, gene set size, rarity of cell 78!

types or subtlety of transcriptional identity.  79!

We evaluate the replicability of cell type transcriptional identity by taking sequential steps 80!

according to the basic taxonomy of brain cells: first classifying neurons vs. non-neuronal cells 81!

across eight single cell RNA-seq studies, then classifying cortical inhibitory neurons vs. 82!

excitatory neurons, and for our final step, we align interneuron subtypes across three studies. 83!

With detailed control experiments and empirical modeling, we validate the use of highly variable 84!

genes for cross-dataset cell identification, a common approach for feature selection within 85!

individual experiments4, 33-35. Testing hundreds of gene sets, we find strong replication of 86!

neuronal identity when compared to non-neurons, and excitatory vs. inhibitory neurons, even 87!

across widely varying techniques such as nuclear RNA-sequencing or Drop-seq. Furthermore, 88!

we find that cortical interneuron subtypes show clear lineage-specific structure, and we readily 89!

identify 11 subtypes that appear to replicate across datasets, including Chandelier cells and five 90!

novel subtypes defined by transcriptional clustering in previous work. Meta-analysis of 91!

differential expression across these highly replicable cortical interneuron subtypes correctly 92!

identified canonical marker genes such as parvalbumin and somatostatin, as well as new 93!

candidates which may be used for improved molecular genetic targeting, and to understand the 94!

diverse phenotypes and functions of these cells.  95!

Results 96!

Assessing neuronal identity with MetaNeighbor 97!

We aimed to measure the replicability of cell identity across tasks of varying specificity.  98!

Broadly, these are divided into tasks where we are recapitulating known cell identities, and ones 99!

where we are measuring the replicability of novel cell identities discovered in recent research. 100!

The former class of task is the focus of this subsection: first, by assessing how well we could 101!
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distinguish neurons from non-neuronal cells (“task one”), and next assessing the discriminability 102!

of excitatory and inhibitory neurons (“task two”). As detailed in the methods, MetaNeighbor 103!

outputs a performance score for each gene set and task. This score is the mean area under the 104!

receiver operator characteristic curve (AUROC) across all folds of cross-dataset validation, and 105!

it can be interpreted as the probability that we will rank a positive higher than a negative. For 106!

example, if given only information from other (training) datasets labeling neurons and non-107!

neurons, and asking the algorithm to identify neurons within a given (testing) dataset, the 108!

AUROC is the probability a neuron will be ranked above a non-neuron. Importantly, there is no 109!

labeling within the dataset being assessed; only signals which are true from one dataset to the 110!

next can contribute to performance.  The AUROC varies between 0 and 1, with 1 being perfect 111!

classification, 0.5 meaning that we have performed as well as if we had randomly guessed the 112!

cell’s identity (null), and 0.9 or above being extremely high. Low scores (0-0.3) can be 113!

interpreted with as much confidence as high scores, and mean that, for example, a neuron is 114!

definitely not a non-neuron. Comparison of scores across gene sets allows us to discover their 115!

relative capacity to discriminate cell types.  116!

As described above, in task one we assessed how well we could identify neurons and non-117!

neuronal cells across eight datasets with a total of 13928 cells (Supplementary Table 1). 118!

Although this was designed to be fairly simple, we were interested to discover that AUROC 119!

scores were significantly higher than chance for all gene sets tested, including all randomly 120!

chosen sets (AUROCall sets=0.80 ± 0.1, Figure 2A). A bootstrapped sampling of the datasets 121!

showed a trend toward increased performance with the inclusion of additional training data, 122!

indicating that we are recognizing an aggregate signal across datasets (Supplementary Figure 123!

1). However, the significant improvement of random sets over the null (i.e., AUROC=0.5) means 124!

that prior knowledge about gene function is not required to differentiate between these cell 125!

classes. Randomly chosen sets of genes have decidedly non-random expression patterns that 126!

enable discrimination between cell types. This is particularly surprising in the context of cross-127!
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dataset assessment, where the low-dimensionality of cell identity observed within laboratories36 128!

is confounded by the even lower-dimensionality of experimental identity, even if controlled by 129!

within-lab ranking. This result recalls the startling finding by Venet et al. that “Most random gene 130!

expression signatures are related to breast cancer outcome”37; cell identity appears to be as 131!

clearly ascertainable. 132!

Task two aimed to assess how well we could discriminate between cortical excitatory and 133!

inhibitory neurons across four studies with a total of 2809 excitatory and 1162 inhibitory 134!

neurons11, 12, 20, 38. Similar to our previous results, we saw that AUROC scores were significantly 135!

higher than chance (AUROC=0.69 ± 0.1, Figure 2B). While performance is higher than chance 136!

for both tasks, it is unclear whether the same gene sets are useful for distinguishing between 137!

neurons and non-neurons and between excitatory and inhibitory neurons. Comparing GO group 138!

performance across these two tasks we find that a handful of gene sets have high performance 139!

for both tasks (e.g., GO:0055085 transmembrane transport, AUROC>0.85, Figure 2C), while 140!

many GO groups show divergent performance. For example, we find that GO:0019748 141!

(secondary metabolic process) is only useful for distinguishing between neurons and non-142!

neurons, but not at all for distinguishing between the two neuron classes (AUROCTask1=0.94 vs. 143!

AUROCTask2=0.53), perhaps due to cell cycling among non-neuronal cells. On the other 144!

extreme, we find that GO:0040011 (cell adhesion) is only useful for distinguishing between 145!

neuron classes but not between neurons and non-neuronal cells (AUROCTask1=0.43 vs. 146!

