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Abstract 7	
  

Single cell RNA-sequencing technology (scRNA-seq) provides a new avenue to discover and 8	
  

characterize cell types, but the experiment-specific technical biases and analytic variability 9	
  

inherent to current pipelines may undermine the replicability of these studies. Meta-analysis of 10	
  

rapidly accumulating data is further hampered by the use of ad hoc naming conventions. Here 11	
  

we demonstrate our replication framework, MetaNeighbor, that allows researchers to quantify 12	
  

the degree to which cell types replicate across datasets, and to rapidly identify clusters with high 13	
  

similarity for further testing. We first measure the replicability of neuronal identity by comparing 14	
  

more than 13 thousand individual scRNA-seq transcriptomes, then assess cross-dataset 15	
  

evidence for novel pyramidal neuron and cortical interneuron subtypes identified by scRNA-seq. 16	
  

We find that 24/45 cortical interneuron subtypes and 10/48 pyramidal neuron subtypes have 17	
  

evidence of replication in at least one other study. Identifying these putative replicates allows us 18	
  

to re-analyze the data for differential expression and provide lists of robust candidate marker 19	
  

genes. Across tasks we find that large sets of variably expressed genes can identify replicable 20	
  

cell types and subtypes with high accuracy, indicating many of the transcriptional changes 21	
  

characterizing cell identity are pervasive and easily detected. 22	
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Introduction 23	
  

Single cell RNA-sequencing (scRNA-seq) has emerged as an important new technology 24	
  

enabling the dissection of heterogeneous biological systems into ever more refined cellular 25	
  

components. One popular application of the technology has been to try to define novel cell 26	
  

subtypes within a given tissue or within an already refined cell class, as in the lung (Treutlein et 27	
  

al., 2014), pancreas (Baron et al., 2016; Muraro et al., 2016; Segerstolpe et al., 2016; Wang et 28	
  

al., 2016), retina (Macosko et al., 2015; Shekhar et al., 2016), or others (Grun et al., 2015; Klein 29	
  

et al., 2015; Min et al., 2015). Because they aim to discover completely new cell subtypes, the 30	
  

majority of this work relies on unsupervised clustering, with most studies using customized 31	
  

pipelines with many unconstrained parameters, particularly in their inclusion criteria and 32	
  

statistical models (Grun et al., 2015; Habib et al., 2016; Macosko et al., 2015; Zeisel et al., 33	
  

2015). While there has been steady refinement of these techniques as the field has come to 34	
  

appreciate the biases inherent to current scRNA-seq methods, including prominent batch effects 35	
  

(Hicks et al., 2015), expression drop-outs (Lun et al., 2016; Pierson and Yau, 2015), and the 36	
  

complexities of normalization given differences in cell size or cell state (Buettner et al., 2015; 37	
  

Vallejos et al., 2015), the question remains: how well do novel transcriptomic cell subtypes 38	
  

replicate across studies? 39	
  

In order to answer this, we turned to the issue of cell diversity in the brain, a prime target of 40	
  

scRNA-seq as neuron diversity is critical for construction of the intricate, exquisite circuits 41	
  

underlying brain function. The heterogeneity of brain tissue makes it particularly important that 42	
  

results be assessed for replicability, while its popularity as a target of study makes this goal 43	
  

particularly feasible. Because a primary aim of neuroscience has been to derive a taxonomy of 44	
  

cell types (Ascoli et al., 2008), already more than twenty single cell RNA-seq experiments have 45	
  

been performed using mouse nervous tissue (Poulin et al., 2016). Remarkable strides have 46	
  

been made to address fundamental questions about the diversity of cells in the nervous system, 47	
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including efforts to describe the cellular composition of the cortex and hippocampus (Tasic et 48	
  

al., 2016; Zeisel et al., 2015), to exhaustively discover the subtypes of bipolar neurons in the 49	
  

retina (Shekhar et al., 2016), and to characterize similarities between human and mouse 50	
  

midbrain development (La Manno et al., 2016). In spite of this wealth of data, there have been 51	
  

few attempts to compare, validate and substantiate cell type transcriptional profiles across 52	
  

scRNA-seq datasets, and no systematic or formal method has been developed for 53	
  

accomplishing this task. 54	
  

To address this gap in the field, we propose a simple, supervised framework, MetaNeighbor 55	
  

(meta-analysis via neighbor voting), to assess how well cell type-specific transcriptional profiles 56	
  

replicate across datasets. Our basic rationale is that if a cell type has a biological identity rooted 57	
  

in the transcriptome then knowing its expression features in one dataset will allow us to find 58	
  

cells of the same type in another dataset. We make use of the cell type labels supplied by data 59	
  

providers, and assess the correspondence of cell types across datasets by taking the following 60	
  

approach (see schematic, Figure 1):  61	
  

1) First we construct a kernel: we calculate correlations between all pairs of cells that we 62	
  

aim to compare across datasets based on the expression pattern of a set of genes. This 63	
  

generates a network where each cell is a node and the edges are the strength of the 64	
  

correlations between them.  65	
  

2) Next, we do cross-dataset validation: we hide all cell type labels (‘identity’) for one 66	
  

dataset at a time. This dataset will be used as our test set. Cells from all other datasets 67	
  

remain labeled, and are used as the training set.  68	
  

3) Finally, we predict the cell type labels of the test set: we use a neighbor voting algorithm 69	
  

to predict the identity of the held-out cells based on their similarity to the training data.  70	
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Conceptually, this resembles approaches for the validation of sample clustering (Dudoit et al., 71	
  