AUROCTask2=0.88), which is in line with previous work that has found that cell adhesion factors 147!

show neuron-type specific expression39, 40. These results indicate some degree of functional 148!

specificity for gene set performance, but the near equivalent performance of randomly chosen 149!

gene sets suggests that transcriptional differences are likely to be encoded in a large number of 150!

genes, in line with previous observations41. The properties of high performing sets are 151!

investigated in the following section. 152!

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2018. ; https://doi.org/10.1101/150524doi: bioRxiv preprint 

https://doi.org/10.1101/150524
http://creativecommons.org/licenses/by-nc-nd/4.0/


! 7 

Characterizing features associated with high performance 153!

Consistent with the view that a large fraction of transcripts are useful for determining cell 154!

identity, we found a positive dependency of AUROC scores on gene set size, regardless of 155!

whether genes within the sets were randomly selected or shared some biological function 156!

(Figure 2D). This was further supported by a comparison of scores for task one when using 157!

randomly chosen sets of genes constrained to a given size. Here we used set sizes of 100 or 158!

800, similar to the extremes of the distribution of set sizes used in the GO analysis. AUROC 159!

score distributions and means were significantly different between gene sets of different sizes, 160!

with sets of 100 genes having lower scores but higher variability in performance, whereas sets 161!

of 800 genes are more restricted in variance and give higher performance on average (Figure 162!

2E, AUROC100=0.75 ± 0.06, AUROC800=0.87 ± 0.02, p<2.2E-16, Wilcoxon rank sum test). The 163!

variability in performance observed while keeping set size constant suggests that even in 164!

random sets, there are transcriptional features that contribute to cell identity. We delved into this 165!

further by comparing AUROC scores across gene sets chosen based on coefficient of variation, 166!

as MetaNeighbor relies on co-variation between genes to detect differences in cell type profiles. 167!

We performed task one again using these gene sets and found a strong positive relationship 168!

between variance and our ability to classify cells (Figure 2F, rs=0.67), though interestingly, 169!

genes in the top centile were completely uninformative (AUROC=0.47).  Taken together, these 170!

observations support the idea that transcriptional identity is broadly encoded across many 171!

genes, and suggests that it should be straightforward to select an informative gene set that 172!

takes advantage of properties associated with high performance. Testing our capacity to detect 173!

and exploit this signal requires us to refine the cell classes that we are characterizing, ideally 174!

beyond what is present in existing data to anticipate a wide range of use cases.  175!

Empirical modeling to determine precision 176!

Our ultimate aim is to identify all replicable cell types across datasets, some of which may be 177!

rare and/or only subtly different from other cell types. To assess the ability of MetaNeighbor to 178!
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identify cell types in these more realistic scenarios, we set up an empirical model for cell type 179!

rarity and subtlety (schematic Figure 3A), using inhibitory and excitatory neuron datasets with 180!

>100 cells for each type as these allow us to model cell type incidence down to 1%11, 12, 20. To 181!

address the impact of rarity on MetaNeighbor’s performance, we alter the incidence of excitatory 182!

neurons to be within our observed range of subtype incidences, repeatedly sampling different 183!

combinations of cells to obtain mean performance estimates. Transcriptional subtlety is 184!

captured by only permitting a fraction of transcripts to vary between the two cell types. This 185!

treats transcriptional subtlety almost identically to a rare cell type, but in the dimension of 186!

transcripts rather than cells: a rare cell type is one in which only a few differing cells are present 187!

and a subtle transcriptional identity is one in which only a few differing genes are present. 188!

Subtlety is modeled by swapping out, e.g., the same 95% of the transcriptional profiles across 189!

all excitatory cell transcriptional data for data from inhibitory cells, so that all cells sample from 190!

the same cell class for 95% of their profile (all sampled across cells without replacement to 191!

ensure there are no confounding overlaps). At each level of rarity and subtlety we measure 192!

AUROCs across datasets with MetaNeighbor, using the highest performing GO group for this 193!

data as a positive control for gene set selection (identified in the previous analysis to be 194!

GO:0022857) and a randomly chosen set of 20 genes as a negative control, having established 195!

that small gene sets tend to have low performance.  196!

As expected, GO:0022857 performance is higher than the random set of 20 genes at both 1% 197!

and 20% incidences (Figure 3B). Importantly, MetaNeighbor performance is nearly unaffected 198!

by differences in rarity: GO set performance is equally high when excitatory neurons make up 199!

1% or 20% of all cells in each dataset, with n as low as 1 cell in the tested data. This is possible 200!

because within-dataset labeling is not exploited for training, so rarity is largely irrelevant for 201!

scoring. Comparison across multiple datasets in training makes even rare cell types learnable.  202!

Of interest is the robustness of MetaNeighbor to transcriptional subtlety. Of course, increasing 203!

subtlety leads to worse performance at both incidences, and falls to chance levels at subtletlies 204!
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>99% (AUROC=0.5). However, even at almost 90% subtlety MetaNeighbor correctly identifies 205!

excitatory neurons with a mean AUROC of 0.71. Since this subtlety is relative to the 206!

transcriptional variability that exists between inhibitory and excitatory cells, it is quite extreme.  207!

Consistent with our previous results comparing performance across all GO functions, this 208!

suggests that there are marked and widespread differences in excitatory and inhibitory neuron 209!

gene expression, such that even sampling a small fraction of genes (<10%) allows for 210!

identification of these two classes. In sum, these results provide strong evidence that 211!