2002; Kapp and Tibshirani, 2007) but it has been adapted to operate from within a supervised 72	
  

learning framework. This permits both systematic scoring and carefully defined control 73	
  

experiments to investigate the data features that drive high performance. Our implementation is 74	
  

extremely fast and robust to technical differences between experiments; because prediction is 75	
  

performed only within an individual dataset at a time, we are able to keep many aspects of 76	
  

technical variation constant. This essentially controls for any dataset specific effects that would 77	
  

otherwise swamp the subtler cell identity signal. The method provides a score that indicates the 78	
  

degree to which a cell type replicates for each gene set that is tested. This means that 79	
  

MetaNeighbor doubles as a low-tech ‘feature selection tool’ that we can use to identify the 80	
  

transcriptional features that are most discriminative between cell types. By comparing the 81	
  

scores returned from using Gene Ontology (GO) functions (“functional gene sets”) or sets of 82	
  

randomly chosen genes (“random gene sets”), we can determine whether co-expression of 83	
  

specific gene sets is characteristic of particular cell types, and thus important for cell function or 84	
  

identity.  85	
  

We evaluate cell identity by taking sequential steps according to the basic taxonomy of brain 86	
  

cells: first classifying neurons vs. non-neuronal cells across eight single cell RNA-seq studies, 87	
  

then classifying cortical inhibitory neurons vs. excitatory neurons, and for our final step, we align 88	
  

interneuron and pyramidal cell subtypes across three studies. Critically, we discover that that 89	
  

almost any sufficiently large and highly variable set of genes can be used to distinguish between 90	
  

cell types, suggesting that cell identity is widely represented within the transcriptome. 91	
  

Furthermore, we find that cross-dataset analysis of pyramidal neurons results in broad definition 92	
  

of cortical vs. hippocampal types, and find evidence for the replication of five layer-restricted 93	
  

subtypes. In contrast, we find that cortical interneuron subtypes show clear lineage-specific 94	
  

structure, and we readily identify 11 subtypes that replicate across datasets, including 95	
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Chandelier cells and five novel subtypes defined by transcriptional clustering in previous work. 96	
  

Meta-analysis of differential expression across these highly replicable cortical interneuron 97	
  

subtypes revealed evidence for canonical marker genes such as parvalbumin and somatostatin, 98	
  

as well as new candidates which may be used for improved molecular genetic targeting, and to 99	
  

understand the diverse phenotypes and functions of these cells.  100	
  

Assessing neuronal identity with MetaNeighbor 101	
  

We aimed to measure the replicability of cell identity across tasks of varying specificity.  102	
  

Broadly, these are divided into tasks where we are recapitulating known cell identities, and ones 103	
  

where are measuring the replicability of novel cell identities discovered in recent research. The 104	
  

former class of task is the focus of this subsection: first, by assessing how well we could 105	
  

distinguish neurons from non-neuronal cells (“task one”), and next assessing the discriminability 106	
  

of excitatory and inhibitory neurons (“task two”). As detailed in the methods, MetaNeighbor 107	
  

outputs a performance score for each gene set and task. This score is the mean area under the 108	
  

receiver operator characteristic curve (AUROC) across all folds of cross-dataset validation, and 109	
  

it can be interpreted as the probability that we will rank a positive higher than a negative (e.g. 110	
  

neuron vs. non-neuronal cell, when using neurons as the positive label set) based on the 111	
  

expression of a set of genes. This varies between 0 and 1, with 1 being perfect classification, 112	
  

0.5 meaning that we have performed as well as if we had randomly guessed the cell’s identity, 113	
  

and 0.9 or above being extremely high. Comparison of scores across gene sets allows us to 114	
  

discover their relative importance for defining cell identity. 115	
  

As described above, in task one we assessed how well we could identify neurons and non-116	
  

neuronal cells across eight datasets with a total of 13928 cells (Table S1). Although this was 117	
  

designed to be fairly simple, we were surprised to find that AUROC scores were significantly 118	
  

higher than chance for all gene sets tested, including all randomly chosen sets (AUROCall 119	
  

sets=0.78 ± 0.1, Figure 2A). Reassuringly, a bootstrapped sampling of the datasets showed a 120	
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trend toward increased performance with the inclusion of additional training data, indicating that 121	
  

we are recognizing an aggregate signal across datasets (Figure S1). However, the significant 122	
  

improvement of random sets over the null means that prior knowledge about gene function is 123	
  

not required to differentiate between these cell classes. Randomly chosen sets of genes have 124	
  

decidedly non-random expression patterns that enable discrimination between cell types. 125	
  

Task two aimed to assess how well we could discriminate between cortical excitatory and 126	
  

inhibitory neurons across four studies with a total of 2809 excitatory and 1162 inhibitory neurons 127	
  

(Dueck et al., 2015; Habib et al., 2016; Tasic et al., 2016; Zeisel et al., 2015). Similar to our 128	
  

previous results, we saw that AUROC scores were significantly higher than chance 129	
  

(AUROC=0.69 ± 0.1, Figure 2B), suggesting that transcriptional differences are likely to be 130	
  

encoded in a large number of genes.  131	
  

Consistent with the view that a large fraction of transcripts are useful for determining cell 132	
  

identity, we found a positive dependency of AUROC scores on gene set size, regardless of 133	
  

whether genes within the sets were randomly selected or shared some biological function 134	
  

(Figure 2B). This was further supported by a comparison of scores for task one using 100 sets 135	
  

of either 100 or 800 randomly chosen genes. AUROC score distributions and means were 136	
  

significantly different, with sets of 100 genes having lower scores but higher variability in 137	
  

performance, whereas sets of 800 genes were more restricted in variance and gave higher 138	
  

performance on average (Figure 2C, AUROC100=0.80 ± 0.05, AUROC800=0.90 ± 0.03, p<2.2E-139	
  