MetaNeighbor is robust to differences in rarity, and gives guidance for the interpretation of 212!

AUROC scores in light of this factor, suggesting the subtlety of cell identity relative to the 213!

outside control.  214!

Empirical modeling to evaluate gene set selection  215!

In the previous section we demonstrated that the highest performing GO group for the excitatory 216!

vs. inhibitory comparison is robust to variation in either incidence or transcriptional subtlety, still 217!

permitting high-performing identification of these two classes when cells are rare or only subtly 218!

distinguishable. Determining this gene set requires known concordance of cell types across 219!

datasets. When concordance is unknown, for example when cell type labeling is idiosyncratic, it 220!

is necessary to have a strategy to identify informative gene sets ab initio. Expert knowledge of 221!

informative marker genes is one possibility, though this approach may not be extensible to 222!

newly described cell subtypes and suffers from potential ascertainment bias. As a more general 223!

alternative, the selection of highly variable genes (HVG) is commonly used in single cell 224!

analysis prior to dimension reduction and clustering4, 7, 33-35, as it is thought that differentially 225!

expressed genes or marker genes should be preferentially variable, and potentially less subject 226!

to joint low-level noise. This is in line with our previous observation that gene sets containing 227!

highly variable genes are high performing. Indeed, when we select a set of HVG (detailed in 228!

Methods) we can almost perfectly identify excitatory neurons compared to inhibitory neurons 229!
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across datasets (AUROC=0.99) which is equivalent to the highest performing GO group, but 230!

without any prior knowledge.  231!

In parallel to our previous analyses, we assessed the robustness of HVG selection at different 232!

levels of rarity and subtlety, using either HVG picked from the original dataset that includes all 233!

cells (HVG static), or HVG re-calculated based on the precise subset of data included in each 234!

run of the empirical model (HVG varying) (Figure 3C). Here, we see that our HVG selection 235!

strategy performs equally to or better than the highest performing GO functional gene set for 236!

both rare cell types (1%-20% of total), as well as for subtle cell types (differing from out-group 237!

by <10%). Interestingly, the HVG heuristic is even responsive to the precise data sampling, 238!

yielding modestly improved performance when it is selected based on the precise data 239!

generated by the empirical model. It is, perhaps, unsurprising, that the heuristic which many 240!

teams of researchers have converged on is a profoundly useful one, but its elegance and 241!

robustness are not only valuable but important to understand as a likely baseline upon which 242!

more complicated approaches will rest. 243!

These results provide evidence that MetaNeighbor can readily identify cells of the same type 244!

across datasets, without relying on specific knowledge of marker genes, even when cells are 245!

rare (1% total) or only subtly different from other cells in the out-group against which they are 246!

being compared. Importantly, these results also provide guidelines for interpreting AUROCs at 247!

cell incidences >=1% in terms of their implications for the promiscuity of cell identity across the 248!

transcriptome. 249!

Investigating cortical interneuron subtypes using MetaNeighbor 250!

Cortical inhibitory interneurons have diverse characteristics based on their morphology, 251!

connectivity, electrophysiology and developmental origins, and it has been an ongoing goal to 252!

define cell subtypes based on these properties18. In a related paper40, we describe the 253!

transcriptional profiles of GABAergic interneuron types which were targeted using a 254!
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combinatorial strategy including intersectional marker gene expression, cell lineage, laminar 255!

distribution and birth timing, and have been extensively phenotyped both electrophysiologically 256!

and morphologically 42. Previously, two studies were published in which new interneuron 257!

subtypes were defined based on scRNA-seq transcriptional profiles11, 20. Because of differences 258!

in experimental design and analytic choices, the two studies found different numbers of 259!

subtypes (16 in one and 23 in the other). The authors of the later paper compared their 260!

outcomes by looking at the expression of a handful of marker genes, which yielded mixed 261!

results: a small number of cell types seemed to have a direct match but for others the results 262!

were more conflicting, with multiple types matching to one another, and others having no match 263!

at all. Here we aimed to more quantitatively assess the similarity of their results, and compare 264!

them with our own data which derives from phenotypically characterized sub-populations; i.e., 265!

not from unsupervised expression clustering (see Supplementary Table 2 for sample 266!

information).  267!

To examine how the previously identified interneuron subtypes are represented across the three 268!

studies, we tested the similarity of each pair of subtypes across datasets using HVGs. This was 269!

done by alternately considering each subtype as the positive training set, and each other 270!

subtype as the test set, answering questions of the class, e.g., “How well does the Zeisel_Int1 271!

HVG expression predict the identity of the Tasic_Smad3 subtype relative to all interneurons in 272!

the Tasic data? How well does Tasic_Smad3 HVG expression predict Zeisel_Int1 identity 273!

relative to all other interneurons in the Zeisel data?”. Each subtype ranges in incidence from 1-274!

24% of the total number of cells within its own dataset, well within the range of the sensitivity of 275!

MetaNeighbor as established above. For each genetically-targeted interneuron type profiled by 276!

Paul et al., we find a reciprocal best match in the pre-existing data: Paul Sst-Nos1/Tasic Sst-277!

Chodl (AUROC=1), Paul ChC/Tasic Pvalb-Cpne5 (AUROC=0.99), Paul Sst-CR/Tasic Sst-Cbln4 278!

(AUROC=0.98), Paul Pv/Tasic Pvalb-Wt1 (AUROC=0.96), Paul Vip-CR/Tasic Vip-Chat 279!

(AUROC=0.96), Paul Vip-Cck/Tasic Vip-Sncg (AUROC=0.95) (Figure 4, all scores in 280!