16, Wilcoxon rank sum test). The variability in performance observed while keeping set size 140	
  

constant suggests that even in random sets, there are transcriptional features that contribute to 141	
  

cell identity. We delved into this further by comparing AUROC scores across gene sets chosen 142	
  

based on their mean expression as we have previously shown that this is a critical factor to 143	
  

control for in evaluating single cell gene co-expression (Crow et al., 2016). We performed task 144	
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one again using expression-level based gene sets and found a strong positive relationship 145	
  

between expression level and our ability to classify cells (Figure 2D, rs=0.9).  146	
  

These results provide evidence that MetaNeighbor can readily identify cells of the same type 147	
  

across datasets, without relying on specific knowledge of marker genes. In these two examples, 148	
  

all cells could be classified as one of two types, making this a binary classification task. We find 149	
  

that a gene set’s size and mean expression level are the key features that allow for cell type 150	
  

discrimination in this setting. 151	
  

Investigating cortical interneuron subtypes using MetaNeighbor 152	
  

Cortical inhibitory interneurons have diverse characteristics based on their morphology, 153	
  

connectivity, electrophysiology and developmental origins, and it has been an ongoing goal to 154	
  

define cell subtypes based on these properties (Ascoli et al., 2008). In a related paper (Paul et 155	
  

al., submitted), we describe the transcriptional profiles of GABAergic interneuron types which 156	
  

were targeted using a combinatorial strategy including intersectional marker gene expression, 157	
  

cell lineage, laminar distribution and birth timing, and have been extensively phenotyped both 158	
  

electrophysiologically and morphologically (He et al., 2016). Previously, two studies were 159	
  

published in which new interneuron subtypes were defined based on scRNA-seq transcriptional 160	
  

profiles (Tasic et al., 2016; Zeisel et al., 2015). These found different numbers of subtypes (16 161	
  

in one and 23 in the other), and the authors of the later paper compared their outcomes by 162	
  

looking at the expression of a handful of marker genes, which yielded mixed results: a small 163	
  

number of cell types seemed to have a direct match but for others the results were more 164	
  

conflicting, with multiple types matching to one another, and others having no match at all. Here 165	
  

we aimed to more quantitatively assess the similarity of their results, and compare them with our 166	
  

own data which derives from phenotypically characterized sub-populations; i.e., not from 167	
  

unsupervised expression clustering (see Table S2 for sample information).  168	
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MetaNeighbor relies on coordinated variation in expression level to detect cell identity, which 169	
  

means that genes with high variability are particularly useful. Our preceding binary 170	
  

classifications showed that genes with high mean expression were more likely to have variation 171	
  

that allowed MetaNeighbor to learn cell identities. In the following analyses, we are examining 172	
  

both rare and common cell types across datasets. In this case, the mean expression level of 173	
  

marker genes should be a proxy for cell incidence: we can expect that the marker expression for 174	
  

a more abundant type would have a higher mean expression. Since variance scales with 175	
  

expression, the most highly variable genes in the dataset would likely only be discriminative for 176	
  

the abundant type. Because we would like to be able to identify both abundant and rare cell 177	
  

types, we select the genes with the highest variance at each mean expression level. 178	
  

We identified 638 genes with high variability given their expression levels (detailed in Methods) 179	
  

and these were used as a ‘high variability gene set’ to measure AUROC scores between each 180	
  

pair of cells across datasets. When AUROCs were measured using all genes, we saw that 181	
  

clustering was subject to strong lab-specific effects (Figure S2). In contrast, the use of variable 182	
  

genes reproduced the known subtype structure, with major branches for the three main 183	
  

subtypes, Pv, Sst and Htr3a.  184	
  

To examine how the previously identified interneuron subtypes are represented across the three 185	
  

studies, we tested the similarity of each pair of subtypes both within and across datasets using 186	
  

the high variability gene set. For each genetically-targeted interneuron type profiled by Paul et 187	
  

al., we found at least one corresponding subtype from the other two studies, which were defined 188	
  

by having a mean AUROC score across training/testing folds >0.95 (Figure 3). This includes 189	
  

Chandelier cells, a subtype that could not be definitively identified by either Tasic or Zeisel. 190	
  

Using our reciprocal testing and training protocol we find that the Tasic_Pvalb Cpne5 subtype 191	
  

are likely to be Chandelier cells (AUROC=0.99). In addition, expanding our criteria to include all 192	
  

reciprocal best matches in addition to those with ID scores >0.95, we found correspondence 193	
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among five subtypes that were assessed only in the Tasic and Zeisel data, 194	
  

Tasic_Smad3/Zeisel_Int14 (AUROC=0.97), Tasic_Sncg/Zeisel_Int6 (AUROC=0.95), 195	
  

Tasic_Ndnf-Car4/Zeisel_Int15 (AUROC=0.95), Tasic_Igtp/Zeisel_Int13 (AUROC=0.94) and 196	
  

Tasic_Ndnf-Cxcl14/Zeisel_Int12 (AUROC=0.91). Overall, based on this high-variance gene set, 197	
  

we could identify 11 subtypes representing 24/45 (53%) types (Figure 3A), with total n for each 198	
  

subtype ranging from 25-189 out of 1583 interneurons across all datasets (1.5-11%). These 199	
  

results were robust to differences in data processing. Tasic et al. provided data as both RPKM 200	
  

and TPM values, and while thousands of genes had extremely divergent expression between 201	
  

the two, including some key markers like Vip, reciprocal average AUROCs among 202	
  

corresponding subtypes were nearly identical (Figure S3). Our corresponding subtypes also 203	
  

confirm the marker gene analysis performed by Tasic et al. (Table S3), without requiring manual 204	
  

gene curation. Because we quantify the similarity among types we can prioritize matches, and 205	
  

use these as input to MetaNeighbor for further evaluation.  206	
  

In the above, we identified overlaps using a single gene set. To assess cell identification more 207	
  

broadly, we ran MetaNeighbor with these new across-dataset subtype labels, measuring 208	
  

predictive validity across all gene sets in GO (Figure 3A, far right). The distribution of AUROC 209	
  

scores varied across subtypes but we found that the score from the high variability gene set was 210	
  

representative of overall trends, with high performing groups showing higher mean AUROC 211	
  

scores over many gene sets. As detailed in the previous section, we note that AUROC scores 212	
  

are sensitive both to the number of training samples (n) and to underlying data features (e.g., 213	
  

transcriptome complexity), which complicates direct comparison of ID score distributions. Both 214	
  

the high mean AUROCs across all putative replicate subtypes (>0.6), and the similarity of 215	
  

maximum performance suggest that distinctive gene co-expression can be observed in each 216	
  

subtype (max AUROC=0.92 ± 0.04). As with previous tasks, we found little difference in average 217	
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AUROCs using functional gene sets compared to random sets (mean AUROCRandom=0.67 ± 218	
  

0.06, mean AUROCGO=0.68 ± 0.1).  219	
  

These results indicate that highly variable gene sets can be used alongside pairwise testing and 220	
  

training as a heuristic to identify replicable subtypes.  221	
  

Investigating pyramidal neuron subtypes using MetaNeighbor 222	
  

The heterogeneity of pyramidal neurons is undisputed, but the organizing principles are still 223	
  

debated, with some suggesting that identity is discrete and modular (Habib et al., 2016; Zeisel 224	
  

et al., 2015) and others purporting that identities are more likely to be described by expression 225	
  

gradients or spectra (Cembrowski et al., 2016). With MetaNeighbor we are able to quantitatively 226	
  

assess the degree to which pyramidal subtypes defined by scRNA-seq replicate across diverse 227	
  

datasets. If cell types are discrete and modular, we would expect to see sharp differences, with 228	
  

some types showing very strong similarity to one another, and strong dissimilarities to other 229	
  

types.  230	
  

To compare pyramidal neuron scRNA-seq datasets we permuted through all combinations of 231	
  

subtypes as testing and training data based on a set of 743 genes with high variability given 232	
  

their expression level (subtypes listed in Table S2). This was the same procedure that was used 233	
  

for cortical interneurons and while there were similar numbers of subtypes in total, a smaller 234	
  

fraction corresponded across datasets (10/48, ~21%) yielding five putative subtypes (Figure 235	
  

3B). The AUROC score heatmap was generally less modular than the heatmap of interneuron 236	
  

scores. The most prominent feature was that types from the hippocampus and cortex tended to 237	
  

cluster separately from one another. Within each region-specific cluster some layer- or area-238	
  

specific clustering was observed but it was not completely consistent. Particular discrepancy 239	
  

was observed between the cortical layer 5 subtypes which showed more similar AUROC score 240	
  

profiles to the hippocampal subtypes than to other deep layer types (Tasic L5b_Cdh13, 241	
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L5_Chrna6, L5b_Tph). Note that these were also the same subtypes that Tasic et al. found no 242	
  

match for in their marker gene analysis. We suggest that the inclusion of additional datasets 243	
  

may help to resolve this inconsistency. 244	
  

We assessed the five putative subtypes using MetaNeighbor. All subtypes were significantly 245	
  

discernable compared to the null (Figure 3B) and as with the interneuron subtypes, AUROC 246	
  

scores from the high variability gene set were well correlated with mean performance across all 247	
  

of GO (3888 gene sets). In line with previous tasks, we found that functional gene sets 248	
  

performed equally to random gene sets (mean AUROCRandom=0.71 ± 0.08, AUROCGO=0.70 ± 249	
  

0.09). 250	
  

Comparing gene set performance across tasks 251	
  

Finally, we compared gene set results from the 11 replicate interneuron subtypes and the 5 252	
  

pyramidal neuron subtypes. In agreement with our previous results, we found that the top 253	
  

groups were all related to neuronal function, which is unsurprising given the large size of these 254	
  

gene sets and their likelihood of expression and variation in these cells (Figure 3C). AUROCs 255	
  

were highly correlated across tasks (r~0.76), with slightly higher performance for identifying 256	
  

interneuron types compared to pyramidal types (Figure 3D). The linearity of the trend across all 257	
  

scores suggests that fundamental data features, like mean expression level and set size, 258	
  

underlie the differential discriminative value of gene sets. The high performance across many 259	
  

sets (mean AUROC ~0.7) also supports the notion that cell identity is encoded promiscuously 260	
  

across the transcriptome, and is not restricted to a small set of functionally important genes.  261	
  

Identifying subtype specific genes   262	
  

ScRNA-seq experiments often seek to define marker genes for novel subtypes. Though ideally 263	
  

marker genes are perfectly discriminative with respect to all cells, in practice marker genes are 264	
  

often contextual and defined relative to a particular out-group. Here we aimed to identify 265	
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possible marker genes that would allow discrimination among interneuron subtypes or 266	
  

pyramidal neuron subtypes. For each of our identified replicate subtypes we generated a ranked 267	
  

list of possible marker genes by performing one-tailed, non-parametric differential expression 268	
  

analysis within each study for all subtypes (e.g., Int1 vs. all other interneurons in the Zeisel 269	
  

study, Int2 vs. all interneurons, etc.) and combining p-values for replicated types using Fisher’s 270	
  

method (Table S4). Figure 4A shows the FDR adjusted p-values for the top candidates based 271	
  

on fold change for the ten replicated interneuron subtypes with overlapping differential 272	
  

expression patterns. Figure 4B shows the same for the two pyramidal neuron subtypes with 273	
  

overlapping differential expression patterns. The majority of these genes have previously been 274	
  

characterized as having some degree of subtype- or layer-specific expression, for example we 275	
  

readily identify genes that were used for the Cre-driver lines in the Tasic and Paul studies (Sst, 276	
  