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2018. ; https://doi.org/10.1101/150524doi: bioRxiv preprint 

https://doi.org/10.1101/150524
http://creativecommons.org/licenses/by-nc-nd/4.0/


! 12 

Supplementary Table 3). In addition, expanding our criteria to include all reciprocal best 281!

matches, and those with AUROC scores >=0.95, we find additional matches for the Paul 282!

subtypes, as well as correspondence among five subtypes that were assessed only in the Tasic 283!

and Zeisel data: Tasic Smad3/Zeisel Int14 (AUROC=0.97), Tasic Sncg/Zeisel Int6 284!

(AUROC=0.95), Tasic Ndnf-Car4/Zeisel Int15 (AUROC=0.95), Tasic Igtp/Zeisel Int13 285!

(AUROC=0.94) and Tasic Ndnf-Cxcl14/Zeisel Int12 (AUROC=0.91). Overall we identified 11 286!

subtypes representing 24/45 (53%) types (Figure 4A), with total n for each subtype ranging from 287!

25-189 out of 1583 interneurons across all datasets (1.5-11%). Our!corresponding subtypes 288!

also confirm the marker gene analysis performed by Tasic et al. (Supplementary Table 3), 289!

without requiring manual gene curation. Because we quantify the similarity among types we can 290!

prioritize matches, and use these as input to MetaNeighbor for further evaluation.  291!

To assess cell identification more broadly, we ran MetaNeighbor with these new across-dataset 292!

subtype labels, measuring predictive validity across all gene sets in GO (Figure 4B). The 293!

distribution of AUROC scores varied across subtypes but we found that the score from the high 294!

variability gene set was representative of overall trends, with high performing groups showing 295!

higher mean AUROC scores over many gene sets. Both the high mean AUROCs across all 296!

putative replicate subtypes, and the similarity of maximum performance suggest that distinctive 297!

gene co-expression can be observed in each subtype (max AUROC=0.92 ± 0.04). As with 298!

previous tasks, we found little difference in average AUROCs using functional gene sets 299!

compared to random sets (mean AUROCRandom=0.67 ± 0.06, mean AUROCGO=0.68 ± 0.1). Top 300!

performing GO groups for each of the 11 replicate interneuron subtypes were primarily related 301!

to neuronal function, which is expected due to the large size of these gene sets and their 302!

likelihood of expression and variation in these cells (Figure 4C).  303!

These results suggest that highly variable gene sets can be used alongside pairwise testing and 304!

training as a heuristic to identify replicable subtypes for further evaluation. Indeed, while outside 305!

the scope of our primary analysis, we have found that re-analysis of tens of thousands of cells 306!
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from mouse cortical and hippocampal pyramidal neurons11, 12, 20, retina6, 7 and human pancreas2, 307!
3, 5, 43, 44 provide strong evidence for the broad applicability of this approach (detailed in the 308!

Supplementary Note).  309!

Identifying subtype specific genes   310!

ScRNA-seq experiments often seek to define marker genes for novel subtypes. Though ideally 311!

marker genes are perfectly discriminative with respect to all cells, in practice marker genes are 312!

often contextual and defined relative to a particular out-group. Typically, only a very small 313!

number of genes are reported in single cell papers due to the complexity of discussing dozens 314!

of cell types as well as the potential technical confounds which would limit the expected 315!

replicability of any attempt at a more comprehensive list5, 7, 11, 20. Here we aimed to identify 316!

possible marker genes that would allow discrimination among interneuron subtypes. For each of 317!

our identified replicate subtypes we generated a ranked list of possible marker genes by 318!

performing one-tailed, non-parametric differential expression analysis within each study for all 319!

subtypes (e.g., Int1 vs. all other interneurons in the Zeisel study, Int2 vs. all interneurons, etc.) 320!

and combining p-values for replicated types using Fisher’s method (Supplementary Table 4).  321!

While data-merging is of potential value in identifying weakly variable genes through improved 322!

power, assessing labs independently (“data slicing”) is imperative to identify the most robustly 323!

replicable features which will generalize to new labs without additional modeling. Figure 4A 324!

shows the FDR adjusted p-values for the top candidates based on fold change for the ten 325!

replicated interneuron subtypes with overlapping differential expression patterns. The majority of 326!

these genes have previously been characterized as having some degree of subtype-specific 327!

expression, for example we readily identify genes that were used for the Cre-driver lines in the 328!

Tasic and Paul studies (Sst, Pvalb, Vip, Cck, Htr3a), as well as all markers previously reported 329!

to intersect between the Tasic and Zeisel data (Supplementary Table 4). Even though we 330!

filtered for genes with high fold changes, we see that many genes are differentially expressed in 331!

more than one subtype. Notably, considerable overlap can be observed among the Htr3a-332!
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expressing types. For example, the Vip Sncg subtype (Tasic Vip Sncg/Paul Vip Cck) is only 333!

subtly different from the Sncg subtype (Tasic Sncg/Zeisel Int6) across this subset of genes, with 334!

the Sncg cells lacking differential expression of Cxcl14 and Nr2f2.  335!

We also identify some novel candidates, including Ptn, or pleiotrophin, which is significantly 336!

more expressed in the three Sst and Nos1-expressing subtypes than in the others (Figure 4B). 337!

It is thus expected to be discriminative of these neurons compared to other interneuron types. 338!