Pvalb, Vip, Cck, Htr3a, Ctgf). Even though we filtered for genes with high fold changes, we see 277	
  

that many genes are differentially expressed in more than one subtype. Notably, considerable 278	
  

overlap can be observed among the Htr3a-expressing types. For example, the Vip Sncg 279	
  

subtype (Tasic_Vip Sncg/Paul_Vip Cck) is only subtly different from the Sncg subtype 280	
  

(Tasic_Sncg/Zeisel_Int6) across this subset of genes, with the Sncg cells lacking differential 281	
  

expression of Cxcl14 and Nr2f2.  282	
  

We also identify some novel candidates, including Ptn, or pleiotrophin, which is significantly 283	
  

more expressed in the three Nos1-expressing subtypes than in the others (Figure 4B). It is thus 284	
  

expected to be discriminative of Nos1-positive neurons compared to other interneuron types. 285	
  

We validated Ptn expression with in situ hybridization and we show clear expression in neurons 286	
  

that are positive for both Sst and Nos1 (Figure 4C). Ptn is a growth factor, and we suggest that 287	
  

its expression may be required for maintaining the long-range axonal connections that 288	
  

characterize these cells. These cells are well described by current markers, however this 289	
  

approach is likely to be of particular value for novel subtypes that lack markers, allowing 290	
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researchers to prioritize genes for follow-up by assessing robustness across multiple data 291	
  

sources.  292	
  

Discussion 293	
  

Single-cell transcriptomics promises to have a revolutionary impact by enabling comprehensive 294	
  

sampling of cellular heterogeneity; nowhere is this variability more profound than within the 295	
  

brain, making it a particular focus of both single-cell transcriptomics and our own analysis into 296	
  

its replicability. The substantial history of transcriptomic analysis and meta-analysis gives us 297	
  

guidance about bottlenecks that will be critical to consider in order to characterize cellular 298	
  

heterogeneity. The most prominent of these is laboratory-specific bias, likely deriving from the 299	
  

adherence to a strict set of internal standards, which may filter for some classes of biological 300	
  

signal (e.g., poly-A selection) or induce purely technical grouping (e.g., by sequencing depth). 301	
  

Because of this, it is imperative to be able to align data across studies and determine what is 302	
  

replicable. In this work, we have provided a formal means of determining replicable cell identity 303	
  

by treating it as a quantitative prediction task. The essential premise of our method is that if a 304	
  

cell type has a distinct transcriptional profile within a dataset, then an algorithm trained from that 305	
  

data set will correctly identify the same type within an independent data set.   306	
  

The currently available data allowed us to draw a number of conclusions. We validated the 307	
  

discrete identity of eleven interneuron subtypes, and described replicate transcriptional profiles 308	
  

to prioritize possible marker genes, including Ptn, a growth factor that is preferentially expressed 309	
  

in Sst Chodl cells. We performed a similar assessment for pyramidal neurons but found less 310	
  

correspondence among datasets, suggesting that additional data will be required to determine 311	
  

whether there is evidence for discrete pyramidal neuron types. One major surprise of our 312	
  

analysis is the degree of replicability in the current data. Our AUROC scores are exceptionally 313	
  

high, particularly when considered in the context of the well-described technical confounds of 314	
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single-cell data. We suspect this reflects the fundamental nature of the biological problem we 315	
  

are facing: discrete cell types can be identified by their transcriptional profiles, and the biological 316	
  

clarity of the problem overcomes technical variation.  317	
  

This is further suggested by our result that cell identity has promiscuous effects within 318	
  

transcriptional data. While in-depth investigation of the most salient gene functions is required to 319	
  

characterize cell types, to simply identify cell types is relatively straightforward. This is 320	
  

necessarily a major factor in the apparent successes of unsupervised methods in determining 321	
  

novel cell types and suggests that cell type identity is clearly defined by transcriptional profiles, 322	
  

regardless of cell selection protocols, library preparation techniques or fine-tuning of clustering 323	
  

algorithms. To us this result recalls the startling finding by Venet et al. that “Most random gene 324	
  

expression signatures are related to breast cancer outcome” (Venet et al., 2011). Where, until 325	
  

that point, research had often focused on demonstrating that highly specific genes or gene 326	
  

clusters could predict breast cancer outcome, Venet et al. clearly demonstrated that this was a 327	
  

more straightforward task than targeted analyses would reveal, and was due to the strength of 328	
  

the underlying biological signal: more aggressive cancers divide more, and so anything 329	
  

correlated with fast cycling times will be associated with poor clinical outcomes. Comparison of 330	
  

transcriptional signatures between different cell types provides an equally clear lens. Many gene 331	
  

sets show more correlated expression within than across types, and variation across types is 332	
  

likely to be accounted for by simple important factors, like cell size. This is not to say that more 333	
  

detailed characterization of cell types is not necessary: understanding the differences between 334	
  

cells and how they work will require focused investigation into the precise molecular players that 335	
  

are differentially utilized. However, we hope that this helps to demonstrate that the variations on 336	
  

dimension reduction and clustering methods in single cell RNA-seq are ‘working’, inevitably by 337	
  

taking advantage of this very clear signal. 338	
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In this work we opted to use the subtype or cluster labels provided by the original authors, in 339	
  

essence to characterize both the underlying data as well as current analytic practices. However, 340	
  

this has limitations where studies cluster to different levels of specificity. For example, the Tasic 341	
  

paper defines multiple Parvalbumin subtypes but the Zeisel and Paul work do not. Our method 342	
  

makes it extremely easy to identify highly overlapping types at the levels defined by each 343	
  

author, facilitating downstream work to validate the sub-clusters through meta-analysis and at 344	
  

the bench. Given the known noisiness of single-cell expression and the complex and 345	
  

idiosyncratic character of approaches taken to assessing it, the degree of replicability that we 346	
  

see is much higher than could have been expected were there not simple explanations for the 347	
  

derived clusters from individual laboratories. Our work shows that with additional data, 348	
  

comprehensive evaluation and replication is likely to be quantitatively straightforward, making it 349	
  

possible to have high confidence in derived cell sub-types quite rapidly. As this additional data is 350	
  

generated, our approach can provide consistent updates of the field-wide consensus.  351	
  

The simplicity of our method makes it unlikely to be biased toward the exact cell identity tasks 352	
  

assessed here. For example, because of the method’s reliance on relative ranks, it is almost 353	
  

entirely immune to normalization as a potential confound. On the one hand, this limits our 354	
  

sensitivity to detect real signals of some type, but this cost is more than offset by the robustness 355	
  

of signals identified. Its simplicity also means that it is scalable, and readily admits to the 356	
  

incorporation of data from individual labs in their ongoing work. Ultimately we hope that by 357	
  

defining what is replicable clearly, MetaNeighbor will allow future studies involving cell-cell 358	
  

comparisons to build on a strong foundation toward a comprehensive delineation of cell types.  359	
  

Experimental Procedures 360	
  

Animals, manual cell sorting and scRNA-seq 361	
  

Mice were bred and cared for in accordance with animal husbandry protocols at Cold Spring 362	
  

Harbor Laboratory, with access to food and water ad libitum and a 12 hour light-dark cycle. 363	
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Transgenic animals bred to target the six phenotypically characterized subpopulations were 364	
  

generated using the following breeding strategies (detailed in He et al): Nkx2.1-CreER, Pv-ires-365	
  

Cre animals were bred separately to Ai14 reporter to label ChC and Pv cells in the cortex. ChCs 366	
  

were enriched in frontal cortex with tamoxifen induction at embryonic day 17.5. Intersectional 367	
  

labeling was achieved by breeding (a) Sst-Flp, Nos1-CreER, (b) Sst-Flp, CR-Cre, (c) Vip-Flp, 368	
  

CR-Cre and (d) Vip-Flp, Cck-Cre separately to the Ai65 intersectional reporter that labels cells 369	
  

with tdTomato only when both the lox-STOP-lox and frt-STOP-frt cassettes are excised. Adult 370	
  

animals (P28-35) were sacrificed by cervical dislocation to harvest brains for single cell sorting. 371	
  

Cell sorting and scRNA-seq were performed as described previously (Crow et al., 2016). Single 372	
  

cells were collected by manual sorting then placed into single tubes with 1µl total volume of 373	
  

RNAseOUT (Invitrogen), 1:400K diluted ERCC spike-in RNA, and sample-specific RT primers. 374	
  

Cells were flash frozen in liquid nitrogen then stored at -80ºC until processed. RNA was linearly 375	
  

amplified using the MessageAmp-II kit (Life Technologies) according to the manufacturer’s 376	
  

recommended protocol. Reverse transcription of amplified aRNA was done with SuperScript-III 377	
  

(Invitrogen) and cDNA libraries were prepared with the Illumina TruSeq small RNA library 378	
  

preparation kit (7-11 cycles of PCR). Libraries were size-selected with SPRISelect magnetic 379	
  

beads (Agencourt) and sequenced with paired-end 101bp reads using an Illumina HiSeq. 380	
  

PolyA-primed reads were mapped to the mouse reference genome (mm9) with Bowtie (v 381	
  

0.12.7), while paired sequences were used for varietal tag counting. A custom python script was 382	
  

used map and tally sequences with unique tags for each mRNA in each cell (Crow et al., 2016). 383	
  

All data is available to download from GEO (accession GSE92522). 384	
  

Public expression data  385	
  

Data analysis was performed in R using custom scripts (github.com/maggiecrow/MetaNeighbor, 386	
  

2016). Processed expression data tables were downloaded from GEO directly, then subset to 387	
  

genes appearing on both Affymetrix GeneChip Mouse Gene 2.0 ST array (902119) and the 388	
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UCSC known gene list to generate a merged matrix containing all samples from each 389	
  

experiment. The mean value was taken for all genes with more than one expression value 390	
  

assigned. Where no gene name match could be found, a value of 0 was input. We considered 391	
  

only samples that were explicitly labeled as single cells, and removed cells that expressed fewer 392	
  

than 1000 genes with expression >0. Cell type labels were manually curated using sample 393	
  

labels and metadata from GEO (see Tables S1 and S2). Merged data and metadata are linked 394	
  

through our Github page.  395	
  

Gene sets  396	
  

Gene annotations were obtained from the GO Consortium ‘goslim_generic’ (August 2015). 397	
  

These were filtered for terms appearing in the GO Consortium mouse annotations 398	
  

‘gene_association.mgi.gz’ (December 2014) and for gene sets with between 20-1000 genes, 399	
  

leaving 106 GO groups with 9221 associated genes. Random gene sets were generated by 400	
  

randomly choosing genes with the same set size distribution as GO slim. Sets of high variance 401	
  

genes were generated by binning data from each dataset into deciles based on expression 402	
  

level, then making lists of the top 25% of the most variable genes for each decile, excluding the 403	
  

most highly expressed bin. The high variance set was then defined as the intersect of the high 404	
  

variance gene lists across the relevant datasets.  405	
  

MetaNeighbor 406	
  

All scripts, sample data and detailed directions to run MetaNeighbor in R can be found on our 407	
  