We validated Ptn expression with genetic targeting40, and we show clear expression in neurons 339!

that stain positively for NOS1 and have morphological features characteristic of long projecting 340!

interneurons (Figure 4C). Ptn is a growth factor, and we suggest that its expression may be 341!

required for maintaining the long-range axonal connections that characterize these cells. These 342!

cells are well described by current markers, however this approach is likely to be of particular 343!

value for novel subtypes that lack markers, allowing researchers to prioritize genes for follow-up 344!

by assessing robustness across multiple data sources.  345!

Discussion 346!

Single-cell transcriptomics promises to have a revolutionary impact by enabling comprehensive 347!

sampling of cellular heterogeneity; nowhere is this variability more profound than within the 348!

brain, making it a particular focus of both single-cell transcriptomics and our own analysis into 349!

its replicability. The substantial history of transcriptomic analysis and meta-analysis gives us 350!

guidance about bottlenecks that will be critical to consider in order to characterize cellular 351!

heterogeneity. The most prominent of these is laboratory-specific bias, likely deriving from the 352!

adherence to a strict set of internal standards, which may filter for some classes of biological 353!

signal (e.g., poly-A selection) or induce purely technical grouping (e.g., by sequencing depth). 354!

Because of this, it is imperative to be able to compare data across studies and determine some 355!

form of consensus. Indeed, while this work was under review, five manuscripts became 356!

available that tackle different aspects of this problem, including robust low-dimensional 357!
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representation and the use of reference data for cell classification45, 46, batch correction using 358!

nearest neighbors22 and data fusion via manifold alignment23, 47. Our paper is unique in its aim 359!

and ability to quantify the degree of replicability observable within single cell RNA-seq data, 360!

making use of interpretable methods and concrete performance metrics. In this work, we have 361!

provided a formal means of determining replicable cell identity by treating it as a quantitative 362!

prediction task. The essential premise of our method is that if a cell type has a distinct 363!

transcriptional profile within a dataset, then an algorithm trained from that data set will correctly 364!

identify the same type within an independent data set.   365!

The currently available data allowed us to draw a number of conclusions. We validated the 366!

identity of eleven interneuron subtypes, and described replicate transcriptional profiles to 367!

prioritize possible marker genes, including Ptn, a growth factor that is preferentially expressed in 368!

Sst Chodl cells. One major surprise of our analysis is the degree of replicability in the current 369!

data. AUROC scores are exceptionally high, particularly when considered in the context of the 370!

well-described technical confounds of single-cell data. We suspect this reflects the fundamental 371!

nature of the biological problem we are facing: cell types can be identified by their transcriptional 372!

profiles, and the biological clarity of the problem overcomes technical variation. Echoing earlier 373!

work on cancer subtyping30, we caution that orthogonal data will be required to more firmly 374!

establish the biological basis of cell identity; the current estimates must be regarded as 375!

optimistic since most clusters are defined from gene expression to begin with. However, the 376!

clarity of cell identity is further suggested by our result that cell identity has promiscuous effects 377!

within transcriptional data. While in-depth investigation of the most salient gene functions is 378!

required to characterize cell types, to simply identify cell types is relatively straightforward. This 379!

is necessarily a major factor in the apparent successes of unsupervised methods in determining 380!

novel cell types and suggests that cell type identity is clearly defined by transcriptional profiles, 381!

regardless of cell selection protocols, library preparation techniques or fine-tuning of clustering 382!

algorithms.  383!
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Our empirical modeling suggests that this clear signal will permit cell types to be identified down 384!

to even greater specificity, but not indefinitely, and some areas of concern within even the 385!

present data are worth highlighting. In this work we opted to use the subtype or cluster labels 386!

provided by the original authors, in essence to characterize both the underlying data as well as 387!

current analytic practices. However, this has limitations where studies cluster to different levels 388!

of specificity. This reflects quite real ambiguity about the degree of specificity associated with 389!

the term “cell type”. For example, nearly all Pvalb subtypes from the Tasic dataset and the 390!

Zeisel Int3 type have AUROC scores >0.9 for the Paul Pv type, as can be seen in the bottom 391!

left corner of the heatmap in Figure 4A (Tasic Pvalb_Obox3=0.95, Zeisel Int3 = 0.94, Tasic 392!

Pvalb_Tacr3 = 0.94, Tasic Pvalb_Rspo2 = 0.92), suggesting that these may form one larger or 393!

more general Parvalbumin-positive type. It is here that the concrete meaning of AUROCs helps.  394!

While reciprocal top-hits and AUROCs>0.95 reflect extreme confidence in a highly concordant 395!

cell type, more moderate scores are still meaningful. In most domains of biological study, 396!

AUROCs>0.9 are extraordinarily high (e.g., 48, 49), and we suggest that any such pairing is 397!

worthy of discussion and likely reflects real overlaps without indicating replicability. Moving past 398!

this point and distinguishing between only subtly different types will be difficult for any analysis, 399!

and their discovery will require consideration of appropriate controls and comparisons (e.g., 400!

sub-clustering or subset comparisons). The notion of experimental control is built into our 401!

scoring method (AUROCs), which by definition is comparing positive and negative cases across 402!

the data. As in all classification tasks, choice of an unreasonable out-group or control will 403!

generate misleading results, and the closest outgroup is usually the most appropriate. Within 404!

our current framework we suggest that a hierarchical approach, moving from broad to subtle 405!

categories, will provide a comprehensive, multi-scale view of cell type replicability. We note that 406!

our implementation is both robust and fast, but further development of MetaNeighbor and its 407!

basic framework may yield improvements (e.g., optimization of feature selection, multi-kernel 408!