Github page (github.com/maggiecrow/MetaNeighbor, 2016).  408	
  

The input to MetaNeighbor is a set of genes, a data matrix and two sets of labels: one set for 409	
  

labeling each experiment, and one set for labeling the cell types of interest. For each gene set, 410	
  

the method generates a cell-cell similarity network by measuring the Spearman correlation 411	
  

between all cells across the genes within the set, then ranking and standardizing the network so 412	
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that all values lie between 0 and 1. The use of rank correlations means that the method is 413	
  

robust to any rank-preserving normalization (i.e., log2, TPM, RPKM). Ranking and standardizing 414	
  

the networks ensures that distributions remain uniform across gene sets, and diminishes the 415	
  

role outlier similarities can play since values are constrained.  416	
  

The node degree of each cell is defined as the sum of the weights of all edges connected to it 417	
  

(i.e., the sum of the standardized correlation coefficients between each cell and all others), and 418	
  

this is used as the null predictor in the neighbor voting algorithm to standardize for a cell’s ‘hub-419	
  

ness’: cells that are generically linked to many cells are preferentially down-weighted, whereas 420	
  

those with fewer connections are less penalized. For each cell type assessment, the neighbor 421	
  

voting predictor produces a weighted matrix of predicted labels by performing matrix 422	
  

multiplication between the network and the binary vector (0,1) indicating cell type membership, 423	
  

then dividing each element by the null predictor (i.e., node degree). In other words, each cell is 424	
  

given a score equal to the fraction of its neighbors, including itself, which are part of a given cell 425	
  

type (Ballouz et al., 2016). For cross-validation, we permute through all possible combinations 426	
  

of leave-one-dataset-out cross-validation, sequentially hiding each experiment’s cell labels in 427	
  

turn, and then reporting how well we can recover cells of the same type as the mean area under 428	
  

the receiver operator characteristic curve (AUROC) across all folds. A key difference from 429	
  

conventional cross-validation is that there is no labeled data within the dataset for which 430	
  

predictions are being made. Labeled data comes only from external datasets, ensuring 431	
  

predictions are driven by signals that are replicable across data sources. To improve speed, 432	
  

AUROCs are calculated analytically, where the AUROC for each cell type j, is calculated based 433	
  

on the sum of the ranks of the scores for each cell i, belonging to that cell type. This can be 434	
  

expressed as follows:  435	
  

𝐴𝑈𝑅𝑂𝐶! =
𝑅𝑎𝑛𝑘𝑠!
𝑁 ∗ 𝑁!"#

−
𝑁 + 1
2 ∗ 𝑁!"#

!

!
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where N is the number of true positives, and NNeg is the number of true negatives. Note that for 436	
  

experiments with only one cell type this cannot be computed as there are no true negatives. 437	
  

AUROCs are reported as averages across all folds of cross-validation for each gene set 438	
  

(excluding NAs from experiments with no negatives), and the distribution across gene sets is 439	
  

plotted.  440	
  

To test the dependency of results on the amount of training and testing data we repeated the 441	
  

neuron vs. non-neuronal cell discrimination task after randomly selecting between two and 442	
  

seven datasets ten times each. This was done for 21 representative gene sets. Means for each 443	
  

gene set and each number of included datasets were plotted.  444	
  

Identifying putative replicates	
  445	
  

In cases where cell identity was undefined across datasets (i.e., cortical interneuron and 446	
  

pyramidal subtypes) we treated each subtype label as a positive for each other subtype, and 447	
  

assessed similarity over the high variance gene set described above. For example, Int1 from the 448	
  

Zeisel dataset was used as the positive (training) set, and all other subtypes were considered 449	
  

the test set in turn. Mean AUROCs from both testing and training folds are plotted in the 450	
  

heatmap in Figure 3. A stringent cut-off of mean AUROC >0.95 and/or mutual best matches 451	
  

across datasets identified putative replicated types for further assessment with our supervised 452	
  

framework (detailed above). While lowering this threshold could increase the number of 453	
  

subtypes with some match, we found that reciprocal top hits alone provided an upper bound on 454	
  

the number of replicated types (i.e., lowering the thresholds did not allow for a higher number of 455	
  

subtypes). New cell type labels encompassing these replicate types (e.g. a combined Sst-Chodl 456	
  

label containing Int1 (Zeisel), Sst Chodl (Tasic) and Sst Nos1 (Paul)) were generated for 457	
  

MetaNeighbor across random and GO sets, and for meta-analysis of differential expression.  458	
  

While only reciprocal top-hits across laboratories were used to define novel cell-types, 459	
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conventional cross-validation within laboratories was performed to fill in AUROC scores across 460	
  

labels contained within each lab. 461	
  

Differential expression 462	
  

For each cell type within a dataset (defined by the authors’ original labeling), differential gene 463	
  

expression was calculated using a one-sided Wilcoxon rank-sum test, comparing gene 464	
  

expression within a given cell type to all other cells within the dataset (e.g., Zeisel_Int1 vs all 465	
  

other Zeisel interneurons). Meta-analytic p-values were calculated for each putative replicated 466	
  

type using Fisher’s method (Fisher, 1925) then a multiple hypothesis test correction was 467	
  

performed with the Benjamini-Hochberg method (Benjamini and Hochberg, 1995). Top 468	
  

differentially expressed genes were those with an adjusted meta-analytic p-value <0.001 and 469	
  

with log2 fold change >2 in each dataset. All differential expression data for putative replicated 470	
  

subtypes can be found in Table S4.  471	
  

Supplementary Material 472	
  

Supplementary tables and figures may be accessed at the following link: http://bit.ly/2s58zPd 473	
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Figures 

 

 

Figure 1 – MetaNeighbor quantifies cell type identity across experiments 
A – Schematic representation of gene set co-expression across individual cells. Cell types are indicated by 
their color. B – Similarity between cells is measured by taking the correlation of gene set expression between 
individual cells. On the top left of the panel, gene set expression between two cells, A and B, is plotted. There 
is a weak correlation between these cells. On the bottom left of the panel we see the correlation between cells 
A and C, which are strongly correlated. By taking the correlations between all pairs of cells we can build a cell 
network (right), where every node is a cell and the edges represent how similar each cell is to each other cell. 
C - The cell network that was generated in B can be extended to include data from multiple experiments 
(multiple datasets). The generation of this multi-dataset network is the first step of MetaNeighbor. D – The 
cross-validation and scoring scheme of MetaNeighbor is demonstrated in this panel. To assess cell type 
identity across experiments we use neighbor voting in cross-validation, systematically hiding the labels from 
one dataset at a time. Cells within the hidden dataset are predicted as similar to the cell types from other 
datasets, using a neighbor voting formalism. Whether these scores prioritize cells as the correct type within the 
dataset determines the performance, expressed as the AUROC. In other words, comparative assessment of 
cells occurs only within a dataset, but this is based only on training information from outside that dataset. This 
is then repeated for all gene sets of interest. 
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Figure 2 – Cell type identity is widely represented in the transcriptome 
A & B – Distribution of AUROC scores from MetaNeighbor for discriminating neurons from non-neuronal cells 
(“task one”, A) and for distinguishing excitatory vs. inhibitory neurons (“task two”, B). GO scores are in black 
and random gene set scores are plotted in gray. Dashed grey lines indicate the null expectation for correctly 
guessing cell identity (AUROC=0.5). For both tasks, almost any gene set can be used to improve performance 
above the null, suggesting widespread encoding of cell identity across the transcriptome. C – Task one 
AUROC scores for each gene set are plotted with respect to the number of genes. A strong, positive 
relationship is observed between gene set size and AUROC score, regardless of whether genes were chosen 
randomly or based on shared functions. D – Distribution of AUROC scores for task one using 100 sets of 100 
randomly chosen genes, or 800 randomly chosen genes. The mean AUROC score is significantly improved 
with the use of larger gene sets (mean 100 = 0.80 +/- 0.05, mean 800 = 0.90 +/- 0.03). E – Relationship 
between AUROC score and expression level. Task one was re-run using sets of genes chosen based on mean 
expression. A strong positive relationship was observed between expression level and performance (rs ~0.9).  
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Figure 3 – Cross-dataset analysis of interneuron and pyramidal neuron diversity  
A – (Left) Heatmap of AUROC scores between interneuron subtypes based on the highly variable gene kernel. 
Dendrograms were generated by hierarchical clustering of Euclidean distances using average linkage. Row 
colors indicate data origin and column colors show marker expression. Clustering of AUROC score profiles 
recapitulates known cell type structure, with major branches representing the Pv, Sst and Htr3a lineages. 
(Middle) Table of reciprocal best matches and subtype pairs with scores >0.95. (Right) Boxplots of GO 
performance (3888 sets) for each replicated subtype, ordered by their AUROC score from the highly variable 
gene set. Subtypes are labeled with the names from Tasic et al. A positive relationship is observed between 
AUROC scores from the highly variable set and the average AUROC score for each subtype. Mean AUROCs 
are all greater than chance (0.5) suggesting robust cross-dataset replication across gene sets. B – (Left) 
Heatmap of AUROC scores between pyramidal subtypes based on the highly variable gene kernel, clustered 
as in A. Row colors indicate datasets and column colors show brain region, cortical layer or hippocampal area. 
Clustering of AUROC score profiles shows a separation of cortical and hippocampal subtypes. (Middle) Table 
of reciprocal best matches. (Right) Boxplots of GO performance (3888 sets) for each replicated subtype, 
ordered by their AUROC score from the highly variable gene set. Subtypes are labeled by layer. A positive 
relationship is observed between ID scores from the highly variable set and the average AUROC for each 
subtype. C – The table shows the top GO terms that allow for cross-dataset subtype discrimination, listed by 
their mean AUROC across tasks. For both tasks, high scores are obtained for terms related to neuronal 
function. D – AUROC scores for each GO function are plotted, with pyramidal scores on the y-axis and 
interneuron scores on the x-axis. AUROCs are highly correlated across tasks (rs~0.76), suggesting limited 
functional specificity.   
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Figure 4 – Replicated subtypes show consistent differential expression 
A – (Top) Heatmap of FDR adjusted p-values of top differentially expressed genes among replicated 
interneuron subtypes (NB only ten subtypes are shown as no differentially expressed genes were found for the 
Ndnf Car4 subtype). Subtype names are listed at the top of the columns and are labeled as in Tasic et al. 
Many genes are commonly differentially expressed among multiple subtypes, but combinatorial patterns 
distinguish them. (Right) Heatmap of FDR adjusted p-values of top differentially expressed genes among 
replicated pyramidal neuron subtypes. (NB only the two with overlapping differential expression are shown). 
Subtypes are labeled by layer. B – Standardized Ptn expression is plotted across the three experiments, where 
each box represents an interneuron subtype. High, but variable expression is observed across the three Sst 
Chodl types. C – Fluorescent double in-situ of Ai14/tdTomato driven by Sst-Flp and Nos-Cre expression 
(green) and Ptn (red). Dotted box indicates the area shown in higher magnification on the right, arrowheads 
point to cells that express both transcripts.
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