approaches for cell similarity network estimation, more sophisticated machine learning 409!

algorithms). 410!
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A key bottleneck, however, is the availability of the data itself. While many groups make their 411!

data available in some format, without field-wide standards this data is necessarily more difficult 412!

to wrangle than it need be. A common issue is the absence of inferred cell type labels. While it 413!

will likely take time and concerted effort for naming conventions to be established, it is crucial 414!

that authors make cell labels publicly available in easy-to-access flat text files along with the 415!

final parsed expression data matrix to which those labels were applied (or derived). Our wish list 416!

for study metadata would also include standardized reporting of cell viability estimates, cell 417!

capture method, library preparation method and batch identifiers, alongside biological covariates 418!

such as age, sex and strain. More comprehensive reporting would allow for deeper evaluation of 419!

technical and biological factors that influence single cell expression results. As the project of 420!

assembling a comprehensive human cell atlas gets underway50, we hope that participants 421!

continue to learn lessons from MAQC and other large consortia projects, making results quickly 422!

and readily available to the public, and recognizing the value of heterogeneity in experimental 423!

and computational approaches as an assay into biologically robust results with independent and 424!

replicable evidence. 425!

  426!
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Online Methods 427!

Public expression data  428!

Data analysis was performed in R using custom scripts51. Processed expression data tables 429!

were downloaded from GEO directly, then subset to genes appearing on both Affymetrix 430!

GeneChip Mouse Gene 2.0 ST array (902119) and the UCSC known gene list to generate a 431!

merged matrix containing all samples from each experiment. The mean value was taken for all 432!

genes with more than one expression value assigned. Where no gene name match could be 433!

found, a value of 0 was input. We considered only samples that were explicitly labeled as single 434!

cells, and removed cells that expressed fewer than 1000 genes with expression >0. Cell type 435!

labels were manually curated using sample labels and metadata from GEO (see Tables S1 and 436!

S2). Merged data and metadata are linked through our Github page.  437!

Gene sets  438!

Gene annotations were obtained from the GO Consortium ‘goslim_generic’ (August 2015). 439!

These were filtered for terms appearing in the GO Consortium mouse annotations 440!

‘gene_association.mgi.gz’ (December 2014) and for gene sets with between 20-1000 genes, 441!

leaving 106 GO groups with 9221 associated genes. Random gene sets were generated by 442!

randomly choosing genes with the same set size distribution as GO slim. Gene sets based on 443!

coefficient of variation were generated by measuring the coefficient of variation for each gene 444!

within each dataset, ranking these lists, then taking the average across datasets. The average 445!

was then binned into centiles. Sets of highly variable genes were generated by binning data 446!

from each dataset into deciles based on expression level, then making lists of the top 25% of 447!

the most variable genes for each decile, excluding the most highly expressed bin. The highly 448!

variable gene set was then defined as the intersect of the highly variable gene lists across the 449!

relevant datasets.  Although this did not occur within our analysis, the use of the intersect is 450!

likely to be too stringent as the number of datasets for comparison increases. In this case, a 451!

majority rule on the highly variable set across datasets appears to be a practicable strategy. 452!

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 25, 2018. ; https://doi.org/10.1101/150524doi: bioRxiv preprint 

https://doi.org/10.1101/150524
http://creativecommons.org/licenses/by-nc-nd/4.0/


! 19 

Further commentary regarding high variable gene set selection may be found in the 453!

Supplementary Note. 454!

MetaNeighbor 455!

All scripts, sample data and detailed directions to run MetaNeighbor in R can be found on our 456!

Github page 51.  457!

The input to MetaNeighbor is a set of genes, a data matrix and two sets of labels: one set for 458!

labeling each experiment, and one set for labeling the cell types of interest. For each gene set, 459!

the method generates a cell-cell similarity network by measuring the Spearman correlation 460!

between all cells across the genes within the set, then ranking and standardizing the network so 461!

that all values lie between 0 and 1. The use of rank correlations means that the method is 462!

robust to any rank-preserving normalization (i.e., log2, TPM, RPKM). Ranking and standardizing 463!

the networks ensures that distributions remain uniform across gene sets, and diminishes the 464!

role outlier similarities can play since values are constrained. In previous work we have 465!

demonstrated that networks constructed in this way are both robust and highly effective for 466!

capturing gene co-expression as evaluated by a variety of machine learning methods52. 467!

The node degree of each cell is defined as the sum of the weights of all edges connected to it 468!

(i.e., the sum of the standardized correlation coefficients between each cell and all others), and 469!

this is used as the null predictor in the neighbor voting algorithm to standardize for a cell’s ‘hub-470!

ness’: cells that are generically linked to many cells are preferentially down-weighted, whereas 471!

those with fewer connections are less penalized. For each cell type assessment, the neighbor 472!

voting predictor produces a weighted matrix of predicted labels by performing matrix 473!

multiplication between the network and the binary vector (0,1) indicating cell type membership, 474!

then dividing each element by the null predictor (i.e., node degree). In other words, each cell is 475!

given a score equal to the fraction of its neighbors, including itself, which are part of a given cell 476!

type 53. A difference from KNN is that all cells are neighbors to one another, just to varying 477!
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degrees (defined by the weighted cell-cell similarity network).  For cross-validation, we permute 478!

through all possible combinations of leave-one-dataset-out cross-validation, sequentially hiding 479!

each experiment’s cell labels in turn, and then reporting how well we can recover cells of the 480!

same type as the mean area under the receiver operator characteristic curve (AUROC) across 481!

all folds. A key difference from conventional cross-validation is that there is no labeled data 482!

within the dataset for which predictions are being made. Labeled data comes only from external 483!

datasets, ensuring predictions are driven by signals that are replicable across data sources. To 484!

improve speed, AUROCs are calculated analytically, where the AUROC for each cell type j, is 485!

calculated based on the sum of the ranks of the scores for each cell i (Ranksi), belonging to that 486!

cell type, ranked out of all cells within the dataset. This can be expressed as follows:  487!

!"#$%! =
!"#$%!
! ∗ !!"#

− ! + 1
2 ∗ !!"#

!

!
 

where N is the number of true positives (cells of type j), and NNeg is the number of true negatives 488!

(cells not of type j). Thus, the AUROC calculates the probability that the classifier correctly 489!

predicts that a cell of type j outranks a cell not of type j within the test data set based on 490!

similarity to the labeled data in the training data set(s).  Note that for experiments with only one 491!

cell type this cannot be computed as there are no true negatives. AUROCs are reported as 492!

averages across all folds of cross-validation for each gene set (excluding NAs from experiments 493!

with no negatives), and the distribution across gene sets is plotted.  494!

Empirical model of cell type rarity and subtlety!495!

To test the impact of cell type rarity and transcriptional subtlely on MetaNeighbor performance, 496!

we repeated the excitatory vs. inhibitory cell discrimination task using the Tasic, Zeisel and 497!

Habib datasets which contained >100 cells per cell type, allowing us to assess cell incidences 498!

as low as 1%. The essence of the model is to construct a genes by cells matrix in which the 499!

biclustering problem to identify cell types from their variation in expression would be increasingly 500!
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challenging, with both a smaller and smaller fraction of cells (rarity) within the minority class and 501!

a smaller and smaller fraction of transcripts distinguishing those cells (subtlety).  We model this 502!

variability in transcriptional subtlety by sampling different fractions of the transcriptome from the 503!

minority class; so, for example, a dataset could be generated in which only 1% of cells have 504!

only 10% of their gene expression values sampled from the minority class with the remainder 505!

sampled from the majority class.  Each minority class cell’s expression vector would thus be the 506!

discrete combination of two real cells, one excitatory and one inhibitory.  In all cases, real 507!

expression values are used with strict partitioning, e.g., sampling without replacement from 508!

expression vectors defining cells.  Each analysis for a given value of rarity and subtlety was 509!

repeated 100 times and means across random sub-samplings of genes and cells are plotted in 510!

Figure 3.  511!

Identifying putative replicates!512!

In cases where cell identity was undefined across datasets (i.e., cortical interneuron subtypes) 513!

we treated each subtype label as a positive for each other subtype, and assessed similarity 514!

using HVGs. For example, Int1 from the Zeisel dataset was used as the positive (training) set, 515!

and all other subtypes were considered the test set in turn. Mean AUROCs from both testing 516!

and training folds are plotted in the heatmap in Figure 4.  Reciprocal best matches across 517!

datasets and AUROCs>=0.95 were used to identify putative replicated types for further 518!

assessment with our supervised framework (detailed above). New cell type labels 519!

encompassing these replicate types (e.g. a combined Sst-Chodl label containing Int1 (Zeisel), 520!

Sst Chodl (Tasic) and Sst Nos1 (Paul)) were generated for MetaNeighbor across random and 521!

GO sets, and for meta-analysis of differential expression.  While only reciprocal top-hits across 522!

laboratories were used to define putative replicate cell types, conventional cross-validation 523!

within laboratories was performed to fill in AUROC scores across labels contained within each 524!

lab.  525!
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Differential expression 526!

For each cell type within a dataset (defined by the authors’ original labeling), differential gene 527!

expression was calculated using a one-sided Wilcoxon rank-sum test, comparing gene 528!

expression within a given cell type to all other cells within the dataset (e.g., Zeisel_Int1 vs all 529!

other Zeisel interneurons). Meta-analytic p-values were calculated for each putative replicated 530!

type using Fisher’s method54 then a multiple hypothesis test correction was performed with the 531!

Benjamini-Hochberg method55. Top differentially expressed genes were those with an adjusted 532!

meta-analytic p-value <0.001 and with log2 fold change >2 in each dataset. All differential 533!

expression data for putative replicated subtypes can be found in Supplementary Table 4. Details 534!

regarding the generation of Ptn-CreER transgenic mice, immunostaining and imaging may be 535!

found in Paul et al. The image in panel 5C was taken at the same time as those presented in 536!

Supplementary Figure 6 of that paper.  537!
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Figures 
!

 

Figure 1 – MetaNeighbor quantifies cell type identity across experiments 
A – Schematic representation of gene set co-expression across individual cells. Cell types are indicated by 
their color. B – Similarity between cells is measured by taking the correlation of gene set expression between 
individual cells. On the top left of the panel, gene set expression between two cells, A and B, is plotted. There 
is a weak correlation between these cells. On the bottom left of the panel we see the correlation between cells 
A and C, which are strongly correlated. By taking the correlations between all pairs of cells we can build a cell 
network (right), where every node is a cell and the edges represent how similar each cell is to each other cell. 
C - The cell network that was generated in B can be extended to include data from multiple experiments 
(multiple datasets). The generation of this multi-dataset network is the first step of MetaNeighbor. D – The 
cross-validation and scoring scheme of MetaNeighbor is demonstrated in this panel. To assess cell type 
identity across experiments we use neighbor voting in cross-validation, systematically hiding the labels from 
one dataset at a time for testing. Cells within the test set are predicted as similar to the cell types from other 
training sets using a neighbor voting formalism. Whether these scores prioritize cells as the correct type within 
the dataset determines the performance, expressed as the AUROC. In other words, comparative assessment 
of cells occurs only within a dataset, but is based only on training information from outside that dataset. This is 
then repeated for all gene sets of interest.  
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Figure 2 – Cell type identity is widely represented in the transcriptome 
A & B – Distribution of AUROC scores from MetaNeighbor for discriminating neurons from non-neuronal cells 
(“task one”, A) and for distinguishing excitatory vs. inhibitory neurons (“task two”, B). GO scores are in black 
and random gene set scores are plotted in gray. Dashed grey lines indicate the null expectation for correctly 
guessing cell identity (AUROC=0.5). For both tasks, almost any gene set can be used to improve performance 
above the null, suggesting widespread encoding of cell identity across the transcriptome. C – Comparison of 
GO group scores across tasks. GO groups at the extremes of the distribution are labeled. Most gene sets have 
higher performance for Task one, and a number of groups have high performance for both tasks (e.g., 
transmembrane transport). D – Task one AUROC scores for each gene set are plotted with respect to the 
number of genes. A strong, positive relationship is observed between gene set size and AUROC score, 
regardless of whether genes were chosen randomly or based on shared functions. E – Distribution of AUROC 
scores for task one using 100 sets of 100 randomly chosen genes, or 800 randomly chosen genes. The mean 
AUROC score is significantly improved with the use of larger gene sets (mean 100 = 0.80 +/- 0.05, mean 800 = 
0.90 +/- 0.03). F – Relationship between AUROC score and coefficient of variation. Task one was re-run using 
sets of genes chosen based on mean coefficient of variation across datasets. A strong positive relationship 
was observed between this factor and performance (rs ~0.67).  
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Figure 3 -  Empirical modeling demonstrates that MetaNeighbor readily identifies rare and 
transcriptionally subtle cell types   
A – Schematic of the empirical model. For simplicity only a single dataset is depicted. (Top left) – In this 
dataset, we begin with an expression matrix containing gene expression levels for two cell types comprising 
ten cells each. Here we will be assessing the replicability of cell type 1 (‘positives’) relative to cell type 2 
(‘negatives’). (Top right) We first adjust cell rarity by randomly sampling subsets of the original expression 
matrix. In the schematic, incidence is set to 20% (2 positives, 8 negatives). In addition, we partition two 
negatives from the original data for later use. (Middle) Next, we adjust transcriptional subtlety by randomly 
sampling genes from a given fraction of the transcriptome. Gene expression in the positives will be replaced 
with data from the unused negatives, creating a modeled cell type varying from the negative class only in a 
subset of its genes. (Bottom) All datasets are combined and MetaNeighbor is run to assess the replicability of 
the positives at each level of rarity and subtlety. B – MetaNeighbor results for empirical modeling of excitatory 
neuron rarity and subtlety, repeated 100 times. Mean performance for the top GO group is in black, 
performance for 20 randomly chosen genes is shown in red; dashed lines indicate 20% rarity, solid lines show 
1% rarity. MetaNeighbor is robust to differences in cell rarity, and can reliably distinguish between types even 
when they are very similar (AUROC>0.7 at >88% subtlety). C – MetaNeighbor results for empirical modeling of 
excitatory neuron rarity and subtlety using highly variable genes (HVGs), repeated 100 times. Performance for 
the HVG varying set is shown in black, performance for the HVG static is shown in red; dashed lines indicate 
20% rarity, solid lines show 1% rarity. HVGs allow for robust identification of positives even when cells are rare 
or differences are subtle.    
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Figure 4 – Cross-dataset analysis of interneuron diversity  
A – Heatmap of AUROC scores between interneuron subtypes based on the highly variable gene set (HVG). 
Dendrograms were generated by hierarchical clustering of Euclidean distances using average linkage. Row 
and column colors indicate data origin and marker expression. Clustering of AUROC score profiles 
recapitulates known cell type structure, with major branches representing the Pv, Sst and Htr3a lineages. B - 
Boxplots of GO performance (3888 sets) for each putatively replicated subtype, ordered by their AUROC score 
from the highly variable gene set. Subtypes are labeled with the names from Tasic et al. A positive relationship 
is observed between AUROC scores from the highly variable set and the average AUROC score for each 
subtype. C – The table shows the top GO terms for each putatively replicated subtype alongside scores from 
HVGs. HVGs perform comparably or better than the top ranking GO group for 8/11 subtypes. 
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Figure 5 – Replicated subtypes show consistent differential expression 
A – (Top) Heatmap of FDR adjusted p-values of top differentially expressed genes among replicated 
interneuron subtypes (NB only ten subtypes are shown as no differentially expressed genes were found for the 
Ndnf Car4 subtype). Subtype names are listed at the top of the columns and are labeled as in Tasic et al. 
Many genes are commonly differentially expressed among multiple subtypes, but combinatorial patterns 
distinguish them. B – Standardized Ptn expression is plotted across the three experiments, where each box 
represents an interneuron subtype. High, but variable expression is observed across the three Sst Chodl types. 
C – Confocal images of co-immunostaining for Ptn-CreER;Ai14 with RFP and NOS1 antibodies in adult mouse 
cortex. Ptn-CreER;Ai14 expression was induced with low-dose tamoxifen postnatally. Clear co-labeling is 
observed in a deep layer (L6) long projecting neuron. 
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